What do Large Language Models Learn beyond Language?

Avinash Madasu Shashank Srivastava
UNC Chapel Hill
{avinashm, ssrivastaval}@cs.unc.edu

Abstract

Large language models (LMs) have rapidly be-
come a mainstay in Natural Language Process-
ing. These models are known to acquire rich
linguistic knowledge from training on large
amounts of text. In this paper, we investi-
gate if pre-training on text also confers these
models with helpful ‘inductive biases’ for non-
linguistic reasoning. On a set of 19 diverse
non-linguistic tasks involving quantitative com-
putations, recognizing regular expressions and
reasoning over strings. We find that pretrained
models significantly outperform comparable
non-pretrained neural models. This remains
true also in experiments with training non-
pretrained models with fewer parameters to ac-
count for model regularization effects. We fur-
ther explore the effect of text domain on LMs
by pretraining models from text from different
domains and provenances. Our experiments
surprisingly reveal that the positive effects of
pre-training persist even when pretraining on
multi-lingual text or computer code, and even
for text generated from synthetic languages.
Our findings suggest a hithertho unexplored
deep connection between pre-training and in-
ductive learning abilities of language models'.

1 Introduction

Pretrained Language Models (LMs) have shown
singular succcess on a range of natural language un-
derstandings tasks, to the extent that they have be-
come foundational for contemporary NLP systems.
Several works have investigated why pretraining
works so well (Warstadt et al., 2019; Zhao et al.,
2020). In particular, studies have shown that the
pretrained LMs like BERT capture linguistic knowl-
edge about syntax (Lin et al., 2019; Wu et al., 2020),
semantics (Vuli¢ et al., 2020b,a) and morphology
(Hofmann et al., 2020, 2021). In fact, Tenney et al.
(2019) demonstrated that learned representations

'https://github.com/avinashsai/NILM

n
(Classification layer) (Classification layer | (Classification layer |
TTT N TTT BT
{ BERT [DeBERTA [ELMO
RISATS SIS SYE ST SIE SR E 1 Ak 1S
\ 6 /f 2 | [o 2; 2] [a V\:W b |

Quantitative computation
(Decimal operation)

Recognizing regular
expressions {0,1,2}*02*

String reasoning
(Palindrome classification)

Figure 1: We investigate the effect of pretraining of
languages models on learning non-linguistic tasks using
three task paradigms involving symbolic reasoning.

in pretrained LMs even internally reflect the clas-
sical NLP pipeline. Since most NLP benchmarks
such as SuperGLUE (Wang et al., 2019) naturally
are focused on tasks such as textual entailment
and reading comprehension that require linguistic
knowledge and reasoning, it is unsurprising that
LMs have achieved strong results on these tasks.
On the other hand, little work so far has explored
the abilities of pretrained LMs for learning non-
linguistic tasks.

In this paper, we explore whether pretraining on
text is inherently about learning language, or if pre-
training also imbues LMs with skills for symbolic
manipulation and non-linguistic reasoning (for ex-
ample, performing quantitative computation such
as finding the median of a set of numbers, recog-
nizing regular expressions, or identifying whether
a string is a palindrome, as shown in Figure 1).
In other words, we investigate whether and how
pretraining develops helpful inductive biases for
non-linguistic reasoning. For this analysis, we cre-
ate a set of 19 tasks from three categories of task
paradigms: quantitative computation (§3.1), recog-
nizing regular expressions (§3.2), and string rea-
soning (§3.3). Figure 1 shows an example for each
category, and the full list of tasks is described in the
table 1. We experiment with transformer and RNN
based LMs (§4) for learning these tasks, and per-

6940

Findings of the Association for Computational Linguistics: EMNLP 2022, pages 6940—-6953
December 7-11, 2022 ©2022 Association for Computational Linguistics

https://github.com/avinashsai/NILM

Task Input Eg. Output Eg. | Classes | Input range
Odd classification 4210 0 0-1 [1, 20000]
Even classification 4210 1 0-1 [1, 20000]
Odd even classification 4210 even 1 0-1 [1, 20000]
Decimal operation 8727436 2 0-9 [1, 10000]
Decimal & word operation four/2 2 0-9 [1, 10000]
Mean 15,-8,15,-5,-14,-3 ? 0 0-9 [-15, 15]
Median 3,6,5,15,2,3,-6,-2,9,-3,-9,-5,-14 ? 2 0-9 [-15, 15]
Mode 5,9,7,0,2,5,3,3,3,0 ? 3 0-9 [0, 9]
Recognize {0, 1, 2}*02* 01202102222 1 0-1 [0, 2]
Recognize AA*BB*CC*DD*EE* | aaaaaaabbbbcccccddde 1 0-1 [a, e]
Palindrome classification aWXXWa 1 0-1 [a-z], [A-Z]
Anagram classification rGrPJhk-khGrPJr 1 0-1 [a-z],[A-Z]
Isogram classification vFJoSj 1 0-1 [a-z], [A-Z]
Tautonym classification stPvg-tPvga 1 0-1 [a-z], [A-Z]
Length of a string teeo 4 0-9 [a-z]
Count of unique characters deiieediid 3 0-9 [a-j]
Parity check 011101001110 0 0-1 [0, 1]
Vowels classification iivxcmoouo 0 0-9 [a-z]
Maximum frequent character jjjcjj 9 () 0-9 [a-j]

Table 1: Description of the non-linguistic tasks with input and output examples. Classes are the class labels for each
task. Input range denotes the range of the input operands in each task.

form a comparative analysis with (non-pretrained)
neural model variants from the perspective of learn-
ing metrics such as accuracy and sample efficiency.

Our experiments (§5) reveal that pretrained mod-
els overall perform substantially better and are
more sample efficient on most tasks. However,
there are significant differences and patterns in per-
formance between task types, as well as variance
between different LM architectures. Since non-
pretrained models do not have the benefit of reg-
ularization that comes from pretraining, a plausi-
ble reason for the discrepancy between them and
pretrained LMs might be underfitting of the non-
pretrained models when trained on comparatively
small dataset sizes. To account for this, we also
comprehensively explore the effect of model size
(§6) of non-pretrained models for both transformer
and RNN architectures. We find that the discrep-
ancy in performance remains even for smaller neu-
ral models, indicating that the differences are not
simply due to a mismatch in model and data sizes.

Finally, we investigate the role that pretraining
data plays in influencing task performance on non-
linguistic tasks (§7). We experiment with pretrain-
ing on different domains of text, pretraining on
perturbed representations of natural language text
(such as shuffled word order), pretraining on text of
computer programs (no linguistic properties of nat-
ural languages), pretraining on multi-lingual and
non-English text, and pretraining with synthetic
text (data sampled from synthetic distributions).

Our analysis reveals that the advantages of pretrain-
ing surprisingly persist with various degrees across
these variations, suggesting hithertho unexplored
connections between pretraining and the learning
abilities of language models. Our contributions are:

* We compare a range of pretrained LMs and non-
pretrained models on a carefully designed suite of
19 classifications tasks that require non-linguistic
reasoning.

* We comprehensively explore the role of the pre-
training data by experimenting with models pre-
trained from texts with different provenances.

* We establish that the positive effects of pretrain-
ing are not simply due to better model regulariza-
tion by experimenting with neural models with
different complexities and architectures.

2 Related Work

A body of work has investigated contextual word
embeddings to determine whether they capture as-
pects of mathematical meaning for numbers (Naik
et al., 2019). Wallace et al. (2019) probed numer-
ical supremacy on token embeddings of contex-
tual language models such as ELMO and BERT.
(Thawani et al., 2021) surveyed numerical under-
standing in NLP models using 7 sub-tasks such as
measurement estimation and word problems. Our
work diverges from these in exploring a richer set of
tasks including harder tasks such as set operations.
Further, previous methods explore mathematical
reasoning tasks posed as language problems, which

6941

conflates the problems of language and mathemati-
cal learning and also makes the datasets susceptible
to biases due to data collection. Our analysis cir-
cumvents both these issues by design.

Some previous works have explored the ability
of RNN and Transformer architectures for learning
regular languages (Weiss et al., 2018; Sennhauser
and Berwick, 2018; Suzgun et al., 2019b; Bhat-
tamishra et al., 2020), closing brackets (Skachkova
et al., 2018), and dynamic counting (Suzgun et al.,
2019a). However, they focus on the learnability of
these tasks with specific architectures, and do not
look at pretrained LMs, which are our focus here.

Finally, in our discussion, we conceptually
stretch the notion of inductive bias. The idea of
inductive bias is usually associated with specific
model types (McCoy et al., 2020; Kharitonov and
Chaabouni, 2021), architectures (Xu et al., 2021;
Brutzkus and Globerson, 2021) and regularization
approaches (Helmbold and Long, 2015). We be-
lieve that extending this to refer to learning tasks
with pretrained LMs is both reasonable and useful.

3 NILM

In this section, we describe the tasks used for our
analysis, which we refer to as NILM (measuring
Non-linguistic Inductive bias in Language Models).
The tasks correspond to three task paradigms: (1)
quantitative computation, (2) regular expressions,
and (3) string reasoning. Each task in NILM is posed
as a classification task. The descriptions for all the
tasks with input and output examples, class labels
and the input range are shown in Table 1. Each task
has a synthetically generated dataset with train/de-
v/test splits?. To avoid biases in the datasets, rel-
evant numbers and strings in individual examples
are uniformly sampled from the appropriate ranges.

3.1 Quantitative computation

This task paradigm focuses on tasks involving arith-
metic and set statistics.

0dd classification. Classify if a number is odd.
Even classification. Classify if a number is even.
Odd even classification. For a given number N
and a string “even” or “odd”, classify if the number
satisfies the string condition.

Decimal operation. Subtract or divide two num-
bers. Operands are represented in decimal notation.

*The training set size for all tasks is 10K, dev set size is 1K
and test set size is 1K, except for tasks on recognizing regular
expressions, where the test set size is 2K following previous
work (Bhattamishra et al., 2020).

Decimal & word operation. Subtract or divide
two numbers. Operands are represented in decimal
or word notation.

Mean. Given a set of numbers, output the mean.
Median. Given a set, output the median.

Mode. Given a set of numbers, output the mode.

3.2 Recognizing regular expressions

This task paradigm focuses on recognizing regular
expressions. The training data consists of positive
and negative examples of strings matching a regu-
lar expression (Bhattamishra et al., 2020).
Recognize {0,1,2}*02*. Recognize if a pattern
matches {0,1,2}*02*. The maximum length of the
patterns is 20.

Recognize AA*BB*CC*DD*EE*. Recognize if a
pattern matches AA*BB*CC*DD*EE*. The maxi-
mum length of the patterns is 30.

3.3 String reasoning

This task paradigm focuses on reasoning tasks over
individual strings or pairs of strings.

Palindrome classification. A string is a palin-
drome if it reads the same forward and backward.
The task is to classify whether a given string is a
palindrome. The string length ranges from 1 to 15.
Anagram classification. Two strings are anagrams
if one is formed by rearranging letters from the
other. The task is to classify if a pair of strings are
anagrams. The string length ranges from 2 to 15.
Isogram classification. A string is an isogram if it
has no repeating characters. The task is to classify
whether a given string is an isogram. The string
length ranges from 1 to 52.

Tautonym classification. A tautonym is a word
which can be broken down into two identical parts,
with the same spelling. The task is to classify
whether a given string is a tautonym. The string
length ranges from 1 to 10.

Length of a string. Output the length of a given
string. The string length ranges from 1 to 10.
Count of unique characters. Given a string, count
the number of unique characters in it. The string
lengths ranges from 10 to 30.

Parity check. Given a binary string, output if the
counts of ones and zeros are the same. The maxi-
mum length of the binary string is 20.

Vowels classification. Given a string, classify if the
string contains only vowel characters. The string
length ranges from 3 to 10.

Maximum frequent character. Given a string,
output the character with the maximum frequency.

6942

100

!!‘i! _____ : % —— pretrained —l— pretrained
90 4 i o "‘ ! --@-- non-pretrained --#-- non-pretrained
B Em 0dd I
704 = Even == Even
2wl e \ ; \ I Odd_Even - I 0dd Even
I :,. I 1 A e Decimal = Decimal
5 50 feEeSema g iiieesgeegeeocfesf e] 5
= =3
4 a0+ <
30
20 4
10 +

T T T T T — T T T T
0 1000 2000 3000 4000 5000 6000 7000 8000 900010000
Sample Size

(a) BERT small

T — T T T T — —
0 1000 2000 3000 4000 5000 6DO0 7000 BOOD %000 10000
Sample Size

(b) ELMO

Figure 2: Performance comparison of pretrained and non-pretrained models of BERT small, and ELMO on four
quantitative computation tasks (odd classification, even classification, odd even classification and decimal operation).

—l— pretrained
--@-- non-pretrained
I Decimal & Word
s Mean
I Median

Mode

Accuracy

0 1000 2000 3000 4000 5000 6000 7000 B00D 00010000
Sample Size

(a) BERT small

—Jl— pretrained
--@- non-pretrained
Bl Decimal & Word
N Mean
I Median

Mode

Accuracy

Sample Size

(b) ELMO

Figure 3: Performance comparison of pretrained and non-pretrained models of BERT small, and ELMO on four
quantitative computation tasks (mean, median, mode and decimal & word operation tasks).

The string length ranges from 5 to 30.

4 Models & variants

Next, we describe the LMs and their variants used
in NILM. We experiment with four language models,
based on both Transformer and RNN architectures.
BERT small. This is the bert-base-uncased model
with 12 transformer encoder layers and the dimen-
sion of the representations is 768. BERT tokenizer
is based on the WordPiece model (Wu et al., 2016).
BERT large. This is the bert-large-uncased model
which has 24 transformer encoders and representa-
tions have 1024 dimensions.

DeBERTa. This is a transformer based language
model and its tokenizer is built using Byte Pair En-
coding (Sennrich et al., 2016). We consider the De-
BERTa base model. It has 12 transformer encoder
layers and representations have 768 dimensions.
ELMO. This is an LSTM based language model
(Peters et al., 2018). It has 3 layers and the output
representations have 1024 dimensions.

Our experiments are based on pretrained and
non-pretrained variants of these architectures. For
pretrained variants, the weights are initialized with
the pretrained weights. The tokenization on the

training data is performed using the pre-built vo-
cabulary. For the non-pretrained neural models,
the weights are initialized randomly and updated
during training. The tokenizer used is the same as
in the pretrained variant.

All the models are trained with varying train-
ing data of sizes 10, 20, 40, 80, 160, 320, 640,
1280, 2560, 5120, 6000, 7000, 8000, 9000 and
10000. For training set sizes of less than 1000 sam-
ples, we report the average of 10 runs. For training
set sizes greater than 1000, all reported numbers
are averages of 5 runs. In the next section, we
present a comparative analysis of pretrained and
non-pretrained models.

5 Comparative Evaluation

Next, we compare the performance of pretrained
and non-pretrained models on tasks in NILM.

Quantitative computation: Figure 2 shows results
on odd classification, even classification, odd even
classification and decimal operation tasks. We find
that pretrained LMs outperformed non-pretrained
model for all of these tasks. Further, Transformer-

3Details, including statistical significance results with the
paired t-value test, are included in Appendix 6

6943

100 4 [P =i PPt —l— pretrained
B fﬁ:‘f - e --@- non-pretrained
| - e
90 4 .I\. ifa‘ e N AA*BB*CC*DD*EE*
a5 |{i&] L —(0,1,2}°02+
L1 - -
Pa— P S R
g 80 |”.' o »
5 74 ‘Ié"
§
65 4
60 4
i
55 4 E,
50 Il

T T T T T
500 1000 1500 2000 2500

Sample Size

o

(a) BERT small

100 4]:l.-l-’;' L —l— pretrained
% o ’= --@-- non-pretrained
E I AA*BB*CC*DD*EE*
85 + . S . g g ®go--® | mmm {0,1,2}%02%
> gy L™l
[] .
o ;
€
§ A
551 . .
0418 IR N
R AL e A Y
L e
50 &8 w

T T T T T T T T T T T
0 1000 2000 3000 4000 5000 6000 7000 8000 900010000
Sample Size

(b) ELMO

Figure 4: Performance comparison of pretrained and non-pretrained models of BERT small, and ELMO on regular
expression tasks (AA*BB*CC*DD*EE* and recognize {0,1,2}*02%).

based LMs outperformed the RNN-based ELMO
models in all the tasks*. We note that for the rel-
atively easy tasks such as odd and even classifica-
tions, the pretrained LMs show more stable training.
However, for harder tasks such as Decimal oper-
ations (where the baseline performance is around
10%), no models are able to learn the task well
even with 10K labeled examples.

Figure 3 shows results on median, mean, mode
and decimal & word operation tasks. The median
task requires complex reasoning (sorting numbers
and computing the middle element), and shows sig-
nificantly lower performance than the mean and
mode tasks for the non-pretrained models even
with the maximum training set size. The pre-
trained LM models show little eventual difference
in performance between these three tasks. On the
other hand, for the easiest of these tasks (mode),
non-pretrained models actually show higher perfor-
mance than pretrained LMs in the low data regime.

Recognizing regular expressions: Figure 4 shows
the comparative performance of pretrained LMs on
non-pretrained models on the two tasks involving
recognizing regular expressions. For both tasks, we
note that the pretrained LMs can perfectly learn the
tasks with many fewer labeled examples compared
to the non-pretrained models. In both cases, the
non-pretrained Transformer-based models eventu-
ally reach optimal performance as well. However,
curiously the ELMO based non-pretrained models
struggle with learning both tasks.

String reasoning: Figures 6 show the results on
Palindrome, Anagram, Isogram and Tautonym clas-
sification. These tasks require character compari-
son within the string or with another string. Again,

“We will focus on BERT small as representative of trans-
former models. Results for BERT large and DeBERTa follow
similar trends, and are included in the supplementary material

the pretrained variants consistently outperformed
non-pretrained models variants in all of these tasks.
In particular, the non-pretrained models completely
fail to learn the Anagram and Palindrome tasks
even for the largest training set size. Again, Trans-
former based LMs outperform LSTM based LMs.

Figure 7 shows the results on vowels classifi-
cation, maximum frequent character, length of a
string and parity check tasks. These tasks don’t
require intra-string comparisons. We see that most
Transformer-based variants eventually achieve opti-
mal performance. For these simpler tasks, we again
observe several instances where the Transformer-
based non-pretrained models actually outperform
pretrained LMs in the low data regime.

6 Effect of model size

NP {110M)
NP (42M)
NP (29M)
NP (11.3M)
NP (4.4M)

PT (110M)

Accuracy

—— — —— —— ——
0 1000 2000 3000 4000 5000 6000 7000 8000 900010000
Sample Size

Figure 5: Effect of model size on non-pretrained mod-
els. NP denotes a non-pretrained model and PT denotes
the pretrained model. Mid-sized non-pretrained models
outperform bigger and smaller variants, but still perform
significantly lower than pretrained LM models. Results
are the average of six representative tasks: palindrome
classification, anagram classification, isogram classifi-
cation, tautonym classification, mean and median.

As previously mentioned, a possible explanation
for the underperformance of non-pretrained mod-
els ise that the large number of parameters of the

6944

architecture relative to the sizes of the training data
might be leading to under-fitting. To test this, we
experiment with smaller Transformer-based mod-
els with varying numbers of parameters.

Figure 5 illustrates the effect of model sizes of
non-pretrained model. The original 110 million pa-
rameter model has 12 encoder layers, 12 attention
heads, and 768 dimensional representations. The
42 million parameter model has 8 encoder layers,
8 attention heads and 512 dimensional represen-
tations. The 29 million parameter model has 4
encoder layers, 8 attention heads and 512 dimen-
sional representations. The 11 million parameter
model has 4 encoder layers, 4 attention heads and
256 dimensional representations. The smallest 4
million parameter model has 2 encoder layers, 2 at-
tention heads and 128 dimensional representations.

As seen in the figure, reducing the model size
significantly improves the average performance of
the non-pretrained models over 6 representative
tasks. However, the smallest models show a perfor-
mance drop. Most significantly, even the best per-
forming intermediate-sized architectures are signif-
icantly worse than the pretrained LM models. This
strongly suggests that the discrepancy between pre-
trained and non-pretrained models is not simply
due to a mismatch between model and data sizes.

7 Effects of Pretraining Data

We observe that pretrained LMs consistently per-
formed better than non-pretrained models. This
leads to the natural question of what role the text
data used for pretraining plays in the process. Next,
we investigate this in depth by experimenting with
language models pretrained on different types of
text. For this, we pretrain models using the BERT-
small and DeBERTa architectures and an MLM
objective on different text datasets, and evaluate
the performance of these models on NILM tasks.

7.1 Variance with text domain

We first explore models pretrained on three differ-
ent domains of text.

SNLI. We pretrained BERT small from scratch on
SNLI data (Bowman et al., 2015). It has 1000k
sentences (570k pairs of text and hypothesis).
Amazon reviews. We selected 500k movies and
tv reviews from the larger Amazon reviews dataset
(He and McAuley, 2016) and used for pretraining.
Since reviews are in a free-text format, and their
collection was not tailored with a NLP task in mind,

they might be more representative of the complex-
ity of real-world language use than SNLI.
ROC. ROC is a corpora of 100K children stories,
each made up of five sentences (Mostafazadeh
et al., 2017). The language in ROC is relatively
simple in both vocabulary and sentence structure.
Tables 2 and 3 shows the average accuracy of
six non-linguistic tasks (palindrome classification,
isogram classification, tautonym classification, odd
even classification, decimal operation and median)
fine-tuned using different BERT and DeBERTA
representations respectively. We note that the mod-
els pretrained on all three domains outperformed
the non-pretrained model (NP). This suggests that
the results of experiments in Section 5 generalize
to new text corpora for pretraining, and do not rely
on having access to text on specific topics during
pretraining. This is a non-trivial result, since it sug-
gests for example, that the higher performance of
pretrained models on tasks such as palindrome and
anagram classification is not due to the pretrained
models having seen information about such con-
cepts during pretraining. This is especially so since
the results even generalize to ROC stories, which
contain no information on such technical concepts.

7.2 Perturbed text

Next, we experiment with perturbing the text used
for pretraining by changing the order of words in
the text. We explore the following models:

SNLI sort. The words in the sentences of SNLI
dataset are sorted based on alphabetical order.
SNLI shuffle. We randomly shuffle words in sen-
tences in the SNLI dataset.

Amazon reviews sort. Similar to SNLI sort, the
words in sentences are alphabetically sorted.
Amazon reviews shuffle. We randomly shuffle
words in sentences in the Amazon reviews dataset.
We observe that models pretrained with perturbed
text also significantly outperformed non-pretrained
models, and perform comparably to the original
pretrained LMs. For the SNLI dataset, there is 3%
drop in best performance when pretrained on SNLI
sort and 2% drop in performance when pretrained
on SNLI shuffle for BERT (Table 2). In fact, for
DeBERTa, SNLI shuffle outperformed the standard
SNLI by 2% (Table 3). Similarly, the Amazon
sort and Amazon shuffle versions outperformed or
achieved similar performance as the standard Ama-
zon data version. A likely explanation for this is
that, even though syntactic word order is disturbed

6945

100 + = ;7:_:.:.:._j.?__.:. —l— pretrained
1 = - -
% p: cans @ - non-pretrained
%01 [Il Falindrome
85 4 EEE Anagram
a a0 M sogram
& s Tautonym
=]
o 04
£ 7]
&0
55 4 3
S P T . X
50 4 5 S st L .

— T T T T — U—
0 1000 2000 3000 4000 5000 6000 7000 BOOOD 900010000
Sample Size

(a) BERT small

100
95
90 4

—l— pretrained
--@-- non-pretrained

B Falindrome

B Anagram

I lsogram
Tautonym

Accuracy

T T T T — T T T T
0 1000 2000 3000 4000 5000 BOOD 7000 8000 %000 10000
Sample Size

(b) ELMO

Figure 6: Performance comparison of pretrained and non-pretrained models of BERT small, and ELMO on four
string reasoning tasks (palindrome, anagram, isogram and tautonym classification).

—l— pretrained

--#-- nan-pretrained

I Ffrequent

Accuracy

T T T T T T T T T T
1000 2000 3000 4000 5000 6000 7000 800D S00D 10000
Sample Size

(a) BERT small

—jl— pretrained

--@-- non-pretrained

B Frequent

Accuracy

-
T o e e T SE T S S

T T T T T T T T T T T
0 1000 2000 3000 4000 5000 OO0 7000 8000 900010000
Sample Size

(b) ELMO

Figure 7: Performance comparison of pretrained and non-pretrained models of BERT small, and ELMO on five
string reasoning tasks (length of a string, maximum frequent character, vowels classification, parity check and count

of unique character).

Sample SNLI SNLI Amz Amz X-ling Chinese Code Syn

size SNLI sort shuffle Amz sort shuffle ROC BERT BERT BERT Zipf | Unif | Voc NP
10 37 39 38 36 36 36 36 38 38 37 38 36 36 37
20 37 37 37 36 38 38 38 37 37 38 37 37 37 37
40 37 38 36 37 36 36 36 42 42 37 42 36 37 37
80 38 40 40 37 38 38 38 55 55 47 55 36 36 38
160 38 40 37 37 40 40 40 56 56 37 56 37 37 39
320 40 49 41 38 41 41 41 64 64 61 64 39 37 41
640 44 60 47 43 52 52 52 75 75 69 75 42 39 44
1280 60 71 63 55 69 69 69 80 80 92 80 52 41 50
2560 76 84 75 75 79 79 79 81 81 89 81 59 48 50
5120 82 87 82 83 89 89 89 94 94 97 94 71 58 58
6000 83 87 83 85 90 90 90 94 94 96 94 73 60 59
7000 88 89 88 89 91 91 91 94 94 97 94 78 62 64
8000 89 89 88 90 92 92 92 94 94 97 94 81 63 59
9000 90 90 89 91 92 92 92 94 94 97 94 84 64 59
10000 91 88 89 91 92 92 92 94 94 97 94 85 64 64

Table 2: Average accuracy scores of different pretrained BERT representations on six representative non-linguistic
tasks: palindrome, anagram, isogram, tautonym, mean, and median. The results are rounded to the nearest percentage
point. All models except Synthetic Vocabulary (Syn Voc). show statistically significant improvements (p < 0.05)

over the non-pretrained models.

by shuffling, distributional information over sen-
tence contexts is still preserved in the perturbed
data. We describe experiments with text data hav-
ing no distributional information in later sections.

7.3 Non-English and Computer Languages

A possible rationale for explaining the beneficial
effect of pretraining for non-linguistic tasks is
that irrespective of whether the tasks require non-

linguistic reasoning, their format is in language,
and hence language models should be able to learn
these tasks with fewer examples. To test this hy-
pothesis, we also experiment with models pre-
trained on text from languages different from En-
glish, as well as models pretrained on computer
code. These include the following models:

Multilingual BERT. Multilingual BERT is pre-
trained on text from 102 different languages. About

6946

SNLI
shuffle

Amz
shuffle

X-ling
DeBERTa

Table 3: Average accuracy scores of different pretrained DeBERTA representations on six representative non-
linguistic tasks: palindrome, anagram isogram, tautonym, mean, and median. The results are rounded to the nearest
percentage point. All models except Synthetic Vocabulary (Syn Voc). show statistically significant improvements

(p < 0.05) over the non-pretrained models.

21% of the pretraining text is English.
Chinese BERT. Chinese BERT is a BERT model
pretrained on Chinese text.
Code BERT. CodeBERT (Feng et al., 2020) is pre-
trained on code from six programming languages.
In Table 2, we note that all three non-English
pretrained LMs significantly outperformed non-
pretrained models, with the best performance being
comparable or marginally lower than English ver-
sions. In fact, Code-BERT surprisingly surpasses
ROC by 5%. These findings strongly indicate that
the advantages from pretraining have little to do
with the format of the tasks, since they persist for
scenarios with little shared linguistic structure.

7.4 Synthetic languages

Finally, to investigate what happens if we weaken
the distributional properties that hold even in the
perturbed text versions from Section 6.2, we ex-
periment with pretraining models on synthetic text
sampled from simple probability distributions:
Zipf distribution. We select 30k words (types)
from the Amazon reviews dataset. Words are
picked with a unigram probability that follows
Zipf’s word frequency law, which all natural lan-
guages empirically follow (Piantadosi, 2014). For
the Zipf distribution, we chose a=1 and §=2.7, to
match the parameters of most natural languages.
The text does not follow any word order.
Uniform distribution. In this dataset, words are
sampled from the same vocabulary as in ‘Zipf dis-
tribution’, but with a uniform unigram probability.
The text does not follow any word order.
Synthetic Vocabulary. Words are selected with
uniform distribution from a vocabulary to form

sentences. However, instead of a vocabulary of En-
glish words, the words in the vocabulary are also
synthetically generated (3 letter combinations of
lower-case alphabets). In this text, the words do
not possess morphology in addition to no syntax.
In Tables 2 and 3, we note that surprisingly,
even models pretrained on Zipfian and uniform
distribution text continue to outperform the non-
pretrained models. In fact, the Zipf version’s best
accuracy is 3% higher than the standard Amazon
data version and 2% compared to perturbed Ama-
zon shuffled data version in case of BERT. Zipf
outperforms standard amazon data by 1% and lags
behind amazon shuffle by 3% for DeBERTA. The
Uniform distribution version lags behind Zipf by
9% and 2% for BERT and DeBERTa respectively.
We note that the Zipf and Uniform versions still use
the prebuilt vocabulary from the Amazon data, and
hence this text maintains morphological structure.
However, the gains finally disappear for the Syn-
thetic vocabulary model, which cannot leverage
morphological structure in the text, and its perfor-
mance is similar to the non-pretrained models.

8 Conclusion

We explore the non-linguistic inductive biases of
pretrained LMs. While the general trend (that pre-
training helps) is unsurprising, our analysis with
models pretrained on different text corpora shows
that this is not due to the model seeing related top-
ics during pretraining. We find that these gains
persist even in absence of any shared linguistic
structure (in cross-lingual settings). Our observa-
tion that this behavior is seen even when pretraining
on synthetically generated languages is intriguing

6947

and can be explored further by future work.

Acknowledgements

This work was supported in part by NSF grant
DRL2112635. We are also thankful to the anony-
mous reviewers for their thoughtful suggestions.

Ethics and Broader Impact

Our synthetic datasets contain no linguistic or so-
cial information, and hence cannot introduce any
type of social, gender and cultural biases in our
analyses. The datasets used in the section 7 are pub-
licly available, and should contribute towards the
goal of reproducible research. In terms of broader
impact, our results suggest that LMs accrue helpful
inductive biases for non-linguistic reasoning during
pretraining. This suggests that LMs can potentially
be explored for a broader range of downstream ap-
plications rather than language-related tasks, which
is the current predominant focus of these models.
In the long run, making such foundational models
available for learning a broad range of tasks from
limited data can make predictive Al technologies
more accessible than in the current day.

Limitations

In terms of findings, we find strong evidence of
pretraining on text providing advantageous induc-
tive biases for non-linguistic tasks. Our analysis
in Section 6 suggests that this is not simply a regu-
larization effect. However, it does not definitively
rule out this possibility since direct comparisons
between pretrained and non-pretrained networks
(even of different sizes) are difficult. Also, the
scope of our analysis here is limited to small to
mid-sized language models (with tens of millions
of parameters), rather than massive language mod-
els such as GPT3 (with tens of billions of param-
eters). Finally, we note that all tasks chosen for
this analysis are formulated as classification, where
the number of classes is not high. Hence, learning
some of the tasks might easier than possible more
general formulations. e.g., quantitative computa-
tion.

References

Satwik Bhattamishra, Kabir Ahuja, and Navin Goyal.
2020. On the Ability and Limitations of Transform-
ers to Recognize Formal Languages. In Proceed-
ings of the 2020 Conference on Empirical Methods

in Natural Language Processing (EMNLP), pages
7096-7116, Online. Association for Computational
Linguistics.

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015. A large anno-
tated corpus for learning natural language inference.
In Proceedings of the 2015 Conference on Empiri-
cal Methods in Natural Language Processing, pages
632-642, Lisbon, Portugal. Association for Compu-
tational Linguistics.

Alon Brutzkus and Amir Globerson. 2021. On the in-
ductive bias of a {cnn} for distributions with orthog-
onal patterns.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi-
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin,
Ting Liu, Daxin Jiang, and Ming Zhou. 2020. Code-
BERT: A pre-trained model for programming and
natural languages. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages
1536-1547, Online. Association for Computational
Linguistics.

Ruining He and Julian McAuley. 2016. Ups and downs:
Modeling the visual evolution of fashion trends with
one-class collaborative filtering. In proceedings of
the 25th international conference on world wide web,
pages 507-517.

David P Helmbold and Philip M Long. 2015. On the
inductive bias of dropout. The Journal of Machine
Learning Research, 16(1):3403-3454.

Valentin Hofmann, Janet Pierrehumbert, and Hinrich
Schiitze. 2021. Superbizarre is not superb: Deriva-
tional morphology improves BERT’s interpretation
of complex words. In Proceedings of the 59th Annual
Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 3594-3608, Online. Association for
Computational Linguistics.

Valentin Hofmann, Janet B Pierrehumbert, and Hinrich
Schiitze. 2020. Dagobert: Generating derivational
morphology with a pretrained language model. arXiv
preprint arXiv:2005.00672.

Eugene Kharitonov and Rahma Chaabouni. 2021. What
they do when in doubt: a study of inductive biases
in seq2seq learners. In International Conference on
Learning Representations.

Yongjie Lin, Yi Chern Tan, and Robert Frank. 2019.
Open sesame: Getting inside bert’s linguistic knowl-
edge. arXiv preprint arXiv:1906.01698.

R. Thomas McCoy, Robert Frank, and Tal Linzen. 2020.
Does syntax need to grow on trees? sources of hier-
archical inductive bias in sequence-to-sequence net-
works. Transactions of the Association for Computa-
tional Linguistics, 8:125-140.

6948

https://doi.org/10.18653/v1/2020.emnlp-main.576
https://doi.org/10.18653/v1/2020.emnlp-main.576
https://doi.org/10.18653/v1/D15-1075
https://doi.org/10.18653/v1/D15-1075
https://openreview.net/forum?id=5JnS8wROG9
https://openreview.net/forum?id=5JnS8wROG9
https://openreview.net/forum?id=5JnS8wROG9
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2021.acl-long.279
https://doi.org/10.18653/v1/2021.acl-long.279
https://doi.org/10.18653/v1/2021.acl-long.279
https://openreview.net/forum?id=YmA86Zo-P_t
https://openreview.net/forum?id=YmA86Zo-P_t
https://openreview.net/forum?id=YmA86Zo-P_t
https://doi.org/10.1162/tacl_a_00304
https://doi.org/10.1162/tacl_a_00304
https://doi.org/10.1162/tacl_a_00304

Nasrin Mostafazadeh, Michael Roth, Annie Louis, Ian Tenney, Dipanjan Das, and Ellie Pavlick. 2019.

Nathanael Chambers, and James Allen. 2017. LS-
DSem 2017 shared task: The story cloze test. In
Proceedings of the 2nd Workshop on Linking Models
of Lexical, Sentential and Discourse-level Seman-
tics, pages 4651, Valencia, Spain. Association for
Computational Linguistics.

BERT rediscovers the classical NLP pipeline. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4593—
4601, Florence, Italy. Association for Computational
Linguistics.

Avijit Thawani, Jay Pujara, Filip Ilievski, and Pedro

Aakanksha Naik, Abhilasha Ravichander, Carolyn Rose,
and Eduard Hovy. 2019. Exploring numeracy in
word embeddings. In Proceedings of the 57th An-
nual Meeting of the Association for Computational
Linguistics, pages 3374-3380, Florence, Italy. Asso-
ciation for Computational Linguistics.

Szekely. 2021. Representing numbers in NLP: a
survey and a vision. In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 644—656, Online. As-
sociation for Computational Linguistics.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt Ivan Vulié, Simon Baker, Edoardo Maria Ponti, Ulla

Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume I (Long Papers), pages 2227-2237,
New Orleans, Louisiana. Association for Computa-
tional Linguistics.

Steven T Piantadosi. 2014. Zipf’s word frequency law
in natural language: A critical review and future di-
rections. Psychonomic bulletin & review, 21(5):1112—-
1130.

Luzi Sennhauser and Robert Berwick. 2018. Evaluat-
ing the ability of LSTMs to learn context-free gram-
mars. In Proceedings of the 2018 EMNLP Workshop
BlackboxNLP: Analyzing and Interpreting Neural
Networks for NLP, pages 115-124, Brussels, Bel-
gium. Association for Computational Linguistics.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual

Petti, Ira Leviant, Kelly Wing, Olga Majewska, Eden
Bar, Matt Malone, Thierry Poibeau, Roi Reichart,
and Anna Korhonen. 2020a. Multi-SimLex: A large-
scale evaluation of multilingual and crosslingual lexi-
cal semantic similarity. Computational Linguistics,
46(4):847-897.

Ivan Vuli¢, Edoardo Maria Ponti, Robert Litschko,

Goran Glavas, and Anna Korhonen. 2020b. Prob-
ing pretrained language models for lexical semantics.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 7222-7240, Online. Association for Computa-
tional Linguistics.

Eric Wallace, Yizhong Wang, Sujian Li, Sameer Singh,

and Matt Gardner. 2019. Do NLP models know num-
bers? probing numeracy in embeddings. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing (EMNLP-1JCNLP), pages 5307-5315, Hong
Kong, China. Association for Computational Linguis-
tics.

Meeting of the Association for Computational Lin- Alex Wang, Yada Pruksachatkun, Nikita Nangia, Aman-

guistics (Volume 1: Long Papers), pages 1715-1725,
Berlin, Germany. Association for Computational Lin-
guistics.

Natalia Skachkova, Thomas Trost, and Dietrich Klakow.

preet Singh, Julian Michael, Felix Hill, Omer Levy,
and Samuel R Bowman. 2019. Superglue: A stickier
benchmark for general-purpose language understand-
ing systems. arXiv preprint arXiv:1905.00537.

2018. Closing brackets with recurrent neural net- Alex Warstadt, Yu Cao, loana Grosu, Wei Peng, Ha-

works. In Proceedings of the 2018 EMNLP Work-
shop BlackboxNLP: Analyzing and Interpreting Neu-
ral Networks for NLP, pages 232-239, Brussels, Bel-
gium. Association for Computational Linguistics.

Mirac Suzgun, Yonatan Belinkov, Stuart Shieber, and
Sebastian Gehrmann. 2019a. LSTM networks can
perform dynamic counting. In Proceedings of the
Workshop on Deep Learning and Formal Languages:
Building Bridges, pages 44-54, Florence. Associa-
tion for Computational Linguistics.

gen Blix, Yining Nie, Anna Alsop, Shikha Bordia,
Haokun Liu, Alicia Parrish, Sheng-Fu Wang, Jason
Phang, Anhad Mohananey, Phu Mon Htut, Paloma
Jeretic, and Samuel R. Bowman. 2019. Investigating
BERT’s knowledge of language: Five analysis meth-
ods with NPIs. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP),
pages 2877-2887, Hong Kong, China. Association
for Computational Linguistics.

Mirac Suzgun, Yonatan Belinkov, and Stuart M. Shieber. Gail Weiss, Yoav Goldberg, and Eran Yahav. 2018. On

2019b. On evaluating the generalization of LSTM
models in formal languages. In Proceedings of the
Society for Computation in Linguistics (SCiL) 2019,
pages 277-286.

6949

the practical computational power of finite precision
RNNs for language recognition. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers),

https://doi.org/10.18653/v1/W17-0906
https://doi.org/10.18653/v1/W17-0906
https://doi.org/10.18653/v1/P19-1329
https://doi.org/10.18653/v1/P19-1329
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/W18-5414
https://doi.org/10.18653/v1/W18-5414
https://doi.org/10.18653/v1/W18-5414
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/W18-5425
https://doi.org/10.18653/v1/W18-5425
https://doi.org/10.18653/v1/W19-3905
https://doi.org/10.18653/v1/W19-3905
https://doi.org/10.7275/s02b-4d91
https://doi.org/10.7275/s02b-4d91
https://doi.org/10.18653/v1/P19-1452
https://doi.org/10.18653/v1/2021.naacl-main.53
https://doi.org/10.18653/v1/2021.naacl-main.53
https://doi.org/10.1162/coli_a_00391
https://doi.org/10.1162/coli_a_00391
https://doi.org/10.1162/coli_a_00391
https://doi.org/10.18653/v1/2020.emnlp-main.586
https://doi.org/10.18653/v1/2020.emnlp-main.586
https://doi.org/10.18653/v1/D19-1534
https://doi.org/10.18653/v1/D19-1534
https://doi.org/10.18653/v1/D19-1286
https://doi.org/10.18653/v1/D19-1286
https://doi.org/10.18653/v1/D19-1286
https://doi.org/10.18653/v1/P18-2117
https://doi.org/10.18653/v1/P18-2117
https://doi.org/10.18653/v1/P18-2117

pages 740745, Melbourne, Australia. Association
for Computational Linguistics.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le,
Mohammad Norouzi, Wolfgang Macherey, Maxim
Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al.
2016. Google’s neural machine translation system:
Bridging the gap between human and machine trans-
lation. arXiv preprint arXiv:1609.08144.

Zhiyong Wu, Yun Chen, Ben Kao, and Qun Liu. 2020.
Perturbed masking: Parameter-free probing for ana-
lyzing and interpreting BERT. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 4166—4176, Online. Asso-
ciation for Computational Linguistics.

Rui Xu, Xintao Wang, Kai Chen, Bolei Zhou, and
Chen Change Loy. 2021. Positional encoding as
spatial inductive bias in gans. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 13569-13578.

Mengjie Zhao, Philipp Dufter, Yadollah Yaghoobzadeh,
and Hinrich Schiitze. 2020. Quantifying the contextu-
alization of word representations with semantic class
probing. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2020, pages 1219-1234,
Online. Association for Computational Linguistics.

6950

https://doi.org/10.18653/v1/2020.acl-main.383
https://doi.org/10.18653/v1/2020.acl-main.383
https://doi.org/10.18653/v1/2020.findings-emnlp.109
https://doi.org/10.18653/v1/2020.findings-emnlp.109
https://doi.org/10.18653/v1/2020.findings-emnlp.109

A Appendix

Baseline p-value
SNLI 5.45 x 107°
SNLI sort 3.33 x 107
SNLI shuffle 5.5 x 1074
Amazon 7.48 x 10~°
Amazon sort 7.2 x107°
Amazon shuffle 4.5 x 1075
Multilingual BERT | 9.07 x 10~
Chinese BERT 8.9 x 107°
Code BERT 8.1x107°
ROC 2.64 x 107°
Zipf distribution | 7.45 x 107°
Uniform distribution | 4.61 x 104
Synthetic vocabulary | 1.2 x 107!

Table 4: Statistical significance values (paired t-test)
between non-pretrained model and other baseline BERT
models trained on different datasets.

Baseline p-value
SNLI 2.45 x 107°
SNLI sort 1.33 x 1074
SNLI shuffle 4.3 x107°
Amazon 6.32 x 1074
Amazon sort 8.7 x107°
Amazon shuffle 7.3 x107°
Multilingual BERT | 9.07 x 107°
ROC 214 x 1073
Zipf distribution 3.1x1073
Uniform distribution | 4.61 x 10~*
Synthetic vocabulary | 1.3 x 107!

Table 5: Statistical significance values (paired t-test)
between non-pretrained model and other baseline De-
BERTA models trained on different datasets.

A.1 Implementation details

For transformer LMs, we add a fully connected
classification layer on the top of final encoder
layer. The pooled representations from the final
encoder layer are then passed onto fully connected
layer. We train these models in an end-to-end man-
ner. For the RNN LMs, we first pretrain LM onto
the task. The final word representations are the
weighted sum of three layers. Max-pooling op-
eration is applied on the time step dimension for
these weighted representations. A final classifica-
tion layer is trained with the pooled representations.

A.2 Computational requirements

All the models are run using PyTorch framework on
4 geforce gtx 1080 gpus. Each of the fine-tuning ex-
periments takes about 5 gpu hours and pre-training
takes about 10 gpu hours.

A.3 Statistical significance

We perform a paired t-test between pretrained and
non-pretrained models of the LMs on all the tasks.
The statistical significance values are shown in the
table 6. We also calculated the paired t-value be-
tween non-pretrained model and BERT and De-
BERTA pretrained on different datasets. The paired
t-values are shown in the table 4 and 5.

6951

Accuracy

T T T T T T T T T T T
0 1000 2000 3000 4000 5000 6000 7000 800D 500010000
Sample Size

(a) DeBERTa

—l— pretrained

--#-- nan-pretrained

Accuracy

857
f i
! HEA
s])
lg. /
7
f .'I
v) vy
\ \
{n .-l N
- L \
go ¥ =
—a—a—8
—yg—
-
. i, il
.

T
0

T T T T T T T T T T
1000 2000 3000 4000 5000 600D 7000 800D 900010000
Sample Size

(b) BERT large

—Jll— pretrained

--@-- non-pretrained

Figure A.1: Performance comparison of pretrained and non-pretrained models of DeBERTa and BERT large on
four quantitative computation tasks (odd classification, even classification, odd even classification and decimal
operation).

Accuracy

100 4
a0 4
a0 4
70 4
&0 4
50 -
40 4
0 4
20 4
10 4

T — T T T T — —
0 1000 2000 3000 4000 5000 6000 7000 BOOO 500010000
Sample Size

(a) DeBERTa

—l— pretrained

--#¢-- non-pretrained

N Decimal & Word
s Mean

Hm Median
s Mode

Accuracy

100 4
90 4
a0 4
70 4
60 4
50
40 4
30 4
20 4
10 4

— T T T — T T T T
0 1000 2000 3000 4000 5000 BOQD 7000 8OO0 800010000
Sample Size

(b) BERT large

—l— pretrained
--@-- non-pretrained
I Decimal & Word
BN Mean

I Median
s Made

Figure A.2: Performance comparison of pretrained and non-pretrained models of DeBERTa and BERT large on four
quantitative tasks (mean, median, mode, decimal & word operation).

Accuracy

Ty

T T T T
1000 1500 2000 2500

Sample Size

(a) BERT small

—l— pretrained
--@-- non-pretrained
N AA*BB*CC*DD*EE*
. {0,1.2}+02*

Accuracy

I ol i il :
A o

-
o

T T T T
1000 1500 2000 2500

Sample Size

(b) ELMO

o1 E—n

—l— pretrained
--@-- non-pretrained
N AA*BB*CC*DD*EE*
. {0,1,2}%02*

Figure A.3: Performance comparison of pretrained and non-pretrained models of DeBERTa, and BERT large on
regular expression tasks (AA*BB*CC*DD*EE* and recognize {0,1,2}*02%).

Accuracy

—l— pretrained

--#¢-- non-pretrained

I Falindrome
N Anagram

I sogram
s Tautonym

T — T T T T T— U—
0 1000 2000 3000 4000 5000 6000 7000 BOOD 900010000
Sample Size

(a) DeBERTa

Accuracy

—l— pretrained

--@-- non-pretrained

I Faslindrome
N Anagram

I lsogram
S Tautonym

 — T T T T— T T T T
0 1000 2000 3000 4000 5000 6000 7000 8000 300010000
Sample Size

(b) BERT large

Figure A.4: Performance comparison of pretrained and non-pretrained models of DeBERTa and BERT large on four
string reasoning (palindrome, anagram, isogram and tautonym classification).

6952

—l— pretrained 100 oMy | w T 1 —ll— pretrained
--@-- non-pretrained 90— g——m 2| | --@- non-pretrained
B length 80 / N Length
= Unique 704 d s Unique
= . Parity = . Parity
o uoe0+
© Vowels © Vowels
a I Ffrequent a 50 Bl Frequent
ks £ 40+
10

[
o &5 B
-

T T T T T T T T T T T
0 1000 2000 3000 4000 5000 OO0 7000 8000 900010000
Sample Size

T T T T T T T T T T T
0 1000 2000 3000 4000 5000 6000 7000 800D 500010000
Sample Size

(a) DeBERTa (b) BERT large

Figure A.5: Performance comparison of pretrained and non-pretrained models of DeBERTa and BERT large on five
string reasoning tasks (length of a string, maximum frequent character, vowels classification, parity check and count
of unique character).

Task BERT small | DeBERTa | BERT large | ELMO
0dd classification 104x107%2 | 88x 107" [29x 1073 | 7.35 x 1077
Even classification 81x1072 | 87x1072 | 525x 1072 | 7.35 x 10~ 7
0dd even classification 22x 1071 | 6.96 x 1077 | 6.46 x 107* | 7.35 x 1077
Decimal operation 41x107* | 7.07x 1071 | 1.35 x 107° | 3.49 x 10~
Decimal & word operation 6.85x 1078 | 6.43 x 1077 | 4.34 x 1078 | 5.39 x 1077
Mean 9.5x 1072 | 7.56 x 1071 | 7.8 x 1076 | 2.2x 1077
Median 9.28 x 1076 | 8.04 x 107! | 5.68 x 10~7 | 1.99 x 10~
Mode 9.2x 1072 | 227x107' | 9.2x 107! | 3.35 x 1077
Recognize {0,1,2}*02%* 1.31 x 107" | 84x 107! | 434 x 107! | 548 x 107°
Recognize AA*BB*CC*DD*EE* | 4.06 x 107! | 6.97 x 107! | 4.02 x 107! | 2.39 x 10~
Palindrome classification 434 %1077 | 21 x1073 | 1.85 x 1077 | 1.97 x 10~
Anagram classification 51x 1076 | 1.44 x 1075 | 3.45 x 1077 | 7.46 x 1076
Isogram classification 1.28 x 1077 | 4.77 x 1073 | 3.47 x 107* | 2.18 x 1076
Tautonym classification 1.92 x 1077 | 1.29 x 1075 | 1.69 x 1078 | 4.39 x 1076
Length of a string 2.7x 1071 | 1.27x107% | 3.39 x 107* | 7.07 x 1074
Count of unique characters 1.79 x 107% | 27x 1072 | 1.23x 1077 | 3.18 x 1076
Parity check 2.68 x 107% | 4.66 x 107* | 4.34 x 10~" | 6.05 x 1076
Vowels classification 4.26 x 1071 | 9.5x 1071 | 7.22x 107! | 5.11 x 1072
Maximum frequent character 5.02 x 107 | 5.65 x 107 | 6.07 x 107! | 6.47 x 107!

6953

Table 6: Statistical significance values (paired t-test) between pretrained and non-pretrained model on all the tasks.

