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Abstract perform perfect operations (Preskill, 2018). De-

The emergence of noisy medium-scale quan-
tum devices has led to proof-of-concept appli-
cations for quantum computing in various do-
mains. Examples include Natural Language
Processing (NLP) where sentence classifica-
tion experiments have been carried out, as well
as procedural generation, where tasks such as
geopolitical map creation, and image manipu-
lation have been performed. We explore appli-
cations at the intersection of these two areas by
designing a hybrid quantum-classical algorithm
for sentence generation.

Our algorithm is based on the well-known sim-
ulated annealing technique for combinatorial
optimisation. An implementation is provided
and used to demonstrate successful sentence
generation on both simulated and real quantum
hardware. A variant of our algorithm can also
used for music generation.

This paper aims to be self-contained, introduc-
ing all the necessary background on NLP and
quantum computing along the way.

1 Introduction

It is widely believed that computers operating ac-
cording to the laws of quantum mechanics will
outperform classical computers at specialised tasks.
This belief is backed up by the fact that important
computational problems such as integer factorisa-
tion (Shor, 1997) and unstructured search (Grover,
1996) admit quantum algorithms which are prov-
ably faster than the best known classical algorithms
for solving them. Unfortunately, in order to make
use of these algorithms, we would first need to
build scalable, fault-tolerant quantum computers,
which are still some years away. By contrast, the
current generation of quantum computers are still
fairly rudimentary, containing at most a few hun-
dred noisy qubits, i.e. qubits with which we cannot
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spite their shortcomings, these devices represent a
significant milestone for quantum computing. This
is because unlike their smaller predecessors they
cannot be simulated efficiently on classical hard-
ware. Hence, it is possible that near-term quantum
devices will bring with them the first examples of
tasks performed by quantum computers that not
even the most powerful classical supercomputers
can perform, with tentative first steps made for
proof-of-principle problems (Arute et al., 2019;
Pednault et al., 2019). The search for examples in
which a useful advantage can be demonstrated has
led to the development of tailor-made algorithms
for near-term devices that solve problems in do-
mains such as chemistry, and optimisation (Farhi
et al., 2014; Peruzzo et al., 2014).

In this paper, we are concerned with near-term
quantum algorithms for natural language genera-
tion (NLG). NLG lies at the intersection of proce-
dural generation, i.e. the algorithmic generation
of data, and Natural Language Processing (NLP),
both of which are active research topics within the
quantum software community (see e.g. Wootton,
2020b,a; Coecke et al., 2020; Lorenz et al., 2021).
The importance of NLG is underscored by its wide
range of potential applications. It can for instance
be used in video games to create natural-sounding
dialogue, or in journalism to create automated news
articles. These applications are often time-sensitive,
as in the case of video games, where delays in dia-
logue generation would make the user experience
unsatisfactory. In other situations, NLG algorithms
have to deal with a large amount of input data. This
is the case in automated journalism where infor-
mation from many different sources needs to be
collated into one coherent article. These consider-
ations mean that developing faster algorithms for
NLG tasks would have tremendous practical conse-
quences. Thus, it is natural to wonder if any such
tasks can benefit from speedups when performed
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on a quantum computer. Our aim here is to take
the first steps towards answering this question.

Throughout this work we will make use of the
well-established mathematical connection between
the Distributional Compositional Categorical (Dis-
CoCat) (Coecke et al., 2010) model of natural lan-
guage and quantum theory. This connection was re-
cently exploited in several works (Meichanetzidis
et al., 2020; Lorenz et al., 2021) to successfully
perform Quantum Natural Language Processing
(QNLP) on real quantum hardware (as opposed
to simulation with conventional hardware). More
specifically it was used to perform the task of bi-
nary sentence classification. The aim of this task is
simple: Given a sentence about one of two possible
topics, decide which topic it is about. Building
upon this work, we design a sentence generation
algorithm that can run on current quantum hard-
ware. Our algorithm takes as input one of several
possible topics and produces as output a sentence
with that topic. Our algorithm works by search-
ing through the space of possible sentences using
simulated annealing (SA), a well-known probabilis-
tic method for solving combinatorial optimisation
problems. The choice of SA is motivated by the re-
cent success of the method at (classically) solving
the task of sentence paraphrasing (Liu et al., 2020).
We experimentally evaluate the performance of our
algorithm at news headline generation. We also
show how our algorithm can be adapted to perform
music generation.

Before continuing it is worth clarifying the goal
of this paper and the scope of our claims. The
formal similarity between DisCoCat and quantum
theory has led to some authors claiming that NLP
is an inherently “quantum native* field (Coecke
et al., 2020), and that we can expect large-scale
quantum computational speedups for NLP tasks as
more powerful quantum hardware becomes avail-
able. Testing these claims theoretically would re-
quire significant analysis of QNLP proposals using
computational complexity theory, as has been done
with other proposals for quantum advantage, for
example in Aaronson and Chen (2016); Brakerski
et al. (2020); Zhu et al. (2021). Alternatively, we
could wait for larger quantum computers to be built,
allowing for experimental comparison of QNLP al-
gorithms and cutting edge classical methods such
as GPT-3 (Brown et al., 2020) or BERT (Devlin
et al., 2019). We do not claim to address either
one of these challenges here. Our work is rather a

proof-of-concept example of how NLG can be per-
formed on quantum hardware. We also hope that
by assuming a modest mathematical background
this paper can serve as an introduction to quantum
software design using the diagrammatic style of
quantum theory utilised in QNLP research.

The rest of the paper is organised as follows: In
section 2 we describe the necessary background
on DisCoCat and quantum computing. Section 3
contains the details of our SA based sentence gen-
eration algorithm. We report the results of exper-
iments with this algorithm in section 4, including
a discussion of how the algorithm can be adapted
for music composition in section 3.3. Finally, we
discuss future research avenues in section 5.

2 Preliminaries

2.1 Quantum Computing

This section presents a self-contained overview
of the basics of quantum computation, assuming
no familiarity with the topic. Naturally, what we
present is far from a complete introduction. A
more in-depth book for further reading is Nielsen
and Chuang (2002). Alternatively, Coecke and
Kissinger (2018) introduces quantum theory via
the diagrammatic language used here.

The idea behind quantum computation is to har-
ness features of quantum mechanics that have no
classical analogue in the design of efficient algo-
rithms. The first of these features worth mentioning
is called superposition. The logical building blocks
of a classical computer are bits. These are objects
that can have one of two possible states, 0 or 1. The
quantum analogue of a bit, known as a qubit, has
a state that lives in a 2-dimensional Hilbert space.
(1)} and |1) = [(1)] to
denote the orthonormal basis vectors of this space.
The state of a qubit, written as [¢)), is a linear com-
bination of these basis vectors:

We use the notation! |0) =

) = a]0) + B[1) st.o, B € C,laf* + 8] =1

It is this linear combination that is referred to as a
superposition.

The act of reading the value of a qubit in state
|1 is called a measurement. Regardless of what

"This is referred to as Dirac or bra-ket notation and is
used ubiquitously throughout quantum information. See ap-
pendix 10 of (De Wolf, 2019) for a concise introduction to
this formalism.
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superposition a qubit is in, the result of a measure-
ment is always one of two possible outcomes, 0
or 1. The probability of measuring 0 is equal to
|a|?, and « is known as the amplitude of |0). Like-
wise, the probability of measuring 1 is | 3|2, and 3
is known as the amplitude of |1). Crucially, once a
measurement has occured, the state |1)) collapses
to the corresponding basis state. For example, if
we measure a qubit in state |¢)) = % |0) + % 1)
and observe the outcome 0, then immediately after
the measurement the state of the qubit is |0).

Naturally, to perform a meaningful computa-
tion we need to use more than just one qubit.
The joint state |¢) of n qubits lives in a Hilbert
space of dimension N = 2" with orthogonal
basis states of the form |b1) ® |b2) ® ... ® |by)
where each b, € {0,1}. We will abbreviate
these basis states to |bjbabs...b,). With some
abuse of notation it will also often be convenient
to write these basis states in decimal notation
i.e. |0) = ]000...000),|1) = |000...001),|2) =
|000...010) , ... |V — 1) = |111...111).

|) is then once again a superposition:

‘(Z)) = Qp |0> + o1 |1> + ...anN_1 ’N — 1>
s.t. Viay, B € C, Z |Oéi’2 =1

When measuring |¢) one observes outcome i
with probability |o;|? and the state of the underly-
ing qubits collapses to |7).

Aside from measurement, a quantum system can
also be manipulated using quantum logic gates.
Mathematically, these gates are unitary linear maps
U. Thus, the evolution of a system from one
timestamp to the next can simply be described as
[th1) = U [to).

Pictorially, a quantum computation can be repre-
sented as a circuit. Figure 1 provides an example
of such a circuit. In this example, two qubits begin
in the joint state |¢)g) = |0). A quantum logic gate

1|1 1

H =7 [1 ~1
applied to each qubit, transforming the state into
1) = H@ H[0) = 5[0) + 3 [1) + 5 [2) + 5 [3).
Finally, the state is measured, resulting in one of
the four possible outputs 0,1,2, or 3 being ob-
served, each with a probability of %. After mea-
surement, the state collapses to the respective basis
state |0) , 1) ,]2), or |3).

, known as a hadamard gate is

A

A

Figure 1: A simple quantum circuit created using
the IBM Quantum Composer available at https://
quantum-computing.ibm.com/.

. W
-

2.2 DisCoCat and QNLP

The Distributional Compositional Categorical (Dis-
CoCat) model of language meaning (Coecke et al.,
2010) is a mathematical framework that allows for
the meaning of a sentence to be described as a com-
bination of the meaning of its constituent words,
and the grammatical relationships between these
words. This is in contrast to many older NLP mod-
els, which treat sentences as “bags of words” while
ignoring their grammatical structure.

DisCoCat comes equipped with a pictorial repre-
sentation, allowing any sentence to be represented
by a so-called string diagram. Such a diagram
consists of boxes representing words, and wires
connecting these boxes according to the formal-
ism of pregroup grammars (Lambek, 2008). This
means that every wire in the diagram is annotated
either by some atomic type p, a left adjoint p.l, or
a right adjoint p.r. Let us explain the role of types
and adjoints through example, by considering the
sentence “Alice generates language®. The DisCo-
Cat diagram corresponding to this sentence is given
in figure 2. In this diagram, wires are annotated
by the noun type n and the sentence type s. As
we can see, the box for the word ‘generates’ has
three wires coming out of it, which are annotated
by n.r, s, and n.l respectively. This indicates that
the word ‘generates’ expects to receive a noun on
its left (in this case ‘Alice’), as well as another noun
on its right (in this case ‘language’) in order to out-
put a grammatical sentence. In general, a sentence
is grammatical if its DisCoCat diagram has a single
open output wire of type s, as in the example of
figure 2.

It is worth noting that DisCoCat diagrams are
more than simple pictures. They are based on the
rigorous formalism of monoidal categories (He-
unen and Vicary, 2019, Chapter 1), which means
they are equipped with a diagrammatic calculus.
This calculus can be used to rewrite complicated
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Figure 2: DisCoCat diagram for the sentence ‘Alice
generates language.’

string diagrams into simpler ones that still encode
the meaning of the original sentence. As it hap-
pens, monoidal categories and string diagrams also
turn out to be a suitable high-level framework for
capturing much of quantum information and com-
putation (Abramsky and Coecke, 2004; Coecke and
Kissinger, 2018). This observation is part of the
reason that one may hope for quantum advantage
in NLP tasks in the long term.

We now outline a procedure for transforming
any sentence into a parameterised quantum circuit
that can be run on real IBM Quantum hardware.
The pipeline we discuss here has recently been
implemented as part of lambeq (Kartsaklis et al.,
2021), a python library developed specifically for
QNLP tasks.

1. A sentence is converted to a DisCoCat di-
agram using the Combinatory Categorical
Grammar (CCG) based techniques of Yeung
and Kartsaklis (2021).

2. The DisCoCat diagram is simplified using
some of the rewrite rules available in lam-
beq. Even though this step is strictly speaking
optional, applying rewrite rules often leads to
crucial computational advantages, for instance
by reducing the number of qubits required to
implement the parameterised quantum circuit.

3. An ansatz is used to transform the simplified
diagram to a parameterised quantum circuit.
This ansatz is a mapping that assigns a num-
ber of qubits to each wire type in the string
diagram, as well as a set of quantum logic
gates to each word in the diagram.

4. The quantum compiler t|ket) (Sivarajah et al.,
2020) is used to translate the parameterised
quantum circuit into machine-specific instruc-
tions, which can be executed on real IBM
quantum computers.

In this paper we use the IQP ansatz. This trans-
forms each DisCoCat diagram into an Insantanoues

Quantum Polynomial (IQP) circuit. We do not jus-
tify this choice of ansatz here, more information
is available in (Havlicek et al., 2019; Lorenz et al.,
2021). The parameterised quantum circuit corre-
sponding to “Alice generates language* is given in
figure 3.

2.3 Sentence Classification

Before we can present our sentence generation al-
gorithm we must first explain how sentence clas-
sification can be performed on near-term quantum
devices. What we outline here is a step-by-step
overview for solving the following task: Given
a dataset I' of sentences, each of which belongs
to one of k possible topics, train a classifier that
can correctly determine the topic of further unseen
sentences (provided the unseen sentences are also
about one of the k possible topics). This section
mostly follows Lorenz et al. (2021), although we
modify the algorithm to perform multi-class rather
than binary sentence classification.

1. Each sentence S € I' is converted to a param-
eterised quantum circuit Cg using the tech-
niques discussed in the previous section. Note
that some parameters may be shared between
quantum circuits corresponding to different
sentences. This occurs when the same words
appear in multiple sentences. We set ¢, = 1,
and ¢; = [logk], where g, and ¢, are the
number of qubits associated to the noun and
sentence wire types respectively. Measuring
such a circuit yields one of k possible out-
comes, each of which we associated with one
of the topics in our corpus.

2. For each sentence S € I' and each topic
i €{0,1,...,k — 1} we define a binary pred-
icate L(i,S) € {0,1} and set L(i,5) = 1
if and only if sentence S has topic . More-
over, we write P(i,Cg) for the probability
of observing outcome ¢ when measuring the
final state of a quantum circuit C's. Finally,
let 2 denote the full set of parameters used
in all the quantum circuits combined. Our
goal is thus to find the optimal €2 which max-
imises P(i, C's) whenever L(i,S) = 1. This
problem can be solved using classical ma-
chine learning techniques, by minimising the
categorical cross-entropy loss function below.
This is achieved by using the Simultaneous
perturbation stochastic approximation (SPSA)
algorithm (Spall, 1998).
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Figure 3: Parameterised quantum circuit for the sentence “Alice generates language”.

C(Q) = ZSGFL(ia S)logP(vaCS)

3. Given an unseen sentence S ¢ I' we can now
predict its topic as follows: Use the optimal
parameters €) to create the quantum circuit
Cs. Measure the final state of C's obtaining
an outcome ¢ € {0,1,...,k — 1}. Output the
topic associated with outcome 7.

3 Sentence Generation

In this section, we present our hybrid quantum-
classical sentence generation algorithm.

We first discuss the simulated annealing (SA)
algorithm for solving combinatorial optimisation
problems (Kirkpatrick et al., 1983). Then, we rigor-
ously formulate our sentence generation task as an
optimisation problem and show in detail how a ver-
sion of SA can be used to efficiently generate and
test many candidate sentences until a satisfactory
one is found.

3.1 Simulated Annealing

An optimisation problem is a problem where a satis-
factory solution must be found from a search space
of possible solutions. By a satisfactory solution we
mean one that maximises (or comes close to max-
imising) some objective function over the search
space.

Simulated annealing (SA) is a well-known
heuristic method for solving optimisation problems.
Let X' be a search space, and f : X — [0, 1] be
an objective function over that search space. The
goal of SA is to find x € X which maximises
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f(x). SA starts by either randomly or heuristi-
cally choosing a starting candidate state oy € X.
At each step ¢, the algorithm then considers some
neighbouring state x* of the current candidate x;.
If f(z*) > f(x) then the algorithm ‘accepts’ x*
by setting x;+1 = z* and beginning a new itera-
tion. In the event that x* is not accepted SA simply
sets z;4+1 = x; and begins a new iteration. Even if

f(z*) <= f(x) SA may still accept x* with some

R (BN C) ..
small probability e T “_ This is known as the

metropolis criterion and depends on an annealing
temperature I'. There are many different options
available for calculating 7" at each timestep. Usu-
ally this value is set to be high at the start of SA
so that z* has a high acceptance probability. With
each iteration, the value of 7" decreases, allowing
SA to converge towards a solution. In this work, we
use the fast simulated annealing algorithm which
sets T = -Li at each iteration, where 7} is the

e t+1
initial temperature.

Simulated annealing performs well in practice
and is guaranteed to converge towards the optimal
solution under reasonable assumptions (Granville
et al., 1994). Although in the worst-case this con-
vergence may take a prohibitively long amount of
time.

3.2 The Algorithm

Let us assume that we have trained a multi-class
sentence classifier using the techniques discussed
in section 2.3. The sentence generation task we
aim to solve is the following: Given as input one
of the topics ¢ € {0, 1, ..., k} which the classifier
is trained over, produce a sentence with that topic.



This task can be seen as an optimisation problem
where the search space X consists of all sentences
formed from the vocabulary used to train the clas-
sifier’ . The objective function f can then simply
be defined as f(S) = P(i,Cs). Where Cyg is the
quantum circuit generated using the optimal param-
eters ). As per the discussion in section 2.3 This
function is maximal whenever the sentence S has
a high probability of being classified with topic
1. We now outline the procedure for solving this
optimisation problem using SA.

1. Start by generating a random candidate sen-
tence sg from our vocabulary.

2. At each step t we generate a neighbouring
state s* of s;. This generation proceeds sim-
ilarly to the word level editing approach of
Miao et al. (2019). More specifically, let
st = (w1, wa, ..., wy]. s* is generated by ran-
domly performing one of the following editing
operations:

e Insert: randomly selects a word w
and an index j and sets s* =
(Wi, .. wj—1, W, Wj, ..., Wy

* Delete: randomly selects an index j and
sets 8% = (Wi, ..Wj—1, Wjt1, ..., Wn).

* Replace: randomly selects a word
w and an index j and sets s* =
[wl,...wj,l,w,wjﬂ,...,wn].

3. Calculate the values f(s*) = P(i,Cs+) and
f(st) = P(i, Cs,) by running the correspond-
ing quantum circuits many times, and building
a probability distribution out of the observed
outputs. Decide whether to accept s* or not
according to the SA algorithm.

4. Continue iterating until you find a sentence s
that passes a high threshold 7 along the objec-
tive function i.e. f(s) > 7. This indicates that
the sentence is with high probability about the
topic ¢ as required.

3.3 Application to Music Composition

Much like how a sentence is composed of words
placed side by side, a musical composition can be
seen as a sequence of music snippets placed next

>We could even consider the infinite search space of all
possible sentences. However, current limitations in quantum
hardware mean that solving this more complicated version of
the problem is out of scope for the foreseeable future.

to each other. Each snippet itself is in turn com-
posed of musical notes, similarly to how a word is
composed of letters belonging to an alphabet.

This similarity was recently exploited in (Mi-
randa et al., 2021) and used to define a musical
version of the DisCoCat framework. The authors
then used a CFG to generate a data-set of 100 mu-
sical compositions for piano. The generated pieces
were annotated manually and placed into one of
two classes: rhythmic or melodic. This allowed
them to train a quantum classifier that distinguishes
rhythmic and melodic musical compositions using
the techniques of section 2.3.

By replacing the sentence classifier mentioned
in section 3.2 with the musical classifier described
above, we can adapt our SA based algorithm for
the task of generating musical compositions. In the
future we will make musical compositions created
using this technique available on our project Github
repository.

4 Experiments

We now define and attempt to solve two simple sen-
tence generation tasks using the algorithm from the
previous section. Our source code is available at
https://bit.ly/QuantumNLG. To the best
of our knowledge, the only other algorithm that
can solve these tasks using a quantum computer is
what we shall refer to as the Random Generation
and Testing (RGT) method of Miranda et al. (2021).
In fact, this algorithm was initially proposed for
music composition rather than sentence generation,
but it can straightforwardly be adapted to perform
the latter task as well. It works by randomly putting
words from a vocabulary next to each other, and
evaluating the resulting sentence against the ob-
jective function we defined in section 3, until a
satisfactory sentence is found. We will implement
sentence generation using RGT and compare its
performance with our SA based algorithm.

We do not perform any comparison with state-
of-the-art classical methods for solving NLG tasks
since it is clear that such methods could easily out-
perform our proof-of-concept algorithm.

4.1 Food vsIT

For our first task, we use the food vs IT data-set cre-
ated in Lorenz et al. (2021). This dataset consists
of 130 sentences generated using a simple Context-
Free Grammar (CFG). Each sentence is manually
labelled as being about one of two possible topics,
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Food or IT. In Lorenz et al. (2021) a quantum clas-
sifier is trained using this dataset according to the
techniques discussed in section 2.3. With the help
of this classifier, we can implement analyse the SA
and RGT based sentence generation algorithms on
the Food vs IT dataset.

4.1.1 Simulation results

Before performing experiments on real quantum
hardware we first run our algorithms on a ‘classical
simulator’. As the name suggests, this is a clas-
sical device that simulates the behaviour of a real
quantum computer. Of course, it is prohibitively
expensive to simulate large quantum systems (oth-
erwise there would be no point in building quantum
devices). Fortunately, the quantum circuits we are
dealing with in this paper are all very small, and can
thus be simulated efficiently. All simulations in this
section were performed on a 2019 MacBook Air
with 16 GB of memory and a 1.6 GHz Dual-Core
Intel Core i5 processor.

As is standard within NLG literature (Sai et al.,
2020) we evaluate the quality of free-form gener-
ated sentences using the following two criteria:

1. Correctness: Does the generated sentence
have the correct topic?

2. Fluency: Is the generated sentence grammati-
cally and semantically correct?

Table 1 shows the result of using a classical sim-
ulator to generate 30 sentences about food. The
correctness and fluency of each of these sentences
has been determined according to the human judge-
ment of the authors. For instance, the sentence
“man debugs software” was judged as being fluent
but incorrect while the sentence “tasty person pre-
pares dinner” was judged as being correct but not
fluent.

RGT | SA
Fluent and Correct 23 22
Fluent and Not Correct 0 0
Not Fluent and Correct 4 4
Not Fluent and Not Correct 3 4
Avg No. of guesses 7.56 | 7.46

Table 1: Results of using a classical simulator to gener-
ate 30 sentences about food (Number of guesses refers
to the number of candidate sentences evaluated against
the objective function by each algorithm).

We can see that both the RGT and SA algorithms
have performed similarly in terms of the quality of

the produced sentences. This is to be expected
given that the acceptance condition for a candidate
sentence (f(s) > 7) is the same in both cases. We
can also see that the average number of sentences
guessed before a valid solution is found is almost
the same for both algorithms. This is somewhat sur-
prising, given the more rudimentary nature of RGT
compared to SA. We believe the reason for this is
the small search space associated with this genera-
tion task, as well as the fact that many sentences in
this space are actually about food. Thus, RGT has
a high likelihood of finding a good sentence in only
a few guesses. On the other hand, a poor initial
guess in the SA algorithm can be very detrimental
in this case, since the algorithm might get stuck in
a sub-optimal neighbourhood for a few steps. As
we shall see in the news headline generation task,
this advantage of RGT quickly disappears when
dealing with more complicated search spaces.

4.1.2 Quantum hardware results

We now repeat the experiment above on a
real quantum computer, namely IBMs 16 qubit
ibmg_guadalupe device. When performing ex-
periments on real quantum hardware, it is impor-
tant to remember that measuring the final state of
a quantum circuit will cause this state to collapse
to one of the basis states. This means that the only
way we can calculate the probabilities P(i,C})
needed in step 3 of our generation algorithm is to
run and measure the circuit Csrepeatedly and create
a probability distribution of the observed outcomes.
The total number of times a quantum circuit is run
in this way is referred to as the number of shots. In
our case, we ran each circuit for 100000 shots. In
the ideal case, results from real quantum hardware
will be equivalent to those of simulations. How-
ever, imperfections in current prototype devices
will lead to sub-optimal performance. The results
can therefore be used to benchmark the capacity of
current devices for applications of this type.

Table 2 shows the results of using both the RGT
and SA algorithms on real quantum hardware in
order to generate 10 sentences about food. Inter-
estingly, these results are very similar to the ones
obtained using classical simulators in the previous
section. This suggests that our algorithms are po-
tentially robust against the inherent noisiness and
imperfections of the current generation of quantum
computers. We will aim to test this hypothesis fur-
ther with more extensive future experimentation.
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RGT | SA
Fluent and Correct 7 7
Fluent and Not Correct 0 0
Not Fluent and Correct 2 1
Not Fluent and Not Correct 1 2
Avg No. of guesses 84 | 8.5

Table 2: Results of wusing the 16 qubit
ibmg_guadalupe quantum computer to gen-
erate 10 sentences about food.

4.2 News Headlines

As we have seen both the SA and RGT based sen-
tence generation algorithms performed fairly well
on the Food vs IT dataset. In this section, we will
test the behaviour of these algorithms on a more
challenging dataset consisting of 105 news head-
lines. Similarly to (Lorenz et al., 2021), we gen-
erated this dataset by using a CFG. The sentences
were then manually annotated as belonging to one
of four possible news headline topics, entertain-
ment, politics, sports, or technology. Compared to
the Food vs IT dataset this dataset contains more
sentence topics, has a larger vocabulary, and has
more complicated CFG production rules. When
it comes to sentence generation, this means that
there is a much larger search space to consider and
that there are fewer acceptable sentences in this
search space, making the task significantly more
challenging.

Table 3 shows the results of using SA and RGT
to generate 30 sentences about politics. As ex-
pected for this more complex dataset, the average
number of guesses before finding a viable candi-
date is much less when using SA rather than RGT?.

RGT | SA
Timeouts 8 0
Fluent and Correct 1 11
Fluent and Not Correct 4 1
Not Fluent and Correct 3 5
Not Fluent and Not Correct 14 13
Avg No. of guesses 201.1 | 404

Table 3: Results of using a classical simulator to gener-
ate 30 sentences about politics (Timeout refers to runs
of the algorithm that failed to find a suitable sentence
after 500 guesses)

3Note that we treat timeouts as 500 guesses for the pur-
poses of averaging.

5 Related and Future Work

We have presented a proof-of-concept algorithm
showing how a simple NLG task can be performed
on current quantum devices. The algorithm also
works for generating musical compositions. Two
pieces of related work are worth pointing out:

* In Abbaszade et al. (2021) a hybrid quantum-
classical algorithm based on DisCoCat is de-
scribed for sentence translation, a task which
has a language generation component to it.
Even though the authors do not provide an
implementation, this algorithm is well-suited
for experimentation on current quantum hard-
ware, as it relies on Quantum Long Short
Term Memory (Q-LSTM) (Chen et al., 2020),
a quantum machine learning model that is
particularly well-suited for near term devices,
due to having a modest requirement on qubit
counts and circuit depth.

* Aryaetal. (2022) formulates the task of music
composition as a Quadratic Unconstrained Bi-
nary Optimisation (QUBO) problem. QUBO
problems are particularly well-suited for being
solved using adiabatic quantum computation
(AQC) (Farhi et al., 2000). This is an alter-
native to the circuit-based model we learnt
about in section 2%. (Arya et al., 2022) then
proceeds to solve this QUBO problem using
D-Wave quantum computers and generate mu-
sical compositions. In future work, it would
be interesting to compare this approach to the
RGT and SA algorithms we have discussed
here.

We conclude with some thoughts on future re-
search directions.

Clearly, all the works above are limited by the
small size of today’s quantum computers. How-
ever, several companies have announced plans for
building significantly more powerful quantum de-
vices in the next few years (see e.g. qua, 2020).
These devices will undoubtedly be capable of solv-
ing more sophisticated NLG tasks than the ones
presented here. Whether or not this will eventually
lead to quantum algorithms that outperform today’s
state-of-the-art classical NLG techniques is a fas-
cinating open question that could have dramatic
consequences for the field as a whole. We hope

4 Although both models are equivalent in terms of compu-
tational power (Aharonov et al., 2008).
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that this work serves as sufficient inspiration for
the rest of the community to join us in tackling this
question.

A further limitation of our techniques is the fact
that DisCoCat, while well-suited for modelling the
meaning of sentences, is not capable of modelling
the meaning of larger pieces of text. This is prob-
lematic when it comes to performing more sophis-
ticated NLG tasks e.g. text summarization, given
that these tasks often require the production or ma-
nipulation of long passages of text. To alleviate this
issue, we could use a recently proposed generalisa-
tion of DisCoCat, referred to as the Distributional
Compositional Circuit-based (DisCoCirc) model
(Coecke, 2021). Inspired by how DisCoCat uses
the grammatical relationship between words to en-
code the meaning of a sentence, DisCoCirc uses
the relationship between sentences to encode the
meaning of an entire passage of text. A potential
avenue for future work is thus to use DisCoCirc
and create a pipeline similar to what we have seen
in sections 2.3 and 3 for solving document-level
rather than sentence-level NLG tasks.
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