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Abstract

Although existing neural network approaches
have achieved great success on Chinese
spelling correction, there is still room to im-
prove. The model is required to avoid over-
correction and to distinguish a correct token
from its phonological and visually similar ones.
In this paper, we propose an error-guided cor-
rection model (EGCM) to improve Chinese
spelling correction. By borrowing the pow-
erful ability of BERT, we propose a novel zero-
shot error detection method to do a preliminary
detection, which guides our model to attend
more on the probably wrong tokens in encod-
ing and to avoid modifying the correct tokens
in generating. Furthermore, we introduce a new
loss function to integrate the error confusion
set, which enables our model to distinguish
easily misused tokens. Moreover, our model
supports highly parallel decoding to meet real
application requirements. Experiments are con-
ducted on widely used benchmarks. Our model
achieves superior performance against state-of-
the-art approaches by a remarkable margin, on
both the correction quality and computation
speed.

1 Introduction

Chinese spelling correction (CSC) attracts wide
attention in recent years, which is significant for
many real applications, such as search engine (Mar-
tins and Silva, 2004), optical character recogni-
tion(OCR) (Afli et al., 2016) and automatic speech
recognition(ASR) (Hinton et al., 2012).

Given an input sentence with spelling errors, the
model is trained to detect and correct these errors
and output a correct sentence. According to Liu
et al. (2010), phonologically and visually similar
characters are major contributing factors for er-
rors in Chinese text. As shown in Figure 1, in the
first example, the error is caused by the misuse
of "派"(send) and "拍"(take) which have similar
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Figure 1: Examples of Chinese spelling errors. Mis-
spelled characters and their corresponding corrections
are marked in red.

Chinese pronunciation. In the second example, the
error is caused by the misuse of "门"(door) and
"们"(they) which have similar shapes.

Recently, the advanced neural network models
and pre-trained models have achieved great suc-
cess in CSC, such as PLOME (Liu et al., 2021),
REALISE (Xu et al., 2021), PHMOSpell (Huang
et al., 2021), SpellBert (Ji et al., 2021) , GAD (Guo
et al., 2021), MLM-phonetics (Cheng et al., 2020),
RoBERTa-DCN (Wang et al., 2021) and ECSpell
(Lv et al., 2022). Although much progress has
been made, there are still limitations in previous
methods.

First, given an input sequence, only a small frag-
ment might be misspelled. However, for most of
the previous models, they are totally blind to the er-
rors at start, and so they attend on all tokens equally
in encoding and generate every token from left to
right for inference. As a result, previous models
are inefficient and might create over-correction. As
these models obtain a stronger ability to correct the
errors, they also tend to modify the correct tokens
by mistake.

Second, the confusion set, where a set of phono-
logical and visual similar tokens are defined for
each Chinese token, provides valuable knowledge
for spelling correction, as shown in Figure 2. But
the methodology to use it should be further im-
proved. For example, Liu et al. (2021) propose a
Confusion Set based Masking Strategy, in which
they remove a token and replace the token with
a random character in the confusion set. As the
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Figure 2: An example of the confusion set.

model randomly chooses a token from the confu-
sion set each time, some tokens might be ignored.
Besides, this method can’t pay more attention to
the token that is more easily to be misused. Wang
et al. (2019) propose to generate a character from
the confusion set rather than the entire vocabulary.
In this hard restriction, the model cannot generate
tokens that are not in the confusion set.

Third, when a CSC model is deployed in real
applications, the time cost of inference is a critical
problem to be considered. However, most previous
models try to improve the generation quality but
ignore the computation speed.

To address these issues mentioned above, we pro-
pose an Error-Guided Correction Model (EGCM)
for CSC. Firstly, taking advantage of the strong
ability of BERT (Devlin et al., 2018), we propose
a novel zero-shot error detection method to do a
preliminary detection, which provides precise guid-
ance signals to the correction model. Following
the guidance, our model attends more on the proba-
bly wrong tokens in encoding, and fixes the proba-
bly correct tokens during generation to avoid over-
correction. Furthermore, we introduce a new loss
function that effectively integrates the confusion
set. By applying this loss function, every similar
token in the confusion set is learned to be distin-
guished from the target token, and the most similar
token with a high possibility of being misused is
given more attention. To speed up the inference,
we apply a mask-predict strategy (Ghazvininejad
et al., 2019) to support parallel decoding, where the
tokens with low generation probability are masked
and predicted iteratively.

We conduct extensive experiments on the widely
used benchmark dataset SIGHAN (Wu et al., 2013;
Yu and Li, 2014; Tseng et al., 2015). Experimental
results show that our model significantly outper-
forms all previous approaches, achieving a new
state-of-the-art performance for Chinese spelling
correction. Moreover, our model has a distinct
speed advantage over other models, which is 6.3
times faster than the standard Transformer and

1.5 times faster than the recent non-autoregressive
model TtT (Li and Shi, 2021).

We summarize our contributions as follows:

• We propose a novel zero-shot error detection
method, which guides the correction model to
attend more on the probably wrong tokens in
encoding and fix the probably correct tokens
in inference to avoid over-correction.

• We propose a new loss function to take advan-
tage of the confusion set, which enables our
model to distinguish similar tokens and attach
more importance to the easily misused tokens.

• We apply an error-guided mask-predict de-
coding strategy for spelling correction, which
supports highly parallel decoding and greatly
accelerates the computation speed.

• We integrate all modules into a unified model,
which achieves a new state-of-the-art perfor-
mance for both correction quality and infer-
ence speed.

2 Related work

CSC is a task that detect and correct wrong tokens
in Chinese Sentences. It’s an active topic that vari-
eties of approaches have been proposed to tackle
the task (Wang et al., 2019; Cheng et al., 2020; Li
and Shi, 2021; Xu et al., 2021; Liu et al., 2021;
Huang et al., 2021).

Earlier work in CSC focuses mainly on unsuper-
vised methods, which typically adopts a confusion
set to find correct candidates and employs a lan-
guage model to select the correct one (Chen et al.,
2013; Yu and Li, 2014). Recently, sequence transla-
tion and sequence tagging are the two most widely
used methods in CSC. Wang et al. (2018) treats
the CSC task as a sequence labeling problem, and
use a bidirectional LSTM to predict the correct
characters. Liu et al. (2021); Ji et al. (2021); Xu
et al. (2021); Lv et al. (2022) try to enrich the repre-
sentation generated by the encoder by introducing
visual and phonetic features. Softmax operation
is utilized to find a substitution for each token in
the sentence. As the rapid development of neural
machine translation (Vaswani et al., 2017), seq2seq
encoder-decoder frameworks have been introduced
to the CSC task in (Ji et al., 2017; Chollampatt
et al., 2016; Wang et al., 2019).

Recent work tends to utilize character similar-
ity as an external knowledge. The confusion set
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Figure 3: The architecture of our proposed model. "M" denotes the [MASK] token. Guidance for Inference and
Guidance Attention Mask are generated from Zero-shot error detection as shown in Figure 4.

Figure 4: An example of how our model obtains guid-
ance signals using a zero-shot method. The original
wrong token is marked red.

where similar characters are stored is widely used
(Liu et al., 2021; Zhang et al., 2020; Wang et al.,
2019; Yu and Li, 2014; Cheng et al., 2020; Lv et al.,
2022). There are several ways of using the confu-
sion set. The first is to augment the training data by
replacing the original token with it’s similar tokens
(Liu et al., 2021; Zhang et al., 2020). Wang et al.
(2019) proposes to generate a character from the
confusion set rather than the entire vocabulary. Yu
and Li (2014) proposes to produce candidates by
retrieving the confusion set and then filter them via
language models. Cheng et al. (2020) uses similar-
ity graphs derived from the confusion set and use
graph convolution operation to absorb the informa-

tion from neighboring characters in the graph.

3 Methodology

The proposed Error-Guided Correction Model
(EGCM) is illustrated in Figure 3. We apply
the conditional masked language model (CMLM)
(Ghazvininejad et al., 2019) as a backbone, which
is an encoder-decoder architecture trained with a
masked language model objective (Devlin et al.,
2018; Conneau and Lample, 2019). In the CMLM
architecture, the source wrong sentence with n to-
kens is denoted as X = (x1, x2, x3, ..., xn), the tar-
get sentence is denoted as Y = (y1, y2, y3, ..., yn).
Several tokens in Y are replaced with [MASK].
These masked tokens construct the set Ymask. And
the rest of the tokens in Y that are unmasked con-
struct the set of Yobs. For Chinese spelling cor-
rection, given a source sentence X and the set of
unmasked target tokens Yobs, the objec is to predict
the probability P (y|X,Yobs) and generate token y
for each y ∈ Ymask.

We first propose a zero-shot spelling error detec-
tion method to provide two guidance signals to the
correction model, as shown in Figure 4. The first
guidance signal is the Guidance Attention Mask
that is used in the error-focused encoder, in which
the probably correct tokens are masked to push our
model to attend more on the wrong tokens. The
second guidance signal is the Guidance for Infer-
ence that serves as the start of decoding to avoid
modifying correct tokens by mistake. Moreover,
we introduce a new loss function to take advantage
of the confusion set. During inference, we apply
an error-guided mask-predict strategy in which the
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correct tokens are fixed and the probably wrong
tokens are masked and repredicted iteratively.

3.1 Zero-shot Error Detection
Given a sentence X = (x1, x2, x3, ..., xn) that con-
tains n tokens, we want to make a preliminary de-
cision on which tokens are probably wrong and
which are correct.

As shown in Figure 4, firstly, we construct a
n× n matrix by repeating the original sentence n
times, where the kth token is masked in the kth row
in the matrix (k is from 1 to n). Then, we employ
BERT (Devlin et al., 2018) to predict each masked
position condition on the unmasked tokens in the
same row. Thus, for each position from x1 to xn
in the sentence X , we obtain the predicted tokens
along with their probabilities. The tokens with the
top-k probabilities are selected as candidates of
modification. We assume that if the original token
xi occurs in the candidates list, the token is con-
sidered correct. Otherwise, the token is probably
wrong and needs to be corrected.

Based on the output of error detection, we con-
struct two guidance signals namely Guidance At-
tention Mask and Guidance for Inference, as shown
in Figure 4. The Guidance Attention Mask (GAM)
is a matrix constructed by:

GAMij =

{
0, xij is probably wrong
1, otherwise

(1)

where xij denotes the jth token in the ith sentence.
GAMij denotes the element of the ith row and the
jth colomn in GAM. The Guidance for Inference
(GFI) is constructed by masking all the probably
wrong tokens in the original sentence. Further,
GAM will be projected into the error-focused en-
coder, and GFI will be utilized to initialize the
decoder.

3.2 Error-aware Encoder
We adopt the Transformer (Vaswani et al., 2017)
encoder-decoder framework for Chinese spelling
correction. We deviate from the standard Trans-
former encoder by fusing an error-focused encoder,
as shown in the left part of Figure 3. Encoders is
a standard Transformer encoder, and on top of that
we introduce an error-focused encoder Encoderef ,
which utilizes Guidance Attention Mask to expose
the probably wrong tokens and divert the attention
of our model from the correct tokens. The output
of Encoders is input into the error-focused en-
coder Encoderef . The Guidance Attention Mask

is used as an extra attention mask in calculating self-
attention in Encoderef , which informs the model
which error part of the sentence should be focused
on. Concretely, the output of the Encoders and
Encoderef is calculated respectively as:

Hs = Encoders(Embedding(X)) (2)

Hef = Encoderef(H
s, atten_mask = GAM) (3)

3.3 Integrating Error Confusion Set for
Training

During training, the tokens in Ymask are ran-
domly selected among the target correct sentence
as shown in Figure 3. To better fit the require-
ments of correcting both single-character errors
and multi-character errors in Chinese spelling cor-
rection, we adopt two masking strategies, namely
mask-separate and mask-range. In mask-separate,
we first sample the number of masked tokens from
a uniform distribution between [1, len(X)], and
then randomly choose that number of tokens. For
mask-range, we select l ∈ [2, 3], and randomly se-
lect a span with length l. We replace the tokens in
Ymask with a special [MASK] token, which is the
generation object of the model.

There are three attention blocks in the Trans-
former decoder layer. After the self-attention block,
the decoder will first attend to Hs, the representa-
tion of the source wrong sentence. Then, the de-
coder will attend to Hef , the representation of the
sentence with correct tokens being masked. The
output of the previous decoder layer is then input
into the next decoder layer.

Hl
d1 = selfAttention(Hl−1) (4)

Hl
d2 = Attention(Q = Hl

d1 ,K = Hs, V = Hs) (5)

Hl = Attention(Q = Hl
d2 ,K = Hef , V = Hef ) (6)

where H0 = Embedding(Yobs). Q, K, V repre-
sents the Query, Key, Value matrix. Yobs is the set
of unmasked tokens in the target sentence. The
output probability distribution P is generated from
the decoder over the vocabulary V :

P = softmax(HlW + b) (7)

where H l ∈ Rt×d, W ∈ Rd×|v|, b ∈ Rt×|v|. t
denotes the sequence length.

We optimize the model over every token in
Ymask. Besides the traditional loss function, we
introduce a new loss to integrate the confusion set
knowledge.
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We employ Maximum Likelihood Estimation
(MLE) to conduct parameter learning and utilize
negative log-likelihood (NLL) as the loss function,
which is computed as:

Lnll = −
∑

yi∈Ymask

logP (yi|X,Yobs) (8)

To make full use of the confusion set knowledge,
we introduce a new loss function Lcs. We adopt
the confusion set constructed by Lv et al. (2022).
For each token yi in Ymask, we find out the set of
the similar tokens of yi based on the confusion set,
namely Yconf . The tokens in Yconf are regarded as
negative samples of yi. We use these negative sam-
ples to help our model better learn the difference
between the target token and its similar ones. The
optimization objective for the confusion loss Lcs is
defined as:

Lcs = −
∑

yi∈Ymask

logP (yi|X,Yobs)∑
yc∈Yconf

logP (yc|X,Yobs)
(9)

where yc denotes the similar token of yi in the
confusion set.

Overall, the final optimization objective of our
model is:

Lf = Lnll + γ × Lcs (10)

where γ is a hyperparameter to balance two loss
functions.

3.4 Error-Guided Generation

In the inference stage, we apply a mask-predict
approach (Ghazvininejad et al., 2019), where the
tokens with low probability are masked and pre-
dicted within a constant number of iterations.

To provide the model a good start point for gener-
ation, we exploit the Guidance for Inference (GFI)
as an initialization for decoding. GFI produces
a draft sentence, where the probably wrong to-
kens are masked and the probably correct ones
are remained unmasked. During generation, the un-
masked tokens will be fixed, and only the masked
tokens are taken into consideration for modification
in each iteration. Fixing these correct tokens will ef-
fectively teach our model to avoid over-correction.
Figure 5 shows how does our model correct a
wrong sentence in 3 iterations.

The model runs for a pre-determined number
of iterations T . The number of [MASK] in the
draft sentence is denoted as Nori. Accordingly,
the number of tokens that are masked in the tth

Figure 5: An example of Error-Guided Generation. In
Guidance for Inference, the masked tokens are high-
lighted. In later iterations, the highlighted tokens are
of lowest probabilities and are masked and repredicted.
The wrong tokens are marked in red.

iteration is defined as Nt = Nori × T−t
T . Formally,

Y
(0)
mask is the set of masked tokens in the Guidance

for Inference. At a later iteration t, we choose Nt

tokens among the masked tokens in the previous
iteration t−1 that has the lowest probability scores:

Y
(t)
mask = argmin

yi∈Y
(t−1)
mask

(pi, Nt) (11)

Y
(t)
obs = Y \Y (t)

mask (12)

Where pi is the probability score of yi calculated
in Equation 13, 14. Y

(t)
mask is the set of masked

tokens that are probably wrong at the tth iteration,
and Y

(t)
obs is the set of unmasked tokens that are con-

sidered correct and fixed in later iterations. At each
iteration, the model predicts the probably wrong
tokens in Y

(t)
mask conditioned on the source text X

and Y
(t)
obs . We select the prediction with the highest

probability for each masked token yi ∈ Y
(t)
mask, and

update its probability score accordingly:

y
(t)
i = argmax

w∈V
P (yi = w|X,Y

(t)
obs) (13)

p
(t)
i = max

w∈V
P (yi = w|X,Y

(t)
obs) (14)

where P (yi = w|X,Y
(t)
obs) is the conditional prob-

ability of yi being predicted as the token w in the
vocabulary set V .

4 Experimental Setup

4.1 Dataset and Metrics
Training dataset Following Liu et al. (2021),
the training data is composed of 10K manually
annotated samples from SIGHAN (Wu et al., 2013)
and 271K automatically generated samples from
(Wang et al., 2018).
Evaluation dataset Following previous works,
the SIGHAN15 test dataset (Tseng et al., 2015) is
used to evaluate the proposed model. Statistics of
the used datasets please refer to Appendix A.
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Evaluation Metrics We evaluate model perfor-
mance of detection and correction at sentence-level,
with accuracy, precision, recall and F1 scores. We
evaluate these metrics using the script from Cheng
et al. (2020) 1. Moreover, following Liu et al.
(2021), we also report the sentence-level results
evaluated by SIGHAN official tool 2.

4.2 Comparing Methods

We compare the performance of our model with
several strong baseline methods as follows:
Confusionset introduces a copy mechanism into
seq2seq and generates characters from the confu-
sionset (Wang et al., 2019).
FASPell utilizes a denoising autoencoder to gener-
ate candidates (Hong et al., 2019).
SpellGCN incorporates phonological and visual
knowledge via a graph convolutional network
(Cheng et al., 2020).
Chunk proposes a chunk-based decoding method
with global optimization (Bao et al., 2020).
SM BERT uses soft-masking technique to connect
the network of detection and correction (Zhang
et al., 2020).
TtT employs a Transformer Encoder with a Con-
ditional Random Fields layer stacked (Li and Shi,
2021).
PLOME proposes a confusion set based masking
strategy (Liu et al., 2021).
REALISE leverages the multimodal information
and mixes them electively (Xu et al., 2021).
PHMOSpell integrates pinyin and glyph with a
multi-modal method (Huang et al., 2021).
ECSpell adopts the Error Consistent masking strat-
egy for pretraining (Lv et al., 2022).
MLM-phonetics integrates phonetic features by
leveraging pre-training and fine-tuning (Zhang
et al., 2021).
RoBERTa-DCN generates the candidates via a
Pinyin Enhanced Generator (Wang et al., 2021).
SpellBert employs a graph neural network to intro-
duce visual and phonetic features (Ji et al., 2021).
GAD learns the global relationships of the poten-
tial correct input characters and the candidates of
potential error characters (Guo et al., 2021).
BERT We also implement classical methods for
comparison. We fine-tune the Chinese BERT
model (Devlin et al., 2018) on the CGEC corpus
directly.

1https://github.com/ACL2020SpellGCN/SpellGCN
2http://nlp.ee.ncu.edu.tw/resource/csc. html

4.3 Hyperparameter Setting

We follow most of the standard hyperparameters
for transformers in the base configuration (Vaswani
et al., 2017) and follow the weight initialization
scheme from BERT (Devlin et al., 2018). For reg-
ularization, we use 0.3 dropout, 0.01 L2 weight
decay. The hyperparameter γ which is used to
weight the confusion loss is set to 2 after tun-
ing. Adam optimizer (Kingma and Ba, 2014) with
β = (0.9, 0.999), ε = 1e−6 is used to conduct the
parameter learning. The learning rate is set to 5e−5,
and the model is trained with learning rate warming
up and linear decay.

5 Results and Analysis

5.1 Overall Performance

Table 1 reports the performance of our pro-
posed EGCM model and baseline models on the
SIGHAN15 test set. For a fair comparison, we also
employ the pre-trained model cBERT (Liu et al.,
2021) which has the same architecture with BERT
and pre-trained via the confusion set based masking
strategy. Our model with pretrained cBERT (Pre-
Tn EGCM) outperforms all existing approaches,
achieving a 81.6 F1 at detection and 79.9 F1 at cor-
rection. Compared with the BERT baseline, Pre-Tn
EGCM achieves 5.5% performance gain on detec-
tion F1 and 6.5% gain on correction F1. Among
un-pretrained methods, EGCM also outperforms
all competitor models by a wide margin.

We also evaluate the model performance using
the official tool, and report the results in Table 2.
Our model Pre-Tn EGCM obtains the best results
for both detection and correction. Especially, it
greatly outperforms previous methods in precision.

It should be emphasized that, our model EGCM
is trained on 270k HybirdSet and outperforms sev-
eral models that are pre-trained on a big size of
synthetic data, such as PLOME (Liu et al., 2021)
which is pre-trained using 162 million sentences.
This demonstrates that our model effectively learns
to correct spelling errors without relying on heavy-
weight data. An example output of our EGCM
comparing with BERT is listed in Appendix B.

5.2 Ablation Study

We explore the contribution of each component in
our EGCM model by conducting ablation studies
with the following settings: (1) Removing the error-
focused encoder mentioned in 3.2. (2) Removing
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Method Detection Level Correction Level
Acc. Pre. Rec. F1. Acc. Pre. Rec. F1

Confusionset (2019) - 66.8 73.1 69.8 - 71.5 59.5 64.9
FASPell (2019) 74.2 67.6 60.6 63.5 73.7 66.6 59.1 62.6
SpellGCN (2020) - 74.8 80.7 77.7 - 72.1 77.7 75.9
Chunk2020 (2020) 76.8 88.1 62.0 72.8 74.6 87.3 57.6 69.4
SM BERT (2020) 80.9 73.7 73.2 73.5 77.4 66.7 66.2 66.4
RoBERTa-DCN (2021) - 76.6 79.8 78.2 - 74.2 77.3 75.7
ECSpell (2022) 83.4 76.4 79.9 78.1 82.4 74.4 77.9 76.1
PLOME* (2021) - 77.4 81.5 79.4 - 75.3 79.3 77.2
REALISE* (2021) 84.7 77.3 81.3 79.3 84.0 75.9 79.9 77.8
PHMOSpell* (2021) - 90.1 72.7 80.5 - 89.6 69.2 78.1
MLM-phonetics* (2021) - 77.5 83.1 80.2 - 74.9 80.2 77.5
GAD* (2021) - 75.6 80.4 77.9 - 73.2 77.8 75.4
SpellBert* (2021) - 87.5 73.6 80.0 - 87.1 71.5 78.5
BERT-finetune 82.4 74.2 78.0 76.1 81.0 71.6 75.3 73.4
Our EGCM 86.4 82.7 77.6 80.0 85.8 80.6 74.7 77.5
Pre-Tn EGCM* 87.2 83.4 79.8 81.6 86.3 81.4 78.4 79.9

Table 1: Performance on the SIGHAN15 test set. Best results are in bold. The first group lists the models that are
not pretrained, and the second group lists the methods that are pretrained (denoted with "*" ).

Method Detection level Correction level
Pre Rec F1 Pre Rec F1

SpellGCN 85.9 80.6 83.1 85.4 77.6 81.3
ECSpell 85.7 78.4 81.9 85.4 76.6 80.7

TtT 85.4 78.1 81.6 85.0 75.6 80.0
GAD 86.0 80.4 83.1 85.6 77.8 81.5

Pre-Tn EGCM 93.5 76.7 84.3 91.4 74.5 82.1

Table 2: Performance on the SIGHAN15 test evaluated
by the official tools. Best results are in bold.

Method Detection Level Correction Level
Pre. Rec. F1. Pre. Rec. F1.

EGCM 82.7 77.6 80.0 80.6 74.7 77.5
- EFEnc 80.5 75.2 77.8 78.7 72.3 75.4
- CFL 79.2 72.7 75.8 77.3 69.9 73.4
- GFI 77.5 76.9 77.2 77.1 73.9 75.7

Table 3: Ablation study on SIGHAN15. "-EFEnc"
means removing the error-focused encoder. "-CFL"
means removing the confusion set loss. "-GFI" means
not using Guidance for Inference in the inference stage.

the confusion set loss Lcs in equation 9. (3) Initial-
ize the start sequence of inference with all [MASK]
instead of using the Guidance for Inference. The
results are shown in Table 3.

Specifically, the confusion set loss leads to the
biggest improvement to our model with 4.2 points
for detection and 4.1 points for correction. By
removing the error-focused encoder, the drop of
performance indicates that this encoder does learn
to pay attention to the probably wrong tokens of
the sentence and impel our model to correct the
wrong tokens actively. Also, without the use of
Guidance for Inference as the start of decoding for

top-k Perror&mask/error Pcorrect/unmask

k=1 94% 99.8%
k=2 90% 99.7%
k=3 88% 99.7%

Table 4: An evaluation on Zero-shot error detection.

inference, the performance drops especially on pre-
cision, which indicates that by fixing the tokens that
are correct can effectively avoid over-correction
and improve precision.

5.3 Evaluation on Zero-shot Error Detection

We employ a zero-shot detection approach to do a
preliminary detection, in which all the tokens are
divided into two groups, the probably wrong tokens
and the probably correct one. In the inference stage,
the probably correct ones are unmasked and will
not be modified to avoid over-correction, while the
probably wrong ones are masked and repredicted .
We want to ensure that unmasked tokens are truly
correct that don’t need to be modified, and at the
same time, the errors in the sentences are masked
as many as possible.

As shown in Table 4, Perror&mask/error de-
notes the percentage of errors that are masked,
Pcorrect/unmask denotes the percentage of truly cor-
rect tokens in the unmasked tokens. In our zero-
shot error detection, the BERT predicted tokens
with top-k probabilities are selected as candidates,
if the original token is not in the candidates list, it
is considered as wrong. We try different k and con-
duct experiments. Our method achieves promising
results with high accuracy, which guarantees cor-
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Confusion
set Method Detection level Correction level

Pre. Rec. F1. Pre. Rec. F1.
[1]

(2022)
ECSpell 76.4 79.9 78.1 74.4 77.9 76.1
EGCM 82.7 77.6 80.0 80.6 74.7 77.5

[2]
(2013)

SpellGCN 74.8 80.7 77.7 72.1 77.7 75.9
EGCM 80.6 78.2 79.4 78.2 76.3 77.2

PLOME* 77.4 81.5 79.4 75.3 79.3 77.2
Pre-Tn EGCM* 81.6 79.6 80.6 79.8 76.4 78.1

[3]
(2018)

Confusionset 66.8 73.1 69.8 71.5 59.5 64.9
EGCM 79.5 74.7 77.0 77.4 71.7 74.4

Table 5: Effects of different confusion sets.

rect signals for further processing. Obviously, the
smaller k is, the more tokens are masked and less
tokens are fixed, this might lead to over-correction.
We want the errors are masked as many as possi-
ble, and at the same time, fewer tokens are masked.
Therefore, in our model, we set k = 2.

5.4 Analysis on Different Confusion Sets

To further prove the effectiveness of the confusion
loss we proposed, and to show that this loss func-
tion can be generalized, we conduct experiments
on three different confusion sets, including the con-
fusion set proposed by Lv et al. (2022) 3, Wu et al.
(2013) 4, and Wang et al. (2018) 5. For each con-
fusion set, we compare our model with the models
that use the same confusion set but in different way.

As shown in table 5. For all three confusion sets,
our model outperforms the model that utilizes the
same confusion set. Compared with previous meth-
ods, our model takes every token in the confusion
set into consideration by computing it’s possibility
of being misused. Moreover, the results indicate
that our model has strong generalization ability and
is not limited to any specific confusion set.

5.5 Analysis on Decoding Iterations

With a predefined decoding iteration T = 10, we
show the F1 score of previous iterations t(t < T )
to illustrate how the mask-predict strategy detects
and corrects the wrong tokens step by step. As
shown in figure 6, the F1 score of detection and
correction improves as the decoding iteration goes
up. This indicates that, by masking and repredict-
ing the tokens of low probability in each iteration,
our model corrects the tokens that are wrongly pre-
dicted during previous iterations. And as the num-
ber of unmasked tokens increases, more informa-

3https://github.com/Aopolin-Lv/ECSpell
4http://nlp.ee.ncu.edu.tw/resource/csc.html
5https://github.com/wdimmy/Automatic-Corpus-

Generation

Model Time(ms) Speedup
Transfomer (2017) 63ms 1x
PLOME (2021) 45ms 1.4x
REALISE (2021) 17ms 3.7x
TtT (2021) 15ms 4.2x
EGCM 10ms 6.3x

Table 6: Comparisons of the computing efficiency.

tion is given to help predict the hard masked tokens.
With 8 iterations, our model achieves state-of-the-
art performance.

5.6 Analysis on Computing Efficiency

Chinese spelling correction can be applied in many
real-life applications, such as writing assistant and
search engine. Therefore, the time cost efficiency
of models is a key point to be considered. We im-
plement both the baseline models and our model
on the single NVIDIA RTX 2080 GPU. Table 6
depicts the time cost per sample of our model com-
paring with some previous approaches. Our model
runs faster than all previous approaches.

Figure 6: Results of different decoding iterations

6 Conclusion

We propose an error-guided correction model for
the CSC task. A zero-shot error detection method
is proposed to provide guidance signals for training
and inference. We apply a conditional masked lan-
guage model as a backbone, where we improve the
encoder-decoder architecture by adding an error-
focused encoder which pushes our model to focus
on the wrong tokens. During training, we introduce
a new confusion loss to help the model distinguish
similar tokens. During inference, the error-guided
mask-predict decoding strategy is adopted to mask
and repredict the tokens that are probably wrong.
Experimental results show that our model not only
achieves superior performance against state-of-the-
art approaches but also is cost-saving and green.
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Limitation

In this paper, we use the results from zero-shot
spelling error detection as a guidance signal. The
sentence with probably wrong tokens masked and
the other tokens fixed are used as a start of de-
coding. This means that if a wrong token is not
assigned with a [MASK] token, it will never be cor-
rected in later iterations. Even though we conduct
experiments and the result shows that up to 94%
of the wrong tokens are masked in the guidance
signal, there are still some wrong tokens missed by
our model. To limit the number of tokens that are
free to be modified is one of our ways to improve
precision, but we are also looking forward to a way
to further improve recall.

What’s more, even though we make full use of
the confusion set, we still think that’s not enough.
Now we are using the confusion set in which ev-
ery token has a set of predefined similar tokens.
And these sets of similar tokens are isolated with
each other. However, Chinese has various kinds
of spelling errors, the target token might not be in
the predetermined similar tokens set of the orig-
inal token. And this kind of mistakes can never
be learned to correct by the model. We think a
better design for the data structure of the confu-
sion set needs to be proposed, in which the sets are
not isolated and we are able to calculate the simi-
larity distance between each pair of tokens using
particular algorithms, for example, UnionFind on a
dynamic Graph. This kind of dynamic confusion
knowledge can help avoid ignoring the probably
misused tokens.
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A Statistics of Datasets

Training Set #Sent Avg.Length #Errors
SIGHAN13 700 41.8 343
SIGHAN14 3437 49.6 5122
SIGHAN15 2338 31.3 3037
Wang271K 271329 42.6 381962
Test Set #Sent Avg.Length #Errors
SIGHAN15 1100 30.6 704

Table 7: Statistics of used datasets.

B Case Study

We list several cases of Chinese Spelling Correc-
tion. We present the source wrong sentence and
the target correct sentence. We also present the
corrections made by BERT and our EGCM.
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Figure 7: Case Study. The wrong tokens are marked
red.
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