
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies: System Demonstrations, pages 124 - 130

July 10-15, 2022 ©2022 Association for Computational Linguistics

DadmaTools: a Natural Language Processing Toolkit
for the Persian Language

Romina Etezadi, Mohammad Karrabi, Najmeh Zare Maduyieh,
Mohammad Bagher Sajadi, and Mohammad Taher Pilehvar

Dadmatech, Tehran, Iran
{roetezadi,karrabi,n zare,sajadi}@dadmatech.ir

Abstract

We introduce DadmaTools, an open-source
Python Natural Language Processing toolkit
for the Persian language. The toolkit is a neu-
ral pipeline based on spaCy for several text
processing tasks, including normalization, to-
kenization, lemmatization, part-of-speech, de-
pendency parsing, constituency parsing, chunk-
ing, and ezafe detecting. DadmaTools relies
on fine-tuning of ParsBERT using the PerDT
dataset for most of the tasks. Dataset module
and embedding module are included in Dad-
maTools that support different Persian datasets,
embeddings, and commonly used functions for
them. Our evaluations show that DadmaTools
can attain state-of-the-art performance on mul-
tiple NLP tasks. The source code is freely avail-
able at https://github.com/Dadmatech/
DadmaTools.

1 Introduction

With the increased accessibility of open-source nat-
ural language processing toolkits, users are now
able to more easily develop tools that perform so-
phisticated linguistic tasks. There are several Per-
sian NLP toolkits, such as Stanza (Qi et al., 2020),
Hazm1, Parsivar2, and jPTDP (Nguyen and Ver-
spoor, 2018). However, they suffer from several
limitations. First, most Persian toolkits are based
on conventional non-neural models which prevents
them from taking full advantage of the recent de-
velopments in the filed. Examples include Parsi-
var (Mohtaj et al., 2018), STeP1 (Shamsfard et al.,
2010), Virastar3, Virastyar4, and ParsiAnalyzer5.

1https://github.com/sobhe/hazm
2https://github.com/ICTRC/Parsivar
3https://github.com/aziz/virastar
4https://github.com/alishakiba/

virastyar
5https://github.com/NarimanN2/

ParsiAnalyzer

Second, most Persian toolkits either do not cover
all the basic processing tools (e.g., Perstem6 and
farsiNLPTools) or are not open-source (e.g., Farsi-
Yar7). Third, there is no single toolkit that provides
state-of-the-art results across different basic tasks.
Table 1 lists the toolkits available for Persian NLP
along with their task coverage.

We introduce DadmaTools, an open-source
Python Natural Language Processing toolkit for
Persian. DadmaTools provides the following ad-
vantages compared to existing toolkits:

• Using the DadmaTools framework, users can
easily download various standard Persian
datasets and perform a variety of operations
on them.

• Several pre-trained static word embeddings
exits for the Persian language. Many of these
embeddings are integrated in the DadmaTools
toolkit.

• We evaluated DadmaTools on different Per-
sian datasets, reporting state-of-the-art or
competitive performance at each step of the
pipeline.

Moreover, DadmaTools is based on the spaCy
framework which allows users to integrate our
toolkit with other piplelines implemented in spaCy.
We note that Stanza is a widely used Persian toolkit.
Hence, we mainly compare DadmaTools to Stanza.
Many of the standard tasks, such as constituency
parsing, chunking, and ezafe detection8, are not
supported by Stanza for Persian. In addition to cov-
ering these tasks, our toolkit also provides support
for datasets and word embeddings. DadmaTools is

6https://github.com/jonsafari/perstem
7https://www.text-mining.ir/
8Ezafe is a grammatical particle in Pesrsian language that

links two words together

124

https://github.com/Dadmatech/DadmaTools
https://github.com/Dadmatech/DadmaTools
https://github.com/sobhe/hazm
https://github.com/ICTRC/Parsivar
https://github.com/aziz/virastar
https://github.com/alishakiba/virastyar
https://github.com/alishakiba/virastyar
https://github.com/NarimanN2/ParsiAnalyzer
https://github.com/NarimanN2/ParsiAnalyzer
https://github.com/jonsafari/perstem
https://www.text-mining.ir/

Toolkit Normalizer Lemma POS dependency Constintuency Chunker Ezafe

Stanza ✗ ✓ ✓ ✓ ✗ ✗ ✗

spaCy ✗ ✓ ✓ ✓ ✗ ✗ ✗

Hazm ✓ ✓ ✓ ✓ ✗ ✓ ✗

farsiNLPTools (Feely et al., 2014) ✗ ✗ ✓ ✓ ✗ ✗ ✗

Perstem ✗ ✗ ✓ ✗ ✗ ✗ ✗

persianp Toolbox ✗ ✗ ✓ ✗ ✗ ✗ ✗

UM-wtlab pos tagger ✗ ✗ ✓ ✗ ✗ ✗ ✗

RDRPOSTagger ✗ ✗ ✓ ✗ ✗ ✗ ✗

jPTDP ✗ ✗ ✓ ✓ ✗ ✗ ✗

Parsivar ✓ ✗ ✓ ✓ ✗ ✓ ✗

text mining ✓ ✓ ✓ ✗ ✗ ✗ ✗

DadmaTools ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 1: Persian NLP toolkits and the corresponding tasks they support.

fully open-source. We hope it can facilitate NLP
research and application for the Persian language.

2 System Design

DadmaTools is a neural NLP pipeline, but it also
includes modules for embeddings and datasets. In
this section, we first describe these modules, fol-
lowed by the main pipeline.

2.1 Dataset Module

Popular text processing libraries such as Transform-
ers9, NLTK (Bird and Loper, 2004), and PyTorch-
text have poor support for low-resource language
datasets such as Persian. The dataset module of
DadmaTools provides a convenient solution for au-
tomatic downloading and utilizing of some popular
Persian NLP datasets. Each available dataset can be
called by a function of the same name and loaded
as a generator object. For instance, the Arman
(Poostchi et al., 2018) dataset can be loaded with
the following lines of code:

import dadmatools

load dataset
arman = dadmatools.datasets.ARMAN()

working with dataset
len_train = len(arman.train)
test_sample = next(arman.test)

DadmaTools allows users to load different
sets (e.g., train, test, or dev), if there are
any, by using the <DATASET>.<SET> for-
mat (e.g., arman.train). Moreover, the
details of the selected dataset can be viewed
by using <DATASET>.info. DadmaTools

9https://github.com/huggingface/
transformers

comes with a set containing the most commonly
used Persian datasets for various tasks, such
as text summarization, named entity recogni-
tion (NER), spell checking, textual entailment,
text classification, sentiment classification, text
translation, and universal dependency. There
is also a search operation in DadmaTools for
finding datasets that belong to specific tasks
by using get all datasets info(tasks=
[’<task1>’, ’<task2>’,...]). The list
of datasets that are currently included in Dadma-
Tools is shown in Table 2. We will keep integrating
new datasets to the toolkit.

2.2 Embedding Module

One of the challenges in developing NLP tools for
the Persian language is the lack of a library to sup-
port different pre-trained embedding models. In
order to overcome this challenge, we have devel-
oped an embedding module in DadmaTools which
provides a variety of public Persian embeddings.
For any given embedding space, an object is cre-
ated which provides a wide range of functions.

download and load embedding
em_name = ’glove-wiki’
embedding = get_embedding(em_name)

word embedding
vec = embedding(<your_word>)

sentence embedding
text = <your_text>
t_vec = embedding.embedding_text(text)

embedding functions
w1 = <word_1>
w2 = <word_2>
similarity_rateembedding.similarity(w1,w2)
top = embedding.top_nearest(10, w1)

125

https://github.com/huggingface/transformers
https://github.com/huggingface/transformers

Dataset Task

PersianNER8 NER
ARMAN (Poostchi et al., 2018) NER
PEYMA (Shahshahani et al., 2018) NER
FarsTail (Amirkhani et al., 2020) Textual Entailment
FaSpell9 Spell Checking
PersianNews (Farahani et al., 2020) Text Classification
PerDT Universal Dependency
PnSummary (Farahani et al., 2021) Text Summarization
SnappfoodSentiment (Farahani et al., 2020) Sentiment Classification
TEP (Pilevar et al., 2011) Text Translation(eng-fa)
WikipediaCorpus Corpus
PersianTweets (Khojasteh et al., 2020) Corpus

Table 2: Persian Datasets that are currently integrated in the DadmaTools toolkit.

The details of the correspond-
ing embeddings can be shown with
get embedding info(<EMBEDDING>).
Several functions are present in DadmaTools that
can be used for word embeddings, such as finding
top nearest neighbours, finding similarity scores
between two given words, or getting sentence
embedding of a text. Word embeddings that are
currently included in DadmaTools are listed in
Table 3. Similarly to the datasets module, we
will keep updating the list when new embedding
models are available.

2.3 NLP Pipeline

The pipeline consists of models that range from
tokenizing raw text to performing syntactic parsing
and high-level task such as NER. The artchitec-
ture of models employed in DadmaTools is mostly
based on Stanza (Qi et al., 2020) and ACE (Wang
et al., 2021).

Normalization. Each sentence can be passed to a
normalizer so that different optional procedures can
be applied to it, such as whitespace correction, char-
acter unification, stopwords/punctuations removal,
and email/number/URL replacement. As different

8https://github.com/Text-Mining/
Persian-NER

9https://lindat.mff.cuni.cz/
repository/xmlui/handle/11372/LRT-1547

10https://github.com/Text-Mining/
Persian-Wikipedia-Corpus/tree/master/
models/glove

11https://fasttext.cc/docs/en/
crawl-vectors.html

12http://vectors.nlpl.eu/repository/
13https://commoncrawl.org/

settings can be used, this task can be used indepen-
dently of the pipeline. However, the pipeline uses a
default normalizer, which only corrects whitespace
and unifies the character.

Tokenization, Sentence Splitting, and MWT.
As for tokenization and sentence splitting, Dad-
maTools uses a similar seq2seq architecture to that
of Stanza trained on the PerDT dataset.

The tokenizer also identifies whether or not a
token is a multi-word token (MWT). Once a word
is detected as an MWT, the word is expanded into
the underlying syntactic subwords using the MWT
Expander.

Lemmatization. Lemmatization is the task of
converting the input word to its canonical form.
For this purpose, we also utilize the seq2seq model
presented in the Stanza for lemmatization. How-
ever, we manually validate the training dataset and
remove wrong or empty instances which results in
a better performance (cf. Table 5).

Part of Speech Tagging. For each word in a
given input text DadmaTools assign a POS tag. To
predict the POS tag, we used the ACE model based
on ParsBERT pre-trained model (Mehrdad Fara-
hani, 2021) fine-tunned on the PerDT dataset for
the sequence labeling task.

Dependency Parsing. Similarly to POS tagging,
our dependency parsing module is based on the
ACE model. In this case, we fine-tuned ParsBERT
for dependency parsing on the PerDT dataset.

Constituency Parsing. A constituency parse tree
breaks a text into sub-phrases. Non-terminals in

126

https://github.com/Text-Mining/Persian-NER
https://github.com/Text-Mining/Persian-NER
https://lindat.mff.cuni.cz/repository/xmlui/handle/11372/LRT-1547
https://lindat.mff.cuni.cz/repository/xmlui/handle/11372/LRT-1547
https://github.com/Text-Mining/Persian-Wikipedia-Corpus/tree/master/models/glove
https://github.com/Text-Mining/Persian-Wikipedia-Corpus/tree/master/models/glove
https://github.com/Text-Mining/Persian-Wikipedia-Corpus/tree/master/models/glove
https://fasttext.cc/docs/en/crawl-vectors.html
https://fasttext.cc/docs/en/crawl-vectors.html
http://vectors.nlpl.eu/repository/
https://commoncrawl.org/

Embedding Model Training corpus

glove-wiki10 GloVe Wikipedia
fasttext-commoncrawl-bin11 FastText CommonCrawl12

fasttext-commoncrawl-vec11 FastText CommonCrawl
word2vec-conll13 word2vec Persian CoNLL17 corpus

Table 3: Persian word embeddings currently supported by DadmaTools.

Dataset # of Instances Lemma POS Tags Dependency Tags Constituency parses

Seraji 6,000 ✓ ✓ ✓ ✗

PerDT (Rasooli et al., 2020) 29,107 ✓ ✓ ✓ ✗

Bijankhan 83,991 ✗ ✓ ✗ ✗

Dorsa Treebank (Dehghan et al., 2018) 30,000 ✗ ✗ ✗ ✓

Table 4: Persian datasets that are currently included in the toolkit.

the tree are types of phrases, the terminals are the
words in the sentence, and the edges are unlabeled.
To construct the constituency parser, we used the
Supar library CRFConstituencyParser14 using the
constituency dataset provided by Dorsa Treebank
(Dehghan et al., 2018). It is worth mentioning that
the output parse tree tags are different from the tags
produced by the POS tagger.

Chunking. Chunking is the process of separating
and segmenting a sentence into its sub constituents,
such as nouns, verbs, etc. We implemented a rule-
based chunker. The rules have been written based
on words, POS tags, and Dependency tags. The
chunking module functions based on around sixty
rules.

Ezafe Detecting. Ezafe is a grammatical particle
in Pesrsian language that links two words together.
Ezafe carries valuable information about the gram-
matical structure of sentences. However, it is not
explicitly written in Persian scripts. To create a
model to detect ezafe we used the Bijankhan cor-
pus, as it includes ezafe as one of its POS tags.
Therefore, we trained the sequence labeling model,
ParsBERT, on reprocessed Bijankhan corpus for
detecting the ezafe.

3 System Usage

It is possible to use the Normalizer directly with-
out triggering the pipeline using the normalizer
class. The DadmaTools pipline can be also initial-
ized with pipline class. By default, only the
tokenizer with sentence splitting and MWT are

14https://parser.yzhang.site/en/latest/
parsers/const.html

loaded. However, it is possible to load custom pro-
cessors by adding their names as arguments. The
pipeline will generate a Doc instance, which
contains all the raw text’s properties regarding the
processes that have been called, in the form of the
spaCy Doc. The following code snippet shows a
minimal usage example of DadmaTools.

import datamatools.pipeline as pipe

pipes gets the models e.g.
pips = ’lem’ will only contain
lemmatizer in pupeline
pips = ’lem,pos,dep,cons’
nlp = pipe.language.Pipeline(pips)

you can see the pipeline
with this code
info = nlp.analyze_pipes(pretty=True)
print(info)
doc is an SpaCy pbject
doc = nlp(<your_text>)

DadmaTools is designed to run on different types
of hardware (CUDA and CPU). Priority is given to
CUDA devices, if available.

4 Training Datasets

There are multiple Persian datasets that provide
training data for various NLP tasks. Table 4 pro-
vides details about some of these dataset. We exper-
imented with these datasets, both in isolation and
when combined. Taking these results as our basis,
we chose the best models as default for Dadma-
Tools. The merging of different datasets for POS
tags and dependencies was carefully evaluated by
linguists.

• Seraji. This dataset has 6K instances. Our
manual validation revealed noisy lemmas in

127

https://parser.yzhang.site/en/latest/parsers/const.html
https://parser.yzhang.site/en/latest/parsers/const.html

Toolkit
Seraji PerDT PerDT + Seraji

Dependency POS Lemm. Dependency POS Lemm. Dependency POS Lemm.
Stanza 87.20 / 83.89 97.43 93.34 / 91.05 97.35 98.97 84.95 / 80.55 88.53 96.92
jPTDP – / 84.07 96.66 – – – –
Hazm – – 86.93 – – 89.01 – – 87.95
DadmaTools 92.5 / 89.23 97.83 – 95.36 / 92.54 97.52 99.14 92.3 / 88.79 96.15 97.86

Table 5: F1 score percentage for various models on different Persian datasets. For dependency we report two scores,
for UAS (Unlabeled Attachment Score) and LAS (Labeled Attachment Score), as UAS/LAS.

the dataset which might be due to its auto-
matic construction procedure.

• PerDT. This dataset has almost 30K instances.
Thanks to its manual curation by linguists, the
dataset is relatively free of annotation errors
and mistakes.

• PerDT + Seraji. Combining these two
datasets was challenging in the case of de-
pendency parsing and POS tagging. We tried
to unify tags based on some rules. However,
the dataset was not fully unified. Therefore,
we did not train the final DadmaTools model
based on this combination.

• Bijankhan. This dataset has almost 80K
instances. The tokenized sentences in this
dataset is completely different from the pre-
vious ones. However, it has the ezafe tage in
its tagset which we used for training the ezafe
detection.

• Dorsa Treebank. This dataset is a Persian
constituency treebank. The treebank was de-
veloped by using a bootstrapping approach
which converts a dependency structure tree to
a phrase structure tree. The annotations are
then manually verified. The treebank consists
of approximately 30,000 sentences.

5 Experiments

Models presented in Table 5 are separately trained
on Seraji, PerDT, and combination of both. The
evaluations are carried out on corresponding test
sets of each dataset. We carried out a set of experi-
ments to compare DadmaTools with other popular
toolkits. We opted for Stanza as our main competi-
tor, given that it is the most widely used toolkit for
the Persian language. We were limited to compare
our toolkit only with those models that were trained
on the same datasets (or had public source codes al-
lowing us to train and test on specific datasets). It is

worth mentioning that the final models (lemmatizer,
POS tagger, and dependacny parser) presented in
DadmaTools is based on the PerDT dataset only.

Lemmatizer. We compare DadmaTools against
Stanza and hazm on the lemmatization task. As
shown in Table 5, DadmaTools outperforms the
other two tools.

POS Tagger. For this experiment, we compared
DadmaTools against Stanza given that both models
use the same dataset for their training. As shown
in Table 5, DadmaTools achieved a better result in
predicting the universal tags.

Dependency Parser. Similarly to the previous
setting, Stanza is our main baseline for dependency
parsing, given their training on the same dataset. As
shown in Table 5, DadmaTools outperforms Stanza
(+1.5% for LAS and +2% in UAS) in predicting
the universal tags.

Constituency Parser. To train the constituency
parser model we used the Dorsa Treebank. One
fifth of the treebank was split for testing and the
F-score percentage on the test dataset was 82.88.
There is no other similar constituency parser model
to compare the results with.

Chunker. Our chunker is rule-based model that
employs nearly eighty rules. There is no gold
dataset in the Persian language that would allow us
to evaluate the chunking module.

5.1 Speed

In order to test the speed of DadmaTools, we com-
bined PerDT and Seraji (PerDT + Seraji) to have a
large dataset which would allow us to draw reliable
conclusions. Table 6 shows the average run time
of models on PerDT + Seraji, computed based on
running the models on GPU. Hazm is faster for
POS tagging and lemmatizing due to its rule-based
nature (as opposed to our neural model).

128

Toolkit Dependency parser POS tagger Lemmatizer
Stanza 0.065 0.051 0.032
Hazm 2.404 0.001 0.000
DadmaTools 0.027 0.029 0.038

Table 6: Average run time (in seconds) per instance in the PerDT test set, using an Nvidia GeForce RTX 3090 GPU
.

6 Conclusion and Future Work

We introduced DadmaTools, an open-source
Python Natural Language Processing toolkit for
the Persian language. DadmaTools supports dif-
ferent NLP tasks. Moreover, it is based on the
spaCy framework which allows users to integrate
the toolkit with other processors in a pipeline. As
future work, we intend to extend the supported
tasks by adding high-level NLP tasks, such as senti-
ment analysis, entailment, and summarization. We
also plan to provide users with the ability to add
new datasets and models to the toolkit. We hope
that the toolkit can pave the way for research and
development for the Persian language.

References
Hossein Amirkhani, Mohammad AzariJafari, Zohreh

Pourjafari, Soroush Faridan-Jahromi, Zeinab
Kouhkan, and Azadeh Amirak. 2020. FarsTail: A
Persian Natural Language Inference Dataset. arXiv
preprint arXiv:2009.08820.

Steven Bird and Edward Loper. 2004. NLTK: The natu-
ral language toolkit. In Proceedings of the ACL In-
teractive Poster and Demonstration Sessions, pages
214–217, Barcelona, Spain. Association for Compu-
tational Linguistics.

Mohammad Hossein Dehghan, Mohammad Molla-
Abbasi, and Heshaam Faili. 2018. Toward a multi-
representation persian treebank. In 2018 9th Inter-
national Symposium on Telecommunications (IST),
pages 581–586. IEEE.

Mehrdad Farahani, Mohammad Gharachorloo, Marzieh
Farahani, and Mohammad Manthouri. 2020. Pars-
BERT: Transformer-based model for persian lan-
guage understanding. ArXiv, abs/2005.12515.

Mehrdad Farahani, Mohammad Gharachorloo, and
M. Manthouri. 2021. Leveraging ParsBERT and pre-
trained mT5 for persian abstractive text summariza-
tion. 2021 26th International Computer Conference,
Computer Society of Iran (CSICC), pages 1–6.

Weston Feely, Mehdi Manshadi, Robert Frederking, and
Lori Levin. 2014. The cmu metal farsi nlp approach.
In Proceedings of the Ninth International Conference
on Language Resources and Evaluation (LREC’14),
pages 4052–4055.

Hadi Abdi Khojasteh, Ebrahim Ansari, and Mahdi
Bohlouli. 2020. LSCP: Enhanced large scale collo-
quial persian language understanding. arXiv preprint
arXiv:2003.06499.

Marzieh Farahani Mohammad Manthouri
Mehrdad Farahani, Mohammad Gharachorloo.
2021. Parsbert: Transformer-based model for
persian language understanding. Neural Processing
Letters.

Salar Mohtaj, Behnam Roshanfekr, Atefeh Zafarian,
and Habibollah Asghari. 2018. Parsivar: A language
processing toolkit for persian. In Proceedings of
the Eleventh International Conference on Language
Resources and Evaluation (LREC 2018).

Dat Quoc Nguyen and Karin Verspoor. 2018. An im-
proved neural network model for joint POS tagging
and dependency parsing. In Proceedings of the
CoNLL 2018 Shared Task: Multilingual Parsing from
Raw Text to Universal Dependencies, pages 81–91,
Brussels, Belgium. Association for Computational
Linguistics.

Mohammad Taher Pilevar, Heshaam Faili, and Ab-
dol Hamid Pilevar. 2011. Tep: Tehran english-
persian parallel corpus. In International Conference
on Intelligent Text Processing and Computational
Linguistics, pages 68–79. Springer.

Hanieh Poostchi, Ehsan Zare Borzeshi, and Massimo
Piccardi. 2018. BiLSTM-CRF for persian named-
entity recognition ArmanPersoNERCorpus: the first
entity-annotated persian dataset. In LREC.

Peng Qi, Yuhao Zhang, Yuhui Zhang, Jason Bolton, and
Christopher D. Manning. 2020. Stanza: A Python
natural language processing toolkit for many human
languages. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics:
System Demonstrations.

Mohammad Sadegh Rasooli, Pegah Safari, Amirsaeid
Moloodi, and Alireza Nourian. 2020. The persian
dependency treebank made universal. arXiv preprint
arXiv:2009.10205.

Mahsa Sadat Shahshahani, Mahdi Mohseni, Azadeh
Shakery, and Heshaam Faili. 2018. PEYMA: A
tagged corpus for persian named entities. arXiv
preprint arXiv:1801.09936.

Mehrnoush Shamsfard, Hoda Sadat Jafari, and Mahdi
Ilbeygi. 2010. STeP-1: A set of fundamental tools
for persian text processing. In LREC.

129

https://doi.org/10.1109/CSICC52343.2021.9420563
https://doi.org/10.1109/CSICC52343.2021.9420563
https://doi.org/10.1109/CSICC52343.2021.9420563
https://doi.org/10.1007/s11063-021-10528-4
https://doi.org/10.1007/s11063-021-10528-4
https://doi.org/10.18653/v1/K18-2008
https://doi.org/10.18653/v1/K18-2008
https://doi.org/10.18653/v1/K18-2008
https://nlp.stanford.edu/pubs/qi2020stanza.pdf
https://nlp.stanford.edu/pubs/qi2020stanza.pdf
https://nlp.stanford.edu/pubs/qi2020stanza.pdf

Xinyu Wang, Yong Jiang, Nguyen Bach, Tao Wang,
Zhongqiang Huang, Fei Huang, and Kewei Tu. 2021.
Automated Concatenation of Embeddings for Struc-
tured Prediction. In the Joint Conference of the
59th Annual Meeting of the Association for Compu-
tational Linguistics and the 11th International Joint
Conference on Natural Language Processing (ACL-
IJCNLP 2021). Association for Computational Lin-
guistics.

130

