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Abstract

This paper proposes a data representation
framework for semantic parsing and task-
oriented dialogue systems, aiming to achieve
a uniform representation for syntactically and
semantically diverse machine-readable formats.
Current NLP systems heavily rely on adapt-
ing pre-trained language models to specific
tasks, and this approach has been proven ef-
fective for modeling natural language texts.
However, little attention has been paid to the
representation of machine-readable formats,
such as database queries and dialogue states.
We present a method for converting original
machine-readable formats of semantic parsing
and task-oriented dialogue datasets into a syn-
tactically and semantically uniform represen-
tation. We define a meta grammar for syntac-
tically uniform representations and translate
semantically equivalent functions into a uni-
form vocabulary. Empirical experiments on 13
datasets show that accuracy consistently im-
proves over original formats, revealing the ad-
vantage of the proposed representation. Addi-
tionally, we show that the proposed representa-
tion allows for transfer learning across datasets.

1 Introduction

The common practice in current NLP research is
to encode or decode natural language texts using
large-scale pre-trained language models (Devlin
et al., 2019; Liu et al., 2019; Raffel et al., 2020),
which have been proven effective in modeling di-
verse natural language texts. In contrast with nat-
ural language, however, little attention has been
paid to modeling machine-readable formats, such
as database queries and dialogue states, while such
formats are widely accepted in NLP tasks and
developed to have specific usage like semantic
parsing and task-oriented dialogue systems. Each
machine-readable format is defined based on its
corresponding task and dataset, but the syntactic
and semantic gap among machine-readable formats

is huge. This hinders the development of general
methods that can be applied to diverse tasks and
datasets.

To address the above problem, we propose a
framework for representing machine-readable for-
mats of diverse datasets on semantic parsing and
task-oriented dialogue systems, with increased
syntactic and semantic uniformity (Figure 1) to
mitigate such syntactic and semantic gap among
machine-readable formats. First, we define a meta
grammar to build a syntactically uniform represen-
tation across various datasets. Original machine-
readable formats are converted to a representation
defined by this meta grammar. Further, we define
mapping rules to translate semantically equivalent
functions into a uniform vocabulary. This transla-
tion assigns the same form to frequently used func-
tions such as equivalence and comparison. Com-
bining these two methods, we can incorporate mul-
tiple data formats into a shared data representation,
achieving syntactic and semantic uniformity. It
should be noted that, however, the target of this
work is not to create a completely unified dataset.
Our goal is to achieve a high-level abstraction of
diverse datasets that enables us to explore a uni-
versal model for machine-readable formats while
preserving their original features.

We evaluate the proposed representation on 13
datasets of semantic parsing and task-oriented dia-
logue systems involving diverse machine-readable
outputs, including logical forms, SQL, and dia-
logue states. The experiment shows that accuracy
consistently improves by converting original data
into the uniform representation, proving the effec-
tiveness of the proposed framework. Further, our
representation enables an easy knowledge trans-
fer between datasets. Transfer experiments show
that the model could benefit from other datasets,
which improves accuracy and leads to quicker con-
vergence in the training.
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Figure 1: Proposed Data Representation Framework.

2 Related Work

2.1 Semantic Parsing and Task-Oriented
Dialogue Systems

Semantic parsing (Kamath and Das, 2018) is a task
to transform a user’s utterance into a machine-
readable format. An illustrating application is
database QA, in which a system translates a natu-
ral language utterance into a query language for a
given database. A variety of datasets have been pro-
posed, where the representation format of database
queries is diverse; examples include SQL, Prolog,
and MRL (Machine Readable Language) (Cham-
berlin and Boyce, 1974; Bratko, 2012; Lawrence
and Riezler, 2016a). Another application of seman-
tic parsing is to convert a natural language text into
some form of meaning representation. For exam-
ple, SCAN (Lake and Baroni, 2018) is a dataset of
robot command utterances paired with their mean-
ing representations. Semantic parsing datasets are
developed under the shared goal, i.e., convert natu-
ral language texts into a machine-readable format,
while data representation specifics are varied.

Task-oriented dialogue systems interact with a
user in natural language to achieve a specific goal
like buying tickets or booking a hotel. A system
tracks the user’s intent from the dialogue, queries
a database, and generates a response according to
the result. Previous approaches use belief state
representations, a.k.a. dialogue states, to represent
the user’s intent as slot-value pairs. Most datasets
on task-oriented dialogue systems adopt this rep-
resentation, including MultiWOZ (Budzianowski
et al., 2018), DSTC2 (Henderson et al., 2014),
ATIS (Hemphill et al., 1990), and M2M (Shah et al.,

2018). A closely related task called conversational
semantic parsing proposed recently represents user
intent as a program. Cheng et al. (2020) proposes
TreeDST, in which user intent is represented as
a hierarchical format program. SMCalFlow (An-
dreas et al., 2020) further develops this idea, where
the representation involves a mechanism to track
a user’s previous information and retrieve it when
necessary to handle dialogue-specific phenomena
such as revision. All the datasets listed above
use machine-readable formats to track user intent,
while data representations diverge considerably.

The focus of the present research is to mini-
mize the diversity of machine-readable formats of
semantic parsing and dialogue systems discussed
above. It should be noted that, the present paper
does not work on complete dialogue systems in-
volving response generation. However, previous
research (Rastogi et al., 2017; Mrkšić et al., 2017;
Budzianowski et al., 2018) proved that the perfor-
mance of dialogue state tracking is essential for
the entire system performance because the model
is likely to generate incorrect responses when the
dialogue state is wrongly predicted.

2.2 Cross-Dataset Evaluation and Cross-Task
Model

Another area related to the present work is cross-
dataset evaluation, which aims to evaluate a model
not only on in-domain test set accuracy but also
on generalization ability to out-domain data. Some
work focuses on the image classification area (Yang
et al., 2019; Hoffman et al., 2018). In the NLP
filed, Chen et al. (2020) proposes a cross-evaluation
method in the summarization task to test whether
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the model can still summarize new data. Ne-
jadgholi and Kiritchenko (2020) proposes a cross-
evaluation method in abusive language detection
as most abusive languages are sampled from simi-
lar phrases, thus leading to a weak generalization
ability. However, the above work supposes that the
data representation format is the same across differ-
ent datasets, which we cannot assume for semantic
parsing and task-oriented dialogue systems. Our
research further extends the idea of cross-dataset
evaluation by converting different formats from
diverse datasets into a uniform representation.

Another series of research explores methods for
using pre-trained language models or text-to-text
models, such as T5 (Raffel et al., 2020), for di-
verse tasks. Xie et al. (2022) proposes UnifiedSKG,
which extends T5 to encode not only text input but
also structured representations like a database and
machine-readable formats. The basic idea is to
convert such structured representations into natural
language expressions so that T5 can process them
directly. Their goal is to build a unified model for
diverse NLP tasks, including semantic parsing and
dialogue systems. However, they do not intend
to solve the problem of the diversity of represen-
tation formats of datasets. Another issue in this
framework is that target representations are inher-
ently limited to shallow structures. This is because
encoding complex structured representations in nat-
ural language are problematic, such as a program
with a deep tree structure like SMCalFlow (An-
dreas et al., 2020). Their method and the present
research focus on different aspects of the diversity
of tasks and datasets. These ideas can possibly be
integrated to build a unified model for processing
diverse datasets and machine-readable formats.

3 Uniform Representation

Figure 1 shows the overview of our proposal.
Datasets of semantic parsing and task-oriented dia-
logue systems consist of pairs of input and output
instances. We call a natural language query in
semantic parsing and a dialogue in task-oriented
dialogue systems the human input. A machine-
readable output, such as database queries and di-
alogue states, is called the machine output. As
shown in this figure, machine outputs are given in
heterogeneous representations in different datasets.
Our goal is to convert original representations of
machine outputs into a syntactically and semanti-
cally uniform representation.

3.1 Syntactic Uniformity
In order to achieve syntactic uniformity, we define
a meta grammar as a higher-level abstraction of the
grammar used for each dataset. The meta gram-
mar provides the basic syntactic structure of the
proposed representation. A grammar for each spe-
cific dataset will be derived by extending the meta
grammar as we describe below. The meta grammar
G = (V, T, P, S) is defined as:

• V is a set of variables {R,E,F,H,Y}, which
represent the root variable, head token vari-
able, function variable, parameter variable and
attribute variable, respectively.

• T is a set of terminal symbols e, f, h, y, which
represent the head-token, function, parameter,
and attribute, respectively.

• P is the set of production rules as given in
Figure 2 (a).

• S is a start variable.

Starting from generating a root variable R (Rule
1), the grammar generates a head token E and a
function F (Rule 2 and 3). A function can be
generated multiple times and can accompany by
a parameter H (Rule 4). A parameter can also be
generated multiple times and can accompany an
attribute Y (Rule 5). E, F , H , and Y generate
terminal symbols e, f , h, and y, respectively (Rule
3, 4, 5, 6). Figure 2 (b) shows an example deriva-
tion tree, where terminal symbols are replaced with
task-specific symbols as explained below.

A grammar for a specific dataset is obtained by
replacing terminal symbols, i.e., e, f , h, and y,
with tokens used in the dataset. Figure 2 (c) shows
examples of task-specific terminal symbols. For
example, fATIS , which corresponds to the terminal
symbol f for the ATIS dataset, is defined as a set
of all function names in this dataset.

The grammar for each dataset generates a se-
quence of terminal symbols, which corresponds to
a token sequence of each dataset. Token sequences
are finally converted into a tree structure, in a sim-
ilar way to converting a phrase structure tree into
a dependency tree. We regard elements of e (head
token) and f (function) as head and other tokens as
dependents. That is, tokens of e and f are placed
in internal nodes, and their sibling nodes become
their subtrees. An attribute is attached to a corre-
sponding token. The example tree of Figure 2 (b)
is converted into the following format:
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Figure 2: The meta grammar (a), an example derivation (b), and task-specific terminals (c).

Figure 3: Examples of Vocabulary Mapping

Root(equals(name, Karl[Retrieve]),
equals(time, 4pm))

3.2 Semantic Uniformity

After generating the machine output following the
meta grammar, we have a syntactically uniform rep-
resentation for different datasets. However, achiev-
ing syntactic uniformity does not lead to semantic
uniformity, which means semantically equivalent
tokens are denoted with the same representation.
For example, the function to denote equality is rep-
resented as keyval in NLmaps but as equals
in TreeDST.

To achieve semantic uniformity, we focus on
three types of functions, namely, mathematical,
logical, and equation operators, that are frequently
used in diverse datasets. We define uniform vocab-
ularies, t, l, and e, for these functions as below.

t = {+,−, ∗, /}
l = {and, or, negate}
e = {==, >,<,>=, <=, ! =}

These functions have the same meaning across var-
ious datasets but are denoted differently. We, there-
fore, convert the representation by mapping func-
tion names in the original form into the uniform
vocabulary defined above. If a dataset contains
a mathematical, logical, or equation function, we

replace the function name with its corresponding
symbol from the uniform vocabulary set, i.e., t, l,
or e. Examples in Figure 3 show that equals in
M2M and keyval in NLmaps are replaced by the
symbol == in the uniform symbol set em.

3.3 Multi-Turn Interactions
People often refer to or revise previous information
in multi-turn interactions. Therefore, it is necessary
for our format to have a mechanism to represent
such structures. We use the attribute symbol y
defined in Section 3.1 to achieve this. Consider the
following example from SMCalFlow:

Root(create_event(Location,
Pax Square))

Root(do(revise<(Event)>(
Location,
new<Event>(

Location,
Red Plaza))))

In this example, the user first creates an event in
Pax Square but revises it to Red Plaza in
the following conversation. To represent this, we
add a special attribute at the leaf node, which is
[Retrieve]. This special token indicates that it
might be retrieved in the following turn. Addition-
ally, we put the [StartRetrieve] symbol at
functions that retrieves previous information like
revise. The above program is converted as:

Root(create_event(Location,
Pax Square
[Retrieve]))

Root(do(revise<(Event)>
[StartRetrieve](
Location,
new<Event>(

Location,
Red Plaza))))

By adding the special symbols, our format can navi-
gate to the part that triggers the retrieval of previous
information. This conversion is applied only when
the original dataset provides such information.
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3.4 Uniform Human Input

We also aim to represent different human inputs
in a uniform way since the human input also has
some diversity depending on task definitions. For
example, in task-oriented dialogue datasets, the
input contains multi-turn interactions between hu-
mans and the dialogue system. If the interaction
between the human and the system is described
without structural information, the model cannot
understand which utterance is from the user or the
system. The following symbols are introduced to
give necessary structures to human input:

<User> means that the utterance after it comes
from a user.

<System> means that the utterance after it comes
from the response of a system.

</EndOfDialogue> indicates the end of a multi-
turn dialogue between a human and a system.

</EndOfQuery> indicates the end of a user
query.

3.5 Task-Specific Processing

For datasets with tree-structured machine output,
like GeoQuery and Spider, we directly parse them
and convert them to follow our grammar rules. The
following sections introduce details of processing
steps for specific datasets.

3.5.1 Processing SCAN
An example machine output of SCAN is:

TURN_RIGHT, WALK, TURN_RIGHT,
WALK, TURN_RIGHT, RUN, JUMP

The machine output of SCAN is formed by the com-
bination of TURN_X, where X is a token denoting a
direction like RIGHT and LEFT, and independent
actions like WALK and RUN. Therefore, TURN can
be considered as a function, while X and actions
like WALK and RUN as a parameter. Thus, we split
the original machine output by the TURN function
and make other tokens as a parameter of the preced-
ing TURN. The above example is converted into:

Root(Turn(Right, Walk),
Turn(Right, Walk),
Turn(Right, Run, Jump))

3.5.2 Processing Belief State Representations
An example of a belief state representation of task-
oriented dialogue systems is like:

inform hotel-area: east;
inform hotel-parking: yes;
inform hotel-stars: 4;

In this example, inform can be considered as
a function of the dialogue system. The expres-
sion hotel-area: east can be seen as the in-
formation that the dialogue state tracking module
transmits to the following dialogue module. Here,
we cannot see hotel-area: east as a nested
function such that the hotel-area is a function
and the east is a parameter. This expression is re-
garded that east is a value assigned to the variable
hotel-area. Therefore, we give a representa-
tion like hotel-area == east.

3.5.3 Disambiguation in TreeDST
Another phenomenon to note is an ambiguity issue
in TreeDST. In this dataset, equals is treated dif-
ferently in different contexts. An original example
in TreeDST is given below:

Root(find(
object(
equals(
equals(dateTimeRange,
equals(startDateTime,
equals(date,
equals(Thursday,

dayOfWeek))))))))

In this example, the equals function not only
means equality but also works as the and logical
operator, which requires the object to meet multi-
ple conditions. We disambiguate the meaning of
equals in the following manner. The parameters
of an equality operator node cannot contain equal-
ity operators. Otherwise, we rewrite the equality
operator to logical operator and.

3.5.4 Processing SMCalFlow
We process the Dataflow structure of SMCalFlow
to simplify expressions that cannot be executed
under available resources. The main motivation
is that the Dataflow structure highly relies on the
target database and the Dataflow executor, which
are not publicly released. This means that many
expressions of the Dataflow structure do not have
actual semantics. To remove such expressions, we
apply the following process.

1. Remove APIs that require querying a
database or executing a program, like
QueryEventResponse.results. This
is because external APIs in the Dataflow struc-
ture require triggering an executor or the
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database, but the executor and the database
are unavailable.

2. Simplify the Dataflow structure by adding
a syntax sugar for a constraint. A
constraint restricts the input of a func-
tion, to trigger an exception when a func-
tion receives an undesired input. We
keep the constraint mechanism but remove
functions that do not have actual seman-
tics. For example, an example of the orig-
inal constraint is like: refer(ˆ(Event)
EmptyStructConstraint). This struc-
ture specifies that the return value of the exter-
nal API EmptyStructConstraint has
to be the Event type. By converting this
structure, we have refer<(Event)> to
represent the input of refer is Event.

3.6 Back Transformation
Following the above process, we can transform
each dataset and represent them in syntactically and
semantically uniform data representations. This
conversion process does not lose any information
for most datasets. The only case is SMCalFlow,
in which we simplified its expression. Therefore,
we can easily transform them back to their original
format of the machine output to enable evaluation
in the original datasets.

4 Experiment

This section describes experiment results to evalu-
ate the effectiveness of the proposed uniform repre-
sentation. It should be noted that we do not propose
any new models in this paper, while most SOTA
methods for each dataset are based on specifically
designed models or external knowledge. We use
simple baseline models while changing the repre-
sentation of machine outputs of each dataset. We
describe datasets and evaluation metrics we use for
the experiments, followed by results on in-domain
experiments and transfer experiments.

4.1 Dataset Description
For semantic parsing datasets, we select Geo-
Query (Zelle and Mooney, 1996), Spider (Yu et al.,
2018), and NLmaps (Lawrence and Riezler, 2016b)
datasets, which include three types of query lan-
guage: Prolog, SQL, and MRL. We also select com-
positional parsing datasets, including SCAN-Si and
SCAN-LEN, where the latter requires models to
learn from short robot commands and generalize

to longer commands. We also choose CoSQL (Yu
et al., 2019a) and SParC (Yu et al., 2019b) datasets,
in which the user queries the database through mul-
tiple turns. The CoSQL contains the dialogue be-
tween the user and the system, whereas the SParC
only contains the utterance from the user.

For the task-oriented dialogue datasets, we se-
lect ATIS, M2M, DSTC2, and MultiWOZ datasets
(Hemphill et al., 1990; Shah et al., 2018; Hender-
son et al., 2014; Budzianowski et al., 2018). ATIS
consists of conversations in an airplane booking
system. M2M includes conversations in the restau-
rant and movie domains. DSTC2 mainly targets the
restaurant domain. The MultiWOZ dataset covers
several domains and has more interactions between
humans and systems, and we chose its newest re-
lease, e.g., the MultiWOZ2.2. Machine outputs of
these datasets use belief state representations. We
also choose TreeDST and SMCalFlow to represent
a different paradigm to express user intent in task-
oriented dialogue systems, in which the user intents
are a program with a hierarchical structure.

4.2 Data Statistics

Table 1 shows the statistics of the datasets we use
for evaluation, including train, validation, and test
size, and the vocabulary size of the human input
(H) and machine output (M). We use the OpenNMT
tool to process these datasets (Klein et al., 2017).
NA indicates that the test set is unavailable for
testing, and we report evaluation results on the
validation set. The table also shows the task type
of each dataset.

From the table, we can see the vocabulary size
of machine output is less than the human input for
SCAN, ATIS, GeoQuery, and TreeDST datasets,
which is different from machine translation, where
the vocabulary sizes are similar for the source lan-
guage and target language. SMCalFlow, SParc,
and CoSQL have a close or a larger target vocab-
ulary size, and this is due to the data creation pro-
cess containing many entity words like JetBlue
Airway that only appear once in the validation
set.

Since the proposed format transforms the dataset
into a tree representation, we also calculated the
average tree depth in all datasets that we used. No-
tice that the tree depth only means the depth of
nested trees and does not mean the linearized tree
has a short length as a root could have multiple and
parallel sub-trees.
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Dataset Train Size Validation Size Test Size Vocab Size (H/M) Task Type Tree Depth

ATIS 4,959 993 891 886 / 616 DST 3.00
MultiWOZ2.2 56,668 7,374 7,368 15,459 / 988 DST 2.97
M2M 1,500 4,69 1,039 482 / 100 DST 2.93
DSTC2 11,677 3,934 9,890 390 / 118 DST 3.00
TreeDST 19,808 3,733 3,739 6,679 / 1,367 CSP 7.09
SMCalFlow 121,200 13,499 NA 12,319 / 13,218 CSP 8.13
Spider 7,000 1,034 NA 3,401 / 4,827 SQL Parsing 4.05
SParC 12,059 1,625 NA 5,521 / 5,699 SQL Parsing 4.06
CoSQL 9,502 1,300 NA 6,227 / 6,953 SQL Parsing 3.92
SCAN-Si 13,383 3,345 4182 14 / 7 Compositional Parsing 2.87
SCAN-Len 16,690 3,345 4,920 14 / 7 Compositional Parsing 2.99
NLmaps 16,172 1,843 10,593 6,059 / 5,266 MRL Parsing 5.04
GeoQuery 540 60 280 246 / 163 Prolog Parsing 5.84

Table 1: Statistics of the datasets. DST indicates dialogue state tracking and CSP indicates conversational semantic
parsing.

4.3 Models and Evaluation Metrics
The models we use for the evaluation are:

Bi-LSTM The encoder-decoder model with bidi-
rectional LSTM (Hochreiter and Schmidhuber,
1997). We use the copy mechanism (Gu et al.,
2016) and 300-dimensional GloVe (Pennington
et al., 2014) embeddings.

TreeDec LSTM This is a variant of LSTM, in
which the model can begin a hierarchical decoding
process by adding a <N> symbol to indicate the
decoding of a subtree (Dong and Lapata, 2016).

BERT2Seq We use the BERT-base model as the
encoder and an LSTM plus the copy mechanism as
the decoder.

The evaluation metrics used in this paper are:

Sentence Level Exact Match This metric mea-
sures the ratio of the outputs that are exactly the
same as the gold truth.

Joint Goal Accuracy This metric is used in dia-
logue state tracking tasks. It compares a predicted
belief state representation to the ground truth. The
prediction is considered correct when the predicted
values exactly match the ground truth.

Set Match This is the metric for SParC, CoSQL,
and Spider, evaluating an SQL query as a set to
leave space for order-insensitive functions.

Denotation Accuracy This metric executes a
program and checks the return value with the
ground truth.

Word-Level EM with/without Refer The met-
ric of SMCalFlow, a word-level exact match
with/without considering the refer relation.

4.4 Main Results

Table 2 shows the results of the experiment. Note
that the results for SMCalFlow are not comparable
with the previous method since the original data is
simplified as described in Section 3.5.4. We can
see the following observations from the results:

1. The proposed data format improves the perfor-
mance of all models in all tasks, showing the
effectiveness of the proposed uniform repre-
sentation framework. This performance gain
using format conversion is almost effortless
comparing to designing a new model or in-
creasing a data size.

2. Our representation with simple models out-
performs SOTA on TreeDST, DSTC2, and
NLmaps.

3. TreeDec LSTM improves the results of the Bi-
LSTM model showing that a tree-structured
decoding method is effective for the proposed
framework.

4. The results on SCAN-Len show that the com-
positional task can benefit from our represen-
tation, while it does not achieve complete gen-
eralization.

5. We can see some improvements on Spider,
SParC, and CoSQL, while the models can-
not solve these tasks. Incorporating external
knowledge like the target database is neces-
sary to achieve sufficient accuracy on these
datasets.

6. The results reveal that the performance does
not have obvious relationship with the average
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Dataset Metric Bi-LSTM TreeDec BERT2Seq SOTA E/S
Ori Tree Ori Tree Ori Tree –

ATIS

Joint Acc

84.3 85.6 – 86.9 84.1 87.2 88.6 ✗
MultiWOZ2.2 44.9 45.5 – 46.2 45.3 48.1 54.4 ✓
M2M 74.1 74.8 – 75.4 84.1 87.8 90.9 ✓
DSTC2 79.6 81.1 – 81.3 84.6 86.8 85.0 ✓

SMCalFlow EM with Refer 71.2 73.0 – 74.1 72.8 74.8 73.8
✗EM without Refer 72.0 74.4 – 76.4 74.3 77.1 75.3

Spider
Set EM

1.4 1.6 – 1.7 1.5 2.1 75.1 ✓
SParC 1.1 1.3 – 1.4 1.4 2.0 48.5 ✓
CoSQL 1.0 1.2 – 1.3 1.2 1.4 24.6 ✓
TreeDST

Sent-Level EM

57.7 60.3 – 62.3 60.8 62.8 62.2 ✗
SCAN-Si 98.3 99.8 – 100 100 100 100 ✓
SCAN-Len 13.3 16.2 – 16.3 3.1 6.3 100 ✓
NLmaps 65.1 66.3 – 66.9 68.2 70.7 69.3 ✗

GeoQuery Denotation Acc 68.5 70.3 – 72.1 81.1 84.3 86.1 ✓

Table 2: Main Results. Ori means original format. Tree means the proposed representation. E/S means whether the
SOTA model uses extra information or a specifically designed algorithm. SOTA for GeoQuery and SCAN are from
Herzig and Berant (2021). SOTA for NLmaps is from Damonte et al. (2019). SOTA for TreeDST and SMCalFlow
are from Cheng et al. (2020) and Andreas et al. (2020). SOTA for Spider is from Scholak et al. (2021). SOTA for
SParC and CoSQL is from Xiao et al. (2022). SOTA for MultiWOZ2.2, M2M and DSTC2 are from Feng et al.
(2021). SOTA for ATIS is from Chao and Lane (2019). Bold texts indicate the best results.

Train Target BERT2Seq

P(%) C(%)

DSTC2 DSTC2 86.6 86.8
MW+DSTC2 DSTC2 87.7 60.8
MW+M2M+DSTC2 DSTC2 88.3 53.7
MW+M2M+ATIS+DSTC2 DSTC2 89.8 42.6

ATIS ATIS 85.1 87.6
MW+ATIS ATIS 87.1 59.6
MW+M2M+ATIS ATIS 87.8 47.5
MW+M2M+DSTC2+ATIS ATIS 88.7 40.2

M2M M2M 87.5 84.4
MW+M2M M2M 87.9 68.7
MW+M2M+DSTC2 M2M 88.3 44.3
MW+M2M+DSTC2+ATIS M2M 88.6 18.9

NLmaps NLmaps 70.2 87.3
GeoQuery+NLmaps NLmaps 70.6 69.2

Table 3: Transfer Experiment. MW is MultiWOZ2.2.

tree depth. This indicates that each dataset has
its inherent difficulty based on its task defini-
tion, and those difficulties are not changed by
the format conversion.

4.5 Transfer Experiments

Machine outputs of all the datasets in our repre-
sentation have syntactic and semantic uniformity.
Therefore, we expect models learned in the uniform
representation can be transferred to other datasets.

In this experiment, we select MultiWOZ2.2,
DSTC2, M2M, and ATIS as the datasets for task-

oriented dialogues. We also select NLmaps and
GeoQuery as the datasets for semantic parsing. We
train the model with and without external datasets.

We evaluate the task performance and conver-
gence speed when transferring to a new dataset, rep-
resented as P and C. P means the task performance
of the model, and C means the convergence step di-
vided by the scheduled training step (60, 000). The
early stopping with a tolerance step of eight is used
to find the convergence step. We keep the model
parameter the same in all experiments; therefore,
the accuracy numbers of the single dataset experi-
ment are slightly different from the results reported
in Table 2. From the results in Table 3, we can see:

1. Task performances consistently improve by
transfer learning. All transfer results outper-
form the previous results in Table 2.

2. The transfer experiments of the task-oriented
dialogue datasets reveal that MultiWOZ2.2
contributes more than other datasets. This
is possibly because MultiWOZ2.2 contains
multi-domain dialogues and has higher aver-
age interaction turns. This can make Multi-
WOZ2.2 more informative than other datasets.

3. The results also reveal quicker convergence
in all configurations. This shows that the pro-
posed representation makes it easier for the
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Error Type Count Percentage

Redundant Function 27 13.5%

Wrong Parameter 56 28.0%

Incomplete Generation 33 16.5%

Repetitive Generation 24 12.0%
– Parameter 14 7.0%
– Function 10 5.0%

Grammatical Error 43 21.5%
– Correlated Statement 22 11.0%
– Missing Parameter 15 7.5%
– Unmatch Parenthesis 6 3.0%

Unseen Token 17 8.5%

Table 4: Error Analysis on ATIS

model to transfer the knowledge from other
datasets to the target dataset.

4.6 Error Analysis
We manually collected 200 wrong examples from
the ATIS dataset’s prediction to analyze the remain-
ing issues. Table 4 shows the results. The Re-
dundant Function means the model generates an
unwanted extra function. The Wrong Parameter
means the model produces a grammatically cor-
rect prediction but with a wrong parameter. The
Incomplete Generation means the model’s genera-
tion lacks a function or a parameter. The Repetitive
Generation means the model repeatedly outputs a
function or a parameter. The Grammatical Error
means the model’s prediction has grammar errors,
in which the Correlated Statement errors mean the
model did not understand some correlated func-
tions. The Unseen Token error means the model
cannot generate the out-of-vocabulary symbol.

From the results, we can see that the major error
type is the wrong parameter error, which implies
that machine outputs are grammatically correct but
inconsistent with human inputs. The incomplete
generation error is possibly due to test instances
that are deviated from the majority of training data,
and the model terminates without a complete gen-
eration of the machine output. Another important
error type is the correlated statement error. For
example, the function from_loc of ATIS usually
is followed by to_loc, whereas the model cannot
understand such correlated statement and only gen-
erates one of them. Other error types are common
errors in sequence-to-sequence frameworks, like
the model cannot generate out-of-vocabulary words
or the model making repetitive generation of a cer-
tain token.

These errors indicate that the current model is
limited regarding two aspects. First, the language
understanding part of the model is insufficient to
correctly understand the human input. This causes
the model produces grammatically correct outputs
but with wrong parameters. Advanced encoding
models like T5 (Raffel et al., 2020) and GPT-2
(Radford et al., 2019) are expected to reduce such
errors. Second, the model cannot effectively learn
a dataset-specific grammar from the training data.
This is mainly due to two reasons. First, the model
does not have any prior or external knowledge
about the grammar of each dataset. Our uniform
representation partially solves this problem, al-
though it still requires sufficient amount of train
data to learn the task-specific grammar. Addition-
ally, the model does not include any mechanism to
produce only grammatically correct outputs. How-
ever, the proposed method brings structural infor-
mation by converting the original format to a tree
representation, which naturally makes the model
learn to make structural predictions through train-
ing. This leads to the lowest percentage of Un-
match Parenthesis among all error types, showing
the effectiveness of the proposed method.

5 Conclusion

This research presents a syntactically and semanti-
cally uniform data representation framework for se-
mantic parsing and task-oriented dialogue systems.
Using our framework, we can incorporate both
human input and machine output in 13 datasets
into a both syntactically and semantically uniform
representation. The experiments show promising
improvements in multiple datasets compared to
original data representations and even outperform
several SOTA performances showing the benefit
brought by the proposed format. Additionally,
our representation framework enables a convenient
knowledge transfer. Transfer experiment results
show that the knowledge learned from other tasks
can be easily transferred to the target task, improv-
ing the results on the target task and the conver-
gence speed.

6 Limitations

This paper is focused on a syntactically and seman-
tically uniform representation that can be applied
to diverse datasets of semantic parsing and task-
oriented dialogue systems but does not propose any
new models or architectures for these tasks. We
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adopted simple sequence-to-sequence models in
the experiments rather than state-of-the-art meth-
ods for each task because our purpose is to evaluate
data representations across diverse datasets rather
than evaluating models. However, the experiments
showed that the models could not solve several
datasets, including SCAN-Len, Spider, SParC, and
CoSQL, indicating that we need task-specific al-
gorithms or encoding of external information like
target databases. This means dataset/task-specific
methods are indispensable even with our proposed
representation. The integration of our representa-
tion and dataset/task-specific methods is possible
while it is left for future work. Additionally, the pro-
posed format is not proven optimal, while the ex-
periment showed improvements on diverse datasets.
Further extensions of the format, e.g. using a graph
format rather than a tree, can be explored in the
future.
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A Appendix

A.1 Main Experiment Setup

For the main experiment results, the Bi-LSTM
model and the TreeDec Bi-LSTM model are based
on the encoder-decoder architecture with either 3 or
4 layers with the hidden size of 368. The dropout
ratio is 0.5. We train the model using AdamW
(Loshchilov and Hutter, 2017) with the learning
rate from {5×10−4, 1×10−3, 5×10−3}, the batch
size from {32, 64} and the total training steps from

{2× 104, 3× 104, 5× 104, 6× 104}. We evaluate
the model at every 500 steps to find the best model.

The BERT2Seq model consists of BERT-base
as the encoder, and LSTM with 3 or 4 layers as
the decoder. The hidden size of LSTM is 386.
The dropout ratio is 0.5. We train the model using
AdamW with the learning rate from {1×10−5, 3×
10−5, 5×10−5}, the batch size from {32, 64}, and
the total training steps from {3× 104, 5× 104, 6×
104}. We also use the linear learning rate schedule
with a warm-up ratio of 0.1.

For the selection of best hyper parameters, we
try combinations of hyper parameters listed above
and evaluated the performance of each model on
the validation set.

The experiment is run on NVIDIA A100 GPU
with 40GB memory. The running time largely de-
pends on the scheduled training steps based on the
size of different datasets. Depending on the con-
figuration (model, training steps, batch size, eval-
uation steps etc.), the training time spans from 8
hours to 48 hours.

A.2 Transfer Experiment Setup

Train Target Bi-LSTM

P(%) C(%)

DST2 DST2 81.3 85.3
MW+DST2 DST2 82.4 63.2
MW+M2M+DST2 DST2 83.8 50.3
MW+M2M+ATIS+DST2 DST2 85.3 42.9

ATIS ATIS 85.1 87.6
MW+ATIS ATIS 86.1 57.3
MW+M2M+ATIS ATIS 86.5 48.95
MW+M2M+DST2+ATIS ATIS 87.6 46.2

M2M M2M 74.8 86.4
MW+M2M M2M 75.6 50.2
MW+M2M+DST2 M2M 75.8 46.5
MW+M2M+DST2+ATIS M2M 76.3 40.2

NLmaps NLmaps 66.3 86.2
GeoQuery+NLmaps NLmaps 67.4 76.7

Table 5: Transfer Experiment of Bi-LSTM

The BERT2Seq model in the transfer experiment
consists of BERT-base as the encoder and 3-layer
LSTM with the hidden size of 384 as the decoder.
The Bi-LSTM model consists of 3-layer LSTMs
with the hidden size of 384 as the encoder and the
decoder. For transferring to a new dataset, we up-
date the vocabulary, keep the trained embeddings
from the old vocabulary, and initialize embeddings
of new tokens, so that embeddings learned in the
previous model are reused. The result of the trans-
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fer experiment for the Bi-LSTM model is shown
in Table 5. The result shows the same trend as
BERT2Seq in the performance and the convergence
steps.
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