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Abstract

Motivated by prior literature, we provide a
proof of concept simulation study for an under-
studied interactive machine learning method,
machine teaching (MT), for the text-based emo-
tion prediction task. We compare this method
experimentally against a more well-studied
technique, active learning (AL). Results show
the strengths of both approaches over more
resource-intensive offline supervised learning.
Additionally, applying AL and MT to fine-tune
a pre-trained model offers further efficiency
gain. We end by recommending research di-
rections which aim to empower users in the
learning process.

1 Introduction

We examine Machine Teaching (MT), an under-
studied interactive machine learning (iML) method
under controlled simulation for the task of text-
based emotion prediction (Liu et al., 2003; Alm
et al., 2005; Alm and Sproat, 2005; Aman and
Szpakowicz, 2007; Alm, 2010; Bellegarda, 2013;
Calvo and Mac Kim, 2013; Mohammad and Alm,
2015). This problem intersects with affective com-
puting (Picard, 1997; Calvo et al., 2015; Poria et al.,
2017), and a family of language inference problems
characterized by human subjectivity in learning tar-
gets (Alm, 2011) and semantic-pragmatic meaning
(Wiebe et al., 2004). Both subjectivity and the lack
of data for learning to recognize affective states
motivate iML techniques. Here, we focus on re-
source efficiency. Our findings from simulations
provide directions for user experiments.

Human perception - and thus human annotators’
interpretation - is influenced by human factors such
as preferences, cultural differences, bias, domain
expertise, fatigue, time on task, or mood at annota-
tion time (Alm, 2012; Amidei et al., 2020; Shen and
Rose, 2021). Generally, experts with long-standing
practice or in-depth knowledge may also not share
consensus (Plank et al., 2014). Inter-subjective

Figure 1: Comparison of interactive Active Learning
(left) with Machine Teaching (right). Training instances
are labeled by the Agent-User (in AL) or the Agent-
Teacher (in MT).

disagreements can reflect invalid noise artifact (de-
tectable by humans) or ecologically valid differ-
ences in interpretation.

Holzinger (2016) define iML methods as algo-
rithmic procedures that “can interact with agents
and can optimize their learning behavior through
these interactions [...]” (p. 119). In our study,
the stakeholders in the learning process are mod-
els (learners) and humans (agent-users or agent-
teachers). Tegen et al. (2020) posit that iML in-
volves either Active Learning (AL) or interactive
Machine Teaching (MT),1 based on humans’ role
in the learning loop. In AL, the learning algo-
rithm uses query strategies (e.g., triggered by un-
certainty) to iteratively select instances from which
it learns (Settles, 2009) if licensed by a budget; with
a human agent who annotates upon learner request.
In contrast, in MT, the teacher (user) who possesses
problem knowledge instead selects the instances to
be labeled and uses them to train the learner (Zhu,
2015). Initial, foundational MT research focused
on constructing a minimal, ideal set of training data,
striving for optimality in the data the learner is pre-
sented with to learn from. Interactive MT assumes
human agent interaction with the learner (Liu et al.,
2017), for enabling time- and resource-efficient

1We use conventions from Tegen et al. (2020) where MT
means an iterative, interactive implementation of Machine
Teaching. MT here is not Machine Translation.
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model convergence. Following the training by er-
ror criterion described in Tegen et al. (2020), if
the learner is unable to predict the right answer,
and the budget allows, the human teacher instructs
the learner with the label. Thus, AL leverages mea-
sures to wisely choose instances for human labeling
and subsequent learning, whereas MT capitalizes
on the teacher’s knowledge to wisely select training
instances and proceed to learn when the criterion
to teach is met (cf. Figure 1).

2 Related Work and Background

Olsson (2009) discussed AL for NLP tasks, while
Schröder and Niekler (2020) discussed deep learn-
ing with AL. Our study also builds on Tegen
et al. (2020)’s use of simulation to study AL query
strategies and MT assessment and teaching crite-
ria. Lu and MacNamee (2020) reported on ex-
periments where transformer-based representations
performed consistently better than other text rep-
resentations, taking advantage of the label infor-
mation that arises in AL. An et al. (2018) also
suggested assigning a varying number of instances
to label per human oracle based on their capabil-
ity/skills and the amount of unlabeled data, which
reduced the time required by the deep learner with-
out negatively impacting performance. We com-
paratively study iML in the fine-tuning stages. Bai
et al. (2020) emphasized language-based attributes
like reconstruction of word-based cross-entropy
loss across words in sentences toward instance
selection. To ensure improved experimental con-
trol and avoid confounding variables, we focus on
uncertainty-based strategies for AL.

MT deals with a teacher designing a well-
reasoned, ideally optimal, training set to drive the
learner to the desired target concept/model (Zhu,
2015; Zhu et al., 2018). While there has been
some progress in the use of MT, its application
in NLP is present in its earliest form with little
empirical exploration or refinement. MT has been
explored mostly in computing security, where the
teacher is a hacker/advisor who selects training
data to adjust the behavior of an adaptive, evolv-
ing learner (Alfeld et al., 2016, 2017). Tegen et al.
(2020) reported that MT could greatly reduce the
number of instances required, and even outper-
formed most AL strategies. These findings are
compelling and motivate exploring MT’s potential
in NLP, which, however, has some distinct charac-
teristics, including high-dimensional data impacted

by scarcity. MT’s possibilities in NLP are thus as
of yet largely unknown. We begin here by focusing
on controlled experimental simulations to examine
resource-efficiency and performance in text-based
emotion prediction, whereas future work will take
a step closer to ecological validity in interactive
MT with real-time agent-teachers.

Overall, several prospects can be noted for NLP
with interactive Machine Learning (iML):

• Human knowledge and insights can be leveraged
to make the search space substantially smaller by
systematic instance selection (Holzinger, 2016),
achieving adequate performance with fewer train-
ing instances.

• In a setting where learning occurs online or con-
tinually (Tegen et al., 2019), iML enables sus-
tained learning over time, with new or updated
data offered to the learner. This especially makes
sense for natural language tasks which by nature
are characterized by linguistic change.

• Using iML can enable model customization
to specific users, schools of thought, and en-
able privacy-preserving models (Bernardo et al.,
2017), e.g., for deploying NLP on edge devices.

• IML enables users to directly influence the model
(Amershi et al., 2014), and interactive techniques
can aid agents to catch bias or concept drift early
in the development process.

• The iML paradigm enables an initial state with
limited data (or even a cold start), which ap-
plies to NLP for underresourced languages, low-
data clinical problems, etc., including NLP for
affective computing since many affective states
remain understudied (Alm, n.d.).

• By learning more resource-efficiently, iML has
potential to lower NLP’s carbon footprint.

While iML is promising, issues include:

• Humans users or teachers are not necessarily
willing or available to provide input or feedback
to a system (Donmez and Carbonell, 2010).

• The iML setup is not immune to catastrophic
forgetting (Holzinger, 2016) in online learning.

• Human factors introduce technical considera-
tions that may impact interaction and perfor-
mance success; for instance, the learning set-up
should accommodate human fatigue (Darani and
Kaedi, 2017; Llorà et al., 2005).
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Figure 2: Class imbalance for the 14-class emotion data.

3 MT/AL for Emotion Prediction

Text-based emotion data are subject to variation
and ambiguity, which adds to the difficulty in the
annotation process, compounded with data scarcity
for capturing many affective states. IML methods
can be a means to deal with data limitations.

In this study, we used a subset of the GoEmo-
tions dataset (Demszky et al., 2020) which consists
of emotion labels for Reddit comments. We priori-
tized resource-efficiency as the primary experimen-
tal variable over exploring impact on target concept
ambiguity. Figure 2 shows the imbalanced distribu-
tion of emotion classes in this subset. The training
and test sets comprised approximately 2800 and
700 instances respectively. In all experiments, the
learner was trained initially with 10% of the train-
ing set while the remaining 90% was reserved as an
unlabeled pool of data which were gradually added
to the training set in each iteration.2 The simulated
‘user’ had access to the labels of the instances from
the unlabeled dataset whenever required via dataset
lookup.

3.1 AL vs. MT for Emotion Prediction

We compared the effect of AL and MT strategies
and further compared to offline supervised machine
learning, referred to as all-in-one batch.

Motivation In our AL experiment, the learner
queried the instances using versions of uncertainty
sampling or a random approach. In the least confi-
dent strategy, the learner selects instances for query

2For the Huggingface transformers library 20% of the
training set was held out as a validation set before this 90-10
split. For sklearn, attempts at hyperparameter tuning–for the
C parameter, dual/primal problem and tolerance values for
stopping criteria–used a genetic algorithm without meaningful
performance difference, and results are provided with defaults,
with class weights initiated as the inverse of the frequency of
each class.

for which it has the least probability of prediction
in its most probable class; in margin sampling, in-
stances with the smallest difference between its top-
two most likely classes; and in entropy, with the
largest entropy (Olsson, 2009; Tegen et al., 2020).

In MT, the agent-teacher chooses instances (Zhu,
2015), which are then labeled and used to teach the
learner (Tegen et al., 2020). We simulated the mar-
gin sampling-based AL query strategy as a teacher
to select a set of instances. Moreover, error-based
and state change are two teaching criteria used by
Tegen et al. (2020) for initiating teaching. In the
error-based method, the teacher proceeds to teach
based on correctness of the learner’s estimation,
i.e., supplying the learner with the correct label for
wrong estimations. We introduce a modification
termed error-based training with counting where
the teacher continues to provide labeled instances
to the learner when all estimations are accurate in
two consecutive iterations to ensure periodic model
updating. In the state change-based criterion, the
teacher provides a label for the instance if the cur-
rent instance’s real class label differs from the prior
instance’s class label. When no label is given, the
learner assumes the instance’s label is the same as
the last label given by the teacher.

Methods We focus on transportability and opted
for sklearn’s Linear SVM with hinge loss given its
lean computational character (Buitinck et al., 2013;
Chang and Lin, 2011). Both setups were trained
on CPUs, with MT using state change as teaching
criterion taking the longest time (around 40 min).

Results and Discussion Panel (a) in Figure
3 shows the result for AL strategies. The per-
formance on emotion prediction in text is more
resource-efficient and uses less data with AL. The
query strategies achieved the performance equiva-
lent to learning with the full batch of training data
after using just around half of the data with AL,
and all perform better than random selection. A
Wilcoxon’s Rank Sum Test (Wilcoxon, 1992) for in-
dependent samples compared random against other
query strategies. This indicated a significant dif-
ference in their performance with p < 0.05. Panel
(b) shows the MT results for three teaching crite-
ria. State change improves over the error-based ap-
proach, while the error-based approach with count-
ing slightly enhances the regular error-based ap-
proach because of the modification introduced. We
also observe that since we used margin-based AL
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Figure 3: Text-based emotion prediction with (a) AL query strategies or (b) MT teaching criteria. The all-in-one
batch option (green star) signifies resource-inefficient offline batch training.

as a teacher for selecting instances, the result mir-
rors margin sampling-based AL in panel (a). More-
over, we note that error-based teaching saturates,
potentially reflecting that state change-based teach-
ing is more capable of dealing with imbalanced
data (Tegen et al., 2020). Overall, the encouraging
results motivate us to plan to assess utility in a real-
time MT scenario with a human teacher and deeper
study of teacher variations for data selection and
revised teaching criteria for initiating training.

3.2 Fine-tuning with AL and MT

Motivation Previous results showed that MT and
AL can build better models more efficiently with
annotation savings (time and cost). Here, we ex-
plore if fine-tuning a pre-trained model – a frequent
and often performance-boosting approach in NLP –
that uses iML concepts can improve results further.

Methods We fine-tune a pre-trained BERT
model (Devlin et al., 2019) to emotion prediction in
text using Huggingface (Wolf et al., 2020), with a
max. sequence length of 80 (since comments tend
to be quite short). Based on prior observations, we
analyze fine-tuning performance with AL for the
least confident and margin sampling strategies, and
with MT for the error-based and error-based with
counting teaching criteria.

Results and Discussion Figure 4 shows the out-
comes for fine-tuning BERT interactively. The
results show performance close to 96%, which
is good for this subjective task. Moreover, AL
matched the offline training performance using less
than half of the available instances. We note that
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Figure 4: Text-based emotion prediction when using AL
or MT in fine-tuning with BERT.

convergence for fine-tuning also required some-
what less data than in the prior SVM-based experi-
ment, as shown by the steeper slope of performance
increment. Yet how to better leverage MT in con-
junction with fine-tuning, or transfer techniques
generally, remains a key priority in continued study.

4 Discussion

We showed that iML efficiently produces desired
results for text-based emotion prediction. MT re-
mains understudied and should be further explored
for NLP tasks. Fine-tuning a pre-trained model
with AL can leverage the strengths of both ap-
proaches with small datasets. In addition to ex-
periments detailed above, we explored training the
learner incrementally (online training) versus in a
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non-incremental setup (the learner is trained us-
ing accumulated training set up to the most re-
cent query). The incremental approach experiences
catastrophic forgetting but requires very little time
for learner updating and can thus work well under
low memory usage, e.g., for a life-long learning
setting or edge devices.

5 Conclusion

Our study on text-based emotion prediction demon-
strated the potential of both MT and AL methods.
We offered initial experimentation with MT and AL
for this problem, and based on promising results
under controlled simulation, next steps will focus
on real-time user/teacher interactions, a broader
set of teaching criteria, and new forms of train-
ing instance selection. In addition, we are inter-
ested in exploring heavily understudied affective
states, which are currently not covered sufficiently
or not covered at all in annotated emotion corpora.
We also suggest focused research on specialized
teachers in NLP tasks toward better selection of
training data. Teachers who assess the learner and
decide the right time to offer an adequate set of
new information may also help create more robust
or interpretable learners which evolve over time.

Ethics Statement

A limitation of this work is that it did not consider
linguistic characteristics of the pre-trained models
(Bai et al., 2020). We used an artificial teacher in
MT and did not deeply examine hybrid MT-AL
strategies, although we used an AL approach as
teacher in the MT setup. Still, this work may stim-
ulate NLP researchers to consider the benefits of
AL and MT, especially for challenging subjective
NLP tasks such as text-based emotion prediction
(Alm, 2011). Additionally, continued work can ex-
plore how the findings apply in the context of other
corpora, including with multimodal data.
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