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Abstract
We present M3 (Multi-level dataset for Multi-
document summarisation of Medical studies),
a benchmark dataset for evaluating the quality
of summarisation systems in the biomedical
domain. The dataset contains sets of multiple
input documents and target summaries of three
levels of complexity: documents, sentences,
and propositions. The dataset also includes
several levels of annotation, including biomedi-
cal entities, direction, and strength of relations
between them, and the discourse relationships
between the input documents (“contradiction”
or “agreement”). We showcase usage scenarios
of the dataset by testing 10 generic and domain-
specific summarisation models in a zero-shot
setting, and introduce a probing task based on
counterfactuals to test if models are aware of
the direction and strength of the conclusions
generated from input studies.

1 Introduction

Increased interest in summarisation has led to the
development of many datasets and models, includ-
ing in the biomedical domain, where summaries
are required to support clinical decision making.
Nevertheless, we still lack deep understanding of
what these models should be capable of to sup-
port user-relevant summarisation. The approach to
summarisation is largely based on the newswire do-
main, extracting the most salient and diverse details
about particular entities, and recombining them.
Yet multi-document summarisation in scientific do-
mains poses unique challenges. For example, when
summarising a set of clinical trials about drugs of
a particular class, the general efficacy of that class
and the certainty of that evidence is relevant, while
a text full of potentially conflicting details about
individual drugs is less helpful (Elhadad and McK-
eown, 2001). This requires the model to aggregate
entities, decide on the relationships between them,
and determine the strength of conclusions, which
remains a distant goal (DeYoung et al., 2021).

Existing summarisation systems are not up to
such complex tasks, yet limited tools exist to de-
termine where and why they are failing. The M3
(Multi-level dataset for Multi-document summaris-
ation of Medical studies) dataset aims to enable
this, as follows: (1) We include inputs and tar-
gets of different levels of granularity such as docu-
ments, sentences and propositions, to help under-
stand if a model is attending to correct text spans.
(2) We subdivide multi-aspect evidence sentences
into propositions (aspects) to measure the difficulty
of aggregation across several sets of entities and
relations. (3) We annotate important biomedical en-
tities to enable their spans to guide summarisation,
and to facilitate evaluation of generated summaries
based on inclusion of correct entities. (4) We anno-
tate conclusions for their direction (polarity) and
strength (modality) to evaluate if a model is able
to correctly aggregate relationships between enti-
ties and weight primary evidence, and also provide
their spans to assist linguistic exploration of these
aspects. (5) We label discourse relations between
source documents as agreement or contradiction
to see how it affects findings. (6) Lastly, we pro-
vide a set of counterfactual target summaries which
are different from the correct ones in polarity or
modality, to test the robustness of models.1 We
use the proposed dataset to conduct an empirical
comparison of 10 state-of-the-art summarisation
models and analyse their errors.

2 Related works

Current datasets for biomedical multi-document
summarisation (MDS) can broadly be divided into
two groups: large datasets based on abstracts of
systematic reviews and their underlying primary
studies (Wallace et al., 2021; DeYoung et al., 2021),
and smaller datasets based on less complex inputs,

1The dataset and the scripts for working with it are pro-
vided at https://github.com/julia-nixie/m3.
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targeting expert-written summaries aimed at a gen-
eral audience (Mollá et al., 2016; Shah et al., 2021).

While systematic reviews are natural targets for
summarisation of biomedical evidence and provide
sufficient data to train neural summarisation mod-
els, they can be problematic to use. Source texts
are long, complex scientific documents containing
significant extraneous information. For example,
DeYoung et al. (2021) use all clinical trials cited by
a review as inputs for summarisation, though many
citations are for related studies or background in-
formation rather than for primary studies directly
relevant to the review scope. Though Wallace et al.
(2021) avoid this by using only primary studies as
inputs, the problem is not completely solved. As
we show below, the conclusions of systematic re-
views often cannot be directly summarised from
abstracts of underlying studies. The abstracts of
primary studies may contain details not directly
relevant to the conclusions of systematic reviews,
such as details on methods, that need to be ignored.

In contrast, the inputs of smaller-scale MDS
datasets such as Mollá et al. (2016) and Shah et al.
(2021) are shorter and more narrowly scoped, mak-
ing them more appropriate sources for summarisa-
tion. However, as summaries are targeted at a more
general audience and refer to evidence hand-picked
by experts rather than a large set of primary studies,
they are less relevant for the practical purpose of
summarising and updating evidence for medical
professionals.

Our dataset M3 tries to combine the advantages
of both approaches: though it is based on system-
atic reviews and primary studies, we include only
relevant studies as input and extract highly infor-
mative pieces of evidence from both sources and
targets for summarisation. It is also not limited
to Cochrane reviews like the data of Wallace et al.
(2021), making it more varied in style.

3 Dataset structure

The benchmark dataset we present is based on
biomedical literature for major eye diseases such
as glaucoma and macular degeneration. We chose
to focus the dataset around a particular topic to im-
prove reliability by making it easier for the annota-
tors and evaluators to understand the subject matter.
This approach also helps to verify if models, which
are usually trained on multi-topic datasets, can per-
form well in a specific domain with more limited
vocabulary, testing whether they can learn to per-

Glaucoma AMD DME Total

Retrieved 515 507 107 1129
Included 203 177 71 451

Table 1: Number of retrieved and included reviews

form summarisation operations rather than rely on
vocabulary distribution (Li et al., 2018). On the
other hand, our corpus is very diverse in terms of
types of documents, comprising diagnostics, man-
agement, prognosis, cost effectiveness, genetics,
risk factors, etc. studies in addition to the treatment
trials which are usually the focus of research aimed
at the synthesis of biomedical evidence.

3.1 Document level

The primary aim of this dataset is to support the
evaluation of multi-document summarisation sys-
tems. Hence at the top level it consists of the ab-
stracts of systematic reviews (summarisation tar-
gets) and the abstracts of primary studies they were
based on (input documents). We used the Entrez
API2 to retrieve systematic reviews from PubMed3

for the following eye diseases: glaucoma, age-
related macular degeneration (AMD), and diabetic
macular oedema (DME). After retrieving the re-
views, we manually checked their abstracts and
excluded reviews which were not directly relevant
to the query, older versions of other reviews, and
reviews with full text not accessible to us.4 The
results for the retrieved and included reviews are
outlined in Table 1.

The dataset includes review abstracts, and their
full texts where available. The Conclusions of each
abstract serves as the summarisation target, follow-
ing Wallace et al. (2021). As the input documents
for the summaries, we used the abstracts of pri-
mary studies included in each systematic review.
Since the majority of citations in a review are not
there to introduce the clinical trials underlying the
review but rather to support an argument, provide
background information or outline the previous re-
search, we located the references to primary studies
which were actually used to arrive at conclusions.
This was done based on the full text: automatically,
when there was a separate section for the included
studies as in Cochrane reviews, or by manually se-

2biopython.org/docs/1.75/api/Bio.
Entrez.html

3www.ncbi.nlm.nih.gov/pmc/
4Though the corpus includes abstracts of reviews, full texts

were needed to find citations of included primary studies.
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lecting the relevant citations. Overall, we found
and retrieved 6365 related primary studies, around
14 studies per review.

3.2 Sentence level

The abstracts of systematic reviews have a very
different structure and content from the abstracts
of primary studies. For example, the Methods sec-
tion of a systematic review describes the process of
searching for and selecting primary studies, while
the Methods section of a primary study explains
the conditions and process of a clinical trial. Di-
rectly summarising the input primary studies with
a systematic review as a target is nearly impossible.
Therefore, to ensure fairness of evaluation, we se-
lect parts of both inputs and targets which contain
summarisable pieces of evidence or conclusions
related to the clinical question of the review.

For each of the systematic reviews, we selected
one or more evidence-bearing sentences. These are
primarily located in Outcomes sections but some-
times in Results. Then, we manually checked their
underlying primary studies to identify sentences
supporting the claims we selected. If a sentence
from a systematic review did not have support in
the abstracts of primary studies, we excluded it.
When selecting the sentences from the primary
study, we tried to find the minimal sentence-level
span (usually one, but occasionally two sentences)
which contains the most information to support the
findings, but also is the most similar to it. For the
most part, such evidence snippets were the first
sentence in the Outcomes section of structured ab-
stracts, and either the last or penultimate sentence
in the unstructured ones. Sometimes the Outcomes
sentences are too generic and we used a more spe-
cific sentence from the Results part.

We attempted to map the input sentences to tar-
gets based on cosine similarity of their embeddings.
We tested 15 encoders on a sample of human-
matched sentences, but the matching accuracy of
even the best-performing one was not enough to do
it automatically – PubmedBERT (Gu et al., 2020)
trained on full texts, with an accuracy of 0.522.
This reflects the well-known problem of surface-
form divergence and variety, especially prominent
in the biomedical domain, which is rife with com-
plex synonymy, and acronyms and elisions (Plaza
et al., 2011). However, there were even more chal-
lenging issues which made the mapping of sen-
tences difficult even for human annotators. It re-

quired some additional information and reasoning
operations, such as aggregation, separation, com-
parison, and inference. For example, if a systematic
review concludes that a risk factor affects Asian
but not Caucasian patients, we had to separate the
underlying clinical trials into two groups according
to patients’ origin and map their sentences to the
relevant conclusions.

In the process of mapping we had to remove a
large number of items that were found to be unsuit-
able for summarisation. Mainly this was due to the
fact that systematic reviews imply meta-analysis of
results, involving aggregating and dissecting data
in different ways to what is reported in primary
studies. For example, a systematic review may
compare two treatments, but in the primary studies
they were compared with a placebo rather than each
other; it can be based on the tabular or underlying
data from the primary studies rather than on the text
of their abstracts; it may require a numerical aggre-
gation of data (such as number of disease cases)
across studies or involve calculating correlation or
other statistics for variables. We also excluded sys-
tematic reviews where the number of underlying
studies was too large to be reliably mapped.

Overall, we were able to annotate 233 clusters
of systematic reviews and primary studies, which
consisted of 318 target evidence snippets from re-
views mapped with 1840 source evidence snippets
from 1258 clinical trials.

3.3 Proposition level

In the most fine-grained layer, we annotate the
corpus on the level of propositions (claims). We
choose this rather than elementary discourse units
(EDUs: Mann and Thompson (1988)) following
the practice adopted in translation, where the basic
unit is a proposition (idea) rather than a span of a
particular granularity. This differentiates M3 from
those datasets where discourse relationships are en-
coded on the EDU level, such as SciDTB (Yang
and Li, 2018) and BioDTB (Prasad et al., 2011).
We are more interested in the interaction of ideas
between documents rather than in the relations be-
tween sentence units within the document.

As M3 consists of answers to clinical questions,
we define the units (propositions) based on the
PICO scheme (Richardson et al., 1995). In par-
ticular, each unit has a unique combination of Pa-
tient/population, Intervention, Comparator (alter-
native treatment or placebo), and Outcome. If a
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target sentence includes several sets of PICO ele-
ments, we annotate them separately and map only
those primary studies from the sentence-level cor-
pus that directly correspond to them. Consider, for
the example, the following target sentence:

The pooled evidence confirmed that, com-
pared with ranibizumab, bevacizumab
was associated with equivalent effects on
visual acuity at 1 year and with a higher
risk of systemic serious adverse events.

At the proposition level, we annotate two PICO
tuples: {P: [neovascular age-related macular de-
generation ], I: bevacizumab, C: ranibizumab, O:
visual acuity at 1 year } and a second with the same
P, I, and C but with a distinct O: risk of systemic se-
rious adverse events. Apart from clearly capturing
that this sentence answers two clinical questions, it
allows us to specify different relations between the
PICO elements, and ensures that each proposition
is mapped to directly relevant supporting evidence.

If a PICO element is not explicitly mentioned
in the annotated proposition, it is filled in using
the overall context of the abstract but enclosed in
brackets to differentiate from explicitly mentioned
spans. This ensures fairness of evaluation, as gen-
erated summaries should explicitly specify entities
implied in the target summary. Comparator entities
are left blank if a placebo control is used.

In addition to the entities mentioned above, we
annotate the relation between the Intervention and
Outcome with regards to Comparator in terms of
its semantic orientation (polarity) and degree of cer-
tainty (modality), adopting the annotation scheme
introduced by Lehman et al. (2019) and further
refined by Otmakhova et al. (2022). In particu-
lar, we specify the polarity of the relation, that is,
whether the Intervention has a positive effect on
the outcome, a negative effect, or has no effect. If
a comparator is present, the polarity signifies pos-
itive or negative difference with it rather than an
absolute effect, i.e. a treatment can have a positive
effect on the outcome, but be non-superior to the
comparator and thus annotated as no effect.

Following the scheme proposed by Otmakhova
et al. (2022), we also annotate the propositions
in terms of their modality, or certainty of claim
(strong, moderate, weak or no evidence). We assign
labels for modality and mark corresponding spans.

Target propositions from the review and source
sentences from primary studies are grouped to-
gether based on their shared PICO elements into

Level Inputs Targets Inputs/target Compr.

Documents 451 6365 14.1 89.7
Sentences 318 1840 5.8 8.3

Propositions 369 1899 5.1 6.2

Table 2: Dataset statistics. Compr. denotes the average
compression rate between inputs and targets.

clusters, therefore annotating PICO only at the tar-
get level. On the other hand, as polarity and modal-
ity can be different for each of the inputs and for the
target (heterogeneous results of differing certainty),
we annotate them individually for each proposition.
At this level, the dataset includes 369 target propo-
sitions mapped with 1899 input propositions, each
explicitly annotated for polarity and modality, and
grouped together based on their PICO elements.

Our fine-grained proposition mapping and anno-
tation allows to test the capabilities of a summaris-
ation system in a sandboxed scenario with highly
relevant inputs and precise targets, as well as fa-
cilitating evaluation of the factual correctness of
summarisation. In particular, the explicit annota-
tions of PICO, modality and polarity can be used
as golden labels when assessing the corresponding
aspects of the generated summaries

The statistics of the resulting dataset for each of
the levels described above are provided in Table 2.
Appendix A contains some examples which show
the structure of inputs and targets for these levels.

3.4 Reliability of annotation

To ensure the reliability of M3, we ask three ex-
ternal volunteers to annotate a subset of samples.
In particular, they were asked to choose polarity
and modality labels for 40 summaries on the propo-
sition level, and to match conclusions of 30 sum-
maries with evidence sentences from primary stud-
ies. The details of the annotation tasks together
with the annotation instructions and examples as
well as details of inter-annotator agreement are pro-
vided in Appendix B. Overall, we achieve a high
agreement for the classification tasks and a substan-
tial one for semantic similarity matching.

4 Evaluation tasks

4.1 Summarisation

We next turn to testing the performance of state-
of-the-art multi-document summarisation models
with M3.
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4.1.1 Zero-shot performance of a
domain-specific model across M3 levels

We begin with a model specifically developed for
the biomedical domain (DeYoung et al., 2021). We
use the BART (Lewis et al., 2020) model check-
point5 to generate summaries without any addi-
tional fine-tuning on M3. To accommodate for the
long length of input texts, we encode inputs individ-
ually and then concatenate into a single representa-
tion, following DeYoung et al. (2021). A feature of
this model is that each input is also prepended by
the Background section of the summary, to provide
general information and guide the generation. This
essentially serves as an extended prompt. How-
ever, the model showed an overly strong reliance
on this prompt and a tendency to copy from it rather
than generate from inputs (Otmakhova et al., 2022).
Hence we exclude it in three of our experiments
and use a short prompt consisting of relevant PICO
elements in the last experiment. Moreover, in con-
trast to their work, we do not mark PICO entities
and conclusion sentences specifically. Thus, the
aim of this set of experiments is to check the perfor-
mance of the model without relying on prompting
or decoration, and to see how it reacts to different
types of inputs in such more realistic scenarios.

We generate four sets of summaries based on
input texts of different levels (document, sentence,
and proposition level). For the proposition level we
either use no prompt or concatenate the annotated
PICO elements into a single string and prepend
it to each input. We randomly sample 50 gener-
ated documents for each of these sets and manually
evaluate their consistency with the annotated tar-
get summary in terms of PICO elements, polarity
and modality. We also compare them to the target
summaries using automatic metrics ROUGE (Lin,
2004) and BERTScore (Zhang et al., 2019).

Table 3 shows the percentage of generated sum-
maries containing the same PICO elements, po-
larity or modality of the findings as the target
summary, as well as the percentage of generated
summaries that were correct or wrong in term
of these aspects. In general, the number of cor-
rect summaries increases when the model is sup-
plied with exact snippets of text needed to generate
them, showing the importance of extracting highly-
relevant pieces of evidence from multiple docu-
ments. Interestingly, the performance for PICO
elements goes down at the proposition level. It is

5github.com/allenai/ms2/

likely difficult for the model to pick out the correct
set of entities if several are present in the inputs.
Naïve prompting with the set of relevant PICO
elements did not help resolve this problem and in-
troduced another, where the model would copy all
or some PICO elements as a single entity and use
them to fill PICO slots in the generated summaries.
That is, instead of focusing generation of PICO ele-
ments and relationships between them based on the
prompt, the model copies the prompt literally. For
example, for the prompt Gingko biloba vision for
Intervention Gingko biloba and Outcome vision the
model generated the following summary, placing
the full prompt in the Intervention slot:

The meta- analysis showed that Gingko
biloba vision improved after treatment
with Ginkgo biloba extract.

Worryingly, though almost all summaries gen-
erated with prompting suffer from such excessive
copying of biomedical entities and are thus mean-
ingless, their ROUGE scores show substantial im-
provements due to multiple lexical overlaps.

4.1.2 Zero-shot performance of
summarisation models at proposition
level

We report performance of current summarisation
models on level 3 (propositions) of M3. Compar-
ison at this level is motivated in two ways. First,
the availability of “oracle” evidence statements as
inputs to the summarisarion model allows us to dis-
sect extractive and abstractive operations and focus
on evaluating the latter. Second, the inputs are rel-
atively short compared to whole abstracts, which
is important for fair comparison as most of the cur-
rent summarisation models still have limitations in
terms of number of input tokens.

As our task here is to showcase M3 by com-
paring models and highlighting their unique be-
haviour on it rather than select or propose the one
with the best performance, we either use publicly
available fine-tuned checkpoints or fine-tune pre-
trained models using similar hyperparameters to
those suggested by their authors. That is, we do
not focus on hyperparameter search and our results
might not reflect the best-achievable performance
for a given model. We chose a variety of mod-
els to compare, including ones fine-tuned on both
single-document and multi-document datasets from
both biomedical and generic domains, including a
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PICO Polarity Modality All correct All wrong R-1 R-2 R-L BertScore

Documents 12% 44% 48% 2% 18% 24.6 5.7 18.0 85.3
Sentences 36% 54% 56% 10% 12% 24.1 5.9 18.8 85.7

Propositions 26% 58% 58% 14% 10% 23.7 5.8 18.6 85.6
Prompted propositions 6% 62% 64% 0% 10% 38.6 19.2 30.4 87.1

Table 3: Results of manual factuality evaluation vs. automatic evaluation for the in-domain model

a multi-document corpus of biomedical studies we
refer to as Cochrane (Wallace et al., 2021):

• BART XSUM, a generic BART-large model
(Lewis et al., 2020) fine-tuned on a single-
document newswire dataset.6

• BART Cochrane, a generic BART-large model
fine-tuned on Cochrane.

• BioBART Cochrane, a biomedical BART-
large model (Yuan et al., 2022) fine-tuned on
Cochrane.

• Pegasus XSUM, a Pegasus-large model
(Zhang et al., 2020) fine-tuned on a single-
document newswire corpus.7

• Pegasus Pubmed, a Pegasus-large model fine-
tuned on a single-document dataset of biomed-
ical articles (Pubmed).8

• BigBird Pegasus Pubmed, a BigBird Pegasus-
large model (Zaheer et al., 2020) fine-tuned
on the same Pubmed dataset.9

• Pegasus Cochrane, a Pegasus-large model
fine-tuned on Cochrane.

• Primera, the first pre-trained model specifi-
cally designed for multi-document summaris-
ation (Xiao et al., 2022).10

• Primera Cochrane, a Primera model fine-
tuned on Cochrane.

The results of the automatic evaluation of these
models in terms of ROUGE scores (Lin, 2004) and
BERTScore (Zhang et al., 2019) are presented in
Table 4. We note a low discriminatory ability of
BERTScore for this task, with scores in a very nar-
row range and coinciding for several models. In
terms of ROUGE scores, it seems that fine-tuning
on a multi-document in-domain dataset (Cochrane)
helps, as nearly all Cochrane models (except for
Primera) achieve higher ROUGE scores than their
generic counterparts, and that the simplest model
(BART-large) is able to generalize better than the

6huggingface.co/facebook/
bart-large-xsum

7huggingface.co/google/pegasus-xsum
8huggingface.co/google/pegasus-pubmed
9huggingface.co/google/

bigbird-pegasus-large-pubmed
10huggingface.co/allenai/PRIMERA

R-1 R-2 R-L BScore

BART XSUM 19.3 2.6 14.4 0.86
BART Cochrane 24.6 5.5 19.2 0.88

BioBART Cochrane 21.5 3.6 16.4 0.87
Pegasus XSUM 22.1 4.0 16.6 0.87

Pegasus Pubmed 11.7 1.8 8.8 0.81
BigBird Pubmed 10.4 1.4 7.8 0.81

Pegasus Cochrane 23.8 5.1 18.2 0.88
Primera 20.2 4.2 14.0 0.86

Primera Cochrane 18.8 2.3 14.5 0.87

Table 4: The results of automatic evaluation of pre-
trained models on the proposition level of the dataset.
“BScore” = BertScore

others. Interestingly, Pegasus models fine-tuned
on a single-document biomedical dataset (Pubmed)
are the worst performers. In general, scores pre-
sented here are substantially lower than those re-
ported for the corresponding models on their origi-
nal dataset, due to the difficulty of zero-shot learn-
ing on a highly abstractive dataset. What concerns
us more is what these numbers truly represent,
which we analyse by performing human evalua-
tion of the generated summaries.

We analyse the same set of 30 randomly-chosen
summaries for each of the models. In addition to
the factuality rubrics used in the previous section
we mark if there are any hallucinations (content
which is inconsistent with the input documents) or
repetitions in the generated text. As many of the
generated summaries do not contain any evidence
or claim, we also note the number of such non-
evidential summaries to further refine the Modality
rubric. The results across these dimensions are
presented in Table 5. In general, the results of man-
ual evaluation are not aligned with ROUGE scores:
though models trained on the Cochrane corpus had
the highest ROUGE scores, they also perform the
worst in terms of generating completely wrong sum-
maries. Thus, though the models learn to reproduce
biomedical vocabulary learned by fine-tuning on
an in-domain corpus, it does not necessarily lead to
meaningful improvements. Below we discuss some
patterns and typical errors these models make; ex-
amples of wrong and correct summaries generated
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by the models can be found in Appendix C and
Appendix D, respectively.

Surprisingly, some generic models (Pegasus
XSUM, Primera) performed very well in terms of
producing correct summaries and an absence of
hallucinations. As we show below, this is achieved
mostly by copying from the source. On the other
hand, BART XSUM tended to hallucinate unrelated
biomedical entities, leading to worse performance
in terms of PICO and overall correctness. Interest-
ingly, BART XSUM also tended to add irrelevant
references such as according to a study in the Jour-
nal of Ocular Medicine, which we did not notice
in the other models.

Hallucinations, however, are especially severe in
models fine-tuned on the Pubmed corpus (Pegasus
Pubmed and BigBird Pegasus Pubmed), producing
abstract-style summaries with external information
about the entities mentioned in the input documents.
We hypothesise that since the data these models
was trained on is substantially longer than the in-
puts and targets in M3, the models are trying to
reproduce the style and length of documents they
are accustomed to by “padding” the input texts with
similar information from the model itself and re-
peating the content (both models also suffer from
excessive repetitions).

In terms of models fine-tuned on the multi-
document biomedical corpus (Cochrane), they
seem to do better in terms of determining the di-
rection of findings (positive, negative, or no effect)
by aggregating often conflicting inputs. However,
it is difficult to make strong conclusions here, as
these models actually make claims in a very small
number of cases, mostly generating non-evidential
summaries such as There is not enough evidence
to support or refute . . . . It appears that when the
multi-document models are certain enough to make
a conclusion, they choose the direction better than
models fine-tuned on single-document sources.

Though the original Primera model had the best
performance across almost all categories, upon fur-
ther analysis this proves to be due to excessive
copying from source documents. The model mostly
performed extractive summarisation by stitching
together whole sentences from inputs, relating to
an objective in Primera that pushes the model to
identify and extract unique information from input
documents rather than aggregating and recombin-
ing similar propositions. Thus, when the inputs are
non-contradictory and there is no need to aggregate

biomedical entities of different levels, Primera is
able to make correct conclusions by copying one or
more important input sentences. However, when-
ever there is a need for more complex operations,
copying is not enough to make a correct conclusion,
and Primera fails.

Though Primera is the extreme example, many
of the models copy large chunks of text (even
whole sentences) from the input texts. To esti-
mate the amount of copying and thus extractive-
ness in what are supposed to be abstractive pre-
trained models, we calculate lexical overlap of gen-
erated summaries with the source documents using
ROUGE scores. We also report the difference in
ROUGE scores when comparing the summaries to
inputs vs targets (see Table 6). Not surprisingly,
the Cochrane models tend to abstract more from
the input documents and rely less on copying than
the single-document models.

4.2 Probing for awareness of modality and
direction

Apart from polarity and modality labels facilitating
manual evaluation of factual correctness of sum-
maries, we also provide counterfactual targets to
assist automatic evaluation. Unlike usual coun-
terfactual tasks where we check how a change in
inputs affects the targets, we modify the target sum-
maries so that their content cannot be inferred from
the inputs. The underlying idea is that given the
same inputs, the model should be able to assign
more probability to the correct rather than counter-
factual generation. We manually corrupt the target
propositions in the following five ways, making
sure to modify only one aspect at a time:

• Negation: flip the negation of the predicate
(affirmative into negative and vice versa) and
change other words to preserve grammatical-
ity and coherence, such as changing some into
any, or and into but (Pullum and Huddleston,
2002).

• Antonymy: flip the polarity of conclusions by
substituting cue words with an antonym (e.g.
increases → decreases, less → more).

• No effect: change the propositions with a spe-
cific polarity of findings (positive or negative)
into a no effect statement, or vice versa.

• No evidence: change specific conclusions
into non-evidential sentences (There is no evi-
dence ...), and vice versa.

• Modality: hedge sentences with moderate
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PICO↑ Modal.↑ Polarity↑ All correct↑ All wrong↓ Halluc.↓ Repet.↓ No evid.↓
BART XSUM 13.3 46.7 61.1 6.7 36.7 83.3 0.0 43.3

BART Cochrane 43.3 20.0 100.0 10.0 43.3 10.0 3.3 70.0
BioBART Cochrane 46.7 30.0 66.7 20.0 43.3 16.7 0.0 60.0

Pegasus XSUM 33.3 66.7 50.0 20.0 26.7 20.0 0.0 30.0
Pegasus Pubmed 16.7 73.3 54.2 13.3 26.7 93.3 56.7 20.0
BigBird Pubmed 6.7 53.3 52.9 6.7 43.3 96.7 36.7 46.7

Pegasus Cochrane 26.7 10.0 25.0 0.0 60.0 40.0 0.0 83.3
Primera 53.3 73.3 60.0 36.7 13.3 6.7 0.0 0.0

Primera Cochrane 20.0 3.3 66.7 0.0 73.3 70.0 0.0 86.7

Table 5: Results of manual evaluation of pre-trained models (%); ↑: higher is better, ↓: lower is better

R-1 R-2 R-L

BART XSUM 20.4 (+1.1) 7.1 (+4.5) 14.8 (+0.5)
BART Cochrane 25.3 (+0.7) 16.2 (+10.7) 21.6 (+2.4)

BioBART Cochrane 19.8 (−1.7) 9.4 (+5.8) 16.2 (−0.2)
Pegasus XSUM 24.1 (+2.0) 13.4 (+9.4) 19.4 (+2.8)

Pegasus Pubmed 29.8 (+18.1) 11.4 (+9.6) 19.9 (+11.2)
BigBird Pubmed 25.1 (+14.7) 7.2 (+5.8) 16.0 (+8.2)

Pegasus Cochrane 18.7 (−5.2) 6.7 (+1.7) 14.0 (−4.2)
Primera 74.5 (+54.3) 73.7 (+69.5) 73.1 (+59.1)

Primera Cochrane 14.1 (−4.8) 3.0 (+0.7) 10.3 (−4.2)

Table 6: ROUGE scores of generated summaries vs. input texts. Differences of the scores of targets vs. inputs are in
brackets; higher differences indicate the model copies more from the source and summaries are less abstractive.

Negation Antonyms No effect No evidence Modality

∆ loss Acc ∆ loss Acc ∆ loss Acc ∆ loss Acc ∆ loss Acc

BART XSUM 0.092±0.19 0.73 0.126±0.18 0.83 0.084±0.18 0.73 −0.188±0.34 0.25 0.051±0.17 0.65
BART Cochrane 0.046±0.17 0.65 0.102±0.15 0.80 0.035±0.15 0.63 −0.306±0.29 0.09 0.021±0.13 0.56
BioBART Cochrane 0.091±0.18 0.74 0.138±0.16 0.87 0.081±0.17 0.73 −0.128±0.29 0.32 0.032±0.14 0.60
Pegasus XSUM −0.012±0.17 0.50 0.039±0.25 0.63 −0.008±0.17 0.51 −0.377±0.61 0.23 0.002±0.20 0.50
Pegasus Pubmed 0.023±0.24 0.53 0.124±0.24 0.75 0.019±0.24 0.53 −0.714±2.00 0.41 0.042±0.31 0.56
BigBird Pubmed 0.034±0.34 0.56 0.143±0.26 0.75 0.030±0.33 0.56 −0.080±0.96 0.56 0.043±0.32 0.56
Pegasus Cochrane 0.078±0.18 0.73 0.144±0.21 0.83 0.068±0.18 0.71 −0.163±0.33 0.30 0.032±0.18 0.54
Primera 0.064±0.21 0.68 0.123±0.18 0.83 0.051±0.18 0.67 −0.194±0.36 0.25 0.047±0.18 0.61
Primera Cochrane 0.070±0.19 0.68 0.106±0.15 0.82 0.059±0.18 0.66 −0.186±0.32 0.27 0.034±0.14 0.59

Table 7: Awareness of the corruptions of the target. “∆ loss” is the difference and s.d. in mean NLL loss.

strength of claim using such words as might,
and remove markers of weak and strong
modality to moderate the claims.

We follow several strategies to ensure that the
modified targets are not unnatural or too dissimilar
from the originals. Specifically, we avoid changes
to syntactic structure, limit changes to maximum
5 words, and coordinate changes with other parts
of the sentence to preserve grammar and cohesion.
The resulting dataset contains 234 summaries with
inverted negation, 196 with antonyms for polar-
ity, 234 targets with a specific polarity changed
to/from no effect, 167 conclusions changed to/from
no evidence, and 200 summaries with moderate
modality flips. Examples of created counterfactual
summaries appear in Table 8.

The counterfactual summaries are used to probe
the ability of models to detect corruptions, and thus
their awareness of the polarity and strength of ag-
gregated evidence. In this pilot study, we use the
negative log-likelihood loss used to train the mod-
els as a simple measure to compare the likelihood
of generating correct and corrupted summaries. We
calculate the difference in NLL loss between the
counterfactual and correct summaries (∆ loss), and
the relative number of times the model has a strictly
lower loss for the correct as compared to the cor-
rupted summary (“Acc”). Results are presented in
Table 7. Intuitively, a positive ∆ loss means that
the model assigns more probability to the correct
target than to the modified one, while a loss around
zero means the model cannot differentiate them.
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Target (PMID 18242575) Heavy alcohol consumption (more than three standard drinks per day) is associated with an increased risk of early AMD.
Negation Heavy alcohol consumption (more than three standard drinks per day) is not associated with an increased risk of early AMD.

Antonym) Heavy alcohol consumption (more than three standard drinks per day) is associated with a reduced risk of early AMD.
No effect Heavy alcohol consumption (more than three standard drinks per day) is not associated with an increased risk of early AMD.

No evidence There is no evidence that heavy alcohol consumption (more than three standard drinks per day) is associated with an increased risk of
early AMD.

Modality Heavy alcohol consumption (more than three standard drinks per day) may be associated with an increased risk of early AMD.

Table 8: Examples of counterfactual summaries created by changing the target modality or polarity of the same
target summary. The tokens that were modified are in bold.

The standard deviation reflects the stability of re-
sults across samples, indicating whether the model
is biased to particular language features.

The results show that some aspects of factuality
are difficult for models to recognize: the majority
of models struggle to detect changes in negation,
modality, or polarity of findings (no effect). In
contrast, the pre-trained models are quite good at
choosing correct antonyms, especially those fine-
tuned on the in-domain Pubmed dataset. Interest-
ingly, all models assigned less loss to summaries
with changed evidentiality. Most summaries in M3
contain specific findings while counterfactual sum-
maries are non-evidential, supporting the conclu-
sion that models tend to generate sentences citing
lack of evidence, and not making any claims at all.

5 Conclusions

In this paper we presented a new dataset for multi-
document biomedical summarisation which is de-
signed to be used as a benchmark for evaluation
and comparison of summarisation models. To as-
sist this task, we provide inputs and targets of dif-
ferent granularity, human annotations in terms of
several aspects, and also sets of counterfactual tar-
get summaries. We show some ways to use M3
by evaluating 10 summarisation models, and in-
troduce a baseline probing task for determining
awareness of polarity and modality of findings. We
hope that the abundance of different annotations
we provide will help the community to develop new
ways to test and evaluate summarisation systems in
the biomedical and scientific domain.

6 Limitations

Though we did our best to retrieve and include all
relevant citations for the systematic reviews, in rare
cases (for older studies or papers in languages other
than English) their abstracts were not available on-
line. Moreover, as M3 is almost entirely reliant on
meticulous human annotation, it requires substan-
tial effort to construct. Its current size is suitable
only for evaluation or few-shot learning rather than

training and fine-tuning of summarisation models.

7 Ethical considerations

Multi-document summarisation is of critical impor-
tance for the biomedical domain, where it can allow
medical practitioners to keep up with the current
evidence and thus improve patient care. However,
errors in this domain are particularly dangerous as
the summarised evidence may directly inform treat-
ment of a patient. We must therefore be careful to
deeply understand what we are trying to achieve.
We hope that our work will help to mitigate con-
cerns with their use in practice by shedding some
light on the state of these systems.
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review with PMID 16856103, and its underlying
primary studies PMID 9795850 and 12913321, cor-
respondingly. Please note that for simplicity we use
a review where there is only one conclusion, as the
result of which the text of examples on Sentence
and Proposition levels coincides; however, the ex-
ample for the Proposition level has additional anno-
tations as described in section B. Some long para-
graphs on the Document level were abbreviated
for display purposes. The examples for the Docu-
ment, Sentence and Proposition levels are shown
on Figures 1 respectively.

B Annotation details

We evaluated the reliability of annotation and sen-
tence mapping with the help of 3 volunteer annota-
tors. For the classification task, they were asked to
choose polarity and modality labels given particu-
lar PICO elements. For the sentence mapping task,
as it was unfeasible to ask annotators to compare
target sentences with all input sentences (there are
on average 12 sentences in each input document),
we asked them to choose the closest sentence out
of four candidates, one of which was the sentence
chosen by the main annotator, and the other three
were sentences with the highest cosine similarity to
the target based on PubmedBERT CLS token rep-
resentation, which we found to be most accurate in
predicting the correct matching. The four resulting
candidates were shuffled. Some examples of anno-
tation for the classification task are shown in Figure
4. Figure 5 presents annotation instructions and an
annotated sample for the similarity matching task.

The results of inter-annotator agreement are pro-
vided in Table 9.

Agreement Gwet’s AC1 Fleiss’ κ

Polarity 85% 0.79 0.81
Modality 87.5% 0.86 0.85

Sent. similarity 81.7% 0.79 0.76

Table 9: Inter-annotator agreement on classification (Po-
larity and Modality) and evidence matching tasks.

C Examples of wrong generated
summaries

In Table 10 we provide examples of summaries
generated by different pre-trained models for the
same set of input propositions, together with the
correct Target summary. Only the summary gener-
ated by Primera (and essentially copied from the

inputs) is fully correct.

D Examples of correct generated
summaries

As it was impossible to find a sample where the
majority of generated summaries would be correct,
we provide examples for different sets of inputs in
Table 11. If a summary contains some irrelevant
hallucinated details, we mark them in italics. If the
generation is correct but not perfect, we provide
comments in italics. In the evaluated sample Pega-
sus Cochrane and Primera Cochrane did not have
completely correct generated summaries.
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Figure 1: An example of the Document level structure

Figure 2: An example of the Sentence level structure

Target (PMID 206650441) Combination therapy of IVB and IVT did not result in any significant reduction in CSMT or gain in vision compared to treatment with
IVB alone at any point in time.

BART XSUM The IVB and IVT groups were compared in a double-blind, placebo-controlled trial to see if the treatment of a patient with a heart
attack improved their heart function.

BART Cochrane There is no evidence that IVB/IVT treatment is associated with a significant reduction in CMT and BCVA in the short term.
BioBART Cochrane There is no evidence to support the use of IVB in the treatment of CMT.

Pegasus XSUM The influence of the IVB and IVT groups on the change in CMT and BCVA between the IVB and IVT groups has been investigated.
Pegasus Pubmed in this study, we report the results of a large - scale, multicenter, prospective, randomized, controlled trial ( rct ) to test the hypothesis

that hiv-1 infection is a risk factor for type 2 diabetes mellitus ( t2 dm ). <n> the rct was conducted in a community with a high
prevalence of t2 dm. <n> we collected peripheral blood samples, including whole blood ( wbc ), whole blood glucose ( wbg ), serum
insulin, and insulin - like growth factor-1 ( igf-1 ) levels, and urine samples. <n> urine samples were analyzed by gas chromatography
/ mass spectrometry ( gc / ms ). <n> we found that hiv-1 infection was a risk factor for t2 dm. <n> the rct was successful in achieving
its primary objective, that is, to determine whether hiv-1 infection is a risk factor for t2 dm. <n> the primary objective of the rct was to
determine whether hiv-1 infection is a risk factor for t2 dm. <n> the secondary

Bigbird Pubmed key clinical messagea 35-year - old man was found to have a cerebral abscess secondary to a recurrent sigmoid diverticulum rupture.<n>
both cultures grew streptococcus anginosus.<n> brain abscess is a rare but potential complication of sigmoid diverticulum rupture.

Pegasus Cochrane There is no evidence to suggest that the use of IVB over IVT is more effective than IVT in the provision of high-speed Internet access.
Primera No significant differences were detected in the changes of CMT and BCVA between the IVB and IVB/IVT groups (P = 0.99).

Primera Cochrane There is insufficient evidence to support or refute the use of any intervention for the management of acute ischaemic stroke.

Table 10: Examples of incorrect generated summaries (excluding Primera).
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Figure 3: An example of the Propositions level structure

Figure 4: Examples of annotation for the polarity and modality classification task
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Figure 5: Annotation instructions and sample for the similarity task
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Target (PMID 30320466) Laser photocoagulation reduces the chances of visual loss and increases those of partial to complete resolution of DMO compared to
no intervention at one to three years.

BART XSUM Focal photocoagulation reduces the risk of blindness in diabetic eyes, and increases the chance of a successful treatment, according to
a study in the Journal of the American Academy of Ophthalmology. (has a hallucinated part)

Target (PMID 25034616) However, different stages of the treatment procedure produce varying levels of patient discomfort.
BART Cochrane There is considerable variation in how patients tolerate different stages of the injection procedure. (copied from the source)

Target (PMID 28139151) Late AMD was associated with elevated rates of all-cause (nine studies, hazard ratio (HR) 1.20, 95% confidence interval, CI, 1.02–1.41)
and cardiovascular mortality (six studies, HR 1.46, 95% CI 1.13–1.98), but early AMD was not (all-cause mortality, 10 studies, HR
1.06, 95% CI 0.98–1.14; cardiovascular mortality, five studies, HR 1.12, 95% CI 0.96–1.31).

BioBART Cochrane Early AMD is not associated with an increased risk of death. (summarized for PICO: early AMD, mortality
Target (PMID 28607930) Findings from this research provide support that persons with AMD had a higher subsequent risk of mortality than persons without

AMD.
Pegasus XSUM Age-related macular degeneration (AMD) is a significant predictor of all-cause mortality.

Target (PMID 25034616) However, different stages of the treatment procedure produce varying levels of patient discomfort.
Pegasus Pubmed there is considerable variation in how patients tolerate different stages of injection procedure. <n> this variation is of considerable

variation in how patients tolerate different stages of injection procedure. <n> it can affect the outcome of the procedure. <n> it can
affect the cost of the procedure. <n> it can also affect the duration of hospital stay. <n> the variation in how patients tolerate different
stages of injection procedure is of considerable variation in how patients tolerate different stages of injection procedure. <n> it can
affect the outcome of the procedure. <n> it can affect the cost of the procedure. <n> the variation in how patients tolerate different
stages of injection procedure is of considerable variation in how patients tolerate different stages of injection procedure. <n> it can
affect the outcome of the procedure. <n> it can affect the cost of the procedure. <n> the variation in how patients tolerate different
stages of injection procedure is of considerable variation in how patients tolerate different stages of injection procedure. <n> it can
affect the outcome of the procedure. <n> it can affect the cost of the procedure. <n> the variation in how patients tolerate different
stages of injection procedure is of considerable variation in how patients tolerate different stages of injection procedure. (copied from
the source and repeated with hallucinations)

Target (PMID 26286384) Both SLT and topical medication demonstrate similar success rates and effectiveness in lowering intraocular pressure in patients with
open-angle glaucoma.

Bigbird Pubmed reduction of primary openangle glaucoma ( pog ) by medical therapy alone has been shown to be similar to reduction of primary
openangle glaucoma by laser trabeculoplasty. in this issue of the clinical glaucoma journal,<n> two authors argue that laser
trabeculoplasty can be equally efficacious as latanoprost in reducing newly diagnosed pog . (contains irrelevant hallucinations)

Target (PMID 26258610) Further analysis showed that this positive relation is observed only in POAG and NTG patients, but not in the PXFG patients.
Primera We could not find a significant link between the anti-H. pylori IgG antibodies and the PXFG. (copied from the source; summarised for

PICO: anti-H. pylori, PXFG)

Table 11: Examples of correct generated summaries.
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