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Abstract

Building dense retrievers requires a series of
standard procedures, including training and val-
idating neural models and creating indexes for
efficient search. However, these procedures are
often misaligned in that training objectives do
not exactly reflect the retrieval scenario at in-
ference time. In this paper, we explore how the
gap between training and inference in dense
retrieval can be reduced, focusing on dense
phrase retrieval (Lee et al., 2021a) where bil-
lions of representations are indexed at infer-
ence. Since validating every dense retriever
with a large-scale index is practically infeasi-
ble, we propose an efficient way of validat-
ing dense retrievers using a small subset of
the entire corpus. This allows us to validate
various training strategies, including unifying
contrastive loss terms and using hard negatives
for phrase retrieval, which largely reduces the
training-inference discrepancy. As a result, we
improve top-1 phrase retrieval accuracy by 2∼3
points and top-20 passage retrieval accuracy by
2∼4 points for open-domain question answer-
ing. Our work urges modeling dense retrievers
with careful consideration of training and infer-
ence via efficient validation while advancing
phrase retrieval as a general solution for dense
retrieval.

1 Introduction

Dense retrieval aims to learn effective representa-
tions of queries and documents by making represen-
tations of relevant query-document pairs to be simi-
lar (Chopra et al., 2005; Van den Oord et al., 2018).
With the success of dense passage retrieval for
open-domain question answering (QA) (Lee et al.,
2019; Karpukhin et al., 2020), recent studies build
an index for a finer granularity such as dense phrase
retrieval (Lee et al., 2021a), which largely improves
the computational efficiency of open-domain QA

∗JL currently works at Google Research.
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by replacing the retriever-reader model (Chen et al.,
2017) with a retriever-only model (Seo et al., 2019;
Lewis et al., 2021). Also, phrase retrieval provides
a unifying solution for multi-granularity retrieval
ranging from open-domain QA (formulated as re-
trieving phrases) to document retrieval (Lee et al.,
2021b), which makes it particularly attractive.

Building a dense retrieval system involves mul-
tiple steps (Figure 1) including training a dual en-
coder (§4), selecting the best model with validation
(§3), and constructing an index (often with filter-
ing) for an efficient search (§5). However, these
components are somewhat loosely connected to
each other. For example, model training is not di-
rectly optimizing the retrieval performance using
the full corpus on which models should be evalu-
ated. In this paper, we aim to minimize the gap
between training and inference of dense retrievers
to achieve better retrieval performance.

However, developing a better dense retriever re-
quires validation, which requires building large in-
dexes from a full corpus (e.g., the entire Wikipedia
for open-domain QA) for inference with a huge
amount of computational resources and time. To
tackle this problem, we first propose an efficient
way of validating dense retrievers without building
large-scale indexes. Analysis of using a smaller ran-
dom corpus with different sizes for the validation
reveals that the accuracy from small indexes does
not necessarily correlate well with the retrieval ac-
curacy on the full index. As an alternative, we con-
struct a compact corpus using a pre-trained dense
retriever so that validation on this corpus better cor-
relates well with the retrieval on the full scale while
keeping the size of the corpus as small as possible
to perform efficient validation.

With our efficient validation, we revisit the train-
ing method of dense phrase retrieval (Lee et al.,
2021a,b), a general framework for retrieving differ-
ent granularities of texts such as phrases, passages,
and documents. We reduce the training-inference
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Figure 1: Comparison of the (a) original (Lee et al., 2021a) and (b) proposed procedure for DensePhrases training
(top) and validation (bottom). We unify training loss terms Linp and Linb that enforce the representation of a question
(q) similar to the representation of a positive phrase (p+) while contrasting from representations of in-passage
negative phrases (p-

inp) and in-batch negative phrases (p-
inb) respectively into a single term Ltrain and expand negatives

in number and difficulty with hard negatives (p-
hard). Also, we use a retrieval accuracy on the development set Qdev

using a smaller corpus instead of the full corpus as an efficient validation metric for selecting the best checkpoint.
Query-side fine-tuning and token filtering are not described in this overview figure.

discrepancy by unifying previous loss terms to dis-
criminate a gold answer phrase from other negative
phrases altogether instead of applying in-passage
negatives (Lee et al., 2021b) and in-batch negatives
separately. To better approximate the retrieval at in-
ference where the number of negatives is extremely
large, we use all available negative phrases from
training passages to increase the number of nega-
tives and put more weights on negative phrases. We
also leverage model-based hard negatives (Xiong
et al., 2020) for phrase retrieval, which hasn’t been
explored in previous studies. This enables our
dense retrievers to correct mistakes made at infer-
ence time.

Lastly, we study the effect of a representation
filter (Seo et al., 2018), an essential component for
efficient search. We separate the training and vali-
dation of a phrase filtering module to disentangle
the effect of contrastive learning and representation
filtering. This allows us to do careful validation of
the representation filter and achieve a better preci-
sion/recall trade-off. Interestingly, we find that a
representation filter has a dual role in reducing the
index size and also improving retrieval accuracy,
meaning smaller indexes are often better than larger

ones in terms of accuracy. This gives a different
view of other filtering methods that have been ap-
plied in previous studies for efficient open-domain
QA (Min et al., 2021; Izacard et al., 2020; Fajcik
et al., 2021; Yang and Seo, 2021).

We reemphasize that phrase retrieval is an attrac-
tive solution for open-domain question answering
compared to other retriever-reader models, consid-
ering both accuracy and efficiency. Our contribu-
tions are summarized as follows:

• We introduce an efficient method of validat-
ing dense retrievers to confirm and accelerate
better modeling of dense retrievers.

• Based on our efficient validation, we improve
dense phrase retrieval models with modified
training objectives and hard negatives.

• Consequently, we achieve the state-of-the-art
phrase retrieval accuracy for open-domain QA
and also largely improve passage retrieval ac-
curacy on Natural Questions (Kwiatkowski
et al., 2019) and TriviaQA (Joshi et al., 2017).
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2 Related Work

Dense retrieval Retrieving relevant documents
for a query (Mitra and Craswell, 2018) is crucial in
many NLP applications like open-domain question
answering and knowledge-intensive tasks (Petroni
et al., 2021). Dense retrievers typically build a
search index for all documents by pre-computing
the dense representations of documents using an en-
coder. Off-the-shelf libraries for a maximum inner
product search (MIPS) (Johnson et al., 2019; Guo
et al., 2020) enable model training and indexing to
be developed independently (Lin, 2022). However,
both training dense retrievers and building indexes
should take into account the final retrieval accuracy.
In this respect, we aim to close the gap between
training and inference of dense retrievers.

Phrase retrieval Phrase retrieval (Seo et al.,
2019) directly finds an answer with MIPS from
an index of contextualized phrase vectors. This
removes the need to run an expensive reader for
open-domain QA. As a result, phrase retrieval al-
lows real-time search tens of times faster than
retriever-reader approaches as an alternative for
open-domain QA. DensePhrases (Lee et al., 2021a)
removes the requirement of sparse features and
significantly improves the accuracy from previous
phrase retrieval methods (Seo et al., 2019; Lee et al.,
2020). Lee et al. (2021b) show how retrieving
phrases could be translated into retrieving larger
units of text like a sentence, passage, or document,
making phrase retrieval a general framework for
retrieval. Despite these advantages, phrase retrieval
requires building a large index from billions of rep-
resentations. In this work, we focus on improving
phrase retrieval with more efficient validation.

Validation of dense retrieval Careful validation
is essential for developing machine learning mod-
els to find a better configuration (Melis et al., 2018)
or avoid falling to a wrong conclusion. However,
many works on dense retrieval do not clearly state
the validation strategy, and most of them presum-
ably perform validation on the entire corpus. It is
doable but quite expensive1 to perform frequent
validation and comprehensive tuning. Hence, it
motivates us to devise efficient validation for dense

1For example, dense passage retrieval (DPR) (Karpukhin
et al., 2020) takes 8.8 hours on 8 GPUs to compute 21-million
passage embeddings and 8.5 hours to build a FAISS index.
Also, ColBERT (Khattab and Zaharia, 2020) takes 3 hours to
index 9M passages in the MS MARCO dataset (Nguyen et al.,
2016) using 4 GPUs.

retrieval. Like ours, Hofstätter et al. (2021) con-
struct a small validation set by sampling queries
and using a baseline model for approximate dense
passage retrieval but limited to early stopping. Liu
et al. (2021) demonstrate that small and synthetic
benchmarks can recapitulate innovation of ques-
tion answering models on SQuAD (Rajpurkar et al.,
2016) by measuring the concurrence of accuracy
between benchmarks. We share the intuition that
smaller and well-curated datasets may lead to the
same (or sometimes better) model development
while faster but with more focus on the validation
process.

Hard examples Adversarial data collection by
an iterative model (or human) in the loop pro-
cess aims to evaluate or reinforce models’ weak-
nesses, including the robustness to adversarial at-
tacks (Kaushik et al., 2021; Bartolo et al., 2021;
Nie et al., 2020; Kiela et al., 2021). In this work,
we construct a compact corpus from a pre-trained
dense retriever for efficient validation. Also, we
extract hard negatives from retrieval results of the
previous model for better dense representations.

3 Efficient Validation of Phrase Retrieval

Our goal is to train a dense retriever M that can
accurately find a correct answer in the entire corpus
C (in our case, Wikipedia). Careful validation is
necessary to confirm whether new training methods
are truly effective. It also helps find optimal con-
figurations induced by those techniques. However,
building a large-scale index for every model makes
the model development process slow and also re-
quires huge memory. Thus, an efficient validation
method could expedite modeling innovations in
the correct direction. It could also allow frequent
comparison of different checkpoints when updating
a full index simultaneously during the training is
computationally infeasible.2

Measuring the retrieval accuracy on an index
from a smaller subset of the full corpus (denoted
as C⋆) for model validation would be a practi-
cal choice, hoping argmaxM∈Ω acc(D|M, C⋆) ≈
argmaxM∈Ω acc(D|M, C) where Ω is a set of
model candidates and acc means the retrieval ac-
curacy on a QA dataset D. We first examine how
a relative order of accuracy between modeling ap-

2Although some works (Guu et al., 2020; Xiong et al.,
2020) do asynchronous updates per a specific number of train-
ing steps and use the intermediate index for better modeling,
it requires a huge amount of computational resources.
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proaches may change with varying sizes of the
random subcorpus (§3.1) and then develop a clever
way to construct a compact subcorpus that main-
tains reasonable correlation with the retrieval accu-
racy in the full scale (§3.2).

3.1 Random Subcorpus

Reading comprehension (RC) can be regarded as a
special case of open-domain QA, where a corpus
contains only a single gold passage (i.e., Cq = {c})
for each question. Here, the subcorpus is question-
dependent. We first gather all gold passages from
the development set as a small corpus C0, a min-
imal set that contains answers to all development
set questions. We consider a corpus Rr whose size
is r times the size of the full corpus by simply
appending C0 with random passages by sampling
from the full corpus C, i.e., C0 ⊂ Rr ⊂ C and
|Rr| = r|C|. We specifically use r = 1/100, 1/10
in our experiments. As the corpus size increases,
finding the correct answer from a larger number
of possible candidates becomes more difficult, so
the retrieval accuracy generally decreases (Reimers
and Gurevych, 2021).

DensePhrases (Lee et al., 2021a) simply choose
the best checkpoint with the highest RC accuracy
assuming that a model with better RC accuracy
leads to a better retrieval accuracy, or use the last
checkpoint at the end of the training.3 It is problem-
atic since our preliminary experiments demonstrate
that the RC accuracy and the retrieval accuracy
on different sizes of corpus including the full cor-
pus, do not necessarily correlate well with each
other. Using a large subcorpus is better for accu-
rate validation not to deviate much from the trends
of retrieval accuracy of a full corpus. However, a
smaller subcorpus would be better in terms of vali-
dation efficiency. This trade-off drives us to design
a better way of constructing a validation corpus.

3.2 Hard Subcorpus

The retrieval accuracy given a subcorpus C⋆ should
have a high correlation with the retrieval accuracy
over the full corpus, and the size of corpus |C⋆|
should be small enough (or as small as possible)
for efficient validation. For a reasonably accurate
dense retriever, it is relatively easy to discriminate a
gold phrase from other phrases in random passages.
Therefore, it is better to collect a subcorpus with

3RC accuracy generally improves during the training of
DensePhrases as the training loss directly optimizes it.

hard passages to test dense retrievers on a similar
condition to a full corpus which includes many
difficult phrases to discriminate if the corpus can
have a limited number of negative passages.

We construct a hard corpus Hk with a com-
pact size using a pre-trained retriever M̄ to ex-
tract all context passages of top-k retrieved phrases
for all query q in the development set Qdev, and
C0 is merged to always include an answer, i.e.,
Hk = C0∪

⋃
(q,a)∈Qdev

M̄k(q|C) where Mk(q|C)
denotes the top-k passage retrieval results for a
query q from the model M. If M̄ is reasonably
accurate, negative examples retrieved by M̄ will
make our new model M difficult to find a correct
answer. We expect the retrieval accuracy from Hk

quickly drops as k increases and reaches close to
the retrieval accuracy on the full corpus C with a
manageable k so that we can use retrieval accu-
racy on a hard subcorpus for efficient validation.
It keeps the relative order of models with a much
smaller size than the random subcorpus.

4 Optimized Training of DensePhrases

In this section, we briefly review the original train-
ing method of DensePhrases (§4.1) and improve
it further to reduce the gap between training and
retrieval in inference by modifying the training ob-
jective (§4.2) and introducing additional training
with hard negatives (§4.3).

4.1 Background: Training of DensePhrases
The question encoder and the phrase encoder
are jointly trained using reading comprehension
datasets. A phrase p is represented as a concate-
nation of start and end token vectors from the con-
textualized representations of a context passage c
using a phrase encoder. A question q is represented
as a concatenation of vectors using two different
encoders for the start and the end.

The main training objective is a sum of the two
separate contrastive loss terms weighted by the
λ coefficient as formally defined in Equation 1.4

One is for contrasting a phrase token of posi-
tive start/end position (p+) to that of other posi-
tions in the context passage (Ninp = {(p; c) ̸=
(p+; c)|p ∈ c}). Another is for contrasting the same
token to other positive tokens in a current (Ninb =
{(p′; c′) ̸= (p+; c)|(q′, p′; c′) ∈ B}) or previous T

4We denote the similarity score between a question q and
a phrase p as s(q, p; c). While the score and the loss term of
start and end tokens are separately calculated in practice, we
abbreviate it in the equation for simplicity.
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mini-batches (Nprb = {(p′; c′)|(q′, p′; c′) ∈ Bpre}).
The numbers of negatives are |Ninp| = L − 1,
|Ninb| = B − 1, and |Nprb| = B × T where L
is the sequence length of context passages and B
(= |B|) is the batch size.

To learn better representations, the dual encoder
is first pre-trained with question-answer pairs gen-
erated by a question generation model as a data
augmentation mainly for better reading comprehen-
sion capability and then fine-tuned with original
question-answer pairs. Also, knowledge distilla-
tion (Hinton et al., 2015) from a stronger reading
comprehension model based on a cross encoder to
the dual encoder is performed. Lastly, the token
filtering classifier (explained more in §5) that dis-
criminates tokens likely to be a start or end of the
answer phrases using a linear classifier on top of
phrase representations is jointly trained with the
dual encoder. We omit two additional loss terms
from Equation 1 for knowledge distillation and a
token filtering classifier loss for brevity.

Query-side Fine-tuning Documents in the read-
ing comprehension dataset used for the training
take only a tiny portion of the entire Wikipedia,
and only a small number of negatives for each
question-phrase pair are contrasted compared to
billion-scale possible phrase candidates in the test
time. The query encoder can be further fine-tuned
to reduce this discrepancy between training and
inference while fixing the phrase encoder and the
index by maximizing the likelihood of the gold
answer among retrieved phrases for each question.
Using more and harder negatives is also an effective
way to reduce this gap.

4.2 Unified Loss
The original training objective of DensePhrases
(Equation 1) has separate terms for finding a rele-
vant passage (in/pre-batch negatives) and finding
the exact phrase position in the passage (in-passage
negatives). However, we should find an answer
phrase among all possible candidates at once dur-
ing the test time. Therefore, we modify the loss

term as a unified version (Equation 2) by putting
all negatives together into the contrastive targets.

We also introduce the λ coefficient to the uni-
fied loss to give weights to negatives. It opens a
new question of how we should set the value of
λ. The role of λ can be interpreted in two ways.
First, multiplying λ to an exponential of a score is
equivalent to adding a positive value to the score
(λes = es+log λ), and then the loss term becomes
the soft version of margin-based loss. Second, us-
ing λ can mimic the inference time where the num-
ber of negative tokens is much larger by duplicating
a negative λ times (λes = es + es + ... + es) to
close the gap between training and test. Based on
the second interpretation, we set different value
of λ depending on where negative phrase p- is
from: λ(p-) = λinpδ(p

- ∈ Ninp) + λinbδ(p
- ∈

Ninb ∪Nprb) + λhardδ(p
- ∈ Nhard).

We extend to use all tokens in context passages
with a similar intuition that contrasting with as
many tokens as possible could be helpful instead of
using only start/end position tokens to in/pre-batch
negatives. It changes in/pre-batch negatives to
Ninb = {(p; c′) ̸= (p+; c)|p ∈ c′, (q′, p′; c′) ∈ B}
and Nprb = {(p; c′)|p ∈ c′, (q′, p′; c′) ∈ Bpre})
and their sizes |Ninb| = B × L − 1 and |Nprb| =
B × T × L. This change also increases the num-
ber of negatives hundreds of times and turns out
empirically advantageous.

4.3 Hard Negatives for Phrase Retrieval

We exploit hard negatives to benefit phrase retrieval,
a widely used technique for passage retrieval5 but
never fully examined for phrase retrieval. We per-
form a model-based hard negative mining by re-
trieving top phrases using a pre-trained dual en-
coder and an index built from this model. We filter

5Karpukhin et al. (2020) use one hard negative obtained
from BM25 per example in addition to in-batch negatives for
training a dual encoder. Xiong et al. (2020) globally select
hard negatives from the entire corpus with asynchronously
index updates for faster convergence. RocketQA (Qu et al.,
2021) denoises hard negatives using cross encoder. The best
strategy for hard negative mining and training is still an open
problem in dense retrievals.
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out phrases whose surrounding passage includes a
gold answer (§4.3.1) and then fine-tune the model
with extracted hard negatives (§4.3.2). Although
we do it only once, this process could be repeated
until convergence.

4.3.1 Hard Negative Mining
We use an encoder model and phrase index from the
first round to extract model-based hard negatives
from top-k phrase retrieval results for questions in
the training set. Using high-quality hard negatives
by removing false negatives is important to train a
better model.

We exclude examples when a context passage of
a retrieved phrase contains an answer. A context
passage corresponding to a retrieved phrase can be
restored using information stored along with the
index. It helps to focus more on topically different
documents and shares the intuition from the anal-
ysis in Lee et al. (2021b) that DensePhrases rely
less on topical relevance than DPR. Compared to
a more strict condition based on the exact match
that may miss almost correct phrases with a minor
error in the boundary by misclassifying the exact
position, it reduces about 20% of negative pairs,
hopefully reducing false negatives and achieving
higher accuracy gain. Besides, these rules are some-
what loose in that there could be multiple possible
answers to a question, and different representations
for the same entity could exist since the annotated
answer list is imperfect. We left filtering based on
a cross encoder (Qu et al., 2021; Ren et al., 2021)
to future work due to the convenience of automatic
filtering.

4.3.2 Training with Hard Negatives
After the hard negative mining, we fine-tune a dual
encoder with the hard negatives. We sample h hard
negatives for each training step and append them to
negative targets for the loss calculation.6 We expect
that hard negatives give a better training signal than
random in/pre-batch negatives (Xiong et al., 2020)
because those are examples difficult to discriminate
for the previous model. Moreover, hard negatives
extracted from the larger corpus could expose a
model to other diverse documents than the original
training dataset. This is similar to query-side fine-
tuning but differs in that both the question encoder
and phrase encoder are updated.

6If the number of hard negatives after removing false neg-
atives is less than h, we sample random passages to match the
number of hard negatives for parallel computation.

There are different possible options for choosing
Nhard. First, we may include only corresponding
hard negatives for each example or all hard neg-
atives in a mini-batch. Second, we may include
only each negative’s start/end position token or all
tokens in the context passage. Similar to §4.2, we
include all tokens in the context passage of all hard
negatives in a mini-batch for Nhard. Using all avail-
able tokens is generally better because they poten-
tially belong to the final negative phrase candidates
in inference. Training with larger numbers of nega-
tives is beneficial to reduce the gap between train-
ing and inference. Including all of them does not in-
duce significant additional memory overhead since
we should encode the same number (h) of passages
regardless of different options. Therefore, we use
Nhard =

⋃
(p̂;ĉ)∈H(q,p+;c),(q,p+;c)∈B{(p; ĉ)|p ∈ ĉ} as

all tokens from all hard negatives in a mini-batch
where H is a set of the sampled h hard negatives
and |Nhard| = B × L× h.

5 Token Filtering

Representation filtering is often applied in practice
to reduce the index size for efficient search (Min
et al., 2021). For phrase retrieval, tokens that are
not likely to be a start/end position of an answer are
filtered out using a trained filter classifier based on
a logit score for each token to reduce an index size
without losing much accuracy. Only tokens with
a score larger than a specific threshold are kept.
After the filtering, the index is compressed using
optimized product quantization (Ge et al., 2013).

5.1 Token Filter Threshold

A filter threshold for the token filter determines a
trade-off between the index size (efficiency) and
retrieval accuracy (Figure 2). Interestingly, we find
that token filtering can even improve retrieval ac-
curacy. As we increase a threshold from a very
small value (not filtering), the accuracy fluctuates
but generally increases until a specific threshold
because the filter successfully reduces the number
of candidates, making prediction easier. After that
threshold, the accuracy drops quickly because the
filter starts to leave out many correct tokens.

However, finding the peak retrieval accuracy re-
quires a manual search of different thresholds af-
ter indexing and evaluating. Since using it as a
validation metric is expensive, we first select the
best checkpoint based on retrieval accuracy without
performing any token filtering. Especially when
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Figure 2: The trade-off between the index size and validation retrieval accuracy by changing filter thresholds on
random subcorpora with different sizes, (a) C0, (b) R1/100, and (c) R1/10. A threshold that gives better accuracy
with a smaller index size exists. Acc@1 (blue) is more unstable than Acc@10 (red). Interestingly, the index size of
peak EM@1 is smaller than that of peak Acc@10.

the token filter is in the middle of training, the
peak threshold will vary, and using a specific fixed
threshold would not be fair. Also, the best threshold
changes depending on the corpus size, so choosing
a threshold for the full corpus based on a smaller
corpus is not straightforward.

5.2 Token Filter Training and Valiation

Lee et al. (2021a) jointly train a token filter classi-
fier with a dual encoder. It is convenient in that an
additional training process is not required, while
we should tune the weight for a loss before adding
to the overall training loss. Training pushes phrase
vectors into two moving cones toward the start and
end vectors since a logit is a dot product score be-
tween a phrase vector and a start/end vector. It has
two potential disadvantages: (1) phrase represen-
tations are concentrated on a subset of the entire
feature space, so the expressiveness of the model
is not fully exploited, and (2) optimization is more
difficult because of the moving targets.

To address the issues, we train a token filter af-
ter training a phrase encoder. We expect that the
two-stage training process encourages phrase rep-
resentations to be distributed over the space. More-
over, we can validate the token filter separately due
to the separate training process and pick the best
one. We cannot decide the threshold during the
filter training, so we use the AUC-PR metric for
filter validation by measuring precision and recall
by sweeping all threshold values.

6 Experiments

To show the effectiveness of our proposed method,
we evaluate DensePhrases models on open-domain
QA benchmarks following the experimental setup

of Lee et al. (2021a,b).7

Datasets We measure phrase retrieval accuracy
and passage retrieval accuracy on two open-domain
QA datasets following the standard train/dev/test
splits: Natural Questions (Kwiatkowski et al.,
2019) and TriviaQA (Joshi et al., 2017). We first
train our phrase retrieval models on Natural Ques-
tions (DensePhrases♡) or on multiple reading com-
prehension datasets (DensePhrases♠), namely Nat-
ural Questions, WebQuestions (Berant et al., 2013),
CuratedTREC (Baudiš and Šedivỳ, 2015), Trivi-
aQA, and SQuAD (Rajpurkar et al., 2016). Then
each model is further query-side fine-tuned on Nat-
ural Questions and TriviaQA. We build the phrase
index with smaller subsets of corpora (Rr or Hk)
for validation and use the 2018-12-20 Wikipedia
snapshot (C) for the final inference.

Training details We use the same training hy-
perparameters of the original DensePhrases except
for the batch size B = 48. We set the number of
training epochs to 2 with the generated question-
answer pairs and the number of training epochs to
10 with the standard reading comprehension dataset
for more careful validation. We set λinb = 256 and
λinp = λhard = 1. We set k = 10 and h = 1 for the
hard negative mining and sampling.

Token filtering Our token filter achieves an im-
proved AUC-PR value over the filter from the orig-
inal DensePhrases model (e.g., 0.348 vs. 0.307).
We use a filter threshold of -3.0 for the index with
the full corpus. This threshold reduces the index
size by more than 70% of the original size.

7https://github.com/princeton-nlp/
DensePhrases
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Figure 3: Validation results on open-domain QA. We
plot retrieval accuracy (Acc@1) on indexes with differ-
ent sizes (log-scale) from random and hard subcorpora.
Random subcorpora (‚) starts with C0 and is extended
to R1/100 and R1/10. Hard subcorpora (•) include Hk

for k ∈ {1, 2, 4, 8, 10, 16, 32, 64}. We also plot reading
comprehension (RC) accuracy8 and retrieval accuracy
on the full index with filtering. We compare five dif-
ferent models with or without our proposed training
methods and query-side fine-tuning. All models are
trained and evaluated on Natural Questions. UL, HN,
and ♭ indicate a model trained with the unified loss, hard
negatives, and before query-side fine-tuning.

6.1 Model Validation

In our preliminary experiments, we observe that
the best checkpoint among training epochs differs
depending on the corpus size (especially for small
scale). Figure 3 shows the validation retrieval ac-
curacy of the DensePhrases models with different
training methods on various sizes of random and
hard subcorpora. The retrieval accuracy on the hard
subcorpus rapidly drops and reaches close to the
retrieval accuracy on the full corpus as k increases
with moderately increasing index size. On the other
hand, retrieval accuracy on a random subcorpus is
higher than on a hard subcorpus with a similar in-
dex size. For instance, retrieval accuracies on H8

(5.1M) are lower than those on R1/100 (24.2M)
with 4 times smaller index, and retrieval accura-
cies on H16 (8.7M) are lower than those on R1/10

(266.4M) with 30 times smaller index. It indicates

8Since the length of a passage for each question varies, we
put aside points corresponding to RC on the left of the figure
with arbitrary small index sizes.

Model NQ TQA
Acc@1 Acc@1

DPR♢ + BERT reader 41.5 56.8
DPR♠ + BERT reader 41.5 56.8

RePAQ♢ (retrieval-only) 41.2 38.8
RePAQ♠ (retrieval-only) 41.7 41.3
DensePhrases♡ 40.9 50.7
DensePhrases♠ 41.3 53.5

DensePhrases♡-UL 43.5 51.3
DensePhrases♡-UL-HN 44.0 47.0
DensePhrases♠-UL 42.4 55.5

Table 1: Open-domain QA phrase retrieval test results.
We report top-1 accuracy (Acc@1). ♢: trained on each
dataset independently. ♠: trained on multiple datasets.
♡: trained on Natural Questions datasets.

that a hard subcorpus can effectively imitate infer-
ence with a full corpus, where correct retrieval is
the most difficult.

The relative order of accuracy between models
on hard subcorpus converges quickly at around
H10 (6.1M). However, the order of accuracy when
using random subcorpus changes from R1/100 to
R1/10 showing the difficulty of efficient validation.
On the other hand, retrieval accuracy on a hard
subcorpus is more stable and serves as an efficient
validation metric.

Our validation results clearly demonstrate that
unified loss is helpful. Query-side fine-tuning also
harms the RC accuracy and the retrieval accuracy
with C0 (1.1M) while improving the retrieval ac-
curacy with larger indexes. It shows how a wrong
conclusion can be made from small-sized corpora.

6.2 Phrase Retrieval
Table 1 summarizes end-to-end open-domain QA
results. Both unified loss and hard negatives are
shown to be effective. With our improved train-
ing methods, the best model surpasses the origi-
nal DensePhrases model by 2.7 points in Natural
Questions and 2.0 points in TriviaQA, achieving
the state-of-the-art retrieval-only open-domain QA
performance.

6.3 Passage Retrieval
Table 2 summarizes open-domain QA passage re-
trieval results. Our method also improves pas-
sage retrieval accuracy significantly. The best
model improves top-20 passage retrieval accuracy
by 4.0 points in Natural Questions and 1.8 points
in TriviaQA. It again shows that DensePhrases can
be used for passage retrieval as well. We may
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Model Natural Questions TriviaQA
Acc@1 Acc@5 Acc@20 MRR@20 P@20 Acc@1 Acc@5 Acc@20 MRR@20 P@20

DPR♢ 46.0 68.1 79.8 55.7 16.5 54.4 - 79.4 - -
DPR♠ 44.2 66.8 79.2 54.2 17.7 54.6 70.8 79.5 61.7 30.3
DensePhrases♡ 50.1 69.5 79.8 58.7 20.5 - - - - -
DensePhrases♠ 51.1 69.9 78.7 59.3 22.7 62.7 75.0 80.9 68.2 38.4

DensePhrases♡-UL 57.1 75.7 83.7 65.2 22.0 62.0 74.6 80.6 67.6 33.3
DensePhrases♡-UL-HN 58.6 75.7 83.4 66.1 21.9 60.3 73.3 79.6 66.1 32.3
DensePhrases♠-UL 56.7 75.9 83.8 65.2 23.7 65.0 76.6 82.7 70.2 39.0

Table 2: Open-domain QA passage retrieval test results. We report top-k passage retrieval accuracy (Acc@k, for
k ∈ {1, 5, 20}), mean reciprocal rank at 20 (MRR@20), and precision at 20 (P@20). ♢: trained on each dataset
independently. ♠: trained on multiple datasets. ♡: trained on Natural Questions datasets.

use DensePhrases as a building block of other
tasks and expect to achieve good phrase retrieval
performance with expressive reader models like
FiD (Izacard and Grave, 2021).

6.4 Discussion on Hard Negatives

From Figure 3, we observe that with hard sub-
corpora, the model trained with hard negatives
(cyan) shows higher validation accuracy than the
model without hard negative training (yellow) be-
fore query-side fine-tuning, but their order changes
after query-side fine-tuning (blue vs. red). This is
because the hard negative mining process is simi-
lar to hard corpus construction, blurring the accu-
rate estimation of validation performance. How-
ever, we pick the best model before the query-side
fine-tuning, which lets us decide to go with hard
negatives (due to cyan vs. yellow) and achieve
state-of-the-art performance with the full index.

From Table 1, we observe that hard negatives
improve in-domain accuracy but harm the out-of-
domain accuracy. Since hard negative passages are
close to the original training data, it improves the
performance of questions from the same domain
but could cause overfitting and harm the general-
ization ability. This observation solicits better hard
negative mining methods.

7 Conclusion

In this study, we aim to bridge the gap between
training and inference of phrase retrieval. We first
develop an efficient validation metric that measures
retrieval accuracy on the index from a small cor-
pus with hard passages using a pre-trained retriever.
Based on this validation, we show that the improve-
ments in dense phrase retrieval training with unified
loss and hard negatives are effective. As a result,
we achieve state-of-the-art phrase retrieval and pas-

sage retrieval accuracy in open-domain question
answering among retrieval-only approaches.

Our work demonstrates that thorough validation
is crucial for the accurate and efficient development
of phrase retrieval with a large corpus. Also, we
prove that modeling and training methods should
be designed closely to retrieval in inference time.
Despite its remarkable efficiency and flexibility,
phrase retrieval has been relatively less studied than
passage retrieval. We believe that our work can
encourage more study on phrase retrieval with an
efficient development cycle. Furthermore, we hope
our findings could be extended to dense retrieval
in general to help a wide variety of applications.
Moreover, it could be especially beneficial in real
applications where the corpus size is much larger
than benchmark datasets.

Limitations

This work focuses on phrase retrieval, where the
training-inference discrepancy might be more sig-
nificant than other dense retrieval cases, based on
the DensePhrases (Lee et al., 2021a) framework.
We plan to explore other dense retrieval methods
in the future. We use open-domain question an-
swering as the main benchmark to show the effec-
tiveness of the proposed method but expect a wide
application to other knowledge-intensive tasks.
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