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Abstract

Dialog state tracking (DST) is a core compo-
nent in task-oriented dialog systems. Existing
state-of-the-art DST model incorporates insight
and intuition from the human experience into
design of supplementary labels, which greatly
assisted the training process of turn-by-turn
DST model. Though the turn-by-turn scheme
and supplementary labels enabled satisfactory
performance on the task, most of the DST mod-
els of this fashion label or process the raw dia-
logue data on the premise that the last turn dia-
logue state is always correct, which is usually
not the case. In this paper, we address the neg-
ative impact resulted from the premise above
as the avalanche phenomenon. After that, we
propose JoDeM, a state-of-the-art DST model
which can tackle the Avalanche phenomenon
with two mechanisms. First mechanism is a
jointly decision making method to extract key
information from the dialogue. Second mecha-
nism is a compare and contrast dialogue update
technique to prevent error accumulation. Ex-
ample study and graph analysis are presented
to support our claim about the harmfulness of
avalanche phenomenon. We also conduct quan-
titative and qualitative experiments on the high
quality MultiWOZ2.3 corpus dataset to demon-
strate that the proposed model not only outper-
forms the existing state-of-the-art methods, but
also proves the validity of solving avalanche
degradation problem.

1 Introduction

Goal-oriented dialog (GOD) systems, or Task-
oriented dialogue (TOD) systems have recently at-
tracted growing attention and significant progress
has been made (Zhang et al., 2020; Neelakantan
et al., 2019; Peng et al., 2020). Well-known com-
mercial dialogue systems include the Apple Siri,
Amazon Alexa, or Microsoft Cortana. In a com-
plete GOD system, Dialog State Tracking (DST)
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serves as a cognitive and comprehending compo-
nent, where it understands and extracts the user’s
goal in a well-constructed manner. The user’s goal
is then provided to downstream for recommenda-
tion, booking, or other subsequent dialogue policy
components to determine the system action and
response. Hence, as the backbone of a dialogue
system, it is crucial to have a DST module with ex-
ceptional performance to guarantee the base for the
performance of subsequent components (Takanobu
et al., 2020).

Since the blossom of the application of pre-
trained language model, the accuracy of DST mod-
els has increased tremendously. Especially, turn-by-
turn schematic DST models (Liao et al., 2021) with
insightful design of auxiliary labels and data struc-
ture have dominated the field, where most of the
among-the-best works are of this genre (Heck et al.,
2020; Liao et al., 2020). However, this type of
models all suffer from a major flaw, the avalanche
phenomenon. The avalanche phenomenon is the
result of wrong premise during the labeling pro-
cess which will only occur in the DST models with
turn-by-turn scheme.

As oppose to the trending turn-by-turn scheme,
early multi-domain DST methods follow a dialog
history scheme. Model of this scheme takes the
whole or window-sized dialogue history as input.
It predicts slot value without explicitly discriminat-
ing over turns of utterances. Despite the benefits of
making prediction based on a more comprehensive
and complete data at once, dialog history scheme
has several drawbacks. The length of dialogues
is often too long for pre-trained language model
to process. More essentially, processing an en-
tire dialogue at once violates the instant update
nature of DST. Aligning with the need of instant
update, turn-by-turn scheme was proposed (Kim
et al., 2019). Models of this scheme input the di-
alogue state generated from the previous turn and
the most recent turn utterance and output the up-
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dated dialogue state. The advantages of turn-by-
turn scheme resulted in great performance boost,
in which most of the among-the-best works are of
this scheme. On top of the choice of better scheme,
to achieve a superior performance, these state-of-
the-art DST models made the best use of auxiliary
labels.

Basic input of turn-by-turn schematic DST mod-
els are the current turn utterance and last turn dia-
logue state, where the basic output is the updated
current turn dialogue state. Using only basic out-
put as golden training label inevitably leads to a
sub-optimal result due to complexity of DST task.
Mainstream DST systems typically incorporate sup-
plemental labels to guide the model towards bet-
ter performance. For example, Zhang et al. 2019;
Heck et al. 2020 obtain key information from the
dialogue span directly labels the starting and end-
ing index of the key phrase for DST models to learn
span detection.

However, the high utilization of supplementary
labels in turn-by-turn schematic models have in-
duced a new obstacle in developing a more robust
and high quality DST system. In practice, a train-
ing instance, which is a turn of dialog in an entire
dialogue for turn-by-turn systems, are randomly
shuffled along with instance from other dialogues.
For convenience and effective training, supplemen-
tary labels are made under the assumption that the
input previous turn dialogue state is correct. While
in a considerable amount of cases, models have
to make prediction under incorrect last turn dialog
state. In those cases, the supplementary labels will
also be incorrect themselves because they are also
made under the false assumption. These facts add
up to a poor robustness against noisy input, making
the final performance way lower than expectation.
To reflect this kind of characteristic where errors
induce more errors, we name this phenomenon the
avalanche phenomenon. Although solutions
and strategies on similar error accumulation phe-
nomenon are widely explored in auto-regressive
characteristic tasks Ranzato et al. 2015; Bengio
et al. 2015 , there are significant differences, re-
sulting in different approaches to tackle the issue.
Detailed comparison and analysis can be found in
the discussion part of the appendix.

In this paper, we propose JoDeM: Joint
Decision Making DST system with a compare
and contrast mechanism. As mentioned, there are
two major issues that directly contribute to the exis-

Figure 1: An example of the avalanche phenomenon
creating a deficit between the reality and the ideal on
the joint accuracy of a DST systems.

tence of the avalanche phenomenon, incorrect last
turn dialogue state and inflexible training labels.
To address the former issue where DST models
often perform worse when the input last turn dia-
logue state is incorrect, we simply exempt dialogue
state from the data flow of DST model, and strictly
update it in a compare and contrast fashion. In
other words, the extraction of key information is
accomplished by a series of fluent back propagat-
able operations while the update process is not.
To tackle the later issue, JoDeM deploys a joint
decision making structure to successfully update
dialogue state in a more robust and flexible manner
despite the fact that training labels are fixed.

The JoDeM model contains eight modules
that divides the whole DST process into three
stages. The first stage contains a utterance encoder.
The second stage contains four parallel modules,
namely, a domain update, a slot gate, a slot type,
and a span detection module. The third stage con-
tains a dialogue state update module. As shown
in the figure, first, we use BERT as the pre-trained
language module to embed turn utterance. Then, a
parallel decision making procedure is adopted by
the four modules to extract key information from
the embedded utterance. At last, the dialogue state
update module designed to address the avalanche
phenomenon is applied to output the updated dia-
logue state.

After introducing related work and the details
of JoDeM, we conduct multiple standard and cus-
tomized evaluation and analysis in this paper to
show that not only JoDeM achieved a state-of-the-
art performance, but also the reason why it achieved
such robustness against the avalanche phenomenon.
In short, our contribution is twofold:

1. We bring up the attention to the avalanche
phenomenon, a previous uncharted territory
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in dialogue state tracking task, and present
quantitative evidence to show its existence and
severity to the performance of DST systems.

2. We proposed a DST model to verify the fea-
sibility of a solution to address the avalanche
phenomenon, targeting straight to the roots of
the phenomenon. After that, we performed
quantitative and qualitative experiments to
show the validity of our work and that our
model has achieved a state-of-the-art perfor-
mance on the qualified MultiWOZ2.3 dataset.

2 Related Work

Depending on the inputs, existing DST models
are categorized to history-based and turn-by-turn
based (Liao et al., 2021). The former scheme takes
the whole or window-sized dialogue history as in-
put to recurrent neural networks or networks (Goel
et al., 2019; Gao et al., 2019). For example, HJST
considers the full dialogue history using a hierar-
chical RNN (Gao et al., 2019; Serban et al., 2015).
Works such as Wu et al. 2019 treats the entire dia-
logue as a concatenated sequence while using Bi-
LSTM or RNN as an encoder. There are also works
inputting the whole history or window-sized dia-
logue history into BERT such as Lee et al. 2019a.
In order to overcome the limitations of history-
based scheme mentioned in the introduction, turn-
by-turn DST systems was developed. Typically,
model of this scheme takes the previous turn dia-
logue state and the current turn utterance as input to
generate new dialogue state (Chao and Lane, 2019;
Ren et al., 2019; Heck et al., 2020).

Basic label of the DST task is the correct di-
alogue state at each turn, which is often insuffi-
cient for the model to learn from effectively. The
most common example of supplementary label is
the starting index and ending index of the value
phrase utilized in the span-based models (Zhang
et al., 2019; Heck et al., 2020; Chen et al., 2020b).
Kim et al. 2019, a turn-by-turn model designed a
set of operation-based labels to guide the updat-
ing process of dialogue state. Heck et al. 2020
defined three copy strategy and labeled the original
dialogue state tracking process with more refined
information. These attempts have made significant
result on the performance by incorporating human
knowledge to the training process by applying sup-
plementary labels. However, these labels are cre-
ated under the assumption that the last dialogue
state at every turn is flawless, while in reality it is

usually not the case. The gap between ideal and re-
ality creates a major drawback on the performance
and robustness. In our JoDeM model, we not only
design our supplementary label base on fine intu-
ition, but also address the drawback resulted from
the avalanche phenomenon.

3 JoDeM: Joint Decision Making through
Compare and Contrast

The proposed JoDeM model in Figure 2 consists of
eight components that are located in three different
stages of the DST process. The first stage is the Ut-
terance Encoder that encodes the basic inputs, i.e.,
system and user utterance into vector embedding.
After that, the utterance embedding is sent to the
second stage, which is the Joint Decision Making
stage. In this stage, key information is extracted
from the utterance embedding by the following
component, Domain Update, Slot Gate, Type Pre-
diction, Span Detection and Co-ref Classification.
At the last stage, compare and contrast mechanism
is applied by the Dialogue State Update component
to update the dialogue state according to the key
information from the second stage and the previous
turn dialog state.

Before formally getting into the detail of the
JoDeM model, we first layout the necessary math-
ematical notations and proper definition for the
DST problem. We define a complete dialogue as
X = {(S1, U1) , ..., (ST , UT )}, which has T sets,
or turns of system and user utterance that are in a
sequential order. The dialogue states of an entire
dialogue which is a set of dialogue state from all T
turns is defined as DS = {DS1, ...,DST }, where
DSi is the dialogue state of the ith turn. Each turn’s
dialogue state is a set which takes multiple triplets
of format (domain, slot, value) as its elements.
To complete a DST task is equivalent to the follow-
ing statement: for any turn t, given the turn utter-
ance (St, Ut) and the last turn dialogue state DSt−1

as input, we should output DSt, which contains the
correct set of triplets (domain, slot, value).

3.1 Utterance Encoder

Utterance encoder is the cornerstone of all NLP
task including the DST task. At each turn t, we use
the pre-trained BERT (Devlin et al., 2018) as the
front-end encoder to encode the dialog utterance
(St, Ut) as

Rt = BERT([CLS]⊕ St ⊕ [SEP]⊕ Ut), (1)
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Figure 2: The architecture of the proposed JoDeM model comprised of three stages of eight components.

where Rt is the embedding of utterance from
turn t. ⊕ is the concatenation operator. Spe-
cial token CLS is the starting token for BERT
and SEP is the separation token separating sys-
tem utterance St and user utterance Ut. The
embedding of utterance can also be denoted
as Rt = [rCLS

t , rS1
t , rS2

t , ..., rSEP
t , rU1

t , rU2
t , ...],

where rCLS
t is the vector representation of the en-

tire turn dialogue. The vector rit is the contextual
representations for the ith token in the utterance.
The dimension of the embedding is h, which is a
hyper-parameter of BERT. Above sentence embed-
ding is then utilized for joint decision making.

3.2 Joint Decision Making
The intuition behind the Joint Decision Mak-
ing stage is to break down and imitate the hu-
man reasoning process. Human beings com-
plete the DST task by solving the triplets of
(domain, slot, value) in a joint fashion, rather
than solving the elements in a triplet in an or-
der or individually. For example, one would not
first determine the state of a (domain, slot) pair,
then search for its value. Instead, the context re-
garding different (domain, slot) pairs and their
possible values within the utterance are consid-
ered jointly so that comprehensive judgement on
the state of different (domain, slot, value) triplets
can be made. Bearing this intuition in mind, we
propose the Joint Decision Making stage consisting
of five parallel components that jointly solve all the
(domain, slot, value) triplets in a dialogue state,
covering every possible scenario.

3.2.1 Domain Update

We obtain the domain of turn t by updating it from
the last turn t−1 domain. As shown in the dialogue
example in Figure 3, the domain element of the dia-
log state is highly correlated to its last turn domain.
Generally, if the turn utterance doesn’t contain any
trace of or sufficient domain information, the do-
main from the last turn will still be in use by the
continuity of the context. Therefore, we design the
Domain Update component to obtain the turn do-
main by taking the utterance representation rCLS

t

as an input to detect new domain and the last turn
domain as a bias. The probability distribution of
the turn domain Dt over all possible domains D =
{train, taxi, restaurant, hotel, attraction} is
obtained by
Dt = softmax(γ · (WDU · rCLS

t + bDU )) ∈ R5,
(2)

where WDU and bDU are the trainable parameters
of a standard linear transformation, respectively.
Diagonal coefficient matrix γ = (diag(dt−1)+E)
where E is the identity matrix , dt−1 is the normal-
ized resulted from the last turn domain Dt−1, and
diag(·) transforms vectors into diagonal matrices.
Due to the uniqueness of domain in each turn, the
class with the highest probability from Dt is the
turn domain. The design of the impact of last turn
domain is oriented to the following purpose: we
require the impact from the last turn play a dom-
inate role when there’s no new domain predicted.
At the same time, if there is new domain involved,
the influence of the last turn should be ignored. If
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Figure 3: Example for the case when the turn domain is
entirely dependent on the last turn context

γ = diag(dt−1), any newly discovered domain
would be covered up by the scaling effect from
the last turn domain. Also, in order to diminish
the impact from the last turn when new domain is
predicted, we make the bias itself relevant to the
outcome of the linear transformation. Only when
there is no domain discovered, i.e., the outcome of
the linear part is equally distributed , will the bias
of diag(dt−1) dominate the result.

3.2.2 Slot Gate & Type Prediction
Our model is equipped with a Slot Gate and a Type
Prediction components for each slots. The Slot
Gate aims to determine whether a slot should be
updated, i.e., the output of a slot gate Gs is a bi-
nary probability distribution. Inspired by Heck
et al. 2020 and Kim et al. 2019, we summarize
the possible updates into the following four types
{U, S,C,N}. U and S indicates that the value of
the slot should be found in the span of user utter-
ance Ut and system utterance St respectively. C in-
dicates that the value of the slot has a co-reference
relationship with a certain (domain, slot) pair in
the last turn dialogue state. N means that the user
intend to delete the existing value of the correspond-
ing slot in the dialogue state without providing any
alternative value.

To make the above prediction for each slot,
we first employ the multi-head attention mecha-
nism (Vaswani et al., 2017) to calculate the at-
tended context vector hs

t between Rt and the user
utterance embedding Ru

t at t as

hs
t = MultiHeadAtte(Q,K,V), (3)

where Q is the embedding of the entire utterance
embedding, Rt. K and V are the embedding of
the user utterance embedding Ru

t = [rU1
t , rU2

t , ...].
The reason to apply the multi-head attention mech-
anism is that the confirmation from a user is the
essence of dialog state update, no matter the type
of update. Therefore, the relationship between the
entire utterance and the user utterance is needed.

After obtaining the attended embedding of the
entire utterance, for each slot s, slot gates and type

predictions are made by two parallel trainable lin-
ear layer classification,
θg
s = softmax((Wg

s · hsCLS

t + bg
s)) ∈ R2, (4)

θv
s = softmax((Wv

s · hsCLS

t + bv
s)) ∈ R4. (5)

3.2.3 Span Detection & Co-Ref Classification
Span detection and co-ref classification are
equipped to solve the possible value for each slots.

Span detection is utilized for the slots whose
values are found in the utterance. The attended ut-
terance embedding is separated into two parts, the
attended vector for user hus

t and the attended vec-
tor for system hsst . A slot specific span detection
layer performs a user/system specific span detec-
tion on the attended context vector hus

t and system
context vector hsst separately to obtain the span
of potential values in the utterance to update. The
expression of the process, using span detection on
the user utterance as an example, is

[αs,u
t,i ,β

s,u
t,i ] = (Wspan

s · hus
t,i + bspan

s ) ∈ R2

P start,u
t,s = argmax(αs

t )

P end,u
t,s = argmax(βs

t )

i is the index of a token in the attended context of
user utterance, P start,u

t,s is the starting position of
span in the user utterance Ut for slot s in turn t and
P end,u
t,s is the corresponding ending position.
Co-ref classification is utilized for the slots

whose value should be filled via co-referencing
with a known value in the last turn dialog state. We
simply take hsCLS

t which is the attended context
embedding of the representation token for the entire
utterance and perform a linear layer classification,

θc
s = (Wc

s · hsCLS

t + bc
s) ∈ R31, (6)

where the output θc
s is a probability distribution

on all possible thirty (domain, slot) pairs and one
none class.

3.3 Dialogue State Update
Dialogue State Update is the key part of any turn-
by-turn schematic DST systems, which is the proce-
dure where the avalanche phenomenon originated
from. We mentioned that the conflict between in-
correct last turn dialogue state and the supplemen-
tary labels which are based on the correct last dia-
log state is the main contributor to the avalanche
phenomenon. Therefore, we exclude the dialogue
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state updating process from the forward and back-
ward propagation of data processing flow, by up-
dating the dialogue state by carefully comparing
and contrasting through the information that we
obtained from the previous Joint Decision Making
stage. At last, to achieve better robustness of the
model, we apply a trick in the training process. The
overall dialogue state update procedure is shown in
Algorithm 1.

Algorithm 1: DS Update
Input: θg

s ,θv
s ,θc

s,
P start,u
s ,P end,u

s ,P start,s
s ,P end,s

s ,
Dt,DSt−1

Output: DSt
1 Specify the turn Domain via (Dt)
2 for each slots s in the turn Domain do
3 if θg

s then
4 if θv

s = U then
5 v ← Ut[P

start,u
s :P end,u

s ]
6 else if θv

s = S then
7 v ← St[P

start,s
s :P end,s

s ]
8 end
9 else if θv

s = C then
10 v ← DSt−1[θ

c
s]

11 end
12 else if θv

s = N then
13 v ← none
14 end
15 end
16 if DSt {Dt, s} ≠ v then
17 DSt {Dt, s} ← v
18 else
19 if Training then
20 θg

s ,θv
s ,θc

s,
P start,u
s ,P end,u

s ,P start,s
s ,P end,s

s

←GoldenLabel
21 end
22 end
23 end

First, we specify the domain by the result of
the Domain Update component Dt. Second, we
determine whether to update a slot within the do-
main through the Slot Gate result θg

s . If it equals
to 1, that is, θg

s = 1, we move on to the next
step. In the third step, we go through the slots
with θg

s = 1 and determine their corresponding
values according to their Type Prediction θv

s . For
the slots whose θv

s = U or θv
s = S, we obtain their

values by getting the corresponding span from the

user or system utterance. The span is determined
by the corresponding starting and ending index
P start,u
s ,P end,u

s ,P start,s
s ,P end,s

s . If θv
s = C, the

values of the slots will be determined by the co-
refered (domain, slot) pairs θc

s from the last turn
dialogue state. At last, for slots with θv

s = N ,
we simply delete the values that were stored pre-
viously. Finally, in the last step, we perform the
update by comparing and contrasting new triplets
(domain, slot, value) and the ones in the last dia-
logue state.

As mentioned above, we perform a special op-
eration at this stage during the training process.
During training, if the potential value is equal to
the last turn dialogue state, we set all the output
from the forward propagation to the golden label.
Thus, preventing the back propagation process to
alter the trainable parameters in the model. This
operation can enable the model to develop the abil-
ity to self-correct, resulting in a better performance.
More details can be found in the example study in
the appendix.

4 Experiment

4.1 Dataset

We evaluate our model on the public dataset: Mul-
tiWOZ2.3, which is a fully-labeled task-oriented
corpora comprised of human-human written con-
versation. It contains 8439 multi-turn dialogues
with dialogue having 6.84 turns on average. The
difference between the MultiWOZ2.3 dataset and
the previous versions of MultiWOZ dataset is
that MultiWOZ2.3 has a cleaner and more accu-
rate annotation as opposed to the noisier annota-
tion of the previous MultiWOZ versions (Zhou
and Small, 2019a; Han et al., 2020; Zang et al.,
2020). Following previous work, only five domains,
(restaurant, hotel, attraction, taxi, train) are
employed in out experiments.

4.2 Training Configuration

We use the pre-trained BERT-based-uncased model
as the utterance encoder in our model, which has
12 hidden layers with 768 units. The limitation of
the maximum sequence length isn’t problematic,
therefore setting length l = 256 would suffice.

In our experiments, Adam optimizer is utilized,
whose learning rate linearly decreases from 5e− 5.
We have trained the model with 25 epochs.
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4.3 DST result

Both standard metrics and customized evaluation
are carried out to compare our model and the
state-of-the-art models. Standard metrics include
Joint accuracy and Domain-Slot accuracy. Joint
accuracy is the accuracy of the prediction of di-
alogue states. It requires that all of the thirty
(domain, slot, value) triplets in the dialogue state
to be predicted and updated correctly. Only when
the turn output Dialogue State is completely correct
will JA = 1. In other cases, JA = 0, which is
likely to happen when the input last turn dialogue
state is wrong in the first place because models
of turn-by-turn scheme typically can’t self-correct.
Domain-Slot accuracy is the accuracy of all the la-
bels for each Domain-Slot pair in a turn. In the case
of the JoDeM model, labels of a Domain-Slot pair
includes the turn Domain, Dt, the slot gate for the
slot θg

s , the type prediction of the slot θv
s , the co-

ref classification of the slot θc
s, and all the index of

span detection of the slot P start,u
s ,P end,u

s ,P start,s
s ,

and P end,s
s . There are thirty Domain-Slot pairs in

total. It’s apparent that JA is a much demanding
criterion to achieve and is also the most crucial
metric to evaluate a dialogue state tracking system.

We make a thorough comparison over our model
with the following state-of-the-art models from
both schemes including TRADE (Wu et al., 2019),
DS-DST (Zhang et al., 2019), IL-DST (Zhang
et al., 2021), SUMBT (Lee et al., 2019a), PIN
(Chen et al., 2020b), SOM-DST (Kim et al., 2019),
COMER (Ren et al., 2019),DSTQA (Zhou and
Small, 2019b), NA-DST (Le et al., 2020), TEN
(Chen et al., 2020a), ReDST (Liao et al., 2020),
ReInf (Liao et al., 2021), CSFN-DST (Zhu et al.,
2020a), SAVN (Wang et al., 2020b), TripPy (Heck
et al., 2020), SimpleTod (Hosseini-Asl et al., 2020),
and STAR (Ye et al., 2021). The first two columns
of Table 1 are the results of standard metrics.
The turn-by-turn schematic DST models have
shown significant performance improvement over
the dialog-history scheme in both Joint accuracy
and Domain-Slot accuracy. By enhancing the accu-
racy at the turn level, turn-by-turn schematic DST
models are able to gain a much higher joint accu-
racy at the end. Our model, the JoDeM DST model,
despite having a Domain-Slot accuracy among the
best, has achieve a state-of-the-art performance
boost on the joint accuracy metric. This indicates
that our model has a high robustness against the
avalanche phenomenon, which resulted in a better

Model J Acc D-S Acc A Coeff
TRADE 49.2 96.94 0.932
DS-DST 55.2 97.67 0.941
IL-DST 58.3 98.50 0.940
SUMBT 52.6 91.02 1.0023
PIN 54.8 97.13 0.945
SOM-DST 55.0 97.93 0.938
COMER 50.5 95.48 0.950
DSTQA 52.1 97.15 0.938
NA-DST 51.7 95.42 0.954
TEN 47.3 94.93 0.947
ReDST 64.0 98.36 0.954
ReInf 59.5 98.21 0.945
CSFN-DST 54.8 97.39 0.942
SAVN 57.6 97.86 0.944
TripPy 63.2 98.63 0.949
SimpleTod 52.0 97.60 0.933
STAR 58.4 97.95 0.945
JoDeM 74.9 98.07 0.979

Table 1: Joint accuracy, slot accuracy and avalanche
coefficient on the test sets of MultiWOZ2.3.

overall performance.

Figure 4: The correlation of joint accuracy and
avalanche coefficient of various DST systems

Customized evaluation is designed to better eval-
uate and compare the robustness of different DST
systems against the avalanche phenomenon. For
quantification, we introduce a novel avalanche co-
efficient to describe the performance deficit ratio
caused by the avalanche, α, which is calculated
as α =

l̄
√
p̄j
¯pds

, where l̄, p̄j and p̄ds are the mean
length of dialogues, Joint accuracy and Domain-
Slot accuracy respectively. With fixed dialogues,
the avalanche coefficient is model relevant only,
which means it is an intrinsic parameter to DST
systems.
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From the definition, we deduce that higher the
avalanche coefficient, the less a model suffers from
the avalanche phenomenon. The avalanche coef-
ficient of a DST model equals 1 when the model
doesn’t suffer from the avalanche phenomenon. As
shown in Figure 4, despite the poor joint accuracy
performance, dialogue history scheme based mod-
els has an avalanche coefficient higher than 1. Our
model, among with other turn-by-turn schematic
DST models, has an avalanche coefficient lower
than 1, but way closer to 1 than the current state-
of-the-art models, resulting in a much better over-
all Joint accuracy performance. This proves that
addressing the avalanche is crucial for obtaining
higher Joint accuracy in DST models.

4.4 Component Analysis

In order to dig deeper into the black box of the Jo-
DeM model, we carry out detailed analysis to show
the sufficiency and necessity of different compo-
nents in the JoDeM model and how our design is
aligned with our intuition.

To examine the Domain Update component,
we conduct two sets of control experiments with
unique variation on the original Domain Update
component.
Variation one: We set the diagonal coefficient

matrix in 2 to γ = E during the training process.
This setting means that the component learns to
obtain the turn domain without utilizing any last
turn information.
Variation two: Similarly but different from

the variation one, we set the diagonal coefficient
matrix in 2 to γ = E only during the testing pro-
cess. This setting means that the model is trained
given the last turn domain but being denied that
information while performing on the test set.

The results from the original JoDeM model and
the two variation are presented in Table 2. The met-
ric we investigate is domain accuracy, which is the
accuracy of the prediction of the turn domain. As
you can see, the first column, which is the original
JoDeM model, has the highest domain accuracy.
The second column corresponds to variation one,
which is the one with γ = E during training pro-
cess. We can see that although a model can predict
the turn domain solely using the turn utterance
information, but the performance is sub-par com-
pared to the one with last turn domain. The third
column is the one with γ = E during testing only,
whose decline of the domain accuracy is massive.

Original Training Testing
JoDeM with γ = E with γ = E

97.75 91.93 73.94

Table 2: Domain Accuracy Analysis with Different Set-
tings of the JoDeM Model.

Original Variation Variation
JoDeM One Two
74.9 67.3 41.3

Table 3: Joint accuracy comparison on the JoDeM
model with different usage setting of the multi-head
attention mechanism

The significance of this set of control experiment
is to demonstrate that the last turn domain plays a
key role or is relied heavily in the prediction of the
turn domain.

Next, we focus on the question which is the pur-
pose of the extra multi-head attention layer before
applying the slot gate, type prediction, span de-
tection and co-ref classification components. The
intuition behind utilizing multi-head attention layer
between user utterance embedding and the entire
dialogue embedding is that any update from the
dialogue state is based on the consent of user. For
example, the system may recommend a piece of
information about a restaurant, but whether that
information should be inserted into the dialogue
state is up to whether the user takes the advice. To
fairly evaluate, we train two control JoDeM models
under two variation respectively. The metric we
investigate is the joint accuracy.
Variation one: Instead of attending the user

utterance embedding to the entire turn utterance
embedding, we apply two multi-head self-attention
layers on user and system utterance separately. The
purpose of this variation is to examine and explore
exactly what kind of attended relationship is the
crux to dialogue state tracking.
Variation two: We discard the multi-head at-

tention layer entirely, the input sequence for the
slot gate, type prediction, span detection and co-ref
classification components is the direct embedding
of the pre-trained BERT. The goal of this variation
is to examine the necessity of applying attention
mechanism in the first place.

The results are shown in Table 3. Apparently,
applying an additional attention layer is not only
necessary but also crucial for the performance for
dialogue state tracking. This observation is consis-
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tent with respect to other previous analytical work
on dialogue state tracking. Furthermore, apply-
ing a multi-head cross-attention layer has the edge
over a self-attention layer. This indicates that learn-
ing the relationship between the user utterance and
the whole utterance is important in dialogue state
tracking, which aligns with our intuition and the
interactive nature of dialogue itself.

5 Conclusion

We proposed a novel, robust DST model Jo-
DeM to address the rarely discussed problem, the
Avalanche phenomenon. We showed that the trend-
ing topnotch DST systems all suffer from the
Avalanche phenomenon with quantitative results
and evidence. By multiple control experiments,
we demonstrated how the overall structure and
different techniques served the performance and
robustness of the JoDeM model. We achieved a
state-of-the-art performance on Joint accuracy and
the criterion we design for measuring the impact
of the Avalanche phenomenon. Finally, through
the success of JoDeM, we show that the Avalanche
phenomenon is worth solving and that there is more
potential in this perspective for the DST task.
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A Appendix: Example Study

To inspect the actual effect the JoDeM model have
on the update prediction of dialogue states, we
provide two examples to demonstrate the strength
of the JoDeM model.
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Figure 5: Example on Robustness of Joint Decision
Making

A.1 Example One
The first example is presented in Figure 5. It not
only serves as a demonstration of the actual oper-
ation of JoDeM, but also can show the robustness
of the joint decision making technique. First, the
domain of the turn is obtained, which is Hotel. Af-
ter domain is specified, the updating procedure will
strictly be limited in the domain. As shown in the
figure, after the domain is obtained, the focus shifts
to slot information. According to the Slot Gate,
slots Price range, Name, Area is altered from the
context. After that, the value of the slot is extracted
from the utterance according to the Type Prediction
and Span Detection. As you can see, although Slot
gate and Type Prediction made a false judgment
on Area, it didn’t lead to a wrongful update. The
reason for that is that the corresponding Span De-
tection detected that the starting and ending index
are appointed to the [CLS] token, which means no
information is detected. Only when all the compo-
nents have made wrongful decision will they result
in a wrongful update, which is the reason why Joint
Decision Making is a robust way to extract infor-
mation in a DST system.

A.2 Example Two
The second example is presented in Figure 6. It
shows that the JoDeM model can self-correct to a
certain extend and why too many supplementary
labels might be problematic. We focus on the Des-
tination slot in the Train domain. As shown in
the figure, the value of Destination is incorrect in
the predicted last turn dialogue state. But it was
rectified in this turn. If the predicted last turn di-
alogue state was correct, the correct operation at
this turn is that Slot gate wouldn’t have predicted
the altering of the slot, which is aligned with the
supplementary labels we have tagged. Therefore

Figure 6: Example on self-correcting of JoDeM

it would appear that the JoDeM model didn’t get
all the predictions right, but it enhanced the perfor-
mance at the end. This ability of the JoDeM model
takes credit from the trick we applied during the
training process, which is setting the predicted val-
ues to the GoldenLabel when DSt {Dt, s} = v.
Had the system follow the operation of the correct
labels, it wouldn’t be able to right the wrongs from
the past turns.

B Appendix: Discussion

Accumulation of error is a well discussed dilemma
in the language generation field. Exposure bias
caused by additional guiding during training re-
sulted in subpar performance in testing. While the
error accumulation in NLG and the avalanche phe-
nomenon both originates from the auto-regressive
characteristic and additional guiding during train-
ing, there are significant differences between them.

Even though the ground truth for NLG task is not
unique, the guiding label during training is always
one of the solutions. In DST tasks, supplementary
label itself may be incorrect since they are made by
comparing the ground truth dialogue state between
consecutive turns.

Another significant difference is that in most
auto-regressive tasks, the auto-regressive process
happens within the model, which indicates that the
model includes one or more auto-regressive output
structured module. While in the DST systems, the
auto-regressive characteristic is embedded in the
pipeline of the task. The auto-regressive part is
manually applied.

The above discussed differences are crucial be-
cause they render all the existing tactics and strat-
egy during training ineffective for the DST systems.
This work provides a model-based solution with-
out altering the “pretrain + finetune” paradigm and
training strategy.
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C Appendix: Responsible NLP Research
CheckList

C.1 Limitations and Risks
Although our work is evaluate on a public and
high quality dataset, as we summarized in the ab-
stract and introduction, the dialogue state tracking
task in real world application is far more compli-
cated. Therefore there is both limitation and risks
on whether our model can perform well in applica-
tion.

C.2 Use of scientific artifacts
The only scientific artifact our work applied is the
dataset MultiWoz2.3 which is specifically designed
for dialogue state tracking and publicly accessible.
The content of the dataset doesn’t contain any infor-
mation that names or uniquely identifies individual
people or offensive content.The dataset is about
information regarding assorted places in Britain.
The proportion of train/dev/test set is 8/1/1.

C.3 Computational Experiments
In our experiment, 8 GPU is used to train our
model, which has 222M parameters. One train-
ing epoch takes 21 minutes. Any setting of hy-
perparameter, including the existing package of
pretrained language bert model, is presented in
the experiment section. Our result, as well as the
compared result from other works, is the mean of
multiple independent identically distributed tests.
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