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Abstract

Large language models (LMs) have rapidly be-
come a mainstay in Natural Language Process-
ing. These models are known to acquire rich
linguistic knowledge from training on large
amounts of text. In this paper, we investi-
gate if pre-training on text also confers these
models with helpful ‘inductive biases’ for non-
linguistic reasoning. On a set of 19 diverse
non-linguistic tasks involving quantitative com-
putations, recognizing regular expressions and
reasoning over strings. We find that pretrained
models significantly outperform comparable
non-pretrained neural models. This remains
true also in experiments with training non-
pretrained models with fewer parameters to ac-
count for model regularization effects. We fur-
ther explore the effect of text domain on LMs
by pretraining models from text from different
domains and provenances. Our experiments
surprisingly reveal that the positive effects of
pre-training persist even when pretraining on
multi-lingual text or computer code, and even
for text generated from synthetic languages.
Our findings suggest a hithertho unexplored
deep connection between pre-training and in-
ductive learning abilities of language models'.

1 Introduction

Pretrained Language Models (LMs) have shown
singular succcess on a range of natural language un-
derstandings tasks, to the extent that they have be-
come foundational for contemporary NLP systems.
Several works have investigated why pretraining
works so well (Warstadt et al., 2019; Zhao et al.,
2020). In particular, studies have shown that the
pretrained LMs like BERT capture linguistic knowl-
edge about syntax (Lin et al., 2019; Wu et al., 2020),
semantics (Vuli¢ et al., 2020b,a) and morphology
(Hofmann et al., 2020, 2021). In fact, Tenney et al.
(2019) demonstrated that learned representations
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Figure 1: We investigate the effect of pretraining of
languages models on learning non-linguistic tasks using
three task paradigms involving symbolic reasoning.

in pretrained LMs even internally reflect the clas-
sical NLP pipeline. Since most NLP benchmarks
such as SuperGLUE (Wang et al., 2019) naturally
are focused on tasks such as textual entailment
and reading comprehension that require linguistic
knowledge and reasoning, it is unsurprising that
LMs have achieved strong results on these tasks.
On the other hand, little work so far has explored
the abilities of pretrained LMs for learning non-
linguistic tasks.

In this paper, we explore whether pretraining on
text is inherently about learning language, or if pre-
training also imbues LMs with skills for symbolic
manipulation and non-linguistic reasoning (for ex-
ample, performing quantitative computation such
as finding the median of a set of numbers, recog-
nizing regular expressions, or identifying whether
a string is a palindrome, as shown in Figure 1).
In other words, we investigate whether and how
pretraining develops helpful inductive biases for
non-linguistic reasoning. For this analysis, we cre-
ate a set of 19 tasks from three categories of task
paradigms: quantitative computation (§3.1), recog-
nizing regular expressions (§3.2), and string rea-
soning (§3.3). Figure 1 shows an example for each
category, and the full list of tasks is described in the
table 1. We experiment with transformer and RNN
based LMs (§4) for learning these tasks, and per-
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Task Input Eg. Output Eg. | Classes | Input range
Odd classification 4210 0 0-1 [1, 20000]
Even classification 4210 1 0-1 [1, 20000]
Odd even classification 4210 even 1 0-1 [1, 20000]
Decimal operation 8727436 2 0-9 [1, 10000]
Decimal & word operation four/2 2 0-9 [1, 10000]
Mean 15,-8,15,-5,-14,-3 ? 0 0-9 [-15, 15]
Median 3,6,5,15,2,3,-6,-2,9,-3,-9,-5,-14 ? 2 0-9 [-15, 15]
Mode 5,9,7,0,2,5,3,3,3,0 ? 3 0-9 [0, 9]
Recognize {0, 1, 2}*02* 01202102222 1 0-1 [0, 2]
Recognize AA*BB*CC*DD*EE* | aaaaaaabbbbcccccddde 1 0-1 [a, e]
Palindrome classification aWXXWa 1 0-1 [a-z], [A-Z]
Anagram classification rGrPJhk-khGrPJr 1 0-1 [a-z],[A-Z]
Isogram classification vFJoSj 1 0-1 [a-z], [A-Z]
Tautonym classification stPvg-tPvga 1 0-1 [a-z], [A-Z]
Length of a string teeo 4 0-9 [a-z]
Count of unique characters deiieediid 3 0-9 [a-j]
Parity check 011101001110 0 0-1 [0, 1]
Vowels classification iivxcmoouo 0 0-9 [a-z]
Maximum frequent character jjjcjj 9 () 0-9 [a-j]

Table 1: Description of the non-linguistic tasks with input and output examples. Classes are the class labels for each
task. Input range denotes the range of the input operands in each task.

form a comparative analysis with (non-pretrained)
neural model variants from the perspective of learn-
ing metrics such as accuracy and sample efficiency.

Our experiments (§5) reveal that pretrained mod-
els overall perform substantially better and are
more sample efficient on most tasks. However,
there are significant differences and patterns in per-
formance between task types, as well as variance
between different LM architectures. Since non-
pretrained models do not have the benefit of reg-
ularization that comes from pretraining, a plausi-
ble reason for the discrepancy between them and
pretrained LMs might be underfitting of the non-
pretrained models when trained on comparatively
small dataset sizes. To account for this, we also
comprehensively explore the effect of model size
(§6) of non-pretrained models for both transformer
and RNN architectures. We find that the discrep-
ancy in performance remains even for smaller neu-
ral models, indicating that the differences are not
simply due to a mismatch in model and data sizes.

Finally, we investigate the role that pretraining
data plays in influencing task performance on non-
linguistic tasks (§7). We experiment with pretrain-
ing on different domains of text, pretraining on
perturbed representations of natural language text
(such as shuffled word order), pretraining on text of
computer programs (no linguistic properties of nat-
ural languages), pretraining on multi-lingual and
non-English text, and pretraining with synthetic
text (data sampled from synthetic distributions).

Our analysis reveals that the advantages of pretrain-
ing surprisingly persist with various degrees across
these variations, suggesting hithertho unexplored
connections between pretraining and the learning
abilities of language models. Our contributions are:

* We compare a range of pretrained LMs and non-
pretrained models on a carefully designed suite of
19 classifications tasks that require non-linguistic
reasoning.

* We comprehensively explore the role of the pre-
training data by experimenting with models pre-
trained from texts with different provenances.

* We establish that the positive effects of pretrain-
ing are not simply due to better model regulariza-
tion by experimenting with neural models with
different complexities and architectures.

2 Related Work

A body of work has investigated contextual word
embeddings to determine whether they capture as-
pects of mathematical meaning for numbers (Naik
et al., 2019). Wallace et al. (2019) probed numer-
ical supremacy on token embeddings of contex-
tual language models such as ELMO and BERT.
(Thawani et al., 2021) surveyed numerical under-
standing in NLP models using 7 sub-tasks such as
measurement estimation and word problems. Our
work diverges from these in exploring a richer set of
tasks including harder tasks such as set operations.
Further, previous methods explore mathematical
reasoning tasks posed as language problems, which

6941



conflates the problems of language and mathemati-
cal learning and also makes the datasets susceptible
to biases due to data collection. Our analysis cir-
cumvents both these issues by design.

Some previous works have explored the ability
of RNN and Transformer architectures for learning
regular languages (Weiss et al., 2018; Sennhauser
and Berwick, 2018; Suzgun et al., 2019b; Bhat-
tamishra et al., 2020), closing brackets (Skachkova
et al., 2018), and dynamic counting (Suzgun et al.,
2019a). However, they focus on the learnability of
these tasks with specific architectures, and do not
look at pretrained LMs, which are our focus here.

Finally, in our discussion, we conceptually
stretch the notion of inductive bias. The idea of
inductive bias is usually associated with specific
model types (McCoy et al., 2020; Kharitonov and
Chaabouni, 2021), architectures (Xu et al., 2021;
Brutzkus and Globerson, 2021) and regularization
approaches (Helmbold and Long, 2015). We be-
lieve that extending this to refer to learning tasks
with pretrained LMs is both reasonable and useful.

3 NILM

In this section, we describe the tasks used for our
analysis, which we refer to as NILM (measuring
Non-linguistic Inductive bias in Language Models).
The tasks correspond to three task paradigms: (1)
quantitative computation, (2) regular expressions,
and (3) string reasoning. Each task in NILM is posed
as a classification task. The descriptions for all the
tasks with input and output examples, class labels
and the input range are shown in Table 1. Each task
has a synthetically generated dataset with train/de-
v/test splits?. To avoid biases in the datasets, rel-
evant numbers and strings in individual examples
are uniformly sampled from the appropriate ranges.

3.1 Quantitative computation

This task paradigm focuses on tasks involving arith-
metic and set statistics.

0dd classification. Classify if a number is odd.
Even classification. Classify if a number is even.
Odd even classification. For a given number N
and a string “even” or “odd”, classify if the number
satisfies the string condition.

Decimal operation. Subtract or divide two num-
bers. Operands are represented in decimal notation.

*The training set size for all tasks is 10K, dev set size is 1K
and test set size is 1K, except for tasks on recognizing regular
expressions, where the test set size is 2K following previous
work (Bhattamishra et al., 2020).

Decimal & word operation. Subtract or divide
two numbers. Operands are represented in decimal
or word notation.

Mean. Given a set of numbers, output the mean.
Median. Given a set, output the median.

Mode. Given a set of numbers, output the mode.

3.2 Recognizing regular expressions

This task paradigm focuses on recognizing regular
expressions. The training data consists of positive
and negative examples of strings matching a regu-
lar expression (Bhattamishra et al., 2020).
Recognize {0,1,2}*02*. Recognize if a pattern
matches {0,1,2}*02*. The maximum length of the
patterns is 20.

Recognize AA*BB*CC*DD*EE*. Recognize if a
pattern matches AA*BB*CC*DD*EE*. The maxi-
mum length of the patterns is 30.

3.3 String reasoning

This task paradigm focuses on reasoning tasks over
individual strings or pairs of strings.

Palindrome classification. A string is a palin-
drome if it reads the same forward and backward.
The task is to classify whether a given string is a
palindrome. The string length ranges from 1 to 15.
Anagram classification. Two strings are anagrams
if one is formed by rearranging letters from the
other. The task is to classify if a pair of strings are
anagrams. The string length ranges from 2 to 15.
Isogram classification. A string is an isogram if it
has no repeating characters. The task is to classify
whether a given string is an isogram. The string
length ranges from 1 to 52.

Tautonym classification. A tautonym is a word
which can be broken down into two identical parts,
with the same spelling. The task is to classify
whether a given string is a tautonym. The string
length ranges from 1 to 10.

Length of a string. Output the length of a given
string. The string length ranges from 1 to 10.
Count of unique characters. Given a string, count
the number of unique characters in it. The string
lengths ranges from 10 to 30.

Parity check. Given a binary string, output if the
counts of ones and zeros are the same. The maxi-
mum length of the binary string is 20.

Vowels classification. Given a string, classify if the
string contains only vowel characters. The string
length ranges from 3 to 10.

Maximum frequent character. Given a string,
output the character with the maximum frequency.
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Figure 2: Performance comparison of pretrained and non-pretrained models of BERT small, and ELMO on four
quantitative computation tasks (odd classification, even classification, odd even classification and decimal operation).
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Figure 3: Performance comparison of pretrained and non-pretrained models of BERT small, and ELMO on four
quantitative computation tasks (mean, median, mode and decimal & word operation tasks).

The string length ranges from 5 to 30.

4 Models & variants

Next, we describe the LMs and their variants used
in NILM. We experiment with four language models,
based on both Transformer and RNN architectures.
BERT small. This is the bert-base-uncased model
with 12 transformer encoder layers and the dimen-
sion of the representations is 768. BERT tokenizer
is based on the WordPiece model (Wu et al., 2016).
BERT large. This is the bert-large-uncased model
which has 24 transformer encoders and representa-
tions have 1024 dimensions.

DeBERTa. This is a transformer based language
model and its tokenizer is built using Byte Pair En-
coding (Sennrich et al., 2016). We consider the De-
BERTa base model. It has 12 transformer encoder
layers and representations have 768 dimensions.
ELMO. This is an LSTM based language model
(Peters et al., 2018). It has 3 layers and the output
representations have 1024 dimensions.

Our experiments are based on pretrained and
non-pretrained variants of these architectures. For
pretrained variants, the weights are initialized with
the pretrained weights. The tokenization on the

training data is performed using the pre-built vo-
cabulary. For the non-pretrained neural models,
the weights are initialized randomly and updated
during training. The tokenizer used is the same as
in the pretrained variant.

All the models are trained with varying train-
ing data of sizes 10, 20, 40, 80, 160, 320, 640,
1280, 2560, 5120, 6000, 7000, 8000, 9000 and
10000. For training set sizes of less than 1000 sam-
ples, we report the average of 10 runs. For training
set sizes greater than 1000, all reported numbers
are averages of 5 runs. In the next section, we
present a comparative analysis of pretrained and
non-pretrained models.

5 Comparative Evaluation

Next, we compare the performance of pretrained
and non-pretrained models on tasks in NILM.

Quantitative computation: Figure 2 shows results
on odd classification, even classification, odd even
classification and decimal operation tasks. We find
that pretrained LMs outperformed non-pretrained
model for all of these tasks. Further, Transformer-

3Details, including statistical significance results with the
paired t-value test, are included in Appendix 6
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Figure 4: Performance comparison of pretrained and non-pretrained models of BERT small, and ELMO on regular
expression tasks (AA*BB*CC*DD*EE* and recognize {0,1,2}*02%).

based LMs outperformed the RNN-based ELMO
models in all the tasks*. We note that for the rel-
atively easy tasks such as odd and even classifica-
tions, the pretrained LMs show more stable training.
However, for harder tasks such as Decimal oper-
ations (where the baseline performance is around
10%), no models are able to learn the task well
even with 10K labeled examples.

Figure 3 shows results on median, mean, mode
and decimal & word operation tasks. The median
task requires complex reasoning (sorting numbers
and computing the middle element), and shows sig-
nificantly lower performance than the mean and
mode tasks for the non-pretrained models even
with the maximum training set size. The pre-
trained LM models show little eventual difference
in performance between these three tasks. On the
other hand, for the easiest of these tasks (mode),
non-pretrained models actually show higher perfor-
mance than pretrained LMs in the low data regime.

Recognizing regular expressions: Figure 4 shows
the comparative performance of pretrained LMs on
non-pretrained models on the two tasks involving
recognizing regular expressions. For both tasks, we
note that the pretrained LMs can perfectly learn the
tasks with many fewer labeled examples compared
to the non-pretrained models. In both cases, the
non-pretrained Transformer-based models eventu-
ally reach optimal performance as well. However,
curiously the ELMO based non-pretrained models
struggle with learning both tasks.

String reasoning: Figures 6 show the results on
Palindrome, Anagram, Isogram and Tautonym clas-
sification. These tasks require character compari-
son within the string or with another string. Again,

“We will focus on BERT small as representative of trans-
former models. Results for BERT large and DeBERTa follow
similar trends, and are included in the supplementary material

the pretrained variants consistently outperformed
non-pretrained models variants in all of these tasks.
In particular, the non-pretrained models completely
fail to learn the Anagram and Palindrome tasks
even for the largest training set size. Again, Trans-
former based LMs outperform LSTM based LMs.

Figure 7 shows the results on vowels classifi-
cation, maximum frequent character, length of a
string and parity check tasks. These tasks don’t
require intra-string comparisons. We see that most
Transformer-based variants eventually achieve opti-
mal performance. For these simpler tasks, we again
observe several instances where the Transformer-
based non-pretrained models actually outperform
pretrained LMs in the low data regime.

6 Effect of model size

NP {110M)
NP (42M)
NP (29M)
NP (11.3M)
NP (4.4M)

PT (110M)

Accuracy
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Figure 5: Effect of model size on non-pretrained mod-
els. NP denotes a non-pretrained model and PT denotes
the pretrained model. Mid-sized non-pretrained models
outperform bigger and smaller variants, but still perform
significantly lower than pretrained LM models. Results
are the average of six representative tasks: palindrome
classification, anagram classification, isogram classifi-
cation, tautonym classification, mean and median.

As previously mentioned, a possible explanation
for the underperformance of non-pretrained mod-
els ise that the large number of parameters of the
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architecture relative to the sizes of the training data
might be leading to under-fitting. To test this, we
experiment with smaller Transformer-based mod-
els with varying numbers of parameters.

Figure 5 illustrates the effect of model sizes of
non-pretrained model. The original 110 million pa-
rameter model has 12 encoder layers, 12 attention
heads, and 768 dimensional representations. The
42 million parameter model has 8 encoder layers,
8 attention heads and 512 dimensional represen-
tations. The 29 million parameter model has 4
encoder layers, 8 attention heads and 512 dimen-
sional representations. The 11 million parameter
model has 4 encoder layers, 4 attention heads and
256 dimensional representations. The smallest 4
million parameter model has 2 encoder layers, 2 at-
tention heads and 128 dimensional representations.

As seen in the figure, reducing the model size
significantly improves the average performance of
the non-pretrained models over 6 representative
tasks. However, the smallest models show a perfor-
mance drop. Most significantly, even the best per-
forming intermediate-sized architectures are signif-
icantly worse than the pretrained LM models. This
strongly suggests that the discrepancy between pre-
trained and non-pretrained models is not simply
due to a mismatch between model and data sizes.

7 Effects of Pretraining Data

We observe that pretrained LMs consistently per-
formed better than non-pretrained models. This
leads to the natural question of what role the text
data used for pretraining plays in the process. Next,
we investigate this in depth by experimenting with
language models pretrained on different types of
text. For this, we pretrain models using the BERT-
small and DeBERTa architectures and an MLM
objective on different text datasets, and evaluate
the performance of these models on NILM tasks.

7.1 Variance with text domain

We first explore models pretrained on three differ-
ent domains of text.

SNLI. We pretrained BERT small from scratch on
SNLI data (Bowman et al., 2015). It has 1000k
sentences (570k pairs of text and hypothesis).
Amazon reviews. We selected 500k movies and
tv reviews from the larger Amazon reviews dataset
(He and McAuley, 2016) and used for pretraining.
Since reviews are in a free-text format, and their
collection was not tailored with a NLP task in mind,

they might be more representative of the complex-
ity of real-world language use than SNLI.
ROC. ROC is a corpora of 100K children stories,
each made up of five sentences (Mostafazadeh
et al., 2017). The language in ROC is relatively
simple in both vocabulary and sentence structure.
Tables 2 and 3 shows the average accuracy of
six non-linguistic tasks (palindrome classification,
isogram classification, tautonym classification, odd
even classification, decimal operation and median)
fine-tuned using different BERT and DeBERTA
representations respectively. We note that the mod-
els pretrained on all three domains outperformed
the non-pretrained model (NP). This suggests that
the results of experiments in Section 5 generalize
to new text corpora for pretraining, and do not rely
on having access to text on specific topics during
pretraining. This is a non-trivial result, since it sug-
gests for example, that the higher performance of
pretrained models on tasks such as palindrome and
anagram classification is not due to the pretrained
models having seen information about such con-
cepts during pretraining. This is especially so since
the results even generalize to ROC stories, which
contain no information on such technical concepts.

7.2 Perturbed text

Next, we experiment with perturbing the text used
for pretraining by changing the order of words in
the text. We explore the following models:

SNLI sort. The words in the sentences of SNLI
dataset are sorted based on alphabetical order.
SNLI shuffle. We randomly shuffle words in sen-
tences in the SNLI dataset.

Amazon reviews sort. Similar to SNLI sort, the
words in sentences are alphabetically sorted.
Amazon reviews shuffle. We randomly shuffle
words in sentences in the Amazon reviews dataset.
We observe that models pretrained with perturbed
text also significantly outperformed non-pretrained
models, and perform comparably to the original
pretrained LMs. For the SNLI dataset, there is 3%
drop in best performance when pretrained on SNLI
sort and 2% drop in performance when pretrained
on SNLI shuffle for BERT (Table 2). In fact, for
DeBERTa, SNLI shuffle outperformed the standard
SNLI by 2% (Table 3). Similarly, the Amazon
sort and Amazon shuffle versions outperformed or
achieved similar performance as the standard Ama-
zon data version. A likely explanation for this is
that, even though syntactic word order is disturbed
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Figure 6: Performance comparison of pretrained and non-pretrained models of BERT small, and ELMO on four
string reasoning tasks (palindrome, anagram, isogram and tautonym classification).
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Figure 7: Performance comparison of pretrained and non-pretrained models of BERT small, and ELMO on five
string reasoning tasks (length of a string, maximum frequent character, vowels classification, parity check and count

of unique character).

Sample SNLI SNLI Amz Amz X-ling Chinese Code Syn

size SNLI sort shuffle Amz sort shuffle ROC BERT BERT BERT Zipf | Unif | Voc NP
10 37 39 38 36 36 36 36 38 38 37 38 36 36 37
20 37 37 37 36 38 38 38 37 37 38 37 37 37 37
40 37 38 36 37 36 36 36 42 42 37 42 36 37 37
80 38 40 40 37 38 38 38 55 55 47 55 36 36 38
160 38 40 37 37 40 40 40 56 56 37 56 37 37 39
320 40 49 41 38 41 41 41 64 64 61 64 39 37 41
640 44 60 47 43 52 52 52 75 75 69 75 42 39 44
1280 60 71 63 55 69 69 69 80 80 92 80 52 41 50
2560 76 84 75 75 79 79 79 81 81 89 81 59 48 50
5120 82 87 82 83 89 89 89 94 94 97 94 71 58 58
6000 83 87 83 85 90 90 90 94 94 96 94 73 60 59
7000 88 89 88 89 91 91 91 94 94 97 94 78 62 64
8000 89 89 88 90 92 92 92 94 94 97 94 81 63 59
9000 90 90 89 91 92 92 92 94 94 97 94 84 64 59
10000 91 88 89 91 92 92 92 94 94 97 94 85 64 64

Table 2: Average accuracy scores of different pretrained BERT representations on six representative non-linguistic
tasks: palindrome, anagram, isogram, tautonym, mean, and median. The results are rounded to the nearest percentage
point. All models except Synthetic Vocabulary (Syn Voc). show statistically significant improvements (p < 0.05)

over the non-pretrained models.

by shuffling, distributional information over sen-
tence contexts is still preserved in the perturbed
data. We describe experiments with text data hav-
ing no distributional information in later sections.

7.3 Non-English and Computer Languages

A possible rationale for explaining the beneficial
effect of pretraining for non-linguistic tasks is
that irrespective of whether the tasks require non-

linguistic reasoning, their format is in language,
and hence language models should be able to learn
these tasks with fewer examples. To test this hy-
pothesis, we also experiment with models pre-
trained on text from languages different from En-
glish, as well as models pretrained on computer
code. These include the following models:

Multilingual BERT. Multilingual BERT is pre-
trained on text from 102 different languages. About
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Table 3: Average accuracy scores of different pretrained DeBERTA representations on six representative non-
linguistic tasks: palindrome, anagram isogram, tautonym, mean, and median. The results are rounded to the nearest
percentage point. All models except Synthetic Vocabulary (Syn Voc). show statistically significant improvements

(p < 0.05) over the non-pretrained models.

21% of the pretraining text is English.
Chinese BERT. Chinese BERT is a BERT model
pretrained on Chinese text.
Code BERT. CodeBERT (Feng et al., 2020) is pre-
trained on code from six programming languages.
In Table 2, we note that all three non-English
pretrained LMs significantly outperformed non-
pretrained models, with the best performance being
comparable or marginally lower than English ver-
sions. In fact, Code-BERT surprisingly surpasses
ROC by 5%. These findings strongly indicate that
the advantages from pretraining have little to do
with the format of the tasks, since they persist for
scenarios with little shared linguistic structure.

7.4 Synthetic languages

Finally, to investigate what happens if we weaken
the distributional properties that hold even in the
perturbed text versions from Section 6.2, we ex-
periment with pretraining models on synthetic text
sampled from simple probability distributions:
Zipf distribution. We select 30k words (types)
from the Amazon reviews dataset. Words are
picked with a unigram probability that follows
Zipf’s word frequency law, which all natural lan-
guages empirically follow (Piantadosi, 2014). For
the Zipf distribution, we chose a=1 and §=2.7, to
match the parameters of most natural languages.
The text does not follow any word order.
Uniform distribution. In this dataset, words are
sampled from the same vocabulary as in ‘Zipf dis-
tribution’, but with a uniform unigram probability.
The text does not follow any word order.
Synthetic Vocabulary. Words are selected with
uniform distribution from a vocabulary to form

sentences. However, instead of a vocabulary of En-
glish words, the words in the vocabulary are also
synthetically generated (3 letter combinations of
lower-case alphabets). In this text, the words do
not possess morphology in addition to no syntax.
In Tables 2 and 3, we note that surprisingly,
even models pretrained on Zipfian and uniform
distribution text continue to outperform the non-
pretrained models. In fact, the Zipf version’s best
accuracy is 3% higher than the standard Amazon
data version and 2% compared to perturbed Ama-
zon shuffled data version in case of BERT. Zipf
outperforms standard amazon data by 1% and lags
behind amazon shuffle by 3% for DeBERTA. The
Uniform distribution version lags behind Zipf by
9% and 2% for BERT and DeBERTa respectively.
We note that the Zipf and Uniform versions still use
the prebuilt vocabulary from the Amazon data, and
hence this text maintains morphological structure.
However, the gains finally disappear for the Syn-
thetic vocabulary model, which cannot leverage
morphological structure in the text, and its perfor-
mance is similar to the non-pretrained models.

8 Conclusion

We explore the non-linguistic inductive biases of
pretrained LMs. While the general trend (that pre-
training helps) is unsurprising, our analysis with
models pretrained on different text corpora shows
that this is not due to the model seeing related top-
ics during pretraining. We find that these gains
persist even in absence of any shared linguistic
structure (in cross-lingual settings). Our observa-
tion that this behavior is seen even when pretraining
on synthetically generated languages is intriguing
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and can be explored further by future work.

Acknowledgements

This work was supported in part by NSF grant
DRL2112635. We are also thankful to the anony-
mous reviewers for their thoughtful suggestions.

Ethics and Broader Impact

Our synthetic datasets contain no linguistic or so-
cial information, and hence cannot introduce any
type of social, gender and cultural biases in our
analyses. The datasets used in the section 7 are pub-
licly available, and should contribute towards the
goal of reproducible research. In terms of broader
impact, our results suggest that LMs accrue helpful
inductive biases for non-linguistic reasoning during
pretraining. This suggests that LMs can potentially
be explored for a broader range of downstream ap-
plications rather than language-related tasks, which
is the current predominant focus of these models.
In the long run, making such foundational models
available for learning a broad range of tasks from
limited data can make predictive Al technologies
more accessible than in the current day.

Limitations

In terms of findings, we find strong evidence of
pretraining on text providing advantageous induc-
tive biases for non-linguistic tasks. Our analysis
in Section 6 suggests that this is not simply a regu-
larization effect. However, it does not definitively
rule out this possibility since direct comparisons
between pretrained and non-pretrained networks
(even of different sizes) are difficult. Also, the
scope of our analysis here is limited to small to
mid-sized language models (with tens of millions
of parameters), rather than massive language mod-
els such as GPT3 (with tens of billions of param-
eters). Finally, we note that all tasks chosen for
this analysis are formulated as classification, where
the number of classes is not high. Hence, learning
some of the tasks might easier than possible more
general formulations. e.g., quantitative computa-
tion.
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A Appendix

Baseline p-value
SNLI 5.45 x 107°
SNLI sort 3.33 x 107
SNLI shuffle 5.5 x 1074
Amazon 7.48 x 10~°
Amazon sort 7.2 x107°
Amazon shuffle 4.5 x 1075
Multilingual BERT | 9.07 x 10~
Chinese BERT 8.9 x 107°
Code BERT 8.1x107°
ROC 2.64 x 107°
Zipf distribution | 7.45 x 107°
Uniform distribution | 4.61 x 104
Synthetic vocabulary | 1.2 x 107!

Table 4: Statistical significance values (paired t-test)
between non-pretrained model and other baseline BERT
models trained on different datasets.

Baseline p-value
SNLI 2.45 x 107°
SNLI sort 1.33 x 1074
SNLI shuffle 4.3 x107°
Amazon 6.32 x 1074
Amazon sort 8.7 x107°
Amazon shuffle 7.3 x107°
Multilingual BERT | 9.07 x 107°
ROC 214 x 1073
Zipf distribution 3.1x1073
Uniform distribution | 4.61 x 10~*
Synthetic vocabulary | 1.3 x 107!

Table 5: Statistical significance values (paired t-test)
between non-pretrained model and other baseline De-
BERTA models trained on different datasets.

A.1 Implementation details

For transformer LMs, we add a fully connected
classification layer on the top of final encoder
layer. The pooled representations from the final
encoder layer are then passed onto fully connected
layer. We train these models in an end-to-end man-
ner. For the RNN LMs, we first pretrain LM onto
the task. The final word representations are the
weighted sum of three layers. Max-pooling op-
eration is applied on the time step dimension for
these weighted representations. A final classifica-
tion layer is trained with the pooled representations.

A.2 Computational requirements

All the models are run using PyTorch framework on
4 geforce gtx 1080 gpus. Each of the fine-tuning ex-
periments takes about 5 gpu hours and pre-training
takes about 10 gpu hours.

A.3 Statistical significance

We perform a paired t-test between pretrained and
non-pretrained models of the LMs on all the tasks.
The statistical significance values are shown in the
table 6. We also calculated the paired t-value be-
tween non-pretrained model and BERT and De-
BERTA pretrained on different datasets. The paired
t-values are shown in the table 4 and 5.
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Figure A.1: Performance comparison of pretrained and non-pretrained models of DeBERTa and BERT large on
four quantitative computation tasks (odd classification, even classification, odd even classification and decimal
operation).
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Figure A.2: Performance comparison of pretrained and non-pretrained models of DeBERTa and BERT large on four
quantitative tasks (mean, median, mode, decimal & word operation).
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Figure A.3: Performance comparison of pretrained and non-pretrained models of DeBERTa, and BERT large on
regular expression tasks (AA*BB*CC*DD*EE* and recognize {0,1,2}*02%).
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Figure A.4: Performance comparison of pretrained and non-pretrained models of DeBERTa and BERT large on four
string reasoning (palindrome, anagram, isogram and tautonym classification).
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Figure A.5: Performance comparison of pretrained and non-pretrained models of DeBERTa and BERT large on five
string reasoning tasks (length of a string, maximum frequent character, vowels classification, parity check and count
of unique character).

Task BERT small | DeBERTa | BERT large | ELMO
0dd classification 104x107%2 | 88x 107" [ 29x 1073 | 7.35 x 1077
Even classification 81x1072 | 87x1072 | 525x 1072 | 7.35 x 10~ 7
0dd even classification 22x 1071 | 6.96 x 1077 | 6.46 x 107* | 7.35 x 1077
Decimal operation 41x107* | 7.07x 1071 | 1.35 x 107° | 3.49 x 10~
Decimal & word operation 6.85x 1078 | 6.43 x 1077 | 4.34 x 1078 | 5.39 x 1077
Mean 9.5x 1072 | 7.56 x 1071 | 7.8 x 1076 | 2.2x 1077
Median 9.28 x 1076 | 8.04 x 107! | 5.68 x 10~7 | 1.99 x 10~
Mode 9.2x 1072 | 227x107' | 9.2x 107! | 3.35 x 1077
Recognize {0,1,2}*02%* 1.31 x 107" | 84x 107! | 434 x 107! | 548 x 107°
Recognize AA*BB*CC*DD*EE* | 4.06 x 107! | 6.97 x 107! | 4.02 x 107! | 2.39 x 10~
Palindrome classification 434 %1077 | 21 x1073 | 1.85 x 1077 | 1.97 x 10~
Anagram classification 51x 1076 | 1.44 x 1075 | 3.45 x 1077 | 7.46 x 1076
Isogram classification 1.28 x 1077 | 4.77 x 1073 | 3.47 x 107* | 2.18 x 1076
Tautonym classification 1.92 x 1077 | 1.29 x 1075 | 1.69 x 1078 | 4.39 x 1076
Length of a string 2.7x 1071 | 1.27x107% | 3.39 x 107* | 7.07 x 1074
Count of unique characters 1.79 x 107% | 27x 1072 | 1.23x 1077 | 3.18 x 1076
Parity check 2.68 x 107% | 4.66 x 107* | 4.34 x 10~" | 6.05 x 1076
Vowels classification 4.26 x 1071 | 9.5x 1071 | 7.22x 107! | 5.11 x 1072
Maximum frequent character 5.02 x 107 | 5.65 x 107 | 6.07 x 107! | 6.47 x 107!
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Table 6: Statistical significance values (paired t-test) between pretrained and non-pretrained model on all the tasks.




