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Abstract

Understanding, modelling and predicting hu-
man risky decision-making is challenging due
to intrinsic individual differences and irrational-
ity. Fuzzy trace theory (FTT) is a power-
ful paradigm that explains human decision-
making by incorporating gists, i.e., fuzzy rep-
resentations of information which capture only
its quintessential meaning. Inspired by Bro-
niatowski and Reyna’s FTT cognitive model,
we propose a computational framework which
combines the effects of the underlying seman-
tics and sentiments on text-based decision-
making. In particular, we introduce Category-2-
Vector to learn categorical gists and categorical
sentiments, and demonstrate how our computa-
tional model can be optimised to predict risky
decision-making in groups and individuals.

1 Introduction

Imagine that your town is preparing for a viral out-
break which is projected to kill 600 people. Two
alternative programs to combat the virus have been
proposed. Assume that the exact scientific esti-
mates of the consequences of the programs are Pro-
gram A: “200 people will be saved”; and Program
B: “1/3 probability that all 600 lives will be saved;
2/3 probability that no lives will be saved”. Given
these choices, which program would you choose?
Alternatively, if choices were presented as follows,
which program would you choose? Program C:
“400 people will die”; and Program D: “1/3 prob-
ability that no one will die and a 2/3 probability
that all 600 will die”. This problem is a modified
version of the Asian disease problem (ADP) (Tver-
sky and Kahneman, 1981), a well-studied risky
decision-making problem (RDMP) in psychology
where decisions are made under risk or include
probabilistic outcomes (Edwards, 1954). In this
RDMP, programs A and B form the gain frame
where choices are worded in a positive and opti-
mistic manner, whereas programs C and D form

the loss frame where choices are written in a nega-
tive and pessimistic manner. Studies have validated
that in the gain frame, humans overwhelmingly pre-
fer the safe choice A (72%), whereas in the loss
frame, they overwhelmingly prefer the risky choice
D (78%) even though the choices and outcomes
in both frames are equivalent (Tversky and Kahne-
man, 1981). This phenomenon, known as the Allais
paradox, implies that observed human choices are
inconsistent with predictions based on expected
utility alone, thereby confirming the influence of
language, wording of choices, and sentiments on
human decision-making.

Being able to understand, model and predict hu-
man decision-making leads to many real-world ap-
plications, from predicting election results (Hilly-
gus and Shields, 2005), to improving user experi-
ence in recommender systems (Chen et al., 2013).
However, Allais paradox means that understand-
ing the integral but complex cognitive process of
decision-making, particularly in humans, is ex-
tremely challenging due to our diverse character-
istics, beliefs and experiences. Furthermore, hu-
man decision-making is often fraught with irra-
tionality even in the presence of overwhelming evi-
dence against some choice or beliefs (Simon, 1993).
This brings into question how human decision-
making can be modelled with these complexities
and nuances involved. This is an especially im-
portant task when considering current approaches
to decision-making, such as utility theory which
typically lacks any behavioural basis and ignore
human sentiments during human decision-making
(Lerner et al., 2015).

Our goal is to develop a model of automated hu-
man decision-making that bridges current decision-
making techniques with fuzzy trace theory (FTT),
an established cognitive theory to predict group and
individual decision making outlined in sections 2.2.
Originally proposed by Brainerd and Reyna in the
1990s, FTT aims to explain cognitive phenomena
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in memory and reasoning (Brainerd and Reyna,
1990). In a nutshell, FTT posits that humans form
two types of mental representations, known as ver-
batim which are detailed representations and gist
which are fuzzy representations that only capture
the most quintessential meanings, and people pre-
fer to make decisions based on gist rather than
verbatim representations.

In contrast with alternative cognitive and
decision-making theories such as expected utility
theory (Friedman and Savage, 1952) and prospect
theory (Kahneman and Tversky, 1980), we adopt
FTT for two reasons. Firstly, FTT is the most holis-
tic cognitive model which encompasses theories
of how information is stored in memory and how
memory plays an important role in our decision-
making rather than treating decision-making as an
isolated process. Because of this, FTT provides us
with an extensive set of tools to explain and evalu-
ate decision-making. Secondly, is FTTs suitability
for computational modelling as conceptual paral-
lels can be drawn between representation learning,
particularly in neural-based language modelling,
and the process of creating gist representations by
distilling the quintessential information. For exam-
ple, popular embedding methods for words, sen-
tences and documents in NLP aim to create fuzzy
semantic representations through dimensionality
reduction of language to semantic vectors which
can be viewed as gist representations of the original
language (Liu et al., 2020).
Contributions: We investigate two levels of text-
based risky decision prediction tasks, group and
individual-level prediction from a computational
standpoint and incorporating state-of-the-art meth-
ods in NLP, we further investigate:

• How do gist representations of choices give
rise to decisions? We present a framework of
decision-making based on gist representation
learning.

• How can we computationally encode gist repre-
sentations based on the language of choices? We
outline how gist representations can be compu-
tationally encoded using techniques in NLP and
propose Category-to-Vector (Cat2Vec), to learn
and predict categorical embeddings of choices.

• How can we extract the underlying sentiments of
gist representations? By extending Cat2Vec, we
show how sentiments can be learnt at a categori-
cal level; this differs from traditional approaches

of sentiment analysis in NLP that examine senti-
ments at a text level.

• How can individual differences of individuals
and groups be modelled, what impact do these
differences have on decision-making? We pro-
pose that individual differences are mechanisms
that can encode errors at various points in the
decision-making process and propose an opti-
misation method to infer these individual differ-
ences.

• Finally, we demonstrate in experiments that our
proposed model achieves state-of-the-art perfor-
mance in predicting group and individual-based
risky decision-making compared to baselines.

2 Task Formulation and Related Work

Risky decision-making has been studied in many
different contexts. Here we formulate n-choice
decision-making problem (nDMP): Taking as in-
put natural language descriptions of n possible
choices/outcomes O, choose the most preferred
outcome from the set of choices O. We focus on
a sub-problem known as a n-choice risky decision-
making problem (nRDMP) which is an nDMP
where there is some risk or probabilistic outcomes
associated with choices in O, e.g., programs B and
D in the ADP. Specifically, we investigate the gain-
loss framing problem which is comprised of two
nRDMPs, nRDMPgain where choices are written
as gain frames which accentuate the positive fea-
tures of the text, e.g., programs A and B form a
2RDMPgain where ‘saving people’s lives’ is the ac-
centuated feature. Conversely, 2RDMPloss where
choices are written as loss frames which accentuate
the negative features of the text, e.g., programs C
and D form a 2RDMPloss where ‘people dying’ is
the accentuated feature. Additionally, choices have
equivalent outcomes across both 2RDMPs.

2.1 Classical decision theory

Classical decision theory abstracts the outcomes us-
ing utilities, which are numerical values that reflect
desirability. For example, expected utility theory
(EUT) identifies the choice that maximises the ex-
pected utility assuming the axioms of rationality
(Von Neumann and Morgenstern, 2007). However,
in human decision-making these axioms are often
violated, giving rise to, e.g., Allais (Allais, 1953)
and Ellsberg (Segal, 1987) paradoxes. Generalised
EUT such as uncertain utility theory (Gul et al.,
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2008), cumulative prospect theory (CPT) (Tver-
sky and Kahneman, 1992), and multiple-criteria
decision-making (MCDM) (Zeleny, 2012) were
proposed to resolve these discrepancies. However,
these classical approaches not only fail to take into
account semantic information given by the work-
ing of choices which is important contextually for
decision making, but they also ignore cognitive
processes such as sentiments of decision-makers.

Recent breakthroughs in NLP have led to a rev-
olution in the breadth and robustness of problems
that can be solved involving natural language by
successfully capturing the underlying semantics
and relationships of language. For example, neural
language models have found resounding success
in representation learning (Mikolov et al., 2013;
Devlin et al., 2018), the task of uncovering fea-
ture representations of language which are useful
for downstream NLP tasks. One such downstream
NLP task, sentiment analysis, has benefited largely
from the application of language models such as
XLNet (Yang et al., 2019) and ULMFiT (Howard
and Ruder, 2018). Rapid advancements thus give
hope for the development of sophisticated compu-
tational decision-making models.

2.2 Group/Individual-level Tasks

In this paper, we consider two specific 2RDMP,
group level risky decision making (GL-RDM)
which the majority of psychological studies focus
on and the novel task of individual level risky deci-
sion making (IL-RDM), defined as follows.
GL-RDM: Given a set of observed outcomes from
human RDM experiments, each of which is de-
scribed by a 5-tuple (2RDMPgain, 2RDMPloss,
Pgain, Ploss, category), where 2RDMPgain is the
gain frame of a 2RDMP, Pgain is the proportion
of individuals in the gain frame who chose the
risky choice, and category is a grouping of similar
experiments based on design and participants de-
scribed in Section 6.1. 2RDMPloss and Ploss can
be defined similarly by replacing gain with loss.
GL-RDM’s objective is to predict the distribution
of choice between Pgain and Ploss and for unseen
human experiments within the same category.
IL-RDM: Given a set of nRDMPs, RDP =
{rdp1, rdp2, . . . , rdpn} where gain/loss frames
of the same problem can appear as sepa-
rate RDPs rdpi, a set of individuals Ivd =
ivd1, ivd2, . . . , ivdm and a function which maps
individuals and RDPs to their preferred choice

PC(idi, rdpj) = pci,j where pci,j is individual
idi’s preferred choice for rdpj . The objective for
IL-RDM is to learn a model/mapping function for
each individual which can predict an individual’s
preferred choice for unseen nRDMPs.

3 FTT-guided Risky Decision-making

The BR model. Broniatowski and Reyna laid
out four main FTT principles in developing a
cognitive model, i.e., the BR model, for the GL-
RDM task (Broniatowski and Reyna, 2018, 2014).
These principles are: (C1) Decision choices are
encoded in different levels of gist representations,
e.g., categorical- and interval-levels based on the
psychological notion of levels of measurement
(Stevens et al., 1946). (C2) Categorical gist rep-
resentations of choices are distinguished based on
binary (positive/negative) sentiments and decision-
makers will prefer options with positive associa-
tions. In the BR model, sentiments of categories
are drawn upon social and moral principles which
are stored in long-term memory, e.g., saving lives
is fundamentally good. (C3) When comparisons
of categorical gist representations do not arrive at
a conclusive result, the decision-maker will revert
to more precise gist representations. In the BR
model, gist representations compete and combine
such that the simplest gist representation is cho-
sen. (C4) Categorical gist is encoded based on the
decision-maker’s prior experiences and individual
differences, i.e., need for cognition (NFC), numer-
acy (NUM), and risk sensitivity (RS).

Human experiments have provided evidence that
the BR model is capable of explaining GL-RDM.
However, being a box-arrow model, the BR model
is comprised of hypothesized concepts or processes
that lack precise definitions. Hence applying the
model requires human interpretations and judge-
ments on, e.g., notions such as gist lattices of each
RDMP, the acquisition of sentiments, and individ-
ual differences. This informal nature, along with
the inflexibility of the model being unable to be
easily adapted to IL-RDM prevents the model from
being used as an automated predictive tool.

Our model. Towards a fully automated tool for the
RDMP tasks, we propose a computational model
of risky decision-making that takes the input text
descriptions of an RDMP and solves the GL-RDM
and IL-RDM tasks automatically. The model is de-
picted in Figure 1. The key features of our model
include: (1) All model components are automated,
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i.e., gist representations are extracted through NLP
as categorical embeddings. (2) Categorical and
interval representations are formally defined as hi-
erarchical with the interval level encapsulating the
properties and information of the categorical-level
(Stevens et al., 1946). (3) Individualistic differ-
ences, NFC, NUM and RS (see below) directly
affect decision-making at a representational level
and errors in judgement can propagate through the
model adding more expressive.

4 Computing Gist Representations

The first challenge we tackle is the computational
encoding of gist representations and how individual
differences encode error, a mechanism to model
variations in human decision-making at a represen-
tation level to perform GL-RDM and IL-RDM.

4.1 Categorical Representations

Categorisation is the act of grouping documents
into categories based on semantic or sentiment sim-
ilarity. For example, the entertainment cat-
egory in the news dataset (see Section 6.1) com-
prises of various articles spanning multiple topics
such as games, movie reviews, and celebrity gossip.
The ability to categorise and recall the underlying
sentiments of categories is an important prerequi-
site for FTT decision making asserted by principle
C2 where humans prefer choices associated with
categories with positive connotations over negative
connotations. For example, the sentiments of the
travel category in the news dataset has a strong
negative sentiment due to the news articles being
collected during the outbreak of COVID-19. Given
this negative sentiment, people would be dissuaded
from travelling. Current sentiment analysis meth-
ods focus on granular extraction of sentiments from
text rather than categories where words that are
highly indicative of a category do not necessarily
reveal any insights into their sentiment.

Vector representations of words (Mikolov et al.,
2013), sentences (Devlin et al., 2018), and docu-
ments (Le and Mikolov, 2014) capture the semantic
relationships between entities. At a higher level,
a categorical embedding should capture seman-
tic relations between categories of documents. To
our knowledge, no such representation has been
proposed. To fill this gap, we propose Category-2-
Vector (Cat2Vec) and a sentiment based extension,
sentiment-Cat2Vec. Cat2Vec aims to find model-
agnostic categorical representations that facilitates

the prediction of categories from text and senti-
ments from categories. More formally, given a set
of M categories C = {k1, k2, . . . , kM}, a train-
ing set contains a number N of document-category
pairs {(d1, c1), . . . , (dN , cN )}, where each di is a
document and ci ∈ C is the (ground truth) category
of di. The objective is to maximise the average log
probability 1

N

∑N
i=1 logP (ci|di) where P (ci|di)

is the probability that document di belongs to cate-
gory ci. In sentiment-cat2vec, P (ci|di) is replaced
by P (si|ci), the probability that category ci be-
longs to a certain sentiment class. Here, we con-
sider only binary positive and negative sentiments.

Cat2Vec extends a contrastive learning via neg-
ative sampling approach by simultaneously max-
imising the similarity between document encod-
ings, vdi , with true category embeddings, vci , by
minimising the similarity between vdi and K nega-
tive category embeddings defined by the objective:

log σ ((vci ⊙ vii) · vdi)

+
K∑

j=1

Ekj∼Pnoise(C)[log σ((−vkj ⊙ vij ) · vdi)]

(1)

where ⊙ represents element-wise multiplication,
Pnoise(C) is a noise distribution that dictates how
categories are sampled, we select a uniform dis-
tribution, σ(x) = 1/(1 + exp(−x)) and vii is a
category importance vector for category i which is
learned simultaneously with the category embed-
ding which provides an attention-like effect over
category by accentuating or diminishing certain fea-
tures in the category embedding when multiplied
together. Furthermore, vdi = Enc(di) where Enc
is a document vector encoding function. In this
paper we adopt a bi-directional LSTM with self-
attention such that vdi = (−→α ⊙ −→v di∥←−α ⊙ ←−v di)
where −→α ,←−α are self-attention weights of the for-
wards and backwards LSTMs, resp., and−→v di ,

←−v di

are the hidden state output vectors for document
di of the forward and backwards LSTMs, respec-
tively. However, the encoder is interchangeable in
Cat2Vec e.g. pretrained transformers like BERT
(Devlin et al., 2018) can be used.

The novelty of our model lies in two main as-
pects, the introduction of a category importance
vector to improve the ability of the model to learn
relations between categories and the ability of our
model to estimate P (si|ci) given labelled text doc-
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Figure 1: The main architecture of our computational model for decision making based on FTT

uments. To estimate P (si|ci) we introduce an extra
dense output layer (D) in figure 2 which predicts
P (s|di), the probability that document i belongs
to a certain sentiment class. In the case of binary
sentiments, the joint loss becomes the binary cross-
entropy loss of predicting the correct sentiment
of a document plus the negative sampling loss in
equation 1. After training the model we can es-
timate P (si|ci) by feeding the learned category
embeddings, (vci ⊙ vii) into the output layers (D).
Although these output layers are trained to learn
P (s|di), since the learned category embeddings are
based on the document embeddings and are learned
in the same semantic space, this approach gives us
good estimates of P (si|ci).
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Figure 2: Cat2Vec Model

Equation 2 shows how error encoded categorical
utility (CU) is calculated from categorical repre-
sentations where Category(choice) is a function
that takes RDM choices as inputs and outputs the
underlying category related to the choice, Senti-
ment(category) is a function which takes a category
as input and outputs the underlying sentiments re-
lated to that category as poscategory − negcategory.
Categorical error is encoded based on NFC, an indi-
vidual’s tendency to engage in and enjoy cognitive
activities (Cacioppo et al., 1996), can introduce
error at a categorical level to account for individ-
ualism. To calculate an error encoded CU, we

sample from a logistic distribution which is con-
sistent with existing literature in qualitative dis-
crete choice models (McFadden, 2001). Formally,
NFC ∈ (0, 1) and CU ∼ Logistic(µ, s) where
µ = E[X] is the expected or true utility value and
s(NFC) = |NFC− 1| × E[X].

CU = Logistic(Sentiment(Category(choice)),NFC)
(2)

4.2 Interval Representations

Interval representations are a more precise repre-
sentation than categorical representation. It en-
codes the calculation of the expected value (EV)
and utility of choices. Numerical information from
text can be extracted using simple text extraction
or named entity recognition (NER) (Nadeau and
Sekine, 2007) where probabilities and their associ-
ated quantities can be extracted as arrays, e.g., in
program B of the RDMP in the introduction the
probabilities would be [1/3, 2/3] and their corre-
sponding quantities would be [600, 0].

Equation 3 outlines the process to generate error-
encoded interval utilities where CU is the categor-
ical utility defined in equation 2 and EV is an ex-
pected value function which takes an input RDM
choices and outputs the corresponding expected
value associated with probabilities and quantities
in choices which can extracted using standard text
identification techniques such named entity recog-
nition. Error is encoded based on NUM (Kahne-
man, 2003), which measures a person’s ability to
interpret and work with numbers to account for
individualism is calculated as IU ∼ Logistic(µ, s)
where NUM ∈ (0, 1), µ = E[X] is the true ex-
pected value and s(NUM) = Q|NUM−1|×E[X]
where Q is number of quantities in the choice to
account for error involving multiple calculations.

IU = Logisitic(EV(choice),NUM) · CU (3)
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4.3 Representations for Decision Making

Finally, combining these representations allows us
to derive the most beneficial choice in an nRDMP.
The preferred categorical, PrefCat and preferred
interval, PrefInt choices are calculated based on
which choice maximises categorical and interval
utilities, respectively. If PrefCat = PrefInt, there is
a consensus on the best choice. If PrefCat ̸= PrefInt,
there is no clear best choice. In this case, RS, a
person’s preference towards pursuing riskier but
more rewarding decisions (Kacelnik and Bateson,
1997), is adopted as in the BR model. Risk sensitiv-
ity influences the probability of choosing the safest
or riskiest choice in an nRDMP as P (risky) =
1/(1 + e−RS) where RS ∈ (−3, 3). The safest
choice is one that involves the least probabilistic
outcomes, whereas conversely, the riskiest choice
involves the most probabilistic outcomes e.g., in the
ADP in the introduction, program A is the safest as
it involves one certain outcome while program B is
the riskiest with two probabilistic outcomes.

4.4 Decision Making: A Worked Example

To demonstrate the fluidity of our model we apply
our model to the ADP from the introduction. In
the gain frame, the predicted category of programs
A and B using the pretrained Cat2Vec from the
experiments predicts the life category for both
programs. The sentiments of the life category
predicted by Sentiment-Cat2Vec is 0.9999 positive
and 0.0001 negative giving categorical utility de-
fined as poscategory − negcategory for both programs
equal to 0.9998. Taking into account numerical
information, the expected value of programs A and
B is 200 people being saved, the interval utility is
thus the expected value times the categorical utility
which is 199.6 for both programs. No consensus be-
tween categorical or interval choices can be made
due to unclear preferred choices for both. Thus, the
final choice is decided by risk sensitivity.

Individual differences encode error and prefer-
ences into choices allowing for consensus to arise,
e.g., a person with low numeracy will sample in-
terval utilities from a logistic distribution with a
larger spread than someone with high numeracy
who samples utility close to the true utility. Be-
cause the error encoded utilities are sampled, the
preferred choice can change on different runs of
the problem; however, individual differences influ-
ence the average choice. Figure 3 shows a snapshot
when one parameter was altered while the others

were fixed and how these parameters can alter utili-
ties to prefer certain choices across frames in the
ADP.

Figure 3: Effects of individual differences on the ADP.

5 Learning Individual Differences

The last challenge we explore is how optimal
individual-level parameters, NFC, NUM and RS
can be inferred in GL-RDM and IL-RDM by opti-
mising the following objective functions.

argmin
ivd

Exp∑

P
gain

,P
loss

|Pgain−P̂gain(ivd)|+|Ploss−P̂loss(ivd)| (4)

P̂gain(ivd) =
∑

exp
i

∈Exp

E[CDM(RDMPgain, ivd) = risky]

|Exp|
(5)

GL-RDM Objective. Is given by equation 4 where
ivd = (NUM,NFC,RS) are individual-level pa-
rameters which represent the characteristics of the
entire group and Exp = {e1, e2, . . . , ei} is the set
of results based on human psychological experi-
ments where each e is a 5-tuple described in the
task formulation in section 2.2.
IL-RDM Objective. Is given by equation 6 where
ivdi = (NUM,NFC,RS) is the parameters which
characterises individual i, RDP is a set of nRDMPs
and PC is the mapping function of individuals to
their preferred choices defined in the task formula-
tion in section 2.2. Thus, the goal is to learn optimal
individual parameters for each individual which
maximises the expectation that CDM chooses their
true preferred choice over all RDPs.

argmax
ivd

i

|RDP|∑

j

E[CDM(rdpj , ivdi) = PC(ivdi, rdpj)]

(6)

6 Experiments

6.1 Datasets
Categorical News. A dataset used for training/fine-
tuning Cat2Vec and benchmark algorithms. The
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dataset contains 22601 news articles with binary
sentiments labelled from various news outlets
dating from February to April 2020 using the
Google News API spanning 46 news categories,
e.g. travel, entertainment and death.
Group Risky Decision Making. A dataset of 88
psychological human experiments results grouped
into categories used in the evaluation of the BR
model. The categories represent differences in ex-
periment controls and participants that undertook
each experiment, e.g., ’ADP; within-subjects, low
PISA’. The category outlines the risky decision-
making problem; experimental design which can
be grouped into within, where each participant is
given both frames of a decision or between sub-
ject designs, where two independent groups answer
each frame; and numeracy of participants, based on
the performance of the country in which the exper-
iment took place in the Program for International
Student Assessment (PISA) (Stacey, 2015).
Individual 2-RDMP Prediction. A curated
dataset of 38 unique 2-RDMPs selected from var-
ious psychological experiments regarding risky
decision-making answered by 121 university stu-
dents using a within-subject experimental design.
Of the 38 2-RDMPs, most problems contain a cor-
responding gain and loss frame, e.g., the ADP in
the introduction, each frame is considered a sepa-
rate problem. Participants selected their preferred
choice from the same pre-shuffled RDMP set1 and
no pre/post-processing of data was performed.

6.2 Evaluation Metrics
We apply different evaluation metrics suitable for
each RDM task. For GL-RDM, we compare the
true log-odds ratio (LOR) given by equation 7, be-
tween experimental results predicted by our model
and the BR baseline model. Intuitively, the LOR
measures the consistency of choices across the gain
and loss frames.

LOR(Pgain, Ploss) = ln

(
Pgain(1− Ploss)

Ploss(1− Pgain)

)

(7)
To determine the goodness-of-fit between the

predicted LOR, we apply a hypothesis test, the
Wald statistic (χ2) given by equation 9. The
standard error (SE) is given by equation (8)
where nsafe,gain represents the number of individ-
uals choosing the safe choice in the gain frame,

1See appendix, section A.3 for questionnaire

nsafe,loss, nrisky,gain, nrisky,loss can be derived simi-
larly. The standard error asymptotically approaches
a normal distribution when n is sufficiently large;
thus, the associated Wald statistic, equation (9), fol-
lows a chi-square distribution with one degree of
freedom.

SE =

√
1

nsafe,gain
+

1

nsafe,loss
+

1

nrisky,gain
+

1

nrisky,loss

(8)

χ2 =

(
LOR(Pgain, Ploss)− LOR(P̂gain, P̂loss)

SE

)2

(9)

To compare the parsimony and implicitly the
error between our the BR and null (Busemeyer
et al., 2015) models, we use the Akaike information
criterion (AIC) and Bayesian information criterion
(BIC). For IL-RDM, we evaluate the accuracy of
each model correctly predicting the true choices
for each individual.

6.3 Benchmark Algorithms

In the paper, we use two different sets of base-
lines. For GL-RDM, we directly compare our
model against the BR model. Due to the small num-
ber of experiments per grouping in the GL-RDM
dataset, to maintain parity with the BR baseline,
we apply the same jackknife-leave-one-out (JLOO)
method used for parameter estimation in the BR
baseline model to avoid post-hoc parameter esti-
mation (Busemeyer and Wang, 2000). Formally,
given m observed human risky decision making
experiment results within a category of comparable
RDPs, Exp = {e1, e2, . . . , em} as described in the
task formulation in section 2.2. We wish to esti-
mate m values of Gi = (NUMi,NFCi,RSi) where
Gi is group-level differences relating to observed
experiments i where i = 1 . . .m. To achieve this,
we apply the Gi can be estimated by equation (10)
where ER−i is the set of experimental results ex-
cluding eri as not to use the result in the estimation.

argmin
Gi

ER−i∑

Pgain,Ploss

|Pgain−P̂gain(Gi)|+|Ploss−P̂loss(Gi)|

(10)
For IL-RDM, due to a lack of existing bench-

mark algorithms we compare our model against
two baselines (1) Naive binary model using pre-
trained transformer language models where all
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RDM-choices are combined as a single input and
outputs 0 or 1 corresponding to the safe or risky
choice. (2) Sentiment analysis models as claim C2
asserts sentiments are highly influential in decision-
making where decisions are based on choices with
the highest positive sentiment. Random: Uni-
formly samples one of the available choices. Vader:
A rule-based sentiment analysis for social me-
dia(Gilbert and Hutto, 2014). XLNet: SOTA pre-
trained autoregressive language model fine-tuned
on the news dataset sentiments (Yang et al., 2019).
ULMFiT: Pretrained language model fine-tuned on
the news dataset sentiments using inductive transfer
learning (Howard and Ruder, 2018).

6.4 Experiment Results

GL-RDM results. Table 1 (full table A.4 in Ap-
pendix) shows key discrepancies between our com-
putational model, CDM, compared to both the ac-
tual LOR based on all 88 human experiments and
those predicted by the BR model. Within each cate-
gory, we find optimal group-level parameters which
minimise (4) to calculate the predicted LOR of
our model for each experiment using the jackknife-
leave-one-out (JLOO) method to maintain compa-
rability between the BR model.

Reference Actual BR CDM SE χ2

Standard ADP; one presentation, between-subjects, low PISA
(1) Tversky and Kahneman (1981) 2.20 1.65* 1.86 .26 1.83
(2) Mayhorn et al. (2002), Young 2.98 1.68 1.50 .58 5.89*

TOTAL of 14 predicted: 13 (93%)
Standard ADP; within-subjects, low PISA

(3) LeBoeuf and Shafir (2003) Exp #2 .57 1.05* .81 .17 .52
TOTAL of 3 predicted: 3 (100%)

Standard ADP; multiple presentations, between-subjects, low PISA,
(4) Jou et al. (1996) 2.01 .87* 1.13 .33 6.99*

TOTAL of 6 predicted: 5 (83%)
Other problems; multiple presentations, between-subjects, high PISA

(5) Kühberger (1995) Plant #2 2.34 .7* .34 .73 7.50*
TOTAL of 4 predicted: 3 (75%)

Zero-complement problems; multiple presentations, between-subjects
(6) Kühberger and Tanner (2010) Crops -.43 0 .34 .30 6.83*
(7) Kühberger and Tanner (2010) Fish disease .83 0* .37 .30 15.74*

TOTAL of 7 predicted: 5 (71.4%)
“400 not saved” certain-option problems; multiple presentations, between-subjects, high PISA

(8) Kühberger (1995) Plant #1 .49 -.88* .11 .58 .50
(9) Kühberger (1995) Cancer #1 -1.36 -.74 .11 .60 6.21*

TOTAL of 5 predicted: 6 (83.3%)
OVERALL TOTAL of 88 predicted: 82 (93.2%)

* Indicates results with Wald statistics over 1 degree of freedom
Note: Bolded rows indicate results where CDM outperforms or is equal to the BR model

Table 1: Group Level Experiment Results.

Critically, our results show that our computa-
tional model is capable of automating the predic-
tion of human risky decision making on a wide
range of RDMPs by predicting 82 of 88 (93.2%)
experiments based on the Wald statistic. These re-
sults hold even when RDMPs were manipulated to
capture a wider gamut of decision making through
variations on framing and truncation of choices

where options were removed (Reyna et al., 2014).
These results are comparable to carefully crafted
human conducted analysis using the BR model
which also predicted 82 of 88 experiments.

To further demonstrate the parsimony of our
model compared to the BR and null models by
applying the AIC and BIC metrics under a null
CDM model where parameters are set to 0, we
get AIC=14941 and BIC=14950. Whereas under
the null model of the BR model, AIC=14981 and
BIC=14986. In the best cases, our model outper-
forms all variations of the BR baseline model, with
our model attaining AIC=13374 and BIC=13383
compared to AIC=13409 and BIC=13510. Further-
more, taking into consideration the relative likeli-
hood ratio (RLR) to compare models using the AIC
scores, exp((13374 − 13409)/2) = 2.5 × 10−8,
yields a significant result where the BR baseline
model is only 2.5× 10−8 times as probable as our
model to minimize the information loss. Thus, our
model attains better goodness-of-fit compared to
the BR model while using significantly fewer pa-
rameters, 3 compared to up to 172 in the BR model.

IL-RDM results. Table 2 displays the average 5-
fold cross-validation result predicting all 121 indi-
viduals’ decisions for all 38 questions. Our model
with a modest 63.19% accuracy outperforms all
benchmark algorithms which hover around 50% for
sentiment and 60% for pretrained language model
baselines. This reinforces that IL-RDM is a more
challenging problem and although sentiment analy-
sis is important for decision-making, current SOTA
sentiment analysis is not suitable for IL-RDM and
only performs comparably to random choice. It is
worth noting that while pretrained language models
can be naively applied to IL-RDM with competitive
results, they can not be naively applied to GL-RDM
which requires the simultaneous predictions of two
distributions of choices across frames where of-
ten the same RDM and choices is used across all
experiments within a category.

Also displayed in the table are results when
using transformers as encoders within Cat2Vec
and results from a minor ablation study. For IL-
RDM, transformers do not significantly improve
accuracy as the resulting predicted categories and
sentiments of categories from RDM-choices are
highly similar between encoders. In the ablation
study where choices are derived based on preferred
choices at different levels of representation, i.e.,
CDMCategorical and CDMInterval, reinforces the full
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expressiveness of our model comes from the con-
sensus between levels of representation and influ-
ence of individual differences.

Algorithm Accuracy (%) Min (%) Max (%)
Random 49.87± 0.4 48.99 51.23

Vader 51.37± 0.9 48.64 54.33
XLNet 49.83± 2.1 44.21 56.31

ULMFiT 47.08± 2.1 39.31 53.30
BERT 61.94± 0.7 60.80 64.70
GTP2 53.65± 1.1 51.44 57.95

roBERTa 60.83± 1.7 57.23 65.87
CDM (Bi-LSTM) 62.47± 0.6 60.43 64.11

CDM (BERT) 62.30± 1.2 59.54 65.87
CDM (GTP2) 63.19 ± 1.2 60.64 68.00

CDM (roBERTa) 62.68± 1.2 59.43 66.35
Sentiment Cat2Vec 53.72± 1.4 48.04 56.67

CDMCategorical 51.86± 1.3 46.38 54.33
CDMInterval 53.17± 1.2 48.40 55.84

Table 2: Individual-Level Experiment Results

6.5 Error Analysis and Discussion

To understand the shortfall of our model for both
GL-RDM and IL-RDM, we analyse cases in which
our model fails to predict human decision-making.
In GL-RDM, of the 6 experiments that our model
did not successfully predict, 3 of these ((4),(5) and
(7) in table 1) were not predicted by the BR base-
line model indicating problems with parameter es-
timation using JLOO as these experiments are out-
liers with relatively significant differences in LORs
within their respective categories.

In IL-RDM, inconsistencies exist across 2-
RDMPs due in part to the within-subject design
as participants may notice the underlying prob-
lem causing them to compare between problems
rather than independently (Kahneman and Freder-
ick, 2002). For example, figure 4 shows loss frames
where individuals overwhelming preferred the safe
choice, e.g., Q2, Q4 and most gain-loss pairs do
not show a clear distinction between safe and risky
choices in opposing frames, e.g. (Q26, Q2). Both
cases are inconsistent with psychological studies.

Figure 4: Ratio of choices for all questions with gain
and loss frames grouped.

Quantity of data is also an issue. While the num-
ber of participants and questions answered were
quite large for psychology experiments, this dataset
is relatively small for machine learning tasks. Fig-
ure 5(A) shows the histogram of all 121 individuals’
test accuracy on one fold. Overall, our model can
predict most individual’s choices accurately, but the
average is lowered by some individuals our model
cannot predict due to inconsistencies mentioned
in (1). Also, since the size of each fold is rela-
tively small, containing 7-8 test RDPs, any RDP
not predicted correctly will cause a large decrease
in accuracy. Figure 5(B) shows the percentage of
correct choices our model predicts for all individ-
uals from the combined 5-fold test questions. On
average, our model predicts gain and loss RDMPs
relatively equally with accuracy of 65.73% and
62.84% respectively. However, RDMPs with "both
frame", contains choices with combined gain and
loss wording, cannot be predicted by our model
due to this duality with an average of 42.73%.

Figure 5: (A) Histogram of individual accuracy on one
fold and (B) combined k-fold test accuracy per question

7 Conclusion and Future Work

This paper provides the first steps into a fully com-
putational framework of risky decision-making,
which adopts the cognitive and psychological basis
of FTT with our model outperforming baselines
in individual and group RDP prediction. Potential
applications of our model are wide-ranging for sce-
narios in which predicting and understanding the
characteristics of human risky decision-making is
pivotal, e.g., the design of safety mechanisms based
on how people make decisions in risky scenarios
or in improving personalised recommendation sys-
tems based on understanding the users’ personal
traits and how they make decisions. Future work,
therefore, involves adapting our model towards
real-world applications, exploration of generalised
decision-making and the design and evaluation of
sophisticated end-to-end machine learning models
for text-based decision-making.
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A Appendix

A.1 Final Decision Algorithm

Algorithm 1 corresponds to the algorithm men-
tioned in section 6.1 of the main paper.

A.2 Evaluation Metric Calculations

The calculations for the second type of evaluation
metric we use to compare the parsimony of our
model against baseline algorithms are the Akaike
information criterion (AIC) and Bayesian informa-
tion criterion (BIC) are given by equations (13) and
(14) using the log-likehood calculated by equations

Algorithm 1 Computational Decision Making
Input: nRDMP, NUM, NFC, RS
Output: Decision/Preferred Choice
1: for choice in n-RDMP do
2: if CU(PrefCat,NFC) < CU(choice, NFC) then
3: PrefCat = choice
4: if IU(PrefInt,NUM) < IU(choice, NUM) then
5: PrefInt = choice
6: if PrefCat = PrefInt then
7: return PrefCat
8: else if Uniform(0, 1) ≤ RiskSensitivity(RS) then
9: return Riskiest Choice

10: else
11: return Safest Choice

and (12). In these equations n1,1 is the number of
people who chose the first choice (safe choice) in
the first problem (gain frame), p1,1 is the predicted
proportion of subjects who chose the first choice
(safe choice) in the first problem (gain frame), etc.
For the AIC, k is the total number of parameters of
our model, 3 which correspond to each individual
difference and in BIC, n is the total number of data
points, 176 to represent the gain and loss frames in
the 88 human experiments.

ln[L(yi)] = n1,1 ln p1,1 + n1,2 ln p1,12

+ n2,1 ln p2,1 + n2,2 ln p2,2 (11)

ln[L(y)] =
∑

i

ln[L(yi)] (12)

AIC = 2k − 2 ln[L(y)] (13)

BIC = k ln(n)− 2 ln[L(y)] (14)

To compare models using AIC, the relative like-
lihood ratio (RLR) given in equation 15 can be ap-
plied which compares the probability that the BR
baseline model minimises the estimated informa-
tion loss compared to our CDM model given that
AICCDM ≤ AICBR where AICBR and AICCDM

are corresponding AIC scores of each model.

RLR = exp(
AICCDM −AICBR

2
) (15)

A.3 Individual Level Questionnaire
Full inventory of all 36 questions used in the Indi-
vidual 2-RDMP Prediction dataset:
Q1: Which of the following options do you prefer?

(a) A sure win of $30
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(b) 80% chance to win $45

Q2: Imagine that 6000 pieces of precious paint-
ings in a world-famous museum are accidentally
exposed to a disastrous chemical pollution. Two
alternative plans to rescue these art treasures have
been proposed. Assume that the exact estimates of
the consequences of the plans made by scientists
are as follows:

(a) If plan A is adopted, 4000 pieces will be
destroyed by the chemical pollution.

(b) If plan B is adopted, there is a one-third
probability that none of these paintings will
be destroyed, and two-thirds probability
that all 6000 of these paintings will be de-
stroyed.

Q3: A large car manufacturer has recently been
hit with a number of economic difficulties and it
appears as if three plants need to be closed and
6000 employees laid off. The vice-president of
production has been exploring alternative ways to
avoid this crisis and has developed two plans:

(a) Plan C: This plan will result in the loss of 2
plants and 4000 jobs.

(b) Plan D: This plan has a 2/3 probability of
resulting in the loss of 3 plants and all 6000
jobs, but has a 1/3 probability of losing no
plants and no jobs

Q4: Imagine you recieve a letter from the president
of a subsidiary describing a dilemma concerning
whether to fight an impending patent violation suit
or settle out of court that reads: If we do not agree
to this proposal, PMG will file their suit. Going
to court would involve the possibility of losing
$1,100,000 in damages and losing the Duraplast
line. If we win in court, we will incur a small sum
for legal expenses. Our corporate lawyer, Mr. Bell,
and our outside law firm estimate that we have a 2
in 3 chance of losing the case.

(a) Agree to the proposal (no lawsuit)
(b) Disagree to the proposal: 2/3 chance of

losing the lawsuit and incurring costs of
$1100000

Q5: Imagine that you have lung cancer and you
must choose between two therapies: surgery and
radiation. Surgery for lung cancer involves an oper-
ation on the lungs. Most patients are in the hospital
for two or three weeks and have some pain around
their incisions; they spend a month or so recuper-

ating at home. After that, they generally feel fine.
Radiation therapy for lung cancer involves the use
of radiation to kill the tumor and requires coming to
the hospital about four times a week for six weeks.
Each treatment takes a few minutes and during the
treatment, patients lie on a table as if they were hav-
ing an x-ray. During the course of the treatment,
some patients develop nausea and vomiting, but by
the end of the six weeks they also generally feel
fine. Thus, after the initial six or so weeks, patients
treated with either surgery or radiation therapy feel
about the same.

(a) Surgery: Of 100 people having surgery, 90
live through the postoperative period, 68
are alive at the end of one year and 34 are
alive at the end of five years.

(b) Radiation Therapy: Of 100 people having
radiation therapy, all live through treatment,
77 are alive at the end of one year and 22
are alive at the end of five years.

Q6: Imagine that you brought $6000 worth of
stock from a company that has just filed a claim for
bankruptcy recently. The company now provides
you with two alternatives to recover some of your
money.

(a) You will save $2000 of your money
(b) You will take part in a random drawing pro-

cedure with exactly a one-third probability
of saving all $6000 of your money, and two-
thirds probability of saving none of your
money.

Q7: Imagine that in one particular state it is pro-
jected that 1000 students will dropout of school
during the year, two programs have been prosed
to address this problem, but only one can be im-
plemented. Based on other states experiences with
programs, estimates of the outcomes that can be
expected for each program can be made.

(a) Program 1: 600 of the 1000 students will
drop out of school

(b) Program 2: 2/5 chance that none of the
1000 students will drop out of school and
3/5 chance that all 1000 students will drop
out of school

Q8: Assume that you have just been given a gift of
$1000.

(a) Taking an additional $500 for sure.
(b) Flipping a coin and winning another $1000
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if heads comes up or getting no additional
money if tails comes up.

Q9(i): Imagine that you face the following pair of
concurrent decisions. First examine both decisions,
then indicate the options you prefer.

(a) A sure gain of $240
(b) 25% chance to gain $1000, and 75% chance

to gain nothing

Q9(ii): Imagine that you face the following pair of
concurrent decisions. First examine both decisions,
then indicate the options you prefer.

(a) A sure loss of $750
(b) 75% chance to lose $1000, and 25% chance

to lose nothing

Q9(iii): Imagine that you face the following pair of
concurrent decisions. First examine both decisions,
then indicate the options you prefer.

(a) 25% chance to win $240, and 75% chance
to lose $760

(b) 25% chance to win $250, and 75% chance
to lose $750

Q10: You are staying in a hotel room on vacation.
You paid $6.95 to see a movie on pay TV. After 5
minutes you are bored and the movie seems pretty
bad. Would you continue to watch the movie or
not?

(a) Continue to watch
(b) Turn it off and lose $6.95

Q11: Imagine that your country is preparing for
the outbreak of an unusual disease, which is ex-
pected to kill 600 people. Two alternative pro-
grams to combat the disease have been proposed.
Assume that the exact scientific estimate of the
consequences of the programs are as follows:

(a) If Program A is adopted, 200 people will
be saved

(b) If Program B is adopted, there is 1/3 prob-
ability that 600 people will be saved, and
2/3 probability that no people will be saved

Q12: Imagine that you have decided to see a play
where admission is $10 per ticket. As you enter the
theatre you discover that you have lost a $10 bill.

(a) Still pay $10 for a ticket for the play
(b) Don’t pay $10 for a ticket for the play

Q13: Consider the following two stage game. In
the first stage, there is a 75% chance to end the
game without winning anything, and a 25% chance
to move into the second stage. If you reach the
second stage, you have a choice between: A sure
win of $30 and 80% chance to win $45

(a) A sure win of $30
(b) 80% chance to win $45

Q14: Imagine that six people in your family, in-
cluding both of your parents, your brothers and
your sisters, are infected by a fatal disease. Two
alternative medical plans to treat the disease have
been proposed. Assume that the exact scientific
estimates of the consequences of the plans are as
follows:

(a) If plan A is adopted, two of them will be
saved.

(b) If plan B is adopted, there is a one-third
probability that all six of them will be
saved, and two-thirds probability that none
of them will be saved.

Q15: Your are presented with the following report
from the head of a special team assigned to investi-
gate the prospects of a project in Arizona: Our new
analysis indicates that, if we choose to compete
with ATC, we would face the possibility of cap-
turing only a small market share. This would give
us an after-tax return on investment of as little as
10%, while capturing a large market share would
give us a return of 22%. We estimate our chance
of getting a small market share to be 2 in 3. If we
were to team up with ATC on the terms proposed,
our return would be 14% after tax, with the same
total investment.

(a) Compete with ATC: 1/3 chance of gaining
a large market share of 22% and 2/3 chance
of gaining a small market share of 10%

(b) Don’t compete with ATC: 100% chance of
capturing 14% market share

Q16: A committee found a fish disease in a nearby
lake. About 12 fish species (among them the most
popular dining fish) have the Proliferative Kidney
Disease (PKD). This is a chronically developing
infectious disease which can have deadly conse-
quences for the fish. Young fish are especially sus-
ceptible, while others seem to be immune against
an infection. Experts suggest that PKD is one
cause of declining fish catches. The researchers
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assume human activities and water pollution foster
the spread of the disease. They are considering
releasing more fish into the lake to control the epi-
demic. Imagine that you are a government official
of the adjacent village.

(a) Option A: If the release of fish is imple-
mented, 4 fish species will survive.

(b) Option B: If the release of fish is imple-
mented, there is 1/3 probability that all of
the 12 fish species will survive, and 2/3
probability that none of them will survive.

Q17: Imagine a refinery that processes petroleum
products. An investigation found that due to tank
leaks, both soil and drinking water became contami-
nated. Due to this contamination 720 children from
the adjacent village have a fatal disease. There is
agreement among experts that children will not suf-
fer health problems, provided they have a strong
immune system. Otherwise, it is likely that chil-
dren will have serious health problems. A vaccine
against this disease has been developed and tested.
However, the vaccine sometimes can cause side ef-
fects that can be fatal too. You are an environmental
activist with much influence on the local hospital
and you have to decide if you want to lobby for the
vaccination or not.

(a) Option C: If the vaccination is adopted, the
health of 480 children will be damaged for
sure.

(b) Option D: If the vaccination is adopted,
there is a one-third probability that the
health of none of the 720 children will be
damaged, and a two-thirds probability that
the health of all 720 of them will be dam-
aged.

Q18: Assume that you have just been given a gift of
$2000. But you now are forced to choose between
the following two alternatives:

(a) Losing $500 for sure
(b) Flipping a coin and losing $1000 if heads

comes up or losing nothing if tails comes
up

Q19: Which of the following options do you pre-
fer?

(a) 25% chance to win $30
(b) 20% chance to win $45

Q20: Imagine that you are about to purchase a

jacket for $125, and a calculator for $15. The
calculator salesman informs you that the calculator
you wish to buy is on sale for $10 at the other
branch of the store, located 20 minutes drive away.

(a) Make the trip to the other store and save 5
dollars but lose 20 minutes

(b) Don’t make the trip to the other store and
save 20 minutes but lose 5 dollars

Q21: Imagine that six people in your family, in-
cluding both of your parents, your brothers and
your sisters, are infected by a fatal disease. Two
alternative medical plans to treat the disease have
been proposed. Assume that the exact scientific
estimates of the consequences of the plans are as
follows:

(a) If plan A is adopted, four of them will die.
(b) If plan B is adopted, there is a one-third

probability that none of them will die, and
two-thirds probability that all six of them
will die.

Q22: Imagine you recieve a letter from the presi-
dent of a subsidiary describing a dilemma concern-
ing whether to fight an impending patent violation
suit or settle out of court that reads: If we do not
agree to this proposal, PMG will file their suit. Go-
ing to court would involve the possibility of keep-
ing the Duraplast line and incurring only a small
sum for legal expenses. If we lose in court, we
will incur $1,100,000 in damages. Our corporate
lawyer, Mr. Bell, and our outside law firm agree
that we have a 1 in 3 chance of winning the case.

(a) Agree to the proposal (no lawsuit)
(b) Disagree to the proposal: 1/3 chance of

winning the case

Q23: Imagine that your country is preparing for
the outbreak of an unusual disease, which is ex-
pected to kill 600 people. Two alternative pro-
grams to combat the disease have been proposed.
Assume that the exact scientific estimate of the
consequences of the programs are as follows:

(a) If Program C is adopted 400 people will
die.

(b) If Program D is adopted there is 1/3 proba-
bility that no one will die, and 2/3 probabil-
ity that 600 people will die.

Q24: You are staying in a hotel room on vacation.
You turn on the TV and there is a movie on. After 5
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minutes you are bored and the movie seems pretty
bad. Would you continue to watch the movie or
not?

(a) Continue to watch
(b) Turn it off

Q25: Imagine that six people are infected by a
fatal disease. Two alternative medical plans to treat
the disease have been proposed. Assume that the
exact scientific estimates of the consequences of
the plans are as follows:

(a) If plan A is adopted, four people will die.
(b) If plan B is adopted, there is a one-third

probability that none of them will die, and
two-thirds probability that all six people
will die.

Q26: Imagine that 6000 pieces of precious paint-
ings in a world-famous museum are accidentally
exposed to a disastrous chemical pollution. Two
alternative plans to rescue these art treasures have
been proposed. Assume that the exact estimates of
the consequences of the plans made by scientists
are as follows:

(a) If plan A is adopted, 2000 pieces will be
saved from the chemical pollution.

(b) If plan B is adopted, there is a one-third
probability that all the 6000 paintings will
be saved, and two-thirds probability that
none of these paintings will be saved.

Q27: Imagine that in one particular state it is pro-
jected that 1000 students will dropout of school
during the year, two programs have been prosed
to address this problem, but only one can be im-
plemented. Based on other states experiences with
programs, estimates of the outcomes that can be
expected for each program can be made.

(a) Program 1: 400 of the 1000 students will
stay in school

(b) Program 2: 2/5 chance that all 1000 stu-
dents will stay in school and 3/5 chance
that none of the 1000 will stay in school

Q28: Imagine that you have lung cancer and you
must choose between two therapies: surgery and
radiation. Surgery for lung cancer involves an oper-
ation on the lungs. Most patients are in the hospital
for two or three weeks and have some pain around
their incisions; they spend a month or so recuper-
ating at home. After that, they generally feel fine.

Radiation therapy for lung cancer involves the use
of radiation to kill the tumor and requires coming to
the hospital about four times a week for six weeks.
Each treatment takes a few minutes and during the
treatment, patients lie on a table as if they were hav-
ing an x-ray. During the course of the treatment,
some patients develop nausea and vomiting, but by
the end of the six weeks they also generally feel
fine. Thus, after the initial six or so weeks, patients
treated with either surgery or radiation therapy feel
about the same.

(a) Surgery: Of 100 people having surgery, 10
die during surgery or the postoperative pe-
riod, 32 die by the end of one year and 66
die by the end of five years.

(b) Radiation Therapy: Of 100 people having
radiation therapy, none die during treat-
ment, 23 die by the end of one year and
78 die by the end of five years.

Q29: Imagine that you have decided to see a play
and paid the admission price of $10 per ticket. As
you enter the theatre you discover that you have
lost the ticket. The seat was not marked and the
ticket cannot be recovered.

(a) Pay $10 for another ticket
(b) Don’t pay $10 for another ticket

Q30: Your are presented with the following report
from the head of a special team assigned to inves-
tigate the prospects of a project in Arizona: Our
new analysis indicates that, if we choose to com-
pete with ATC, we would have the possibility of
capturing a large market share. This would give
us an after-tax return on investment of as much as
22%, while capturing a small market share would
give us a return of only 10%. We estimate a 1 in 3
chance of getting a large market share. If we were
to team up with ATC on the terms proposed, our
return would be 14% after tax, with the same total
investment.

(a) Compete with ATC
(b) Don’t compete with ATC

Q31: A large car manufacturer has recently been
hit with a number of economic difficulties and it
appears as if three plants need to be closed and
6000 employees laid off. The vice-president of
production has been exploring alternative ways to
avoid this crisis and has developed two plans:

(a) Plan A: This plan will save 1 plant and 2000
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jobs
(b) Plan B: : This plan has a 1/3 probability of

saving all 3 plants and all 6000 jobs, but has
a 2/3 probability of saving no plants and no
jobs

Q32: Imagine that you are about to purchase a
jacket for $15, and a calculator for $125. The
calculator salesman informs you that the calculator
you wish to buy is on sale for $120 at the other
branch of the store, located 20 minutes drive away.

(a) Make the trip to the other store and save 5
dollars but lose 20 minutes

(b) Don’t make the trip to the other store and
save 20 minutes but lose 5 dollars

Q33: A committee found a fish disease in a nearby
lake. About 12 fish species (among them the most
popular dining fish) have the Proliferative Kidney
Disease (PKD). This is a chronically developing
infectious disease which can have deadly conse-
quences for the fish. Young fish are especially sus-
ceptible, while others seem to be immune against
an infection. Experts suggest that PKD is one
cause of declining fish catches. The researchers
assume human activities and water pollution foster
the spread of the disease. They are considering
releasing more fish into the lake to control the epi-
demic. Imagine that you are a government official
of the adjacent village.

(a) Option C: If the release of fish is imple-
mented, 8 fish species will die.

(b) Option D: If the release of fish is imple-
mented, there is 2/3 probability that none
of the 12 fish species will die, and 1/3 prob-
ability that all of the 12 fish species will
die.

Q34: Imagine that you brought $6000 worth of
stock from a company that has just filed a claim for
bankruptcy recently. The company now provides
you with two alternatives to recover some of your
money.

(a) You will lose $4000 of your money
(b) You will take part in a random drawing pro-

cedure with exactly a two-thirds probability
of losing $6000 all of your money, and one-
third probability of not losing any of your
money

Q35: Imagine a refinery that processes petroleum

products. An investigation found that due to tank
leaks, both soil and drinking water became contami-
nated. Due to this contamination 720 children from
the adjacent village have a fatal disease. There is
agreement among experts that children will not suf-
fer health problems, provided they have a strong
immune system. Otherwise, it is likely that chil-
dren will have serious health problems. A vaccine
against this disease has been developed and tested.
However, the vaccine sometimes can cause side ef-
fects that can be fatal too. You are an environmental
activist with much influence on the local hospital
and you have to decide if you want to lobby for the
vaccination or not.

(a) Option A: If the vaccination is adopted, the
health of 240 children will be saved for sure.

(b) Option B: If the vaccination is adopted,
there is a one-third probability that the
health of all of the 720 children will be
saved, and a two-thirds probability that the
health of none of them will be saved.

Q36: Imagine that six people are infected by a
fatal disease. Two alternative medical plans to treat
the disease have been proposed. Assume that the
exact scientific estimates of the consequences of
the plans are as follows:

(a) If plan A is adopted, two people will be
saved.

(b) If plan B is adopted, there is a one-third
probability that all six people will be saved,
and two-thirds probability that none of
them will be saved.

A.4 Group Level Results
Table A.4 shows the full table corresponding to
table 2 in the paper with extra information regard-
ing the choices made in each human experiment.
P represents the percentage of people that chose
the risky choice given either the gain frame or loss
frames, the true Pgain and Ploss values, and n repre-
sents the number of human subjects who answered
each frame which corresponds to the number of
decisions our model made to produce results in the
table.
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Gain Frame Loss Frame BR Baseline CDM Model
Reference n P n P Actual LOR LOR SE χ2 LOR SE χ2

Standard ADP; one presentation, between-subjects, low PISA
Tversky and Kahneman (1981) 152 28 155 78 2.20 1.65* .26 4.34 1.86 .26 1.83

Reyna and Brainerd (1991) 36 53 36 81 1.31 1.72 .54 .57 1.79 .54 .79
Tindale et al. (1993) 144 42 144 79 1.63 1.71 .26 .10 1.77 .26 .27

Wang and Johnston (1995) 50 40 50 68 1.16 1.73 .42 1.83 1.74 .45 1.71
Highhouse and Yüce (1996) 122 29 122 74 1.94 1.68 .29 .82 1.69 .28 .80

Wang (1996) 31 42 34 77 1.50 1.71 .54 .14 1.62 .55 .05
Stanovich and West (1998) 148 32 144 65 1.37 1.74 .25 2.34 1.78 .26 2.43

Druckman (2001a) 50 32 55 77 1.93 1.70 .44 .27 1.51 .43 .94
Druckman (2001b) 69 32 79 76 1.91 1.70 .37 .34 1.66 .36 .49

Mayhorn et al. (2002), Young 29 24 29 86 2.98 1.68 .69 3.52 1.50 .58 5.89*
Mayhorn et al. (2002), Older 29 21 29 69 2.14 1.70 .61 .53 1.54 .58 1.06

LeBoeuf and Shafir (2003), Exp #1 48 49 55 56 1.40 1.74 .25 1.77 1.54 .43 .12
LeBoeuf and Shafir (2003), Exp #2 147 25 146 57 1.47 1.71 .43 .32 1.58 .25 .13

(Stein, 2012) 47 40 57 68 1.16 1.73 .41 1.89 1.72 .44 1.55
TOTAL of 14 predicted: 13 (93%)

Standard ADP; one presentation, between-subjects, high PISA
Takemura (1994) 45 20 45 69 2.18 1.39 .49 2.56 1.52 .47 2.02
Mandel (2001) 26 54 26 85 1.55 1.44 .67 .03 1.40 .61 .08

Fischer et al. (2008) 17 36 17 77 1.78 1.43 .76 .21 1.43 .78 .20
Zhang and Miao (2008) #1 65 66 68 87 1.21 1.47 .44 .34 1.44 .37 .29
Zhang and Miao (2008) #2 45 67 48 88 1.25 1.46 .54 .14 1.41 .45 .08

Zhang et al. (2008), Military 134 54 130 83 1.44 1.44 .29 .00 1.48 .27 .05
Zhang et al. (2008), Civilian 60 65 58 90 1.54 1.43 .51 .04 1.48 .40 .05

Haerem et al. (2011) 29 59 26 73 .65 1.48 .58 2.02 1.46 .59 1.93
Okder (2012) 52 37 53 76 1.68 1.42 .43 .34 1.66 .43 .01

Kühberger and Gradl (2013), Exp #1 63 32 63 68 1.53 1.43 .38 .06 1.45 .39 .02
Kühberger and Gradl (2013), Exp #2 14 57 15 73 .72 1.46 .80 .85 1.52 .86 .87

Mandel (2014), Exp #2 38 42 38 74 1.35 1.45 .49 .04 1.57 .51 .16
Mandel (2014), Exp #3 25 32 25 80 2.14 1.42 .66 1.20 1.54 .63 .92

TOTAL of 13 predicted: 13 (100%)
Standard ADP; within-subjects, low PISA

Stanovich and West (1998) 292 32 292 54 .9 .94 .24 1.58 .96 .17 .08
Levin et al. (2002) 102 28 102 56 1.2 .92 .30 .94 .94 .29 .74

LeBoeuf and Shafir (2003) Exp #2 287 25 287 46 .57 1.05* .17 7.86 .81 .17 .52
TOTAL of 3 predicted: 3 (100%)

Standard ADP; multiple presentations, between-subjects, low PISA
Fagley and Miller (1990), Exp #1 94 51 96 70 .79 .95 .30 .27 1.38 .31 3.01
Fagley and Miller (1990), Exp #2 54 39 55 73 1.43 .92 .41 1.55 1.28 .41 .16

Miller and Fagley (1991) 23 43 23 67 .89 .94 .61 .01 1.40 .65 .40
Jou et al. (1996) 80 35 80 80 2.01 .87* .36 9.66 1.13 .33 6.99*

Rönnlund et al. (2005) Young 32 41 32 69 1.19 .93 .53 .23 1.30 .55 .07
Rönnlund et al. (2005), Older 32 28 32 56 1.17 .94 .52 .20 1.40 .55 .16

TOTAL of 6 predicted: 5 (83%)
Standard ADP; multiple presentations, between-subjects, High PISA

Kühberger (1995), Exp #1 25 48 23 78 1.36 .73 .64 1.31 .86 .61 .64
Kühberger (1995), Exp #2 16 56 14 57 .04 .81 .74 .81 1.10 .80 1.76

Druckman and McDermott (2008) 101 45 113 67 .94 .71 .28 1.84 .46 .28 2.57
TOTAL of 3 predicted: 3 (100%)

Allais Paradox gambles; low PISA
Conlisk (1989) 236 49 236 86 1.83 1.68 .23 .44 1.70 .21 .55
Carlin (1990) 65 40 65 78 1.7 1.71 .39 0 1.75 .45 .03

TOTAL of 2 predicted: 2 (100%)
Allais Paradox gambles; low PISA

Huck and Müller (2012) Laboratory 70 66 70 87 1.26 1.73 .44 1.14 1.32 .46 .03
TOTAL of 1 predicted: 1 (75%)

Other framing problems; multiple presentations, between-subjects, low PISA
Reyna et al. (2014) College Students 63 35 63 55 .85 .95 .37 .02 .99 .37 .21

Reyna et al. (2014) Adults 54 40 54 60 .8 .95 .39 .01 1.12 .41 .60
Reyna et al. (2014) Experts 36 38 36 71 1.37 .93 .5 .18 .69 .49 2.01

TOTAL of 3 predicted: 3 (100%)
Other framing problems; multiple presentations, between-subjects, high PISA

Kühberger (1995) Plant #1 25 52 23 83 1.48 .73 .68 1.61 .97 .61 .79
Kühberger (1995) Cancer #1 24 38 25 48 .43 .8 .58 .2 .21 .60 .11
Kühberger (1995) Plant #2 16 19 17 71 2.34 .7 .83 4.43 .34 .73 7.50*

Kühberger (1995) Cancer #2 16 69 14 64 -.2 .82 .78 1.39 .97 .82 2.11
TOTAL of 4 predicted: 3 (75%)

Other framing problems; multiple presentations, between-subjects, mixed PISA
Kühberger and Tanner (2010) Water contamination 93 33 93 73 1.69 1.27 .32 1.78 1 .26 .31 2.01

Kühberger and Tanner (2010) Crops 93 33 93 59 1.06 1.36 .3 .92 1.32 .31 .64
Kühberger and Tanner (2010) Fish disease 93 28 93 59 1.32 1.32 .31 0 1.20 .31 .12

Kühberger and Tanner (2010) Endangered forest 93 24 93 55 1.37 1.31 .32 .03 1.23 .31 .16
TOTAL of 4 predicted: 4 (100%)

Zero-complement truncated framing problems, one presentation; framing manipulated between-subjects
Reyna and Brainerd (1991) 35 51 36 58 .28 0 .48 .34 .41 .49 .07

Mandel (2001) Exp1 23 48 25 72 1.03 0 .61 2.86 .30 .60 1.47
Mandel (2001) Exp2 36 64 38 63 -.03 0 .48 0 .35 .48 .70

TOTAL of 3 predicted: 3 (100%)
Zero-complement truncated framing problems; multiple presentations, framing manipulated between-subjects

Kühberger and Tanner (2010) Water contamination 93 54 93 65 .45 0 .3 2.21 0 .3 2.21
Kühberger and Tanner (2010) Crops 93 54 93 43 -.43 0 .3 2.14 .34 .30 6.83*

Kühberger and Tanner (2010) Fish disease 93 63 93 43 -.83 0 .3 7.68* .37 .30 15.74*
Kühberger and Tanner (2010) Endangered forest 93 40 93 43 .13 0 .3 .2 .23 .30 .13

Reyna et al. (2014) College Students 63 43 63 49 .25 0 .36 .47 .26 .36 0
Reyna et al. (2014) Adults 54 51 54 55 .18 0 .39 .23 .29 .39 .75
Reyna et al. (2014) Experts 36 52 36 62 .41 0 .48 .74 .20 .48 .19

TOTAL of 7 predicted: 5 (71.4%)
Nonzero-complement truncated framing problems; one presentation, between-subjects, low PISA

Reyna and Brainerd (1991) 35 26 37 81 2.52 3.44 .57 2.59 2.29 .57 .13
TOTAL of 1 predicted: 1 (100%)

Nonzero-complement truncated framing problems; multiple presentations, between-subjects, low PISA
Reyna et al. (2014) College Students 63 23 63 60 1.61 1.9 .4 .51 2.19 .42 1.90
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Reyna et al. (2014) Adults 54 26 54 73 2.05 1.87 .44 .15 1.83 .44 0.23
Reyna et al. (2014) Experts 36 20 36 81 2.84 1.85 .59 2.72 1.86 .54 3.29

TOTAL of 3 predicted: 3 (100%)
Nonzero-complement truncated framing problems; one presentation, between-subjects, low PISA

Kühberger and Tanner (2010) Water contamination 93 25 93 85 2.84 2.61 .38 .39 2.31 .35 2.24
Kühberger and Tanner (2010) Crops 93 29 93 78 2.19 2.7 .34 2.28 2.27 .35 .09

Kühberger and Tanner (2010) Fish diseas 93 22 93 83 2.87 2.61 .37 .49 2.21 .34 3.48
Kühberger and Tanner (2010) Endangered forest 93 15 93 65 2.33 2.68 .36 .96 2.30 .35 .02

TOTAL of 4 predicted: 4 (100%)
Certain-option disambiguated problems; single presentation, between-subjects

Mandel (2001) Exp #1 23 52 22 50 -.09 0 .6 .02 .28 .62 .34
Mandel (2014) Exp #3 22 41 24 50 .37 0 .6 .38 .03 .60 .31

TOTAL of 2 predicted: 2 (100%)
Certain-option disambiguated problems; multiple presentations, between-subjects

Kühberger (1995) ADP #1 26 62 23 57 -.21 0 .58 .13 .18 .59 .45
Kühberger (1995) Plant #1 26 46 23 52 .24 0 .57 .18 .11 .59 .05

Kühberger (1995) Cancer #1 24 50 23 35 -.63 0 .6 1.1 .35 .60 2.61
Kühberger (1995) ADP #2 22 41 19 37 -.17 0 .64 .07 .28 .65 .47
Kühberger (1995) Plant #2 13 31 19 37 .27 0 .77 .13 .17 .75 .02

Kühberger (1995) Cancer #2 7 71 13 62 -.45 0 1.01 .19 .13 1.02 .28
TOTAL of 6 predicted: 6 (100%)

“400 not saved” certain-option disambiguated and truncated problems; multiple presentations, between-subjects, high PISA
Kühberger (1995) ADP #1 25 60 23 43 -.67 -.79 .59 .04 .07 .59 1.64
Kühberger (1995) Plant #1 27 44 23 57 .49 -.88 .57 5.68* .11 .58 .50

Kühberger (1995) Cancer #1 24 75 23 43 -1.36 -.74 .63 .98 .11 .60 6.21*
Kühberger (1995) ADP #2 16 50 19 37 -.54 -.79 .69 .13 .12 .70 .85
Kühberger (1995) Plant #2 14 57 14 50 -.29 -.8 .76 .45 .15 .79 .29

Kühberger (1995) Cancer #2 14 50 16 44 -.25 -.8 .73 .56 .15 .76 .26
TOTAL of 5 predicted: 6 (83.3%)

Certain-option disambiguated, zero-complement truncated problems; single presentation, between-subjects, high PISA
Mandel (2014), Exp #3 26 58 25 32 -1.06 -1.46 .58 .45 .02 .58 3.59

TOTAL of 1 predicted: 1 (100%)
“400 not saved vs. 2/3 chance that 600 not saved” truncation problem; single presentation, framing manipulated between-subjects
Mandel (2001) Exp #1 23 57 24 58 .07 0 .59 .02 1.09 .64 .01
Mandel (2001) Exp #2 36 64 37 59 -.19 0 .48 .15 1.02 .63 .00

TOTAL of 3 predicted: 3 (100%)
OVERALL TOTAL of 88 predicted: 82 (93.2%)

* Indicates results with Wald statistics over 1 degree of freedom
Note: Bolded rows indicate results where CDM outperforms BR
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