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Abstract

Labelled data is the foundation of most natural
language processing tasks. However, labelling
data is difficult and there often are diverse
valid beliefs about what the correct data labels
should be. So far, dataset creators have ac-
knowledged annotator subjectivity, but rarely
actively managed it in the annotation process.
This has led to partly-subjective datasets that
fail to serve a clear downstream use. To ad-
dress this issue, we propose two contrasting
paradigms for data annotation. The descrip-
tive paradigm encourages annotator subjectiv-
ity, whereas the prescriptive paradigm discour-
ages it. Descriptive annotation allows for the
surveying and modelling of different beliefs,
whereas prescriptive annotation enables the
training of models that consistently apply one
belief. We discuss benefits and challenges in
implementing both paradigms, and argue that
dataset creators should explicitly aim for one
or the other to facilitate the intended use of
their dataset. Lastly, we conduct an annotation
experiment using hate speech data that illus-
trates the contrast between the two paradigms.

1 Introduction
Many natural language processing (NLP) tasks are
subjective, in the sense that there are diverse valid
beliefs about what the correct data labels should
be. Some tasks, like hate speech detection, are
highly subjective: different people have very dif-
ferent beliefs about what should or should not be
labelled as hateful (Talat, 2016; Salminen et al.,
2019; Davani et al., 2021a), and while some be-
liefs are more widely accepted than others, there
is no single objective truth. Other examples in-
clude toxicity (Sap et al., 2019, 2021), harassment
(Al Kuwatly et al., 2020), harmful content (Jiang
et al., 2021) and stance detection (Luo et al., 2020;
AlDayel and Magdy, 2021) as well as sentiment
analysis (Kenyon-Dean et al., 2018; Poria et al.,
2020). But even for seemingly objective tasks like

Figure 1: Two key questions for dataset creators.

part-of-speech tagging, there is subjective disagree-
ment between annotators (Plank et al., 2014b).

In this article, we argue that dataset creators
should consider the role of annotator subjectivity
in the annotation process and either explicitly en-
courage it or discourage it. Annotators may subjec-
tively disagree about labels (e.g., for hate speech)
but dataset creators can and should decide, based
on the intended downstream use of their dataset,
whether they want to a) capture different beliefs or
b) encode one specific belief in their data.

As a framework, we propose two contrasting
data annotation paradigms. Each paradigm facil-
itates a clear and distinct downstream use. The
descriptive paradigm encourages annotator sub-
jectivity to create datasets as granular surveys of
individual beliefs. Descriptive data annotation thus
allows for the capturing and modelling of different
beliefs. The prescriptive paradigm, on the other
hand, discourages annotator subjectivity and in-
stead tasks annotators with encoding one specific
belief, formulated in the annotation guidelines. Pre-
scriptive data annotation thus enables the training
of models that seek to consistently apply one be-
lief. A researcher may, for example, want to model
different beliefs about hate speech (→ descriptive
paradigm), while a content moderation engineer at
a social media company may need models that ap-
ply their content policy (→ prescriptive paradigm).



Neither paradigm is inherently superior, but ex-
plicitly aiming for one or the other is beneficial
because it makes clear what an annotated dataset
can and should be used for. For example, data anno-
tated under the descriptive paradigm can provide in-
sights into different beliefs (§2.1), but it cannot eas-
ily be used to train models with one pre-specified
behaviour (§3.1). By contrast, leaving annotator
subjectivity unaddressed, as has mostly been the
case in NLP so far, leads to datasets that neither
capture an interpretable diversity of beliefs nor con-
sistently encode one specific belief; an undesirable
middle ground without a clear downstream use.1

The two paradigms are applicable to all data
annotation. They can be used to compare exist-
ing datasets, and to make and communicate de-
cisions about how new datasets are annotated as
well as how annotator disagreement can be inter-
preted. We hope that by naming and explaining the
two paradigms, and by discussing key benefits and
challenges in their implementation, we can support
more intentional annotation process design, which
will result in more useful NLP datasets.

Terminology Our use of the terms descriptive
and prescriptive aligns with their use in both lin-
guistics and ethics. In linguistics, descriptivism
studies how language is used, whereas prescrip-
tive grammar declares how language should be
used (Justice, 2006). Descriptive ethics studies
the moral judgments that people make, while pre-
scriptive ethics considers how people ought to act
(Thiroux and Krasemann, 2015). Accordingly, de-
scriptive data annotation surveys annotators’ be-
liefs, whereas prescriptive data annotation aims to
encode one specific belief, which is formulated in
the annotation guidelines.

2 The Descriptive Annotation Paradigm:
Encouraging Annotator Subjectivity

2.1 Key Benefits

Insights into Diverse Beliefs Descriptive data
annotation captures a multiplicity of beliefs in data
labels, much like a very granular survey would.
The distribution of data labels across annotators
and examples can therefore provide insights into
the beliefs of annotators, or the larger population
they may represent. For example, descriptive data
annotation has shown that non-Black annotators
are more likely to rate African American English

1See Appx. A for a selective overview of existing datasets.

as toxic (Sap et al., 2019, 2021), and that people
who identify as LGBTQ+ or young adults are more
likely to rate random social media comments as
toxic (Kumar et al., 2021). Similar correlations
between sociodemographic characteristics and an-
notation outcomes have been found in stance (Luo
et al., 2020), sentiment (Diaz et al., 2018) and hate
speech detection (Talat, 2016).

Even very subjective tasks may have clear-cut en-
tries on which most annotators agree. For example,
crowd workers tend to agree more on the extremes
of a hate rating scale (Salminen et al., 2019), and
datasets which consist of clear hate and non-hate
can have very high levels of inter-annotator agree-
ment, even with minimal guidelines (Röttger et al.,
2021). Descriptive data annotation can help to iden-
tify which entries are more subjective. Jiang et al.
(2021), for instance, find that perceptions about
the harmfulness of sexually explicit language vary
strongly across the eight countries in their sample,
whereas support for mass murder or human traf-
ficking is seen as very harmful across all countries.

Learning from Disagreement Annotator-level
labels from descriptive data annotation have been
shown to be a rich source of information for model
training. First, they can be used to separately model
annotators’ beliefs. For less subjective tasks such
as question answering, this has served to mitigate
undesirable annotator biases (Geva et al., 2019).
Davani et al. (2021b) reframe and expand on this
idea for more subjective tasks like abuse detection,
showing that multi-annotator model architectures
outperform standard single-label approaches on sin-
gle label prediction. Second, instead of modelling
each annotator separately, other work has grouped
them into clusters based on sociodemographic at-
tributes (Al Kuwatly et al., 2020) or polarisation
measures derived from annotator labels (Akhtar
et al., 2020, 2021), with similar results. Third,
models can be trained directly on soft labels (i.e.,
distributions of labels given by annotators), rather
than hard one-hot ground truth vectors (Plank et al.,
2014a; Jamison and Gurevych, 2015; Uma et al.,
2020; Fornaciari et al., 2021).

Evaluating with Disagreement Descriptive
data annotation facilitates model evaluation that
accounts for different beliefs about how a model
should behave (Basile et al., 2021b; Uma et al.,
2021). This is particularly relevant when deploying
NLP systems for practical tasks such as content
moderation, where user-facing performance needs



to be considered (Gordon et al., 2021). To this
end, comparing a model prediction to a descriptive
label distribution, the crowd truth (Aroyo and
Welty, 2015), can help estimate how acceptable
the prediction would be to users (Alm, 2011).
Gordon et al. (2022) operationalise this idea by
introducing jury learning, a recommender system
approach to predicting how a group of annotators
with specified sociodemographic characteristics
would judge different pieces of content.

2.2 Key Challenges

Representativeness of Annotators The survey-
like benefits of descriptive data annotation corre-
spond to survey-like challenges. First, dataset cre-
ators must decide who their data aims to represent,
by establishing a clear population of interest. Arora
et al. (2020), for example, ask women journalists to
annotate harassment targeted at them. Talat (2016)
recruits feminist activists as well as crowd work-
ers. Second, dataset creators must consider whether
representativeness can practically be achieved. To
capture a representative distribution of beliefs for
each entry requires dozens, if not hundreds of an-
notators recruited from the population of interest.
Sap et al. (2021), for example, collect toxicity la-
bels from 641 annotators, but only for 15 examples.
Other datasets generally use much fewer annota-
tors per entry (see Appx. A) and therefore cannot
be considered representative in the sense that large
(i.e., many-participant) surveys are. A potential ap-
proach to mitigating this issue in modelling anno-
tator beliefs is by introducing information sharing
across groups of annotators (e.g. based on sociode-
mographics), where annotator behaviour updates
group-specific priors rather than being considered
in isolation, and thus fewer annotations are needed
from each annotator (Gordon et al., 2022).

Interpretation of Disagreement In the descrip-
tive paradigm, the absence of a (specified) ground
truth label complicates the interpretation of any ob-
served annotator disagreement: it may be due to
a genuine difference in beliefs, which is desirable
in this paradigm, or due to undesirable annotator
error (Pavlick and Kwiatkowski, 2019; Basile et al.,
2021a; Leonardelli et al., 2021). The same issue
applies to inter-annotator agreement metrics like
Fleiss’ Kappa. When subjectivity is encouraged,
such metrics can at best measure task subjective-
ness, but not task difficulty, annotator performance,
or dataset quality (Zaenen, 2006; Alm, 2011).

Label Aggregation Descriptive annotation has
clear downstream uses (§2.1) but it is fundamen-
tally misaligned with standard NLP methods that
rely on single gold standard labels. When datasets
are constructed to be granular surveys of beliefs,
reducing those beliefs to a single label, through
majority voting or otherwise, goes directly against
that purpose. Aggregating labels conceals informa-
tive disagreements (Leonardelli et al., 2021; Basile
et al., 2021b) and risks discarding minority beliefs
(Prabhakaran et al., 2021; Basile et al., 2021a).

3 The Prescriptive Annotation Paradigm:
Discouraging Annotator Subjectivity

3.1 Key Benefits

Specified Model Behaviour Encoding one spe-
cific belief in a dataset through data annotation is
difficult (§3.2) but advantageous for many practical
applications. Social media companies, for example,
moderate content on their platforms according to
specific and extensive content policies.2 Therefore,
they need data annotated in accordance with those
policies to train their content moderation models.
This illustrates that even for highly subjective tasks,
where different model behaviours are plausible and
valid, one specific behaviour may be practically de-
sirable. Prescriptive data annotation specifies such
desired behaviours in datasets for model training
and evaluation.

Quality Assurance In the prescriptive paradigm,
annotator disagreements are a call to action because
they indicate that a) the annotation guidelines were
not correctly applied by annotators or b) the guide-
lines themselves were inadequate. Annotator errors
can be found using noise identification techniques
(e.g., Hovy et al., 2013; Zhang et al., 2017; Paun
et al., 2018; Northcutt et al., 2021), corrected by
expert annotators (Vidgen and Derczynski, 2020;
Vidgen et al., 2021a) or their impact mitigated by
label aggregation. Guidelines which are unclear
or incomplete need to be clarified or expanded by
dataset creators, which may require iterative ap-
proaches to annotation (Founta et al., 2018; Zeinert
et al., 2021). Therefore, quality assurance under
the prescriptive paradigm is a laborious but struc-
tured process, with inter-annotator agreement as a
useful, albeit noisy, measure of dataset quality.

2In March 2021, a whistleblower shared 300-page content
guidelines used by Facebook moderators (Hern, 2021).



Visibility of Encoded Belief In the prescriptive
paradigm, the one belief that annotators are tasked
with applying is made visible and explicit in the
annotation guidelines. Well-formulated guidelines
should give clear instructions on how to decide be-
tween different classes, along with explanations
and illustrative examples. This creates account-
ability, in that people can review, challenge and
disagree with the formulated belief. Like data state-
ments (Bender and Friedman, 2018), prescriptive
annotation guidelines can provide detailed insights
into how datasets were created, which can then
inform their downstream use.

3.2 Key Challenges

Creation of Annotation Guidelines Creating
guidelines for prescriptive data annotation is dif-
ficult because it requires topical knowledge and
familiarity with the data that is to be annotated.
Guidelines would ideally provide a clear judgment
on every possible entry, but in practice, such per-
fectly comprehensive guidelines can only be ap-
proximated. Even extensive legal definitions of
hate speech leave some room for subjective inter-
pretation (Sellars, 2016). Further, creating guide-
lines for prescriptive data annotation requires de-
ciding which one belief to encode in the dataset.
This can be a complex process that risks disregard-
ing non-majority beliefs if marginalised people are
not included in it (Raji et al., 2020).

Application of Annotation Guidelines Annota-
tors need to be familiar with annotation guidelines
to apply them correctly, which may require addi-
tional training, especially if guidelines are long and
complex. This is reflected in an increasing shift in
the literature towards using annotators with task-
relevant experience over non-trained crowd work-
ers (e.g. Basile et al., 2019; Röttger et al., 2021;
Vidgen et al., 2021a). During annotation, annota-
tors will need to refer back to the guidelines, which
requires giving them sufficient time per entry and
providing a well-designed annotation interface.

Persistent Subjectivity Annotator subjectivity
can be discouraged, but not eliminated. Inevitable
gaps in guidelines leave annotators no choice but
to apply their personal judgement for some entries,
and even when there is explicit guidance, implicit
biases may persist. Sap et al. (2019), for example,
demonstrate racial biases in hate speech annota-
tion, and show that targeted annotation prompts
can reduce these biases but not definitively elimi-

nate them. To address this issue, dataset creators
should work with groups of annotators that are
diverse in terms of sociodemographic characteris-
tics and personal experiences, even when annotator
subjectivity is discouraged.

4 An Illustrative Annotation Experiment
Experimental Design To illustrate the contrast
between the two paradigms, we conducted an an-
notation experiment. 60 annotators were randomly
assigned to one of three groups of 20. Each group
was given different guidelines to label the same
200 Twitter posts, taken from a corpus annotated
for hate speech by Davidson et al. (2017), as either
hateful or non-hateful. G1, the descriptive group,
received a short prompt which directed them to
apply their subjective judgement (‘Do you person-
ally feel this post is hateful?’). G2, the prescrip-
tive group, received a short prompt which discour-
aged subjectivity (‘Does this post meet the criteria
for hate speech?’), along with detailed annotation
guidelines. G3, the control group, received the
prescriptive prompt and a short definition of hate
speech but no further guidelines. This is to con-
trol for the difference in length and complexity of
annotation guidelines between G1 and G2.

Results We evaluate average percentage agree-
ment and Fleiss’ κ to measure dataset-level inter-
annotator agreement in each group (Table 1). To
test for significant differences in agreement be-
tween groups, we use confidence intervals com-
puted with a 1000-sample bootstrap.

Group Avg. % Agree. Fleiss’ κ
G1 - Descriptive 73.90 0.20

G2 - Prescriptive 93.72 0.78

G3 - Control 72.50 0.15

Table 1: Inter-annotator agreement metrics for the three
groups of 20 annotators on our 200-post binary dataset.

Agreement is very low in the descriptive group
G1 (κ = 0.20), which suggests that annotators
hold varied beliefs about which posts are hate-
ful. However, agreement is significantly higher
(p < 0.001) in G2 (κ = 0.78), which suggests
that a prescriptive approach with detailed annota-
tion guidelines can successfully induce annotators
to apply a specified belief rather than their sub-
jective view. Further, agreement in the control
group G3 (κ = 0.15) is as low as in descriptive
G1, which suggests that comprehensive guidelines



are instrumental in facilitating high agreement in
the prescriptive paradigm. G1 and G3 also do not
differ systematically on which posts annotators dis-
agree on, which suggests that annotators with little
prescriptive instruction (G3) tend to apply their
subjective views (like G1).

Reproducibility For details on our dataset and
annotators, see the data statement (Bender and
Friedman, 2018) in Appendix B. Annotation
prompts are given in Appendix C. Full guidelines,
annotated data and code are available on GitHub.

5 Conclusion

In this article, we named and explained two con-
trasting paradigms for data annotation. The de-
scriptive paradigm encourages annotator subjec-
tivity to create datasets as granular surveys of in-
dividual beliefs, which can then be analysed and
modelled. The prescriptive paradigm tasks anno-
tators with encoding one specific belief formulated
in the annotation guidelines, to enable the train-
ing of models that seek to apply that one belief
to unseen data. Dataset creators should explicitly
aim for one paradigm or the other to facilitate the
intended downstream use of their dataset, and to
document for the benefit of others how exactly their
dataset was annotated. We discussed benefits and
challenges in implementing both paradigms, and
conducted an annotation experiment that illustrates
the contrast between them. We hope that the two
paradigms can support more intentional annotation
process design and thus facilitate the creation of
more useful NLP datasets.
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A Overview of Subjective Task Datasets

This appendix gives a selective overview of how
existing NLP dataset work has (or has not) engaged
with annotator subjectivity. For reasons of scope,
we focus on 11 English-language datasets anno-
tated for hate speech and other forms of abuse.
Entries are sorted from most descriptive to most
prescriptive annotation, based on our assessment of
information made available by the dataset creators.

Sap et al. (2019) and Sap et al. (2021) annotate
toxicity. They do not state explicitly that they en-
courage annotator subjectivity, but their annotation
prompts clearly do. Each entry is labelled by up
to 641 annotators. Overall, they are very aligned
with the descriptive paradigm.

Kumar et al. (2021) annotate toxicity and types
of toxicity. They do not state explicitly that they
encourage annotator subjectivity, but their anno-
tation prompts clearly do. Each entry is labelled
by five annotators. Overall, they are very aligned
with the descriptive paradigm.

Cercas Curry et al. (2021) annotate abuse. They
gather ‘views of expert annotators’ based on guide-
lines that allow for significant subjectivity and do
not attempt to resolve disagreements, but also do
not explicitly encourage annotator subjectivity. On
average, each entry is labelled by around three an-
notators. Overall, they are moderately aligned
with the descriptive paradigm.

Talat and Hovy (2016) annotate hate speech.
They provide annotators with 11 fine-grained crite-
ria for hate speech, but several criteria invite subjec-
tive responses (e.g., ‘uses a problematic hashtag’).
Each entry is labelled by up to three annotators.
Overall, they are not clearly aligned with either
paradigm.

Davidson et al. (2017) annotate hate speech.
They provide annotators with a brief definition of
hate speech and an explanatory paragraph, but their
definition also includes subjective criteria like per-
ceived ‘intent’. Most entries are labelled by three
annotators. Overall, they are not clearly aligned
with either paradigm.

Zampieri et al. (2019) annotate offensive con-
tent. They provide annotators with some formal
criteria for offensiveness (e.g., ‘use of profanity’),
but as a whole their guidelines are very brief. Each
entry is labelled by up to three annotators. Overall,
they are moderately aligned with the prescrip-
tive paradigm.

Founta et al. (2018) annotate abuse. They pro-
vide annotators with fine-grained definitions for
each category and iterate on their taxonomy to fa-
cilitate more agreement, but do not share compre-
hensive guidelines. Each entry is labelled by five
annotators. Overall, they are moderately aligned
with the prescriptive paradigm.

Caselli et al. (2020) annotate abuse. They pro-
vide annotators with a brief fine-grained decision
tree with the explicit intent of reducing annotator
subjectivity, and discuss disagreements to resolve
them. Each entry is labelled by up to three anno-
tators. Overall, they are moderately aligned with
the prescriptive paradigm.

Vidgen et al. (2021b) annotate hate speech. They
provide annotators with fine-grained definitions for
each category as well as very detailed annotation
guidelines, and disagreements are resolved by an
expert. Each entry is labelled by up to three an-
notators. Overall, they are very aligned with the
prescriptive paradigm.

Vidgen et al. (2021a) annotate abuse. They
provide annotators with fine-grained definitions for
each category as well as very detailed annotation
guidelines, and they use expert-driven group
adjudication to resolve disagreements. Each entry
is labelled by up to three annotators. Overall,
they are very aligned with the prescriptive
paradigm.

B Data Statement

Following Bender and Friedman (2018), we pro-
vide a data statement, which documents the gen-
eration and provenance of the dataset used for our
annotation experiment.

A. CURATION RATIONALE To create our
dataset, we sampled 200 Twitter posts from a larger
corpus annotated for hateful content by Davidson
et al. (2017). Of the posts we sampled, 100 were
originally annotated as hateful and 100 as non-
hateful by majority vote between three annotators.
We sampled only from those posts that had some
disagreement among their annotators (i.e., two out
of three rather than unanimous agreement), to en-
courage disagreement in our experiment. The pur-
pose of our 200-post dataset is to enable the anno-
tation experiment presented in §1, which illustrates
the contrast between the descriptive and prescrip-
tive data annotation paradigms.



B. LANGUAGE VARIETY The dataset con-
tains English-language text posts only.

C. SPEAKER DEMOGRAPHICS All speak-
ers are Twitter users. Davidson et al. (2017) do not
share any information on their demographics.

D. ANNOTATOR RECRUITMENT We re-
cruited three groups of 20 annotators using Ama-
zon’s Mechanical Turk crowdsourcing market-
place.3. Annotators were made aware that the task
contained instances of offensive language before
starting their work, and they could withdraw at any
point throughout the work.

E. ANNOTATOR DEMOGRAPHICS All an-
notators were at least 18 years old when they started
their work, and we recruited only annotators that
were based in the UK. This was to facilitate com-
parability across groups of annotators. For each
group, we recruited 10 male and 10 female anno-
tators, based on self-reported gender. This was to
encourage disagreement within groups, based on
the assumption that men would on average disagree
more about hateful content with women than with
other men, and vice versa. No further annotator
demographics were recorded.

F. ANNOTATOR COMPENSATION All an-
notators were compensated for their work at a rate
of at least £16 per hour. The rate was set 50%
above the London living wage (£10.85), although
all work was completed remotely.

G. SPEECH SITUATION All entries in our
dataset were originally posted to Twitter and then
collected by Davidson et al. (2017), who do not
share when the posts were made.

H. TEXT CHARACTERISTICS All entries in
our dataset are individual Twitter text posts, with
a length of 140 characters or less. We perform
only minimal text cleaning, replacing user men-
tions (e.g., "@Obama") with "[USER]" and URLs
with "[URL]".

I. LICENSE Davidson et al. (2017) make the
Twitter data they collected available for further
research use via GitHub under an MIT license.4

Our re-annotated subset of the data is made avail-
able under CC0-1.0 license at github.com/paul-
rottger/annotation-paradigms, so that the results
of our experiment can be reproduced.

3https://www.mturk.com/
4https://github.com/t-davidson/hate-speech-and-

offensive-language

J. ETHICS APPROVAL We received approval
for our experiment and the data annotation it
entailed from our institution’s ethics review board.

C Annotation Prompts
The three groups of annotators in our experiment
all annotated the same data in the same order, but
each group received different annotation prompts.
The full annotation guidelines for G2 are available
at github.com/paul-rottger/annotation-paradigms.

G1 - Descriptive Group “Imagine you come
across the post below on social media. Do you
personally feel this post is hateful? We want to
understand your own opinions, so try to disregard
any impressions you might have about whether
other people would find it hateful.”

G2 - Prescriptive Group “Imagine you come
across the post below on social media. Does this
post meet the criteria for hate speech? We are
trying to collect objective judgments, so try to dis-
regard any feelings you might have about whether
you personally find it hateful.

Click here to view the criteria: LINK”

G3 - Control Group “Imagine you come across
the post below on social media. Does this post
meet the criteria for hate speech? A post is con-
sidered hate speech if it is 1) abusive and 2) targeted
against a protected group (e.g., women) or at its
members for being a part of that group.”

https://github.com/paul-rottger/annotation-paradigms
https://github.com/paul-rottger/annotation-paradigms
www.mturk.com
https://github.com/t-davidson/hate-speech-and-offensive-language
https://github.com/t-davidson/hate-speech-and-offensive-language
https://github.com/paul-rottger/annotation-paradigms

