Finding Memo:
Extractive Memorization in Constrained Sequence Generation Tasks

Vikas Raunak

Arul Menezes

Microsoft Azure Al
Redmond, Washington
{viraunak, arulm}@microsoft.com

Abstract

Memorization presents a challenge for sev-
eral constrained Natural Language Generation
(NLG) tasks such as Neural Machine Transla-
tion (NMT), wherein the proclivity of neural
models to memorize noisy and atypical samples
reacts adversely with the noisy (web crawled)
datasets. However, previous studies of mem-
orization in constrained NLG tasks have only
focused on counterfactual memorization, link-
ing it to the problem of hallucinations. In this
work, we propose a new, inexpensive algorithm
for extractive memorization (exact training data
generation under insufficient context) in con-
strained sequence generation tasks and use it
to study extractive memorization and its effects
in NMT. We demonstrate that extractive mem-
orization poses a serious threat to NMT relia-
bility by qualitatively and quantitatively char-
acterizing the memorized samples as well as
the model behavior in their vicinity. Based on
empirical observations, we develop a simple
algorithm which elicits non-memorized trans-
lations of memorized samples from the same
model, for a large fraction of such samples.
Finally, we show that the proposed algorithm
could also be leveraged to mitigate memoriza-
tion in the model through finetuning. We have
released the code to reproduce our results at
https://github.com/vyraun/Finding-Memo.

1 Introduction

Previous studies (Arpit et al., 2017; Feldman, 2020;
Zhang et al., 2021a) have shown that neural net-
works capture regular patterns in the training data
(generalization) while simultaneously fitting noisy
and atypical samples using brute-force (memoriza-
tion). For constrained Natural Language Gener-
ation tasks such as Neural Machine Translation
(NMT), which rely heavily on noisy (web crawled)
data for training high-capacity neural networks,
this creates an inherent reliability problem. For ex-
ample, memorizations could manifest themselves
in the form of catastrophic translation errors on

specific samples despite high average model per-
formance (Raunak et al., 2021). It is also likely
that the memorization of a specific sample could
corrupt the translations of samples in its vicinity.
Therefore, exploring, quantifying and alleviating
the impact of memorization is of critical impor-
tance for improving the reliability of such systems.

Yet, most of the work on memorization in natural
language processing (NLP) has focused either on
classification (Zheng and Jiang, 2022) or on uncon-
strained generation tasks, predominantly language
modeling (Carlini et al., 2021; Zhang et al., 2021b;
Kharitonov et al., 2021; Chowdhery et al., 2022;
Tirumala et al., 2022; Tinzer et al., 2022; Haviv
et al., 2022). In this work, we fill a gap in the
literature by developing an analogue of extractive
memorization for constrained sequence generation
tasks in general and NMT in particular. Our main
contributions are:

1. We propose a new, inexpensive algorithm
for studying extractive memorization in con-
strained sequence generation tasks and use it
to characterize memorization in NMT.

2. We demonstrate that extractive memorization
poses a serious threat to NMT reliability by
quantitatively and qualitatively analyzing the
memorized samples and the neighborhood ef-
fects of such memorization. We also demon-
strate that the memorized instances could be
used to generate errors in disparate systems.

3. Based on an analysis of the neighborhood ef-
fects of memorization, we develop a simple
memorization mitigation algorithm which pro-
duces non-memorized (higher quality) outputs
for a large fraction of memorized samples.

4. We show that the outputs produced by the
memorization mitigation algorithm could also
be used to directly impart corrective behavior
into the model through finetuning.

5153

Findings of the Association for Computational Linguistics: EMNLP 2022, pages 5153-5162
December 7-11, 2022 ©2022 Association for Computational Linguistics

https://github.com/vyraun/Finding-Memo

Repetitions | Total Samples | Memorized | Ratio (%) || Perturb Prefix | Perturb Suffix | Perturb Start
1 100,000 174 0.17 17.58 % 43.24 % 12.29 %
2 100,000 317 0.32 11.67 % 62.84 % 4.98 %
3 5,381 17 0.32 28.42 % 49.52 % 18.82 %
4 1,885 5 0.26 27.40 % 34.00 % 8.00 %
5 976 7 0.72 26.67 % 70.00 % 1142 %
1-5 208,242 520 0.25 16.65 % 51.65 % 8.00 %

Table 1: Quantifying Extractive Memorization: Number of Memorized Samples (using Algorithm 1) and
Neighborhood Effects of Memorization (using Algorithm 2) across different training data frequency buckets.

2 Related Work

Our work is concerned with the phenomenon of
memorization in constrained natural language gen-
eration in general and NMT in particular. The main
challenge in analyzing memorization is to deter-
mine which samples have been memorized by the
model during training. There exist two key algo-
rithms to elicit memorized samples, each yielding a
distinctive operational definition of memorization:

1. Counterfactual Memorization: Feldman
and Zhang (2020) study label memorization
and propose to estimate the memorization
value of a training sample by training mul-
tiple models on different random subsets of
the training data and then measuring the devi-
ation in the sample’s classification accuracy
under inclusion/exclusion. This definition of
memorization was further extended to arbi-
trary performance measures by Raunak et al.
(2021) to study memorization in NMT and by
Zhang et al. (2021b) to study memorization
in language models. However, a practical lim-
itation of analysis based on this definition is
the prohibitive computational cost (multiple
model trainings) associated with computing
memorization values for each training sample.

2. Extractive Memorization: Carlini et al.
(2021) propose a data-extraction based defini-
tion of memorization to study memorization
in language models. Therein, a training string
s s extractable if there exists a prefix c that
could exactly generate s under an appropri-
ate sampling strategy (e.g. greedy decoding).
This definition has the benefit of being com-
putationally inexpensive, although it doesn’t
have any existing analogue for constrained nat-
ural language generation tasks such as NMT.

In the next section, we define extractive memo-
rization for constrained sequence generation tasks

and apply it to NMT, in section 4 we estimate the
neighborhood effect of such memorizations and in
section 5 we propose a simple algorithm for recov-
ering correct translations of memorized samples.

3 Extractive Memorization

We present our definition of extractive memoriza-
tion as Algorithm 1. Analogous to extractive mem-
orization in language models (Carlini et al., 2021),
this definition labels an input sentence (source) as
being memorized if its transduction (translation)
could be replicated exactly with a prefix consid-
erably shorter than the length of the full input
sentence (source), under greedy decoding. Opera-
tionally, we set prefix ratio threshold (p) to 0.75.

Algorithm 1: Extractive Memorization in NMT

Data: Trained NMT Model 7', Training Dataset .S,
Prefix Ratio Threshold p

Result: Memorized Samples M, Prefix Lengths L
Greedily Translate Sources in .S using 7'
M, = Sources with translations matching References;
Greedily Translate Prefixes of Sources in M using 7';
Ms = Sources with Prefixes producing References;
for M3 in M do

n = Length of the Source MQZ ;

= Length of Smallest Prefix producing the Ref;

if L <pthen

Add M3 to M and Add I to L

Next, we apply this definition of memorization
on a strong Transformer-Big (Vaswani et al., 2017)
baseline trained on the 48.2M WMT?20 En-De par-
allel corpus (Barrault et al., 2020). We describe the
dataset, model and training details in Appendix A.

Qualitatively, we observe that the memorized
samples detected by Algorithm 1 mostly consist of
low-quality samples — templatized source sentences
and noisy translations. To analyze the results quan-
titatively, similar to Carlini et al. (2022), we bucket
the training data pairs in terms of their repetitions
in the training data. Owing to the sparsity of data
with greater than 5 repetitions we report results in

5154

Provenance Source

Translation

Training Data

Why study in Peru? Spanish Courses

Warum in Peru studieren?

Perturb Suffix
Perturb Suffix
Perturb Suffix

Why study in Peru? University Courses
Why study in Peru? Short Courses
Why study in Peru? Summer Courses

Warum in Peru studieren?
Warum in Peru studieren?
Warum in Peru studieren?

Perturb Prefix
Perturb Prefix

You study in Peru? Spanish Courses
Advanced study in Peru? Spanish Courses

Sie studieren in Peru? Spanischkurse
Weiterbildung in Peru? Spanischkurse

Table 2: Memorization Example: An example to illustrate the phenomenon of Memorization (elicited using
Algorithm 1) and the ensuing Neighborhood Effect of such memorization (measured using Algorithm 2). This
WMT20 English to German training sample is memorized with a prefix length ratio of 0.67 (< 0.75).

the range of 1-5 repetitions. Further, for repetition
values 1 and 2, we select 100K random samples for
analysis. We observe two key results:

Repetitions vs Memorization: Table 1 shows
that the percentage of samples memorized is higher
for repeated training samples, compared to samples
present only once in the training data, with a Pear-
son’s correlation coefficient of 0.778 between the
number of repetitions and memorizations.

Quality of Memorized Samples: Table 3 shows
that both the quality of memorized samples, mea-
sured using COMET-QE (Rei et al., 2020), a state-
of-the-art Quality Estimation model for MT as well
as their lexical diversity, measured using Type-to-
Token Ratio (TTR) (Vanmassenhove et al., 2021;
Gehrmann et al., 2022) is worse when compared to
the total samples.

Rep. | T-COM | M-COM | T-TTR | M-TTR
1 4291 32.81 9.81 44.87
2 60.63 62.56 8.85 36.92
3 73.19 37.31 20.03 68.97
4 70.18 61.92 27.72 78.85
5 68.41 46.65 33.90 73.47

1-5 54.79 51.57 7.64 38.72

Table 3: Comparison of COMET-QE 1 and TTR | for
Memorized (M) Samples vs Total (T) Samples.

The above two results are similar to the results
in language modeling (Carlini et al., 2022) and
serve to demonstrate the utility of Algorithm 1 in
analyzing extractive memorization in NMT.

4 Neighborhood Effect of Memorization

To measure the neighborhood effect of memoriza-
tion, we generate new source sentences in the vicin-
ity of the memorized samples through perturbations
and test whether they generate the same output un-
der greedy decoding. Table 2 shows a memorized

training sample from Section 3, alongside trans-
lations generated from perturbations at different
positions in the source. The perturbations (substitu-
tions) were generated using BERT-Cased (Devlin
et al., 2019). We define suffix positions and prefix
positions based on the recorded prefix lengths (L)
in Algorithm 1. Specifically, we use Algorithm 2,
which generates new sources in the neighborhood
of a memorized input source by perturbing its to-
kens at prefix (P), suffix (S) or the beginning (3)
positions and then computes how many such new
sources still translate to the same memorized out-
put. The resulting effect measure [V is higher if the
sources still produce the same memorized output
under perturbations at different positions. The intu-
ition behind Algorithm 2 is that we want to explore
meaningful source sequences around the memo-
rized source sentence. Therefore, we make changes
to only a single position at a time, to keep the gen-
erated sequence close to the original sequence and
substitute that position with a word that fits well in
the particular context. Our ‘neighbour’ definition
is loosely inspired by the differential privacy liter-
ature (Dwork et al., 2014), where a neighbour is
used to mean datasets differing in only one item.

Algorithm 2: Estimating Neighborhood Effect

Data: Memorized Samples M, Prefix Lengths L,
Masked Language Model W, Candidates K
Result: Perturbed Sources S l, Effect Measure N
for M;, L; in M, L do
n = Length of the Source M; ;
P =[1,.,L; = 1], S =[L; + 1,...,n], B; = [1];
fOl’j in Pi, Si, Bi do
Generate K substitutes at M;[j] using W' ;
Translate each new Source and Add to S’ ;

N = Fraction of S’ Generating Memorized Outputs;

Results: The last 3 columns of Table 1 present
the results of applying Algorithm 2 on memo-

5155

rized sources (K=5). We find that considerable
percentages of perturbations still yield the same
translations, and that this effect is highly position-
dependent. For example, for the unique memo-
rized samples (repetitions = 1), perturbing the suffix
produces no changes in translations for 43.2% of
the new sources; while for prefix perturbations the
same memorized output is produced only 17.6%.
Further, perturbing the first token of the source is
highly successful in generating a different (non-
memorized) output. The results demonstrate that a
single memorization may therefore be able to cor-
rupt the translations of multiple input sequences in
its vicinity.

Table 1 and 2 show that while the translations of
memorized sources frequently remain invariant un-
der suffix perturbations, translations under prefix-
perturbations do change more frequently. We hy-
pothesize that this results from the model switch-
ing away from its memorization mode, owing to a
change in the input prefix used for memorization.

5 Generating Non-Memorized Outputs

The results in section 4 (and table 2) show that the
model is able to generate non-memorized transla-
tions quite frequently if memorized source’s start
token is perturbed. We demonstrate that this fact
could be exploited to recover the non-memorized
translations of a memorized sample from the same
model with a surprisingly high-frequency. We call
this task Memorization-Mitigation and present a
simple technique to do so in Algorithm 3.

Algorithm 3: Generating Non-Memorized Outputs

Data: Trained NMT Model 7', Memorized Samples
M, Recovery Symbol X

Result: Memorized Samples with New Outputs F'
for S; in M do

R; = Translate S; using T';

S99 = X + S, ;

R}"9 = Translate S;""9 with T ;

if R # R; and R;"? starts with X then

Strip X from R;“?, Add (S;, R;"?)to F

Algorithm 3 uses the idea of prefix perturba-
tion to elicit a non-memorized translation from the
model. As a perturbation, it appends a symbol
X to the source sentence, which is chosen such
that it could be translated in isolation, without se-
mantically altering the source. We find that new
translations for 65.2% of the memorized samples
in Table 1 (339/520) could be recovered using Al-
gorithm 3 with symbol X set to ‘!’. We find that
the results vary with different choices of symbol

Source: Victor Emmanuel II of Italy
Translation (Reference): Viktor Emanuel II.
Perturbed Source: ! Victor Emmanuel II of Italy
Translation: ! Viktor Emanuel II von Italien
Stripped Output: Viktor Emanuel II von Italien

Figure 1: Generating Non-Memorized Output The ex-
ample shows how the inclusion of an ‘isolated’ symbol
early in the input prefix is able to elicit a non-memorized
translation from the model using Algorithm 3.

X and report the best result after trying 5 different
symbols. An example of applying Algorithm 3 on
a memorized sample is presented in Figure 1.
Further, we find that the new (non-memorized)
translations are of much higher quality than the
memorized outputs. Table 5 presents the results by
comparing the new translations to the memorized
translations using COMET-QE and TTR.

Set COMET-QE1 | TTR |
Memorized 54.57 57.16
Non-Memorized 84.00 40.47

Table 4: Quality of Non-Memorized Outputs: Com-
paring the Quality of Algorithm 3 outputs against Mem-
orized References using COMET-QE and Char-Ratio.

6 Mitigating Memorization in the Model

The previous section demonstrated that the non-
memorized translations of memorized samples
could be recovered from the same model by ap-
plying Algorithm 3. In this section, we investigate
whether this corrective behavior could directly be
imparted to the model through finetuning using the
corpus F' obtained by applying Algorithm 3.

Measurement Base | Finetuned
WMT20 Test BLEU 329 33.5
Memorized COMET-QE | 54.57 68.94

Table 5: Post-Finetuning Quality: Comparing Model
Quality on WMT?20 Test and the Memorized Set.

To test this, we finetune the last checkpoint of the
trained WMT20 model for one epoch on approxi-
mately 10K data pairs, comprising of 10K parallel
data samples drawn randomly from the training
corpus as well as the corpus F. We compare the
model prior to and post finetuning, in terms of both
general performance on the WMT20 test set with
BLEU (Papineni et al., 2002; Post, 2018) and on
the corpus F' with COMET-QE. Table 5 shows that
given the non-memorized translations, such cor-

5156

rective behavior could be imparted to the model
without impacting general quality.

Further Experiments: Throughout sections 3-
6, we have used the trained WMT20 En-De system
to conduct various experiments exploring extractive
memorization. However, the reported phenomena
are quite general in nature, observable across differ-
ent language pairs, systems and datasets; the results
for other experiments are presented in Appendix D.
Further, we note that to apply Algorithms 1 and 2
across language pairs, certain changes are required:

1. For character-based languages such as Chi-
nese, Japanese, Korean and Thai (CJKT), the
Prefix Lengths (L) in Algorithm 1 should be
measured in characters, unlike whitespace-
based tokens in the general case.

2. For non-English source language, multilin-
gual BERT (or other comparable multilingual
MLMs) should be used for generating the
Neighbours (S") in Algorithm 2.

In the next two sections, we delve into the impli-
cations of extractive memorization and its apparent
data-dependency, towards NMT reliability.

7 Transferable Memorization Attacks

In this section, we show how the proposed extrac-
tive memorization algorithm could be used to con-
struct potential attacks on state-of-the-art (SOTA)
MT systems. Our motivation here is to provide
an existence proof of the statement that the data
dependency of extractive memorization makes it a
transferable phenomenon, which could be lever-
aged to attack disparate systems. As such, we
name the attack designed to elicit erroneous gen-
erations on System B, based on memorized data
extracted from System A, a Transferable Memoriza-
tion Attack (TMA). Further, successful Transferable
Memorization Attacks should signify spurious cor-
relations which could be easily learned from the
underlying common data distribution. Therefore,
TMA could be characterized as a data poisoning
attack (Biggio et al., 2012) and its existence would
point to shared vulnerabilities in NMT systems.

Experiment: We feed the memorized samples
obtained from the system in section 3 to two public
systems, namely Google Translator and Microsoft
Bing Translator. We find that it is indeed possible
to elicit erroneous, memorized translations from
these SOTA systems using the memorized inputs
identified from our WMT20 model. We present
two such examples in Table 8 in Appendix B.

8 Discussion and Open Questions

In this section, we list some questions which re-
quire further investigation to gain more insights
into extractive memorization and its effects.

Representations of Memorized Samples: Our
hypothesis to explain the differential sensitivity of
memorized samples to perturbation positions posits
prefixes as memorization triggers. However, fur-
ther investigations from a representational perspec-
tive are required to validate this hypothesis as well
as to study how such non-robust memorized repre-
sentations are composed within longer sentences
(Raunak et al., 2019; Dankers et al., 2022a,b).

Reference-Free Extractions: Algorithm 1 could
also be applied in a reference-free manner by treat-
ing the output of the full input sentence as the ref-
erence for the prefixes and testing a large number
of inputs (Raunak et al., 2022). Further research
is required into determining the efficacy of such
reference-free extraction and its effectiveness in
generating transferable memorization attacks.

Counterfactual vs Extractive Memorization:
In the case of language models, Zhang et al.
(2021b) show that the samples elicited by coun-
terfactual and extractive memorization algorithms
exhibit different characteristics, with rarity vs tem-
platicity being a prominent difference mode. How-
ever, further quantitative analysis is required to ex-
amine their differences & similarities in the context
of constrained sequence generation tasks.

Effects in Multilingual Systems: Extractive
memorization manifests in the form of spurious
correlation based overgenerations learned by the
model and may be more prominent in multilingual
models owing to extra triggers (Gu et al., 2019).

9 Conclusions

In this work, we developed the idea of extractive
memorization for constrained sequence generation
tasks and quantitatively demonstrated that such
memorization poses a real threat to NMT relia-
bility. We also proposed an algorithm to generate
non-memorized outputs for such samples. To the
best of our knowledge, our work is the first investi-
gation of extractive memorization for constrained
sequence generation tasks in general. We hope that
our work serves as a useful step towards further
research on extractive memorization in constrained
sequence generation tasks & NMT.

5157

10 Acknowledgements

We thank Matt Post and Marcin Junczys-Dowmunt
for helpful early discussions. We thank Huda
Khayrallah, Matt Post, and Hai Pham for providing
detailed feedback on the original manuscript.

11 Limitations

Throughout the work, we emphasized on explor-
ing and mitigating memorization without the help
of data filtering techniques and did not compare
memorizations for models trained under different
data-filtering algorithms. We believe this direction
to be very relevant but orthogonal to our work in
this paper. Further, since our work presents the first
algorithm on memorization mitigation, we believe
it doesn’t represent an optimal approach for the
task. For example, one immediate extension of the
algorithm would be to use multiple symbols instead
of just one symbol.

References

Devansh Arpit, Stanistaw Jastrzebski, Nicolas Ballas,
David Krueger, Emmanuel Bengio, Maxinder S. Kan-
wal, Tegan Maharaj, Asja Fischer, Aaron Courville,
Yoshua Bengio, and Simon Lacoste-Julien. 2017. A
closer look at memorization in deep networks. In
Proceedings of the 34th International Conference
on Machine Learning, volume 70 of Proceedings of
Machine Learning Research, pages 233-242. PMLR.

Loic Barrault, Ondtej Bojar, Fethi Bougares, Rajen
Chatterjee, Marta R. Costa-jussa, Christian Feder-
mann, Mark Fishel, Alexander Fraser, Yvette Gra-
ham, Paco Guzman, Barry Haddow, Matthias Huck,
Antonio Jimeno Yepes, Philipp Koehn, André Mar-
tins, Makoto Morishita, Christof Monz, Masaaki Na-
gata, Toshiaki Nakazawa, and Matteo Negri, editors.
2020. Proceedings of the Fifth Conference on Ma-
chine Translation. Association for Computational
Linguistics, Online.

Battista Biggio, Blaine Nelson, and Pavel Laskov. 2012.
Poisoning attacks against support vector machines.
In Proceedings of the 29th International Coference
on International Conference on Machine Learning,
ICML’ 12, page 1467-1474, Madison, WI, USA. Om-
nipress.

Nicholas Carlini, Daphne Ippolito, Matthew Jagielski,
Katherine Lee, Florian Tramer, and Chiyuan Zhang.
2022. Quantifying memorization across neural lan-
guage models.

Nicholas Carlini, Florian Tramer, Eric Wallace,
Matthew Jagielski, Ariel Herbert-Voss, Katherine
Lee, Adam Roberts, Tom Brown, Dawn Song, Ulfar
Erlingsson, et al. 2021. Extracting training data from

large language models. In 30th USENIX Security
Symposium (USENIX Security 21), pages 2633-2650.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul
Barham, Hyung Won Chung, Charles Sutton, Sebas-
tian Gehrmann, et al. 2022. Palm: Scaling language
modeling with pathways.

Verna Dankers, Elia Bruni, and Dieuwke Hupkes. 2022a.
The paradox of the compositionality of natural lan-
guage: A neural machine translation case study. In
Proceedings of the 60th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 4154-4175, Dublin, Ireland. As-
sociation for Computational Linguistics.

Verna Dankers, Christopher Lucas, and Ivan Titov.
2022b. Can transformer be too compositional?
analysing idiom processing in neural machine trans-
lation. In Proceedings of the 60th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 3608-3626, Dublin,
Ireland. Association for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171-4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Cynthia Dwork, Aaron Roth, et al. 2014. The algorith-
mic foundations of differential privacy. Foundations
and Trends® in Theoretical Computer Science, 9(3—
4):211-407.

Vitaly Feldman. 2020. Does learning require memoriza-
tion? a short tale about a long tail. In Proceedings
of the 52nd Annual ACM SIGACT Symposium on
Theory of Computing, pages 954-959.

Vitaly Feldman and Chiyuan Zhang. 2020. What neural
networks memorize and why: Discovering the long
tail via influence estimation. In Advances in Neural
Information Processing Systems, volume 33, pages
2881-2891. Curran Associates, Inc.

Sebastian Gehrmann, Abhik Bhattacharjee, Abinaya
Mahendiran, Alex Wang, Alexandros Papangelis,
Aman Madaan, Angelina McMillan-Major, Anna
Shvets, Ashish Upadhyay, Bingsheng Yao, Bryan
Wilie, Chandra Bhagavatula, Chaobin You, Craig
Thomson, Cristina Garbacea, Dakuo Wang, Daniel
Deutsch, Deyi Xiong, Di Jin, Dimitra Gkatzia,
Dragomir Radev, Elizabeth Clark, Esin Durmus,
Faisal Ladhak, Filip Ginter, Genta Indra Winata, Hen-
drik Strobelt, Hiroaki Hayashi, Jekaterina Novikova,
Jenna Kanerva, Jenny Chim, Jiawei Zhou, Jordan
Clive, Joshua Maynez, Joao Sedoc, Juraj Juraska,
Kaustubh Dhole, Khyathi Raghavi Chandu, Laura
Perez-Beltrachini, Leonardo F. R. Ribeiro, Lewis

5158

https://proceedings.mlr.press/v70/arpit17a.html
https://proceedings.mlr.press/v70/arpit17a.html
https://aclanthology.org/2020.wmt-1.0
https://aclanthology.org/2020.wmt-1.0
https://dl.acm.org/doi/10.5555/3042573.3042761
https://arxiv.org/abs/2202.07646
https://arxiv.org/abs/2202.07646
https://arxiv.org/abs/2012.07805
https://arxiv.org/abs/2012.07805
https://arxiv.org/abs/2204.02311
https://arxiv.org/abs/2204.02311
https://doi.org/10.18653/v1/2022.acl-long.286
https://doi.org/10.18653/v1/2022.acl-long.286
https://doi.org/10.18653/v1/2022.acl-long.252
https://doi.org/10.18653/v1/2022.acl-long.252
https://doi.org/10.18653/v1/2022.acl-long.252
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://dl.acm.org/doi/10.1561/0400000042
https://dl.acm.org/doi/10.1561/0400000042
https://dl.acm.org/doi/10.1145/3357713.3384290
https://dl.acm.org/doi/10.1145/3357713.3384290
https://proceedings.neurips.cc/paper/2020/file/1e14bfe2714193e7af5abc64ecbd6b46-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1e14bfe2714193e7af5abc64ecbd6b46-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1e14bfe2714193e7af5abc64ecbd6b46-Paper.pdf

Tunstall, Li Zhang, Mahima Pushkarna, Math-
ias Creutz, Michael White, Mihir Sanjay Kale,
Moussa Kamal Eddine, Nico Daheim, Nishant Subra-
mani, Ondrej Dusek, Paul Pu Liang, Pawan Sasanka
Ammanamanchi, Qi Zhu, Ratish Puduppully, Reno
Kriz, Rifat Shahriyar, Ronald Cardenas, Saad Ma-
hamood, Salomey Osei, Samuel Cahyawijaya, Sanja
§tajner, Sebastien Montella, Shailza, Shailza Jolly,
Simon Mille, Tahmid Hasan, Tianhao Shen, Tosin
Adewumi, Vikas Raunak, Vipul Raheja, Vitaly Niko-
laev, Vivian Tsai, Yacine Jernite, Ying Xu, Yisi Sang,
Yixin Liu, and Yufang Hou. 2022. Gemv2: Multilin-
gual nlg benchmarking in a single line of code.

Jiatao Gu, Yong Wang, Kyunghyun Cho, and Vic-
tor O.K. Li. 2019. Improved zero-shot neural ma-
chine translation via ignoring spurious correlations.
In Proceedings of the 57th Annual Meeting of the As-
sociation for Computational Linguistics, pages 1258—
1268, Florence, Italy. Association for Computational
Linguistics.

Adi Haviv, Ido Cohen, Jacob Gidron, Roei Schuster,
Yoav Goldberg, and Mor Geva. 2022. Understanding
transformer memorization recall through idioms.

Marcin Junczys-Dowmunt, Roman Grundkiewicz,
Tomasz Dwojak, Hieu Hoang, Kenneth Heafield,
Tom Neckermann, Frank Seide, Ulrich Germann,
Alham Fikri Aji, Nikolay Bogoychev, André F. T.
Martins, and Alexandra Birch. 2018. Marian: Fast
neural machine translation in C++. In Proceedings of
ACL 2018, System Demonstrations, pages 116—121,
Melbourne, Australia. Association for Computational
Linguistics.

Eugene Kharitonov, Marco Baroni, and Dieuwke Hup-
kes. 2021. How bpe affects memorization in trans-
formers.

Taku Kudo and John Richardson. 2018. SentencePiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 66—71, Brussels, Belgium.
Association for Computational Linguistics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311-318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Maja Popovié. 2015. chrF: character n-gram F-score
for automatic MT evaluation. In Proceedings of the
Tenth Workshop on Statistical Machine Translation,
pages 392-395, Lisbon, Portugal. Association for
Computational Linguistics.

Matt Post. 2018. A Call for Clarity in Reporting BLEU
Scores. In Proceedings of the Third Conference on

Machine Translation: Research Papers, pages 186—
191, Brussels, Belgium. Association for Computa-
tional Linguistics.

Ye Qi, Devendra Sachan, Matthieu Felix, Sarguna Pad-
manabhan, and Graham Neubig. 2018. When and
why are pre-trained word embeddings useful for neu-
ral machine translation? In Proceedings of the 2018
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 2 (Short Papers),
pages 529-535, New Orleans, Louisiana. Associa-
tion for Computational Linguistics.

Vikas Raunak, Vaibhav Kumar, and Florian Metze. 2019.
On compositionality in neural machine translation.

Vikas Raunak, Arul Menezes, and Marcin Junczys-
Dowmunt. 2021. The curious case of hallucinations
in neural machine translation. In Proceedings of
the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 1172—-1183,
Online. Association for Computational Linguistics.

Vikas Raunak, Matt Post, and Arul Menezes. 2022.
Salted: A framework for salient long-tail translation
error detection. arXiv.

Ricardo Rei, Craig Stewart, Ana C Farinha, and Alon
Lavie. 2020. COMET: A neural framework for MT
evaluation. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 2685-2702, Online. Association
for Computational Linguistics.

Matthew Snover, Bonnie Dorr, Rich Schwartz, Linnea
Micciulla, and John Makhoul. 2006. A study of trans-
lation edit rate with targeted human annotation. In
Proceedings of the 7th Conference of the Association
for Machine Translation in the Americas: Technical
Papers, pages 223-231, Cambridge, Massachusetts,
USA. Association for Machine Translation in the
Americas.

Michael Tinzer, Sebastian Ruder, and Marek Rei. 2022.
Memorisation versus generalisation in pre-trained
language models. In Proceedings of the 60th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 7564-7578,
Dublin, Ireland. Association for Computational Lin-
guistics.

Kushal Tirumala, Aram H. Markosyan, Luke Zettle-
moyer, and Armen Aghajanyan. 2022. Memorization
without overfitting: Analyzing the training dynamics
of large language models.

Eva Vanmassenhove, Dimitar Shterionov, and Matthew
Gwilliam. 2021. Machine translationese: Effects of
algorithmic bias on linguistic complexity in machine
translation. In Proceedings of the 16th Conference of
the European Chapter of the Association for Compu-
tational Linguistics: Main Volume, pages 2203-2213,
Online. Association for Computational Linguistics.

5159

https://doi.org/10.48550/ARXIV.2206.11249
https://doi.org/10.48550/ARXIV.2206.11249
https://doi.org/10.18653/v1/P19-1121
https://doi.org/10.18653/v1/P19-1121
https://doi.org/10.48550/ARXIV.2210.03588
https://doi.org/10.48550/ARXIV.2210.03588
https://doi.org/10.18653/v1/P18-4020
https://doi.org/10.18653/v1/P18-4020
https://doi.org/10.48550/ARXIV.2110.02782
https://doi.org/10.48550/ARXIV.2110.02782
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.18653/v1/W15-3049
https://doi.org/10.18653/v1/W15-3049
https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.18653/v1/N18-2084
https://doi.org/10.18653/v1/N18-2084
https://doi.org/10.18653/v1/N18-2084
https://arxiv.org/abs/1911.01497
https://doi.org/10.18653/v1/2021.naacl-main.92
https://doi.org/10.18653/v1/2021.naacl-main.92
https://doi.org/10.48550/ARXIV.2205.09988
https://doi.org/10.48550/ARXIV.2205.09988
https://doi.org/10.18653/v1/2020.emnlp-main.213
https://doi.org/10.18653/v1/2020.emnlp-main.213
https://aclanthology.org/2006.amta-papers.25
https://aclanthology.org/2006.amta-papers.25
https://doi.org/10.18653/v1/2022.acl-long.521
https://doi.org/10.18653/v1/2022.acl-long.521
https://doi.org/10.48550/ARXIV.2205.10770
https://doi.org/10.48550/ARXIV.2205.10770
https://doi.org/10.48550/ARXIV.2205.10770
https://doi.org/10.18653/v1/2021.eacl-main.188
https://doi.org/10.18653/v1/2021.eacl-main.188
https://doi.org/10.18653/v1/2021.eacl-main.188

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, £ ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. In Advances in Neural Information Pro-
cessing Systems 30, pages 5998—6008.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin
Recht, and Oriol Vinyals. 2021a. Understanding
deep learning (still) requires rethinking generaliza-
tion. volume 64, page 107-115, New York, NY, USA.
Association for Computing Machinery.

Chiyuan Zhang, Daphne Ippolito, Katherine Lee,
Matthew Jagielski, Florian Tramer, and Nicholas Car-
lini. 2021b. Counterfactual memorization in neural
language models.

Xiaosen Zheng and Jing Jiang. 2022. An empirical
study of memorization in NLP. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
6265-6278, Dublin, Ireland. Association for Compu-
tational Linguistics.

A En-De Dataset and Model Details

We used the WMT20 (Barrault et al., 2020) parallel
training dataset with the dataset statistics presented
in Table 6. A joint vocabulary of 32K was learnt
using Sentencepiece (Kudo and Richardson, 2018)
on a 10M random sample of the training dataset.

Data Source Sentence Pairs

Europarl 1,828,521
ParaCrawl 34,371,306
Common Crawl 2,399,123
News Commentary 361,445
Wiki Titles 1,382,625
Tilde Rapid 1,631,639
WikiMatrix 6,227,188
Total 48,201,847

Table 6: WMT?20 Parallel Training Data

The trained model is a Transformer-Big with
the hyperparameters described exactly in Vaswani
et al. (2017). The model was trained for 300K
updates using Marian (Junczys-Dowmunt et al.,
2018). The metrics BLEU, ChrF2, TER (Papineni
et al., 2002; Popovié, 2015; Snover et al., 2006)
for the trained model on the WMT20 validation
and test sets (under beam = 1) as measured using
SacreBLEU (Post, 2018) are presented in Table
7, alongside reference-based COMET (Rei et al.,
2020) scores.

Metric BLEU ChrF2 TER COMET
Validation ~ 37.5 63.9 51.5 56.50
Test 329 61.6 54.2 42.52

Table 7: Metrics for the Trained WMT20 System

B Transferable Memorization Attacks

In this section, we present attacks on two public
SOTA translation systems, using memorized in-
puts obtained through our trained En-De WMT20
research system. We perturb the suffix of the mem-
orized input sentence to demonstrate the transfer-
able memorization attack in Table 8. In principle,
these attacks could be automated by leveraging
Algorithm 2 to generate neighbors of memorized
sources, however in this case we manually gener-
ated the perturbations listed in Table 8.

C Further Experiments

In this section, we present the results of exper-
iments conducted by varying both the language
pairs, the model architecture as well as the training
data size. Specifically, we have conducted the same
three experiments (related to Algorithms 1, 2 and 3)
on strong transformer baselines on three more trans-
lation directions by choosing different language
pairs: Ru-En, En-Ru and Tr-En, different datasets:
WMT20 for Ru-En, En-Ru and Multilingual TED
Talks Corpus for Tr-En (182K) (Qi et al., 2018)
and different model scales: Transformer Big for
WMT?20 and Transformer-Base (4 attention heads)
for Tr-En. For non-English source languages, we
used multilingual BERT as the MLM in algorithm
2. The results are presented in Tables 9-11. Overall,
we observe the below trends:

1. The memorized samples are of lower qual-
ity. For example, for the Ru-En system the
COMET-QE scores for memorized samples
are 20.68, vs 35.76 on average.

2. In general, memorization frequency increases
with repetitions. For example, in Ru-En, mem-
orization percentage for repetitions=2 is 1.2
but for repetitions=1, it is 0.53.

3. Prefix perturbations lead to far fewer memo-
rized outputs than suffix perturbations. For
example, in Ru-En, suffix perturbations gener-
ate memorized output 76.86 percentage of the
times, while prefix perturbations do so only
54.60 percent of times.

5160

http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
https://doi.org/10.1145/3446776
https://doi.org/10.1145/3446776
https://doi.org/10.1145/3446776
https://arxiv.org/abs/2112.12938
https://arxiv.org/abs/2112.12938
https://doi.org/10.18653/v1/2022.acl-long.434
https://doi.org/10.18653/v1/2022.acl-long.434

Source Translation

Madam President, Commissioner, ladies and gentlemen Frau Prisidentin, Herr Kommis-
sar, meine Damen und Herren

Madam President, Commissioner, ladies and CEOs Frau Prisidentin, Herr Kommis-
sar, meine Damen und Herren

Madam President, Commissioner, ladies and doctors Frau Prisidentin, Herr Kommis-

sar, meine Damen und Herren

For further questions our team is happy to be at your disposal Fiir weitere Fragen steht Thnen
unser Team gerne zur Verfiigung

For further questions our team is happy to be in your house Fiir weitere Fragen steht Thnen
unser Team gerne zur Verfiigung
For further questions our team is happy to be educated Fiir weitere Fragen steht Thnen

unser Team gerne zur Verfiigung

Table 8: Transferable Memorization Attack Examples: The first source instance in each of the above boxes
above was obtained using Algorithm 1 on the trained WMT20 English-German system. The first box represents
the outputs from Google Translate, and the second box represents the outputs obtained from Bing Translator. The
outputs were obtained on October 21, 2022. These examples show how the memorized instances detected from one
system could be used to elicit erroneous generations from other systems. A recorded demonstration of this attack is
available at https://github.com/vyraun/Finding-Memo.

Repetitions | Total Samples | Memorized | Ratio (%) || Perturb Prefix | Perturb Suffix | Perturb Start
1 100,000 527 0.53 54.60 % 76.86 % 48.99 %
2 68,480 822 1.20 3572 % 67.79 % 8.87 %
3 7,969 33 0.41 21.00 % 72.35 % 14.54 %
4 2,094 1 0.05 0.00 % 80.00 % 40.00 %
5 711 1 0.14 40.00 % 70.00 % 0.00 %

Table 9: Quantifying Extractive Memorization (Ru-En): Number of Memorized Samples (using Algorithm 1)
and Neighborhood Effects of Memorization (using Algorithm 2) across different training data frequency buckets.
The COMET-QE of Memorized samples is 20.68, while the average COMET-QE score of Total samples is 35.76.
The TTR of Memorized samples is 18.09, while the TTR score of Total samples is 19.06.

Repetitions | Total Samples | Memorized | Ratio (%) || Perturb Prefix | Perturb Suffix | Perturb Start
1 100,000 558 0.56 43.62 % 78.08 % 24.26 %
2 68,480 381 0.56 39.72 % 59.58 % 7.80 %
3 7,969 15 0.19 36.00 % 41.71 % 13.33 %
4 2,094 1 0.05 80.00 % 40.00 % 60.00 %
5 711 3 0.42 20.00 % 40.00 % 0.00 %

Table 10: Quantifying Extractive Memorization (En-Ru): Number of Memorized Samples (using Algorithm 1)
and Neighborhood Effects of Memorization (using Algorithm 2) across different training data frequency buckets.
The COMET-QE of Memorized samples is 10.82, while the average COMET-QE score of Total samples is 51.69.
The TTR of Memorized samples is 26.66, while the TTR score of Total samples is 25.6.

Repetitions | Total Samples | Memorized | Ratio (%) || Perturb Prefix | Perturb Suffix | Perturb Start
1 100,000 278 0.27 13.28 % 41.71 % 10.00 %
2 166 19 11.44 38.12 % 54.80 % 28.42 %
3 26 3 11.53 60.00 % 82.85 % 60.00 %
4 15 4 26.67 73.33 % 67.27 % 75.0 %
5 13 1 7.69 0.00 % 80.00 % 100.0 %

Table 11: Quantifying Extractive Memorization (Tr-En): Number of Memorized Samples (using Algorithm 1)
and Neighborhood Effects of Memorization (using Algorithm 2) across different training data frequency buckets.
The COMET-QE of Memorized samples is 24.83, while the average COMET-QE score of Total samples is 47.54.
The TTR of Memorized samples is 42.37, while the TTR score of Total samples is 9.60.

5161

https://github.com/vyraun/Finding-Memo

D Selecting the Prefix Threshold

Further, we did not tune the prefix ratio threshold
depending on the language pair, but ideally pre-
fix length threshold should be tuned depending on
average sentence length ratio between the source
and target language pair. We selected the prefix
threshold based on initial experiments on En-De.
In general, if we vary the threshold from lower
to higher, both the quantity and quality of the ex-
tracted samples increase: for En-De, the average
quality (COMET-QE score) at 0.2 is 0.02, at 0.4 it
is 33.7 and at 0.6 it is 53.98. However, at higher
thresholds, we cannot claim that the sample is mem-
orized since the output generation uses nearly the
full source context. In other words, lower thresh-
olds imply that the memorized samples are selected
with high precision, whereas a higher threshold will
favor recall (at the cost of false positives). In prac-
tice, we find that 0.75 gets very high precision.

5162

