
Proceedings of NAACL-HLT 2022: Industry Track Papers, pages 197 - 208
July 10-15, 2022 ©2022 Association for Computational Linguistics

Intent Discovery for Enterprise Virtual Assistants: Applications of
Utterance Embedding and Clustering to Intent Mining

Minhua Chen
Interactions LLC

mchen@interactions.com

Badrinath Jayakumar
Interactions LLC

bjayakumar@interactions.com

Michael Johnston∗

Amazon Alexa AI
mjohnstn@amazon.com

Eman Mahmoodi
Interactions LLC

smahmoodi@interactions.com

Daniel Pressel
Interactions LLC

dpressel@interactions.com

Abstract

A key challenge in the creation and refinement
of virtual assistants is the ability to mine un-
labeled utterance data to discover common in-
tents. We develop an approach to this prob-
lem that combines large-scale pre-training and
multi-task learning to derive a semantic em-
bedding that can be leveraged to identify clus-
ters of utterances that correspond to unhandled
intents. An utterance encoder is first trained
with a language modeling objective and subse-
quently adapted to predict intent labels from
a large collection of cross-domain enterprise
virtual assistant data using a multi-task cosine
softmax loss. Experimental evaluation shows
significant advantages for this multi-step pre-
training approach, with large gains in down-
stream clustering accuracy on new applications
compared to standard sentence embedding ap-
proaches. The approach has been incorporated
into an interactive discovery tool that enables
visualization and exploration of intents by sys-
tem analysts and builders.

1 Introduction

To build an enterprise virtual assistant capable of
providing effective interaction with customers, in-
tent detection – automatically detecting the cus-
tomer’s intent based on their input – is an indispens-
able component. Large-scale pre-trained language
models have shown promising abilities in few-shot
classification, and high accuracy intent detection
can now be obtained with limited amounts of la-
beled data (Devlin et al., 2019; Henderson et al.,
2020; Vulic et al., 2021). However, there are still
situations where no labeled data is available. This
situation is commonly encountered when design-
ing a dialogue system for a brand new application.
In this case, we would like to identify common
intents from any available unlabeled data in the
domain, such as call transcripts or chat logs. Also,
for deployed applications, intent discovery can be

∗Work completed at Interactions LLC

applied to ‘no-match’ data; that is, utterances that
the current system does not handle.

At first glance, the problem of intent discovery
from unlabeled data appears similar to text cluster-
ing, which is well-studied in the literature. One nat-
ural approach for clustering is to use Transformer-
based sentence embedding methods (Devlin et al.,
2019; Reimers and Gurevych, 2019) to represent
each utterance as a fixed-length vector, and then ap-
ply standard clustering methods such as K-means
to extract intent clusters (Wu and Xiong, 2020;
Aharoni and Goldberg, 2020). However, these mod-
els are mostly pre-trained on generic data such as
Wikipedia or Natural Language Inference (NLI)
datasets, which are quite different from typical en-
terprise customer service data. Hence there is a
domain mismatch between the pre-trained model
and the downstream application task.

In our experience, enterprise virtual assistant
data has several key characteristics. First, utter-
ances are mostly short, containing only a few words.
Additionally, they contain some level of noise from
Automatic Speech Recognition (ASR) transcrip-
tions. Moreover, the data distribution is affected by
the customer service communication channel. For
example, there are many calls asking to speak to
a live agent in order to bypass the system. Finally,
the semantics differ at some points from ordinary
language, because of business logic and design
constraints. For example, the two utterances “my
screen is broken” and “power button not respond-
ing” may be treated as containing the same seman-
tic intent of “TECH-SUPPORT”, while in common
datasets (e.g., NLI), they would likely be consid-
ered different.

For these reasons, directly applying a generically
pre-trained Transformer encoder (such as BERT
(Devlin et al., 2019), or even an adapted model like
Sentence-BERT (Reimers and Gurevych, 2019))
may not be optimal for the intent discovery prob-
lem. However, in our data lake we have accumu-

197

lated large amounts of utterance data from a large
number of applications across multiple business
verticals, all with intent labels either from produc-
tion understanding models or human annotators.
We, therefore, hypothesized that continuing pre-
training on our existing virtual assistant data, to
obtain a domain-specific utterance encoder, could
be beneficial for downstream intent discovery tasks.

We propose a three-step solution (Figure 1)
to the intent discovery problem: 1) Generic
Transformer Pre-training, 2) Domain-adaptive Pre-
training, 3) Downstream Embedding and Cluster-
ing.

This approach is related to the don’t-stop-
pretraining paradigm proposed in (Gururangan
et al., 2020), in which a generic Language Model
(LM) is adapted to the target domain (or task)
through domain (or task) adaptive pre-training.
However, a key difference is that we leverage super-
vised data for the domain-adaptive pre-training in
the second step; on the contrary, they only leverage
unlabeled data for the continued pre-training. Re-
cently Vulic et al. (2021) proposed ConvFIT where
supervised contrastive learning is performed after
generic LM pre-training. ConvFIT uses a small
amount of labeled data from the same task in the
adaptive pre-training step, which can be viewed as
supervised task-adaptive pre-training for few-shot
learning. In contrast, we use a collection of labeled
data across a large number of customer service use
cases in the second step, which can be viewed as
supervised domain-adaptive pre-training for down-
stream clustering tasks. Notice that no access to the
downstream data is needed for our domain-adaptive
pre-training step, which makes our model reusable
for new and unseen applications and use cases.

2 The Three-step Approach

2.1 Step 1: Generic Transformer Pre-training

Transformer-based pre-training such as BERT (De-
vlin et al., 2019) and GPT and its variants (Rad-
ford et al., 2018, 2019; Brown et al., 2020) have
changed the landscape of natural language process-
ing. Through self-supervised pre-training on large
amounts of public data, Transformers can learn
many language regularities, from syntax to seman-
tics to even commonsense knowledge (Manning
et al., 2020; Tenney et al., 2019). These pre-trained
models then serve as excellent starting points for
downstream tasks through model fine-tuning. In-
stead of adopting a publicly available pre-trained

model, we pre-trained our own Transformer-based
language model from public dialogue data, includ-
ing three years of Reddit (Al-Rfou et al., 2016;
Henderson et al., 2019), online forums, as well as
customer reviews and Wikipedia. We use a masked
language model (MLM) training loss and train an
8-layer model with eight attention heads and rel-
ative positional encoding (Shaw et al., 2018) on
full conversations (Pressel et al., 2022), where each
turn is demarcated with a special end-of-utterance
token. We also place the layer norm at the front of
each sub-layer in the Transformer to simplify train-
ing and improve performance (Nguyen and Salazar,
2019; Xiong et al., 2020; Wang et al., 2019). We
found that, despite its smaller size, our model often
outperforms much larger previously created mod-
els on many downstream dialogue related tasks,
including intent detection, slot-filling, belief state
tracking, probing, and few-shot learning. We use
this in-house pre-trained model as our starting point
for the intent discovery task, and leverage the mead-
baseline (Pressel et al., 2018) package for the im-
plementation.

2.2 Step 2: Domain-adaptive Pre-training

The premise of the domain-adaptive pre-training
step is that the model can learn from a broad spec-
trum of existing use cases covering different busi-
ness verticals so that the adapted encoder is applica-
ble to new previously unseen use cases. To achieve
this goal, we drew a balanced amount of (utterance,
intent) sample pairs from each of 20 applications
in our enterprise virtual assistant database thereby
ensuring that applications with larger data volume
do not dominate the pre-training data. The appli-
cations cover a broad range of verticals including
insurance, telecommunications, consumer electron-
ics, financial, retail, travel, and utilities.

Additionally, we note that many of the applica-
tion models were designed independently, yielding
differences in the naming conventions for intent
labels across applications, even for intents with
the same semantic meaning. For example, the
technical-support intent could be named “TECH-
SUPPORT” in one application but “TECHNICAL-
SERVICE” in another. Consequently, we could not
simply merge data from different applications and
pre-train one single model. To deal with this prob-
lem, we employed a multi-task approach to pre-
training where the Transformer encoder is shared
between different applications, but the intent clas-

198

sifier is specific for each application. This ensures
that varying labels across applications do not com-
pete with each other in the softmax loss.

If we directly use a linear classifier with standard
softmax loss for each task, the embeddings (i.e.,
feature inputs) to the softmax loss will be trained
to yield linear discrimination, but may not pre-
serve the distance metrics which are critical for our
downstream clustering task. To preserve distance-
metrics in the geometry, we replace the standard
softmax with cosine softmax, where the logit score
inside softmax is computed via the cosine similarity
between the embeddings and the classifier weights.
The resulting approach has a novel multi-task co-
sine softmax loss for domain-adaptive pre-training
to accommodate the nature of our enterprise virtual
assistant data and the downstream clustering task.
This is the key contribution of this paper. We will
present more details in Section 3.

2.3 Step 3: Downstream Embedding and
Clustering

After the model is pre-trained and adapted to our en-
terprise virtual assistant domain, we can apply it to
any new application for intent discovery. We apply
the encoder to each utterance from the new applica-
tion to obtain ℓ2 normalized utterance embeddings,
and run K-means clustering on the embeddings to
extract intent clusters.

Step 1: Generic
Transformer
Pretraining

 Masked Language
Model Loss

Public Data

Step 2:
Domain-adaptive
Transformer
Pretraining

Step 3: Downstream
Embedding and
Clustering

K-means ClusteringCosine Softmax
Application 1 … Cosine Softmax

Application M

Projection

 In-Domain Virtual Assistant Data New Application Data

Pooling

Input Embedding

8-Headed Relative
Attention

8x

Feed
Forward

Add

Norm

L2 Normalization

Projection

Pooling

Norm

Add

Norm

Input Embedding

8-Headed Relative
Attention

8x

Feed
Forward

Add

Norm

Norm

Add

Norm

Input Embedding

8-Headed Relative
Attention

8x

Feed
Forward

Add

Norm

Norm

Add

Norm

Figure 1: The Three-step Approach

3 Model Description

We describe here the model formulation for Step
2 of our intent discovery pipeline. We collected
pre-training data from M = 20 applications in our
data lake, and for each application m we sample
n(m) (utterance, intent) pairs (x

(m)
i , y

(m)
i), (i =

1, 2, · · · , n(m)). Here x(m)
i is a raw utterance from

ASR transcription, y(m)
i ∈ {1, 2, · · · , C(m)} is the

intent label for that utterance, the total number of
intents C(m) for application m is about 1000, and
the number of samples n(m) for application m is
around one million.

Our multi-application intent classifier is a multi-
task learning model where the utterance encoder
is shared across applications but the classifier
is built separately for each application. Mathe-
matically the model can be formulated by mini-
mizing the following loss function L(X,Y) =∑M

m=1

∑n(m)

i=1 ℓ(m)
(
h(x

(m)
i), y

(m)
i

)
where h is

the utterance encoder which is shared across ap-
plications and initialized from the generic pre-
training on public data in Step 1. It consists of the
pre-trained Transformer layers followed by mean-
pooling to yield a fixed-length representation of
the utterance, and a Multilayer Perceptron (MLP)
to project it to a desired embedding space. Dur-
ing pre-training we randomly sample a mini-batch
of utterances from the pre-training data, pass it
through the same Transformer encoder h, and then
use different classifier heads for different utterances
depending on which applications they come from.
This multi-task learning approach has been used
successfully in the literature to learn sentence em-
beddings (Liu et al., 2019; Wei et al., 2021). How-
ever, our approach differs in its use of the cosine
softmax loss in ℓ(m) with a distance-metric pre-
serving property as explained below. A standard
softmax loss computes the cross-entropy between
the intent prediction distribution and the label as
follows:

ℓ(m)
(
h(x

(m)
i), y

(m)
i

)
= −

C(m)∑

c=1

1(c = y
(m)
i)×

log
exp

(
h(x

(m)
i)⊤θ(m)

c

)

∑C(m)

c′=1 exp
(
h(x

(m)
i)⊤θ(m)

c′

)
(1)

where θ(m)
c is the classifier vector for intent c in ap-

plication m. However, as discussed in Section 2.2,
this loss is not a good option for our downstream
intent discovery task. For example, two nearby
utterances in the embedding space could belong
to different intent classes, if they lie on different
sides of the linear boundary. To remedy this, we re-
place the above standard softmax loss with a cosine
softmax loss as follows

199

ℓ(m)
(
h(x

(m)
i), y

(m)
i

)
= −

C(m)∑

c=1

1(c = y
(m)
i)×

log
exp

(
h̄(x

(m)
i)⊤θ̄

(m)
c /τ

)

∑C(m)

c′=1 exp
(
h̄(x

(m)
i)⊤θ̄

(m)

c′ /τ
)

(2)

Here h̄(x
(m)
i) = h(x

(m)
i)/∥h(x(m)

i)∥ and
θ̄
(m)
c = θ

(m)
c /∥θ(m)

c ∥ are normalized unit vectors
which will be used as the final embeddings for
the utterances and intents, and τ is a pre-defined
temperature parameter. Since the cosine similar-
ity is related to the distance metric via v⊤

1 v2 =
−∥v1 − v2∥2/2 + 1 for ℓ2 normalized vectors, the
cosine softmax pushes the embeddings of the ut-
terances and the corresponding intents to be close
to each other, which will yield the distance-metric
preserving property we desire. Appendix A.3 ’s
figure visually represents the difference between
standard softmax and cosine softmax.

This is the novel multi-task cosine softmax loss
we propose in this paper. Notice that both the
utterance encoder h and the unnormalized intent
embeddings θ are learned in this domain-adaptive
pre-training process, where the Transformer is ini-
tialized from generic pre-training in Step 1 and
the intent embeddings are initialized randomly as
a look-up table. After this Step 2, the adapted ut-
terance encoder, which summarizes all enterprise
virtual assistant data characteristics and business
logics from multiple existing applications, can then
be applied to downstream intent discovery tasks
for new applications in Step 3. We also mention
alternative modeling approaches in Appendix A.1.

4 Experiments

4.1 Experimental Methodology
To monitor the quality of the domain-adaptive pre-
training in Step 2, we randomly select 4% from the
supervised pre-training data as a validation set and
predict the intent following the multi-task cosine
softmax loss proposed in Section 3,

ỹ
(m)
i = argmax

c∈{1,2,··· ,C(m)}
log

exp
(
h̄(x

(m)
i)⊤θ̄

(m)
c /τ

)

∑C(m)

c′=1 exp
(
h̄(x

(m)
i)⊤θ̄

(m)

c′ /τ
)

= argmin
c∈{1,2,··· ,C(m)}

∥h̄(x(m)
i)− θ̄

(m)
c ∥2

(3)

which is essentially performing a nearest neighbor
intent search in the embedding space. We compare
the true intent label y(m)

i with the above predicted
intent ỹ(m) to compute the pre-training accuracy for

Step 2. The domain-adapted Transformer model
achieved an accuracy of 91.5% on this validation
set, which demonstrates the consistency of the true
intent labels and the high quality of the adapted
Transformer model.

However, the ultimate goal of our model is not
to test the intent classification accuracy for our ex-
isting applications but to perform intent discovery
on a new application. It is not possible to directly
apply equation (3) for intent discovery, as we do
not have the intent embeddings θ̄(m) for the new
application. A natural approach for this problem
is to embed all utterances from a new application t
using the pre-trained application-independent en-
coder h̄(x

(t)
i) and apply a clustering algorithm.

Then, we simultaneously identify the centroids as
the discovered intent embeddings and the cluster
indices as intent predictions. This is the Step 3 in
our intent discovery pipeline. For simplicity and
a fair comparison with other methods, we use the
K-means algorithm to perform clustering on the
new application’s data,

(ỹ
(t)
i , θ̃

(t)
) = arg min

ci∈{1,2,··· ,K},θ̄(t)

n(t)∑

i=1

∥h̄(x(t)
i)− θ̄

(t)
ci ∥

2 (4)

From equation (4), we can see that we are es-
sentially using an enterprise virtual assistant do-
main adapted utterance encoder for this clustering
problem. We will evaluate the performance of the
proposed intent discovery pipeline objectively and
subjectively.

4.2 Objective Evaluation
For objective evaluation of the proposed method,
we collected four additional existing applications
from different business verticals and treated each
of them as a “new” candidate application for intent
discovery. Notice that these four applications are
different from the 20 existing applications used in
our Step 2 pre-training. Thus, we ensure that this
“new” application simulation process is valid and
the evaluation is fair. The details of the four ap-
plications are provided in Table 2 in the appendix.
The intent distribution for each of the four appli-
cations is imbalanced, and about 50% samples of
each application contains the top five intents of the
application.

Evaluating clustering results is a challenging
task, as there might be different (but all valid) ways
to partition the data (Färber et al., 2010). In our ob-
jective evaluation we choose the production intent

200

label as the ground truth label, as this is the real
business model we deployed for the application,
and it is consistent with our enterprise virtual assis-
tant pre-training process in Step 2. Inevitably there
will be noise in the production intent labels. How-
ever, according to our offline human evaluation, the
noise level is reasonably low.

For testing application t, we collect samples
(x

(t)
i , y

(t)
i) from our data lake, and only leverage

the utterance part x(t)
i for intent discovery in Step

3 via equation (4). We then evaluate the intent dis-
covery performance through the standard cluster-
ing evaluation metrics (Wagner and Wagner, 2007;
Xu et al., 2017), which take the ground truth in-
tent labels y(t)i and the clustering indices ỹ(t)i from
equation (4) as inputs, and output evaluation scores
(the higher the better) to measure the clustering
quality. We use the following clustering evalua-
tion metrics: ACC (Accuracy with label set align-
ment), ARI (Rand Index Adjusted for chance),
NMI (Normalized Mutual Information), and AMI
(Adjusted Mutual Information). ACC is defined as
ACC = maxg

∑n(t)

i=1 1{y
(t)
i = g(ỹ

(t)
i)}/n(t) where

g ranges over all possible one-to-one mappings be-
tween cluster indices and ground truth labels. In
practice, we use the Hungarian algorithm (Kuhn,
1955) to identify the optimal mapping that pro-
duces the best accuracy score. The definition of
ARI, NMI and AMI together with training details
are available in Appendix A.4 and A.5.

We evaluate the following intent discovery ap-
proaches using the above evaluation metrics.

1. Step 1 + Step 2 + Step 3. This is the intent
discovery procedure we propose in this paper.
See Figure 1 for the full pipeline.

2. Step 1 + Step 2 (Standard) + Step 3. This
approach is similar to Step 1 + Step 2 + Step
3; however, in Step 2 we use the standard soft-
max loss in equation (1) instead of the cosine
softmax loss in equation (2). Consequently,
we do not have the ℓ2 normalization for Step
3 in Figure 1.

3. Step 2 + Step 3. In this baseline approach,
we skip the generic Transformer pre-training
in Step 1 and randomly initialize the Trans-
former weights to start the enterprise virtual
assistant domain adaptive pre-training in Step
2.

4. Step 1 + Step 3. In this baseline approach,

we only use the utterance encoder pre-trained
on generic data for intent discovery, and no
enterprise virtual assistant domain adaptation
in Step 2 is applied. As a result, we do not
have the projection layer and ℓ2 normalization
for Step 3 in Figure 1.

5. SBERT + Step 3. In this baseline ap-
proach, we directly borrow a publicly avail-
able sentence encoder Sentence-BERT model
(Reimers and Gurevych, 2019) to replace the
h̄(x

(t)
i) encoder in (4).

6. DEC. In this baseline approach, we re-
implemented the Deep Embedded Clustering
(DEC) algorithm (Xie et al., 2016). Here,
the utterance encoder is pre-trained on test-
ing data alone, and it is fine-tuned during the
clustering process (Hadifar et al., 2019).

Since we do not know the true number of clusters
in advance, we presented ACC result with different
K values in Figure 2. The results for ARI, NMI,
and AMI with different K values are presented in
Appendix A.7. From the results, we can make the
following observations:

1. The models with domain-adaptive pre-
training perform much better than all
other methods without domain-adaptive
pre-training (including the state-of-the-art
Sentence-BERT model) across different test-
ing datasets. The performance improvement
can be as high as 20% absolute in clustering
accuracy. This performance clearly shows the
benefit of domain-adaptive pre-training for
downstream clustering tasks.

2. Step 1 + Step 2 (Standard) + Step 3 performs
much worse than Step 1 + Step 2 + Step 3 in
downstream clustering accuracy, according to
Figure 2. This performance gap is expected
as pre-training with the standard softmax loss
in Step 2 does not induce the distance-metric
preserving property, which is important for
distance-based clustering such as K-means in
downstream tasks.

3. In most cases, Step 2 + Step 3 performs simi-
larly as Step 1 + Step 2 + Step 3, which means
that the generic pre-training in Step 1 is not
helping much for the downstream clustering
task. The reason might be that we already

201

K

A
C

C

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 50 100 150 200 250

Step 1 + Step 2 + Step 3 Step 1 + Step 2 (Standard) + Step 3 Step 2 + Step 3
Step 1 + Step 3 SBERT + Step 3 DEC

Application 1 ACC vs. K

K

A
C

C

0.2

0.4

0.6

0.8

0 50 100 150 200 250

Step 1 + Step 2 + Step 3 Step 1 + Step 2 (Standard) + Step 3 Step 2 + Step 3
Step 1 + Step 3 SBERT + Step 3 DEC

Application 2 ACC vs. K

K

A
C

C

0.0

0.2

0.4

0.6

0.8

0 50 100 150 200 250

Step 1 + Step 2 + Step 3 Step 1 + Step 2 (Standard) + Step 3 Step 2 + Step 3
Step 1 + Step 3 SBERT + Step 3 DEC

Application 3 ACC vs. K

K

A
C

C

0.2

0.3

0.4

0.5

0.6

0.7

0 50 100 150 200 250

Step 1 + Step 2 + Step 3 Step 1 + Step 2 (Standard) + Step 3 Step 2 + Step 3
Step 1 + Step 3 SBERT + Step 3 DEC

Application 4 ACC vs. K

Figure 2: ACC of intent discovery for four applications
with K = [4, 8, 16, 32, 64, 128, 256]. Resolution of sub-
figures is automatically adjusted to show differences in
the curves, which causes y-axis’ scale to be different.

have a large amount of enterprise virtual as-
sistant domain pre-training data in Step 2. As
a result, the Transformer initialization from
the generic pre-training will not have a lot of
impact on the domain-adaptive pre-training
result. Nevertheless, we still see that in some
instances (e.g., ACC curves for Application 4

in Figure 2), Step 2 + Step 3 experienced per-
formance drop compared with Step 1 + Step
2 + Step 3, indicating that the generic pre-
training in Step 1 improves the robustness of
the model across different domains.

4. In our error analysis, we observe that Step
1 + Step 2 + Step 3 tends to keep semanti-
cally similar utterances (e.g., “pay my bill”
and “make a payment”) into one cluster; how-
ever, other methods tend to split semantically
similar utterances into multiple clusters. This
leads to degradation in performance in other
methods. In addition to that, our applications
contain Spanish data with low frequency. In-
terestingly, on Step 1 + Step 2 + Step 3 results,
we find that the cluster centroid where Span-
ish speakers want to speak to a live agent (e.g.,
“o hablar con un representante”) and the clus-
ter centroid where English speakers want to
speak to a live agent (e.g., “i need to talk to a
representative”) are proximal. Such proximity
is not well pronounced in other methods.

In summary, the proposed intent discovery
pipeline with domain-adaptive pre-training outper-
forms other methods by a large margin. Hence,
by continuing pre-training the Transformer on in-
domain enterprise virtual assistant data from multi-
ple existing applications, we can effectively distill
the knowledge of enterprise virtual assistant data
characteristics and business logic into the Trans-
former encoder, which provides high-quality ut-
terance embeddings and excellent intent discovery
results on unseen applications.

4.3 Intent Discovery Portal

For new applications and for unexpected inputs to
a deployed application, we generally do not have
labels that can be used for objective evaluation. In
order to extract value from the results of semantic
embedding on new data we built out an interac-
tive intent discovery portal that enables visualiza-
tion, interactive inspection of intent clusters, and
subjective evaluation. Figure 3 shows the intent
discovery user interface. The left panel contains
an un-directed graph in which semantic closeness
among clusters is represented by graph links in a
minimum spanning tree. The graph is interactive
and when the user selects a node in the graph, the
middle panel shows a list of examples of members
of the cluster along with an interactive phrase cloud.

202

The right panel supports replay of audio (if avail-
able) and presents a list of related examples and
intents from a large database of existing application
data. More details on the intent discovery portal
are available in Appendix A.2 and A.6.

Figure 3: Intent Discovery Portal View.

5 Conclusion

This paper proposed a practical three-step solu-
tion to the challenge of intent discovery for vir-
tual assistants. From our experiments, we found
that a domain-adaptive pre-training step is essen-
tial for achieving good downstream clustering per-
formance. Through supervised pre-training, en-
terprise virtual assistant data characteristics and
associated business logic are all distilled into the re-
sulting utterance encoder. This three-step approach
can be viewed as an extension of the don’t-stop-
pretraining paradigm (Gururangan et al., 2020) to
the downstream clustering tasks. We also found
that state-of-the-art generic sentence encoders may
not yield the best sentence representations to spe-
cific industrial applications such as enterprise vir-
tual assistants. A consequence of this domain-
adaptive pre-training is that the resulting sentence
encoder is no longer generic, hence cannot nec-
essarily be applied to data beyond the domain of
enterprise virtual assistants. However, the same
methodology could be applied to any enterprise
database, so that people can pre-train domain-
specific sentence encoders to match their own
needs.

Acknowledgements

We would like to thank the anonymous reviewers
for their constructive comments. We would also
like to thank colleagues at Interactions LLC for
their discussions and help on this work, especially
Lou Nicotra for all the support on computing in-
frastructure.

References
Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng

Chen, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Geoffrey Irving, Michael Isard,
et al. 2016. Tensorflow: A system for large-scale
machine learning. In 12th USENIX symposium on
operating systems design and implementation (OSDI
16), pages 265–283.

Roee Aharoni and Yoav Goldberg. 2020. Unsupervised
domain clusters in pretrained language models. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 7747–
7763.

Rami Al-Rfou, Marc Pickett, Javier Snaider, Yun-Hsuan
Sung, Brian Strope, and Ray Kurzweil. 2016. Con-
versational contextual cues: The case of personaliza-
tion and history for response ranking. arXiv preprint
arXiv:1606.00372.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877–1901.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and
Geoffrey Hinton. 2020. A simple framework for
contrastive learning of visual representations. In In-
ternational conference on machine learning, pages
1597–1607. PMLR.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, Volume 1 (Long and Short Papers), pages 4171–
4186.

Ines Färber, Stephan Günnemann, Hans-Peter Kriegel,
Peer Kröger, Emmanuel Müller, Erich Schubert,
Thomas Seidl, and Arthur Zimek. 2010. On using
class-labels in evaluation of clusterings. In Multi-
Clust: 1st international workshop on discovering,
summarizing and using multiple clusterings held in
conjunction with KDD, page 1.

Suchin Gururangan, Ana Marasović, Swabha
Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey,
and Noah A. Smith. 2020. Don’t stop pretraining:
Adapt language models to domains and tasks. In
Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pages
8342–8360.

203

Amir Hadifar, Lucas Sterckx, Thomas Demeester, and
Chris Develder. 2019. A self-training approach
for short text clustering. In Proceedings of the
4th Workshop on Representation Learning for NLP
(RepL4NLP-2019), pages 194–199.

Matthew Henderson, Paweł Budzianowski, Iñigo
Casanueva, Sam Coope, Daniel Gerz, Girish Kumar,
Nikola Mrksic, Georgios P. Spithourakis, Pei hao Su,
Ivan Vulic, and Tsung-Hsien Wen. 2019. A reposi-
tory of conversational datasets. In Proceedings of the
First Workshop on NLP for Conversational AI, pages
1–10.

Matthew Henderson, Iñigo Casanueva, Nikola Mrkvsi’c,
Pei hao Su, Tsung-Hsien, and Ivan Vulic. 2020. Con-
vert: Efficient and accurate conversational representa-
tions from transformers. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing: Findings, pages 2161–2174.

Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron
Sarna, Yonglong Tian, Phillip Isola, Aaron
Maschinot, Ce Liu, and Dilip Krishnan. 2020. Su-
pervised contrastive learning. In Advances in Neural
Information Processing Systems, volume 33, pages
18661–18673.

Harold W Kuhn. 1955. The hungarian method for the
assignment problem. Naval research logistics quar-
terly, 2(1-2):83–97.

Xiaodong Liu, Pengcheng He, Weizhu Chen, and Jian-
feng Gao. 2019. Multi-task deep neural networks
for natural language understanding. In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 4487–4496.

Christopher D Manning, Kevin Clark, John Hewitt, Ur-
vashi Khandelwal, and Omer Levy. 2020. Emer-
gent linguistic structure in artificial neural networks
trained by self-supervision. Proceedings of the Na-
tional Academy of Sciences, 117(48):30046–30054.

Toan Q. Nguyen and Julian Salazar. 2019. Transformers
without tears: Improving the normalization of self-
attention. arXiv preprint arXiv:1910.05895.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. Pytorch:
An imperative style, high-performance deep learning
library. In H. Wallach, H. Larochelle, A. Beygelz-
imer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors,
Advances in Neural Information Processing Systems,
volume 32, pages 8024–8035.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier Grisel,
Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vin-
cent Dubourg, et al. 2011. Scikit-learn: Machine

learning in python. the Journal of machine Learning
research, 12:2825–2830.

Daniel Pressel, Sagnik Ray Choudhury, Brian Lester,
Yanjie Zhao, and Matt Barta. 2018. Baseline: A
library for rapid modeling, experimentation and de-
velopment of deep learning algorithms targeting nlp.
In Proceedings of Workshop for NLP Open Source
Software (NLP-OSS), pages 34–40.

Daniel Pressel, Wenshuo Liu, Michael Johnston, and
Minhua Chen. 2022. Lightweight transformers for
conversational ai. In Proceedings of the 2022 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies: Industry Papers, page 1.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-
try, Amanda Askell, Pamela Mishkin, Jack Clark,
et al. 2021. Learning transferable visual models
from natural language supervision. arXiv preprint
arXiv:2103.00020.

Alec Radford, Karthik Narasimhan, Tim Salimans, and
Ilyas Sutskever. 2018. Improving language under-
standing by generative pre-training. OpenAI Blog,
page 1.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. OpenAI
Blog, page 1.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 3982–3992.

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. 2018.
Self-attention with relative position representations.
In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 2 (Short Papers), pages 464–468.

Ian Tenney, Dipanjan Das, and Ellie Pavlick. 2019. Bert
rediscovers the classical nlp pipeline. In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 4593–4601.

Ivan Vulic, Pei hao Su, Sam Coope, Daniel Gerz, Paweł
Budzianowski, Iñigo Casanueva, Nikola Mrkvsi’c,
and Tsung-Hsien Wen. 2021. Convfit: Conversa-
tional fine-tuning of pretrained language models. In
Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, pages
1151–1168.

Silke Wagner and Dorothea Wagner. 2007. Compar-
ing clusterings: an overview. Universität Karlsruhe,
Fakultät für Informatik Karlsruhe.

204

Qiang Wang, Bei Li, Tong Xiao, Jingbo Zhu,
Changliang Li, Derek F Wong, and Lidia S Chao.
2019. Learning deep transformer models for ma-
chine translation. In Proceedings of the 57th Annual
Meeting of the Association for Computational Lin-
guistics, pages 1810–1822.

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin
Guu, Adams Wei Yu, Brian Lester, Nan Du, An-
drew M Dai, and Quoc V Le. 2021. Finetuned lan-
guage models are zero-shot learners. arXiv preprint
arXiv:2109.01652.

Chien-Sheng Wu and Caiming Xiong. 2020. Probing
task-oriented dialogue representation from language
models. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 5036–5051.

Junyuan Xie, Ross Girshick, and Ali Farhadi. 2016.
Unsupervised deep embedding for clustering analy-
sis. In International conference on machine learning,
pages 478–487. PMLR.

Ruibin Xiong, Yunchang Yang, Di He, Kai Zheng,
Shuxin Zheng, Chen Xing, Huishuai Zhang, Yanyan
Lan, Liwei Wang, and Tieyan Liu. 2020. On layer
normalization in the transformer architecture. In In-
ternational Conference on Machine Learning, pages
10524–10533. PMLR.

Jiaming Xu, Bo Xu, Peng Wang, Suncong Zheng, Guan-
hua Tian, and Jun Zhao. 2017. Self-taught convolu-
tional neural networks for short text clustering. Neu-
ral Networks, 88:22–31.

A Appendix

A.1 Alternative Models
The cosine softmax loss in (2) is reminiscent of
the cosine-similarity based loss used in contrastive
learning (Chen et al., 2020; Radford et al., 2021).
For example, in OpenAI CLIP (Radford et al.,
2021) two modalities (text and image) are aligned
in the latent space via a dual-encoder model and a
cosine-similarity based loss. The cosine softmax
loss we use in equation (2) is also aligning two
modalities (utterance and intent). However, since
the set of all possible intents for an application is
finite and known in advance, we do not need to use
the in-batch negative sampling approach as in the
contrastive learning loss. Instead we contrast with
all possible intents in the denominator of equation
(2).

Another alternative approach is supervised con-
trastive learning (Khosla et al., 2020; Vulic et al.,
2021), where the contrastive learning is done using
just the utterance modality. In this approach, the
positive utterance pair is obtained by sampling ut-
terances with the same intents, while the negative

utterance pair is obtained by sampling utterances
with different intents. Then the supervised con-
trastive loss will impose the constrain that embed-
dings for the positive pair should live nearby and
the embeddings for the negative pair should live
further apart.

We note that both the multi-model contrastive
learning and the supervised contrastive learning are
valid modeling approaches for our domain-adaptive
pre-training. However, we focus on the cosine
softmax loss in equation (2) in this paper due to its
simplicity and its straightforward nature, and leave
the comparison to the above alternative models in
our future work.

Another approach is to use the standard soft-
max (equation (1)) in Step 2, and then use spectral
clustering in Step 3. There are a few issues in
this approach. Firstly, the embedding geometry
learned with standard softmax is not friendly to
downstream clustering tasks. Secondly, there is
no guarantee that the spectral embedding step in
spectral clustering can infer the right semantic ge-
ometry, as no supervised pre-training data is used
in Step 3. Lastly, spectral clustering is quite com-
putationally expensive and could not scale to large
downstream datasets. Empirically we also observe
that this approach is inferior to our proposed ap-
proach. In contrast, our proposed approach shifts
the heavy-lifting geometric manifold learning task
to the cosine softmax (equation (2)) in Step 2, so
that K-means is enough for the downstream clus-
tering task.

A.2 Intent Unification and Vector Search

A by-product of the above domain-adaptive pre-
training is a mechanism for intent unification across
multiple applications. Suppose intent c in applica-
tion m and intent c′ in application m′ are seman-
tically similar but named differently. Since the
utterances (which are callers’ realizations of the
intents) associated with these two intents are simi-
lar, and they share the same utterance encoder, the
embeddings for these utterances will live nearby.
This again will drive the intent embeddings for the
above two intents close together, according to the
multi-task cosine softmax loss function. As a result,
after the pre-training, semantically similar intents
across applications will live close-by in the embed-
ding space. Hence by simply exploring the intent
embedding space through K-means clustering, we
could unify intents across applications by grouping

205

semantically related intents together.
Another by-product is vector search for utter-

ances. Since we have learned an utterance encoder
specific for the enterprise virtual assistant domain
in the Step 2 pre-training, we can embed any new
utterance and convert it into a fixed-length vector.
Since we already have utterance embeddings and
intent embeddings for our pre-training data from
the existing applications, for each new utterance
or discovered cluster centroid, we can obtain the
nearest utterances and intents from the pre-training
data via K-nearest neighbor search. These nearest
neighbors can be used to help to augment the query
utterances or name the discovered intent clusters,
which can greatly improve the interpretability of
our intent discovery results. A potential risk of
this vector search is that private information from
our existing applications could be revealed to a
new user of our system. Hence, careful consid-
erations are needed when we activate this vector
search feature, and all sensitive information should
be redacted from the utterance pool used for this
K-nearest neighbor search.

A.3 Standard Softmax vs. Cosine Softmax

Figure 4: Standard softmax and cosine softmax induce
different geometries in the embedding space

A.4 Definition of Clustering Evaluation
Metrics

Here are some descriptions for the clustering eval-
uation metrics. More formal definitions could be
found in (Wagner and Wagner, 2007).
ARI: In the Rand Index, we consider all pairs of
samples and see how often pairs are grouped con-
sistently under the clustering results and the ground
truth labels. In Adjusted Rand Index (ARI), this
consistency frequency is adjusted by a base model
to correct the impact of consistency by chance.
NMI: The Mutual Information directly measures
the correspondence between the clusters and the
ground truth classes via a probability measure of

Hyperparameter Description Value
Pooling Mean pooling layer output before projection (Figure 1) 512
Projection Projection layer output before cosine softmax (Figure 1) 256
Epochs Training epochs 3
Softmax Type of softmax used in loss function (Figure 1) cosine
Dropout Layer dropout 0.1
Cosine Temperature (τ) Cosine softmax temperature (Equation 3) 0.125
Optimizer Training optimizer AdamW
Learning Rate Learning rate for optimizer 1.e-5
Weight Decay Weight decay for optimizer 1.0e-3
Clip Gradient clip 1.0
Batch Size Training batch size 360
Input Length Maximum input length 64
Layers Transformer layers 8
Multi-head attention Number of head in the attention module 8

Table 1: Step 2 Hyperparameters

Name Business Samples Intents Average words
Application 1 Collections 707907 82 5
Application 2 Power Utility 616145 432 4
Application 3 Insurance 1000000 1830 4
Application 4 Photography 921440 2521 5

Table 2: Testing Applications for Step 3

common samples between them. This measure is
normalized by entropy of the partitions to yield the
Normalized Mutual Information (NMI).
AMI: The above Normalized Mutual Information
is further adjusted to account for chance and size
of the clusters, to yield this Adjusted Mutual Infor-
mation (AMI) measure.

A.5 Training Details

In this section we provide training details for each
Step in the pipeline (Figure 1). For Step 1, we
trained using Apache Licensed TensorFlow (Abadi
et al., 2016) on a single v3 Tensor Processing Unit
(TPU). For best performance on TPUs, we use
bucketing based on full conversation lengths, scal-
ing the number of samples for each bucket length
so that the number of tokens is constant per batch.
We use AdamW with a peak learning rate of 4e-4,
a weight decay of 1e-3, and a linear warmup of
10,000 steps followed by cosine decay. For Step
2, hyperparameters are listed in Table 1, and we
built our model using open source BSD-licensed
PyTorch library (Paszke et al., 2019). Our model
has 49 million parameters. The pre-training in
Step 2 were conducted on two NVIDIA GeForce
1080Ti GPUs, and it took about 30 hours to fin-
ish. For Step 3, we used the open source BSD-
licensed scikit-learn library (Pedregosa et al., 2011)
for K-means clustering with default hyperparam-
eters. More specifically, we used “k-means++”
initialization with multiple runs to make the re-
sults more robust. The intent discovery results for
downstream applications in Table 2 are reported
in Figure 2, Figure 7, Figure 8, and Figure 9 with
K = [4, 8, 16, 32, 64, 128, 256].

206

A.6 Additional Details on Intent Discovery
Portal

Figure 5 provides a more detailed view of the graph
representation of the automatic intent discovery re-
sults from the intent discovery portal. The nodes
are automatically labelled with keywords from each
cluster determined using TF-IDF, e.g., ‘make bill
payment pay’ for a cluster associated with bill pay-
ment. Figure 6 shows an alternative view of the
cluster data as a bar chart capturing the relative
size of clusters in the data. The different views are
interconnected, and the user can select an intent in
one and see where it is in the alternate view.

Figure 5: Detail view of the portal zoomed on few nodes
in the un-directed graph.

Figure 6: Cluster-size Bar Chart View.

A.7 More Objective Evaluation (ARI, NMI,
and AMI) on Testing Applications

Figure 7, Figure 8, and Figure 9 provide ARI, NMI
and AMI results on our testing applications.

K

A
R

I

0.0

0.2

0.4

0.6

0.8

0 50 100 150 200 250

Step 1 + Step 2 + Step 3 Step 1 + Step 2 (Standard) + Step 3 Step 2 + Step 3
Step 1 + Step 3 SBERT + Step 3 DEC

Application 1 ARI vs. K

K

A
R

I

-0.10

0.15

0.40

0.65

0.90

0 50 100 150 200 250

Step 1 + Step 2 + Step 3 Step 1 + Step 2 (Standard) + Step 3 Step 2 + Step 3
Step 1 + Step 3 SBERT + Step 3 DEC

Application 2 ARI vs. K

K

A
R

I

0.00

0.25

0.50

0.75

1.00

0 50 100 150 200 250

Step 1 + Step 2 + Step 3 Step 1 + Step 2 (Standard) + Step 3 Step 2 + Step 3
Step 1 + Step 3 SBERT + Step 3 DEC

Application 3 ARI vs. K

K

A
R

I

0.0

0.2

0.4

0.6

0.8

0 50 100 150 200 250

Step 1 + Step 2 + Step 3 Step 1 + Step 2 (Standard) + Step 3 Step 2 + Step 3
Step 1 + Step 3 SBERT + Step 3 DEC

Application 4 ARI vs. K

Figure 7: ARI of intent discovery for four applications
with K = [4, 8, 16, 32, 64, 128, 256].

207

K

N
M

I

0.0

0.2

0.4

0.6

0.8

0 50 100 150 200 250

Step 1 + Step 2 + Step 3 Step 1 + Step 2 (Standard) + Step 3 Step 2 + Step 3
Step 1 + Step 3 SBERT + Step 3 DEC

Application 1 NMI vs. K

K

N
M

I

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 50 100 150 200 250

Step 1 + Step 2 + Step 3 Step 1 + Step 2 (Standard) + Step 3 Step 2 + Step 3
Step 1 + Step 3 SBERT + Step 3 DEC

Application 2 NMI vs. K

K

N
M

I

0.0

0.2

0.4

0.6

0.8

0 50 100 150 200 250

Step 1 + Step 2 + Step 3 Step 1 + Step 2 (Standard) + Step 3 Step 2 + Step 3
Step 1 + Step 3 SBERT + Step 3 DEC

Application 3 NMI vs. K

K

N
M

I

0.2

0.3

0.4

0.5

0.6

0.7

0 50 100 150 200 250

Step 1 + Step 2 + Step 3 Step 1 + Step 2 (Standard) + Step 3 Step 2 + Step 3
Step 1 + Step 3 SBERT + Step 3 DEC

Application 4 NMI vs. K

Figure 8: NMI of intent discovery for four applications
with K = [4, 8, 16, 32, 64, 128, 256].

K

A
M

I

0.0

0.2

0.4

0.6

0.8

0 50 100 150 200 250

Step 1 + Step 2 + Step 3 Step 1 + Step 2 (Standard) + Step 3 Step 2 + Step 3
Step 1 + Step 3 SBERT + Step 3 DEC

Application 1 AMI vs. K

K

A
M

i

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 50 100 150 200 250

Step 1 + Step 2 + Step 3 Step 1 + Step 2 (Standard) + Step 3 Step 2 + Step 3
Step 1 + Step 3 SBERT + Step 3 DEC

Application 2 AMI vs. K

K

A
M

I

0.0

0.2

0.4

0.6

0.8

0 50 100 150 200 250

Step 1 + Step 2 + Step 3 Step 1 + Step 2 (Standard) + Step 3 Step 2 + Step 3
Step 1 + Step 3 SBERT + Step 3 DEC

Application 3 AMI vs. K

K

A
M

I

0.2

0.3

0.4

0.5

0.6

0.7

0 50 100 150 200 250

Step 1 + Step 2 + Step 3 Step 1 + Step 2 (Standard) + Step 3 Step 2 + Step 3
Step 1 + Step 3 SBERT + Step 3 DEC

Application 4 AMI vs. K

Figure 9: AMI of intent discovery for four applications
with K = [4, 8, 16, 32, 64, 128, 256].

208

