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Abstract

Training a model to provide natural language
explanations (NLEs) for its predictions usually
requires the acquisition of task-specific NLEs,
which is time- and resource-consuming. A po-
tential solution is the few-shot out-of-domain
transfer of NLEs from a parent task with many
NLEs to a child task. In this work, we exam-
ine the setup in which the child task has few
NLEs but abundant labels. We establish four
few-shot transfer learning methods that cover
the possible fine-tuning combinations of the la-
bels and NLEs for the parent and child tasks.
We transfer explainability from a large natu-
ral language inference dataset (e-SNLI) sep-
arately to two child tasks: (1) hard cases of
pronoun resolution, where we introduce the
small-e-WinoGrande dataset of NLEs on top of
the WinoGrande dataset, and (2) commonsense
validation (ComVE). Our results demonstrate
that the parent task helps with NLE genera-
tion and we establish the best methods for this
setup.

1 Introduction

Recent developments have made it possible for AI
models to learn from natural language explanations
(NLEs) for the ground-truth labels at training time
and generate such explanations for their decisions
at deployment time (Hendricks et al., 2016; Ling
et al., 2017; Park et al., 2018; Camburu et al., 2018;
Kim et al., 2018; Rajani et al., 2019; Camburu
et al., 2020; Narang et al., 2020; Kumar and Taluk-
dar, 2020; Marasović et al., 2022). However, large
datasets of NLEs, such as e-SNLI (Camburu et al.,
2018), are time-consuming and expensive to gather.
One approach is to transfer explanations from a
different domain, via few-shot transfer learning.
The usual setup for few-shot out-of-domain trans-
fer learning consists of transfer learning from a
“parent” task, with abundant training examples, to
a “child” task that only has a few training examples
(Thrun, 1996; Ravi and Larochelle, 2017).

In this work, we assume that the child task has
few training NLEs but abundant labels. Given the
advent of deep learning in the last years, this sce-
nario may be quite frequent, as one may already
have a large dataset with labels on which they aim
to train NLEs-generating models without annotat-
ing the entire dataset with NLEs. To our knowl-
edge, there is only one existing work in this setup,
that of Erliksson et al. (2021), which introduces a
vanilla fine-tuning method on top of the zero-shot
WT5 model (Narang et al., 2020). However, their
work is limited by: (1) they only test one of the
four possible scenarios we identify for this setup,
and (2) they use only automatic evaluation metrics,
which do not necessarily align with human judg-
ment (Camburu et al., 2018; Kayser et al., 2021).

In this work, we introduce three few-shot transfer
learning methods for NLEs that utilize the abun-
dant training labels for both the parent and child
task, and we adapt for computational efficiency
the method from Erliksson et al. (2021). Together,
these four methods are combinations of multi-task
learning and fine-tuning between a parent and a
child task with few training NLEs but abundant
labels. We instantiate our few-shot learning ap-
proaches on e-SNLI (Camburu et al., 2018) as par-
ent task, and WinoGrande (Sakaguchi et al., 2020)
and ComVE (Wang et al., 2020) as child tasks. As
the WinoGrande dataset does not contain NLEs,
we introduce small-e-WinoGrande, which provides
100/50/100 NLEs for the training, development,
and test sets, respectively. We show the extent to
which few-shot out-of-domain transfer learning of
NLEs is currently feasible, and provide insight into
which learning techniques work best in this setup.
We perform human evaluation and compare against
child-task-only and zero-shot baselines.1

1The code and the datasets are publicly available at: https:
//github.com/YDYordanov/Few-shot-NLEs.
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Task Input Format Target Format

e-SNLI
explain nli premise:
[premise] hypothesis:
[hypothesis]

[relation] explana-
tion: [explanation]

W.G.

explain WinoGrande
schema: [schema start]

[schema end] options:
[option 1], [option 2].

[correct option] ex-
planation: [expla-
nation]

ComVE
explain ComVE Sentence
1: [statement 1] Sentence
2: [statement 2]

[nonsensical state-
ment id] explana-
tion: [explanation]

Table 1: T5 input/target formats for each task, used for
all models. When training on examples without NLEs,
“explain” and “explanation:” are not included in the
input/target format.

2 Experimental Setup

2.1 Datasets

e-SNLI. Natural language inference (NLI) (Da-
gan et al., 2006) is the task of assigning a relation
of entailment, contradiction, or neutrality between
a premise and a hypothesis. The e-SNLI dataset
(Camburu et al., 2018) consists of human-written
NLEs on top of the Stanford Natural Language
Inference (SNLI) (Bowman et al., 2015). We se-
lect e-SNLI as parent dataset due to its large size
(∼570K) and high-quality NLEs.

WinoGrande. The WinoGrande dataset (Sak-
aguchi et al., 2020) consists of 40,398 binary fill-
in-the-gap instances of pronoun resolution that fol-
low the Winograd Schema format (Levesque et al.,
2012). We select WinoGrande as a child task, since
it requires implicit knowledge, which we want to
capture in the NLEs. We construct the small-e-
WinoGrande dataset by manually creating NLEs
for 100/50/100 training/dev/test instances.

ComVE. Commonsense Validation and Explana-
tion (ComVE) (Wang et al., 2020), as reformulated
by Majumder et al. (2022), is the task of jointly
identifying which one of two statements contradicts
commonsense and explaining why. The dataset
consists of 10,000 training, 1,000 validation, and
1,000 test instances. We select ComVE as a child
task, because it is a commonsense reasoning task
for which there are good-quality human-written
NLEs. For more dataset details, see Appendix A.

2.2 Base Model

Similarly to Narang et al. (2020), we use the T5
(Raffel et al., 2020) generative language model, in
particular, the “Base” model with 220M parame-

ters, due to its good trade-off of performance and
computational requirements. For T5, tasks are dis-
tinguished only via their task-specific input/target
formats. We follow the input/target format for e-
SNLI by Narang et al. (2020): premise: [premise]
hypothesis: [hypothesis] / [relation] explanation:
[explanation]. We obtain the input formats for
WinoGrande and ComVE in a similar manner (see
Table 1). We observed in early experiments that
the exact choice of input/target formats does not
significantly affect performance.

We choose the best practice for multi-task learn-
ing with T5, namely, via training on the union of
the datasets in question (Raffel et al., 2020).

2.3 Few-Shot Transfer Learning Methods
Table 2 shows all the models that we use. M1 to M4
are the four few-shot transfer learning methods for
NLE generation, which we obtain by combining
the parent dataset with NLEs, the child dataset,
and a few NLEs (we use 50 in this work) in all
reasonable multi-task and fine-tuning combinations.
M3 is similar to the method by Erliksson et al.
(2021), but the latter uses the union of the parent
dataset with and without explanations, mimicking
WT5. We choose against this, because in the few-
shot NLE case, this is unnecessary and doubles the
computation cost.

We also consider four baseline methods. The two
child-task baselines CD–fine-tune and CD-union
serve to measure the contribution of the parent in
NLE transfer. Two zero-shot NLE transfer learning
baselines, WT5 (Narang et al., 2020) and WT5–
fine-tune, serve to measure the contribution of the
50 training NLEs in the child task. The training
details are given in Appendix B.

2.4 Human Evaluation
We use Amazon Mechanical Turk to evaluate
the model-generated NLEs, with three annotators
per instance. The evaluation procedure for each
instance is in three steps and follows existing
works (Kayser et al., 2021; Majumder et al., 2022;
Marasović et al., 2022). First, annotators have to
predict the classification label for the example. Sec-
ond, they have to select one of four options for
whether the NLE is a valid and satisfactory ex-
planation for the selected label: Yes, Weak Yes,
Weak No, or No. Third, they have to select short-
comings of the explanation from the following:
“does not make sense”, “insufficient justification”,
“irrelevant to the task”, “too trivial”, and “none”.
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Model name Meaning
CD–fine-tune fine-tune T5 on the child dataset, and then fine-tune on 50 NLEs
CD–union fine-tune T5 on the union of the child dataset and 50 NLEs
WT5–fine-tune fine-tune T5 on the union of e-SNLI and SNLI, and then fine-tune on the child dataset
WT5 fine-tune T5 on the union of e-SNLI, SNLI, and the child dataset
M1 fine-tune T5 on the union of e-SNLI, the child dataset, and 50 NLEs
M2 fine-tune T5 on the union of e-SNLI and the child dataset, and then fine-tune on 50 NLEs
M3 fine-tune T5 on e-SNLI, and then fine-tune on the union of the child dataset and 50 NLEs
M4 fine-tune T5 on e-SNLI, and then fine-tune on the child dataset, and, finally, on 50 NLEs

Table 2: Legend of the model names. The child dataset excludes the NLEs, unless specified. The 50 NLEs refer to
the few (50) instances of the child task with NLEs.

Model WinoGrande ComVE ComVE Automatic NLE Metrics
Task
acc%

NLE
score

Task
acc%

NLE
score B-1 B-2 B-3 B-4 METEOR BERTScore

CD–fine-tune 59.7 34.7 87.8 31.4 45.2 29.5 19.5 13.1 21.5 83.4
CD–union 57.2 35.9 83.1 27.7 27.4 16.6 10.2 6.4 19.1 81.8
WT5–fine-tune 60.2 8.7 85.7 28.9 24.6 15.1 9.7 6.5 13.5 74.8
WT5 58.0 8.3 76.2 23.9 22.8 12.0 6.4 3.6 12.7 71.5
M1 53.6 28.3 82.8 40.2 34.5 19.2 10.8 6.3 20.3 81.8
M2 56.0 44.1* 80.6 40.6 43.5 26.3 16.5 10.6 20.0 83.1
M3 54.6 29.6 85.5 38.6 33.6 18.8 10.9 6.2 20.8 82.1
M4 58.2 41.9* 86.5 48.5* 44.4 27.5 17.5 10.7 21.2 83.6

Table 3: Performance of models on WinoGrande and ComVE as child tasks. From the 100 test examples, only the
correctly classified are given NLE scores. B-1,2,3,4 stand for BLEU-1,2,3,4. Best results are in bold; * denotes the
statistically significant best results.

All models are evaluated on 100 examples from
the test dataset of each child task. Similarly to
previous works (Camburu et al., 2018; Kayser et al.,
2021; Majumder et al., 2022), the NLE evaluation
is only done on correctly labeled (by the model)
examples, as it is expected that an incorrect label is
not supported by the model with a correct NLE. See
Appendix C for more details and for screenshots of
the forms used to collect the annotations.

3 Results

Following Kayser et al. (2021), we use an aggre-
gated score (we call “NLE score”) of the four cate-
gories (Yes, Weak Yes, No, Weak No) to compare
the NLE generation quality, where Yes, Weak Yes,
Weak No, and No are given the weights 1, 2/3,
1/3, and 0, respectively. This aggregation has two
goals: (1) to provide a single metric to compare the
methods, and (2) to account for the subjective na-
ture of choosing between close labels such as Yes
and Weak Yes. A summary of the Yes, Weak Yes,
Weak No, and No scores and the shortcomings are
presented in Appendix D.

For every model comparison, we report if it is
statistically significant via the paired Student’s t-

test for equal variances (Yuen and Dixon, 1973),
with single-tailed p-values and 0.05 statistical sig-
nificance threshold.

The results are given in Table 3. We only re-
port automatic metrics (BLEU (Papineni et al.,
2002), METEOR (Banerjee and Lavie, 2005), and
BERTScore (Zhang et al., 2020)) for NLE quality
for ComVE, since WinoGrande has only a small
number of test NLE instances (which have been
used for grounding in our human evaluation – see
Appendix C). We notice that the automatic met-
rics are not well aligned with the human evalua-
tion (NLE score). This has also been previously
observed in other studies (Camburu et al., 2018;
Kayser et al., 2021). Therefore, we will base our
conclusions only on the human evaluation (NLE
score).

First, we notice that all methods (M1–M4) signif-
icantly outperform the zero-shot baselines (WT5–
fine-tune and WT5) in terms of NLE quality for
both datasets, which proves the utility of the 50
child-task NLEs.

Second, we see that not all methods outperform
the child-task baselines. For example, on Wino-
Grande, both CD–fine-tune and CD-union outper-
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form M1 and M3 in terms of the NLE quality. This
shows that it is sometimes possible that fine-tuning
on a large parent task of out-of-domain NLEs hurts
NLE quality of a child task. However, for both
datasets, the best performing method is among the
M1–M4 methods (and for ComVE, all M1–M4
methods outperform the child-task baselines), sug-
gesting that it is generally useful to use a large
dataset of NLEs as a parent task even when out-of-
domain.

Third, we see that the M1–M4 methods rank
differently on different datasets, in particular, M2
and M4 are the significantly best methods on Wino-
Grande, and M4 is the significantly best method
on ComVE. We believe that the main difference in
method ranking is that the methods obtain much
closer-to-chance accuracy on WinoGrande than on
ComVE. This is important, because poor task un-
derstanding can lead to poor NLE generation. In
particular, M2 and M4 obtain significantly better
WinoGrande accuracy than M1 and M3, which
might explain the significant gap in NLE score.
M2 and M4 are the best NLE generation methods
on both datasets, which could be because M2 and
M4 use the 50 NLEs of the child task in a sepa-
rate training regime, whereas M1 and M3 use a
combination of the much larger child dataset with
the 50 NLEs. This suggests that the 50 NLEs re-
quire their own training regime to obtain good NLE
generation.

Finally, we see that the best task performances
on both datasets are obtained by a baseline method:
WT5–fine-tune (no child NLEs) for WinoGrande
and CD–fine-tune (child-task only) for ComVE.
Moreover, among the M1-M4 methods, there is no
clear best method in terms of task performance, nor
a correlation with the NLE quality. Hence, a trade-
off between task performance and NLE quality is
needed, which we observe is achieved by M4.

3.1 Qualitative Examples

WinoGrande. While many of the correct NLEs
that are generated by the models are trivial, e.g.:

Fiction books were interesting and easy
to read for Logan but not Brett because

enjoyed real tales. A: Brett.
NLE: Fiction books were interesting and
easy to read for Logan but not Brett be-
cause Brett enjoyed real tales

there are some non-trivial generations, e.g.:

Brett was browsing the internet while he
found the information unlike Randy,
prefers using books. A: Randy.
NLE: If Brett is browsing the internet,
then he is more likely to find information
than Randy, who prefers to use books.

ComVE. By manual inspection, the correct
model-generated NLEs are either a repetition of
the correct statement, or a negation of the nonsen-
sical statement. Examples from each:

Statements: The fire will [burn / cool]
you if you touch it. A: burn. NLE: The
fire will burn you if you touch it.

Statements: He inserts [his thumb / the
keys] into the car ignition switch.
A: the keys. NLE: One cannot insert his
thumb into the car ignition switch.

For more qualitative results, see Appendix E,
where six non-cherry-picked NLEs from each
model are presented.

4 Related Work

There are three main focuses in NLE genera-
tion: quality improvement (Camburu et al., 2018;
Narang et al., 2020; Valentino et al., 2022), NLE
faithfulness (Kumar and Talukdar, 2020; Wiegreffe
et al., 2021; Liu et al., 2019; Latcinnik and Berant,
2020), and transfer learning of NLEs. Zero-shot in-
domain transfer of NLEs (between datasets of the
same task) has been done, e.g., by Camburu et al.
(2018); Kumar and Talukdar (2020), and Narang
et al. (2020). Narang et al. (2020) additionally con-
sider zero-shot out-of-domain transfer of NLEs,
while Erliksson et al. (2021) extend their work
by showing that few-shot out-of-domain transfer
of NLEs is possible in the abundant-label setup.
Marasović et al. (2022) use prompt engineering
for few-shot out-of-domain transfer of NLEs for
the scarce-label setup. The prompt choice is less
relevant in our abundant-label setup, because task
adaptation can be done via the abundant training
labels. In the more general area of natural language
generation, few-shot learning is a growing topic
(Chen et al., 2020), e.g., in dialog generation (Peng
et al., 2020; Shalyminov et al., 2019). These ap-
proaches, however, do not directly apply to transfer
learning of NLEs, which is a dual task of predicting
both the label and generating an explanation.
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5 Summary and Outlook

In this work, we investigated four methods for few-
shot out-of-domain transfer learning of NLEs for
the abundant-label setting. We introduced small-e-
WinoGrande, a dataset of NLEs on top of a small
sample of instances from WinoGrande. We showed
that out-of-domain few-shot learning can signifi-
cantly help with NLE generation compared to zero-
shot or child-task-only learning. Amongst the four
NLE few-shot learning methods, we found that the
most convincing NLEs are generated by the meth-
ods that provide separate training regimes for the
child task and its few training NLEs. While our
results indicate that few-shot out-of-domain trans-
fer learning of NLEs is helpful, there is room for
improvement both in the quality of the generated
NLEs and in task-performance. Thus, our work
provides an essential foundation for future research
into few-shot out-of-domain transfer learning of
NLEs where label abundance is available.

6 Limitations

The training methods in this work can apply to any
language other than English, but a large parent task
with NLEs is needed and a high-performance pre-
trained generative language model may be needed
for that language. Training one of our methods
takes approximately three hours per e-SNLI epoch
on one NVIDIA TITAN Xp GPU, which should
be multiplied by the number of epochs and the hy-
perparameter combinations used. In practice, we
observed that the results are sensitive to the num-
ber of epochs and to the choice of the learning
rate, so a comprehensive hyperparameter search
may be needed. This significantly increases the
computational requirements and can be an obsta-
cle for researchers on a limited budget. In total,
the required time to reproduce all our results is ap-
proximately 45 GPU days. Scaling our methods
to larger language models can also be challenging
from a computational requirements standpoint.

7 Acknowledgments

This work was supported by an Early Career Lever-
hulme Fellowship, by the Alan Turing Institute un-
der the EPSRC grant EP/N510129/1, by the AXA
Research Fund, and by the EPSRC Studentship
OUCS/EPSRC-NPIF/VK/1123106. We also ac-
knowledge the use of the EPSRC-funded Tier 2
facility JADE (EP/P020275/1) and GPU comput-
ing support by Scan Computers International Ltd.

References
Satanjeev Banerjee and Alon Lavie. 2005. METEOR:

An automatic metric for MT evaluation with im-
proved correlation with human judgments. In Pro-
ceedings of the ACL Workshop on Intrinsic and Ex-
trinsic Evaluation Measures for Machine Translation
and/or Summarization, pages 65–72. Association for
Computational Linguistics.

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015. A large anno-
tated corpus for learning natural language inference.
In Proceedings of the 2015 Conference on Empiri-
cal Methods in Natural Language Processing, pages
632–642. Association for Computational Linguistics.

Oana-Maria Camburu, Tim Rocktäschel, Thomas
Lukasiewicz, and Phil Blunsom. 2018. e-SNLI: Natu-
ral language inference with natural language explana-
tions. In Advances in Neural Information Processing
Systems 31, pages 9539–9549. Curran Associates,
Inc.

Oana-Maria Camburu, Brendan Shillingford, Pasquale
Minervini, Thomas Lukasiewicz, and Phil Blunsom.
2020. Make up your mind! Adversarial generation
of inconsistent natural language explanations. In
Proceedings of the Annual Meeting of the Association
for Computational Linguistics (ACL), pages 4157–
4165.

Zhiyu Chen, Harini Eavani, Wenhu Chen, Yinyin Liu,
and William Yang Wang. 2020. Few-shot NLG with
pre-trained language model. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 183–190. Association for
Computational Linguistics.

Ido Dagan, Oren Glickman, and Bernardo Magnini.
2006. The PASCAL recognising textual entailment
challenge. In Machine Learning Challenges. Evalu-
ating Predictive Uncertainty, Visual Object Classifi-
cation, and Recognising Tectual Entailment, pages
177–190. Springer.

Karl Fredrik Erliksson, Anders Arpteg, Mihhail
Matskin, and Amir H. Payberah. 2021. Cross-domain
transfer of generative explanations using text-to-text
models. In Natural Language Processing and Infor-
mation Systems: 26th International Conference on
Applications of Natural Language to Information Sys-
tems, NLDB 2021, June 23–25, 2021, Proceedings,
page 76–89. Springer-Verlag.

Lisa Hendricks, Zeynep Akata, Marcus Rohrbach, Jeff
Donahue, Bernt Schiele, and Trevor Darrell. 2016.
Generating visual explanations. In Proceedings
of the European Conference on Computer Vision
(ECCV), volume 9908 of LNCS, pages 3–19.

Jeremy Howard and Sebastian Ruder. 2018. Universal
language model fine-tuning for text classification.
In Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume

3490

https://aclanthology.org/W05-0909
https://aclanthology.org/W05-0909
https://aclanthology.org/W05-0909
https://doi.org/10.18653/v1/D15-1075
https://doi.org/10.18653/v1/D15-1075
http://papers.nips.cc/paper/8163-e-snli-natural-language-inference-with-natural-language-explanations.pdf
http://papers.nips.cc/paper/8163-e-snli-natural-language-inference-with-natural-language-explanations.pdf
http://papers.nips.cc/paper/8163-e-snli-natural-language-inference-with-natural-language-explanations.pdf
https://doi.org/10.18653/v1/2020.acl-main.382
https://doi.org/10.18653/v1/2020.acl-main.382
https://doi.org/10.18653/v1/2020.acl-main.18
https://doi.org/10.18653/v1/2020.acl-main.18
https://doi.org/10.1007/11736790_9
https://doi.org/10.1007/11736790_9
https://doi.org/10.1007/978-3-030-80599-9_8
https://doi.org/10.1007/978-3-030-80599-9_8
https://doi.org/10.1007/978-3-030-80599-9_8
https://doi.org/10.1007/978-3-319-46493-0_1
https://doi.org/10.18653/v1/P18-1031
https://doi.org/10.18653/v1/P18-1031


1: Long Papers), pages 328–339. Association for
Computational Linguistics.

Maxime Kayser, Oana-Maria Camburu, Leonard
Salewski, Cornelius Emde, Virginie Do, Zeynep
Akata, and Thomas Lukasiewicz. 2021. e-ViL: A
dataset and benchmark for natural language explana-
tions in vision-language tasks. In 2021 IEEE/CVF In-
ternational Conference on Computer Vision (ICCV),
pages 1224–1234.

Jinkyu Kim, Anna Rohrbach, Trevor Darrell, John
Canny, and Zeynep Akata. 2018. Textual explana-
tions for self-driving vehicles. Lecture Notes in Com-
puter Science, page 577–593.

Sawan Kumar and Partha Talukdar. 2020. NILE: Natu-
ral language inference with faithful natural language
explanations. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 8730–8742. Association for Compu-
tational Linguistics.

Veronica Latcinnik and Jonathan Berant. 2020. Explain-
ing question answering models through text genera-
tion. CoRR, arXiv:2004.05569.

Hector J. Levesque, Ernest Davis, and Leora Morgen-
stern. 2012. The Winograd Schema Challenge. In
Proceedings of the 13th International Conference on
Principles of Knowledge Representation and Reason-
ing, pages 552–561. AAAI Press.

Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blun-
som. 2017. Program induction by rationale genera-
tion: Learning to solve and explain algebraic word
problems. In Proceedings of the Annual Meeting of
the Association for Computational Linguistics (ACL),
pages 158–167.

Hui Liu, Qingyu Yin, and William Yang Wang. 2019.
Towards explainable NLP: A generative explanation
framework for text classification. In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 5570–5581. Asso-
ciation for Computational Linguistics.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In Proceedings of the
7th International Conference on Learning Represen-
tations. OpenReview.net.

Bodhisattwa Prasad Majumder, Oana-Maria Camburu,
Thomas Lukasiewicz, and Julian McAuley. 2022.
Knowledge-grounded self-rationalization via extrac-
tive and natural language explanations. Proceedings
of 39th International Conference on Machine Learn-
ing (ICML).
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A Datasets

WinoGrande. Because of the lack of a publicly
available test set (testing happens through its leader-
board,2 which has submission limitations), we do a
random split of the original WinoGrande training
dataset into 39,130 training instances (called WG-
train) and 1,268 validation instances (called WG-
dev). For testing, we use the original WinoGrande
development set, which we denote by WG-test.

We created the small-e-WinoGrande dataset by
manually constructing NLEs for 100 examples
from WG-train, 50 examples from WG-dev, and
100 examples from WG-test. Example:

The geese prefer to nest in the fields
rather than the forests because in the
predators are very visible.
Options: fields, forests. Answer: fields.
NLE: The fields are more open spaces
than the forests, hence predators are
more visible there.

ComVE. Originally, ComVE (Wang et al., 2020)
consists of three tasks: A, B, and C, where only
tasks A and C are relevant for this work. ComVE-
A is the classification task of identifying which
statement out of a pair of statements does not make
sense. The ComVE-C task provides only the state-
ment that does not make sense (from the pair) and
requires the model to generate an NLE for why
that is the case. To form a classification task with
explanations, we merge tasks A and C by matching
the nonsensical statements, as done by Majumder
et al. (2022). The resulting task can be described as
“given a pair of sentences, identify which one does
not make sense, and explain why”, which we refer
to simply as ComVE. The resulting ComVE dataset
consists of 10,000 training, 1,000 validation, and
1,000 test instances. Each instance consists of a pair
of statements, a label, and three human-generated
NLEs. We use all three NLEs per example only in
the full test set. For training, we use up to one NLE
per example, assuming a strict few-shot regime
where each one NLE annotation is expensive to get.
For human evaluation, we randomly sample the
test dataset down to 100 instances, to save human-
annotation costs.

2https://leaderboard.allenai.org/winogrande/
submissions/public

B Training Details

The training objective is given by cross-entropy
loss with targets as described in Table 1. We use the
AdamW optimizer (Loshchilov and Hutter, 2019)
and linear learning rate scheduler with warm-up
over 10% of the training. For all models, we fix
the batch size to 16 and do a grid search over the
learning rate values and the number of training
epochs. For all WinoGrande models, we search
over the learning rate values of 3e-4, 1e-4, and 3e-
5, whereas for ComVE we search over 1e-3, 3e-4,
1e-4, and 3e-5. For e-SNLI, we train on 1, 2, 3, and
5 epochs. For WinoGrande, we train on 1, 2, 3, 5,
7, 9, and 11 epochs, and for ComVE, we train on
1, 2, 3, 5, 7, 10, and 13 epochs. When few-shot
fine-tuning with NLEs, we train on 1, 2, 3, 5, 7,
10, 13, 17, 21, and 26 epochs. Multi-task learning
always uses the hyperparameter range of the larger
dataset. No early stopping is needed, because we
use a learning rate scheduler and the number of
training epochs is a hyperparameter. We do not
use gradual unfreezing (Howard and Ruder, 2018),
because it has been shown that it does not help
when applied to the T5 language model (Raffel
et al., 2020).

At each stage of training, the best hyperparam-
eter combinations are selected via grid search by
either the perplexity relative to target NLEs on the
dev set of the child task, by dev accuracy on the
child dataset, or by NLE perplexity on the e-SNLI
dev set, whichever is most suitable. The selec-
tion criteria for each model, along with the best
hyperparameters are given in Table 4. Note that
the WG-dev accuracy in Table 4 is much higher
than the corresponding WG-test accuracy in Ta-
ble 3, because WG-dev is sampled from the train-
ing dataset of WinoGrande, whereas WG-test is
the original WinoGrande development set, which
is filtered to increase its difficulty (Sakaguchi et al.,
2020). Model-generated explanations are obtained
via beam search with a beam width of 5.

C Human Evaluation

As suggested by Kayser et al. (2021), for each ex-
ample, the annotators are provided with two (shuf-
fled) NLEs, one from a model and one ground-truth
from the test set. This serves for mentally ground-
ing the annotator’s score of the model-generated
NLE.

Additionally, there are multiple checks placed
in the data collection form to ensure high-quality
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Models Num
epochs

Learning
rate Criterion Best

value
e-SNLI 3 3e-4 e-SNLI dev NLE ppl 2.192
(e-SNLI, SNLI) 3 3e-4 e-SNLI dev NLE ppl 2.199
WinoGrande Models
(e-SNLI, WinoGrande) 5 1e-4 WG-dev acc 83.2%
e-SNLI–WinoGrande 7 3e-4 WG-dev acc 81.0%
WinoGrande 5 1e-4 WG-dev acc 85.1%
CD–fine-tune 21 3e-4 WG-dev NLE ppl 4.665
CD–union 5 1e-4 WG-dev NLE ppl 4.945
WT5–fine-tune 11 3e-4 WG-dev acc 80.8%
WT5 5 1e-4 WG-dev acc 83.4%
M1 3 3e-5 WG-dev NLE ppl 4.815
M2 5 1e-4 WG-dev NLE ppl 5.419
M3 10 3e-4 WG-dev NLE ppl 4.401
M4 17 3e-4 WG-dev NLE ppl 5.022
ComVE Models
(e-SNLI, ComVE) 3 3e-4 ComVE dev acc 82.8%
e-SNLI–ComVE 7 3e-4 ComVE dev acc 86.8%
ComVE 5 3e-4 ComVE dev acc 88.4%
CD–fine-tune 13 3e-4 ComVE dev NLE ppl 5.170
CD–union 5 1e-4 ComVE dev NLE ppl* 9.294
WT5–fine-tune 10 3e-4 ComVE dev acc 87.0%
WT5 5 1e-4 ComVE dev acc 84.4%
M1 5 1e-4 ComVE dev NLE ppl 7.886
M2 1 1e-3 ComVE dev NLE ppl 7.970
M3 5 1e-3 ComVE dev NLE ppl 4.958
M4 5 1e-3 ComVE dev NLE ppl 5.002

Table 4: Best hyperparameters for all trained models (including the intermediary models), along with the cor-
responding criterion used for model selection, and the best dev result value w.r.t. that criterion. The datasets in
brackets denotes the model obtained by fine-tuning T5 on the union of those datasets; dataset1–dataset2 denotes
subsequent fine-tuning on dataset1, then on dataset2. *–subject to the dev accuracy being large enough (> 75%).

annotations. Most notably, in each group of
10 instances, at least 90% of the labels have to
be answered correctly, and at least 90% of the
ground-truth NLEs have to be annotated by Yes
or Weak Yes. The final check requires that at most
80% of the model-generated NLEs should be anno-
tated by Yes or Weak Yes. We included this check
to ensure that the annotators are more critical, and
we estimated this threshold manually. These are
reasonable assumptions for both WinoGrande and
ComVE, judging by the quality of the ground-truth
and model-generated NLEs.

We had 130 annotators for ComVE and 113 for
WinoGrande. Most of the annotators annotated
only ten model-generated NLEs each. To further
ensure high-quality annotations, we re-annotated
all the instances of the annotators who annotated
many instances (more than 60 for WinoGrande and
more than 100 for ComVE) but selected more than
five wrong shortcomings from a sample of ten ran-
dom instances, after manual inspection. We found
two such annotators for ComVE and one for Wino-
Grande. The annotators were paid 1$ per 10 pairs

of NLEs.
Below are full-page screenshots of the data col-

lection forms that we used for WinoGrande (Fig-
ure 1) and ComVE (Figure 2).

D Additional Results

Table 5 presents the full human evaluation results
table for all models which includes the separate Yes,
Weak Yes, Weak No, and No scores. Table 5 also
summarizes, for each model, the shortcomings that
the human annotators found in the model-generated
NLEs. The annotated shortcomings of the NLEs
are informative of the issues that current generated
NLEs have.

E Examples of Model-Generated NLEs

In the twelve tables below Figure 2 are the answers
and NLEs for each child task (WinoGrande and
ComVE) and for all eight compared models on
the first six examples (out of the 100 that were
evaluated). The first six tables present six examples
for WinoGrande, whereas the second six tables are
for ComVE.
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Figure 1: WinoGrande data collection template. There are two explanations per task.
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Figure 2: ComVE data collection template. There are two explanations per task.
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WinoGrande
Model

NLE
score Yes% Weak

Yes%
Weak
No% No%

Does not
make

sense%

Insufficient
justifica-
tion%

Irrelevant
to the

schema%

Too
trivial% None%

CD–fine-tune 34.7 17.5 20.1 11.6 50.8 32.0 37.0 4.0 7.5 19.5
CD–union 35.9 20.7 15.2 15.2 49.0 33.8 32.4 5.5 6.4 21.9
WT5–fine-tune 8.7 4.6 4.1 4.1 87.2 60.8 20.3 10.6 4.1 4.1
WT5 8.3 4.8 3.0 4.2 87.9 71.1 12.8 9.6 2.1 4.3
M1 28.3 14.3 14.3 13.6 57.8 28.0 39.5 8.9 4.5 19.1
M2 44.1 25.9 18.0 18.5 37.6 28.1 33.2 6.5 4.0 28.1
M3 29.6 15.4 14.8 13.0 56.8 43.7 29.3 6.9 2.3 17.8
M4 41.9 22.6 22.6 12.8 42.1 34.3 33.3 2.5 6.9 23.0

ComVE Model NLE
score Yes% Weak

Yes%
Weak
No% No%

Does not
make

sense%

Insufficient
justifica-
tion%

Irrelevant
to the

schema%

Too
trivial% None%

CD–fine-tune 31.4 25.4 7.2 3.8 63.6 26.9 32.3 12.5 3.6 24.7
CD–union 27.7 23.6 4.2 3.8 68.4 39.8 24.6 10.2 2.7 22.7
WT5–fine-tune 28.9 20.0 11.8 3.1 65.1 30.7 37.9 8.9 3.6 18.9
WT5 23.9 15.3 10.2 5.6 69.0 36.9 31.7 11.9 5.2 14.3
M1 40.2 28.5 14.6 6.1 50.8 22.1 29.0 18.1 4.7 26.1
M2 40.6 27.4 17.7 4.2 50.6 23.9 33.5 10.4 4.4 27.9
M3 38.6 30.3 8.8 7.5 53.5 32.5 21.7 12.0 4.4 29.3
M4 48.5 36.7 14.3 6.8 42.2 18.8 28.2 13.1 2.9 37.1

Table 5: Human annotations of the correctly-classified NLEs generated by models with WinoGrande and ComVE
as child tasks (CT). The columns Yes, Weak Yes, Weak No, and No present the percentages of NLE validity scores
given by the human annotators. The last five columns present the shortcomings provided by the human annotators.
Best results are in bold. We do not bold the Weak Yes and Weak No, since it is not clear that higher/lower is better.
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WinoGrande schema: The car was a pleasure to drive but the red car was not as the blue car
was very expensive. Options: blue, red. Ground-truth: blue.

Model Output

CD–fine-tune
Prediction: red. NLE: The blue car is expensive and the blue car is more
expensive.

CD–union
Prediction: red. NLE: The blue car is more expensive than the red car, hence
it is more expensive to drive.

WT5–fine-tune
Prediction: red. NLE: The car is described in more detail than in the second
sentence. Blue

WT5 Prediction: blue. NLE: Red is a different color than blue.

M1
Prediction: red. NLE: The car was a pleasure to drive but the blue car was not
as the blue car was very expensive.

M2 Prediction: red. NLE: The red car is more expensive than the blue car.

M3
Prediction: blue. NLE: The blue car is a pleasure to drive and the red car is
very expensive.

M4 Prediction: blue. NLE: The car is a pleasure to drive but the red car is red.

WinoGrande schema: Logan ended the one-side relationship they were having with Robert,
which made feel relieved. Options: Logan, Robert. Ground-truth: Logan.

Model Output

CD–fine-tune
Prediction: Robert. NLE: Logan ended the one-side relationship they were
having with Robert, which made Logan feel relieved.

CD–union
Prediction: Logan. NLE: Robert has a one-sided relationship with Logan,
which makes him feel relieved.

WT5–fine-tune Prediction: Logan. NLE: The Logan
WT5 Prediction: Logan. NLE: Robert

M1
Prediction: Robert. NLE: Logan ended the one-side relationship they were
having with Robert, which made Logan feel relieved

M2
Prediction: Logan. NLE: The fact that Logan ended the one-sided relationship
with Robert makes him feel relieved.

M3
Prediction: Robert. NLE: Logan’s feelings are relieved because he ended the
relationship with Robert.

M4
Prediction: Logan. NLE: Logan ending a one-side relationship makes Logan
feel relieved.

WinoGrande schema: Fiction books were interesting and easy to read for Logan but not Brett
because enjoyed real tales. Options: Logan, Brett. Ground-truth: Brett.

Model Output

CD–fine-tune
Prediction: Brett. NLE: Fiction books were interesting and easy to read for
Logan, but Brett enjoyed real tales more than fiction books.

CD–union
Prediction: Brett. NLE: Fiction books were interesting and easy to read for
Logan, while real tales were more difficult to read for Brett.

WT5–fine-tune
Prediction: Logan. NLE: There is nothing to indicate that he is enjoying real
stories or that he has been referred to as ’Boy’

WT5

Prediction: Logan. NLE: The Logan may not be Logan. Brett may not be
Brett. Logan may not be Logan. Brett may not be Brett. Logan may not be
Logan. Brett may not be Brett. Logan may not be Logan. Brett may not be
Brett. Loga [. . . ]

M1
Prediction: Brett. NLE: Fiction books were interesting and easy to read for
Logan but not Brett because Brett enjoyed real tales

M2 Prediction: Brett. NLE: Fiction books are not real tales.

M3
Prediction: Logan. NLE: Fiction books are interesting and easy to read for
Logan, so Logan is more likely to enjoy real tales than Brett.

M4 Prediction: Logan. NLE: Fiction books are not real tales.
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WinoGrande schema: Erin ordered a martini when Tanya only ordered a tonic water with lemon,
because was pregnant. Options: Erin, Tanya. Ground-truth: Tanya.

Model Output

CD–fine-tune
Prediction: Tanya. NLE: Erin ordered a martini when Tanya ordered tonic
water with lemon because she was pregnant.

CD–union
Prediction: Erin. NLE: Erin ordered a martini when Tanya ordered a tonic
water with lemon, because Erin was pregnant.

WT5–fine-tune Prediction: Erin. NLE: The Tanya is pregnant. Tanya is pregnant. Tanya

WT5
Prediction: Tanya. NLE: Erin and Tanya are two different people. Erin and
Tanya are two different people. Erin and Tanya are two different people. Erin
and Tanya are two different people. Erin and Tanya are two different peo [. . . ]

M1
Prediction: Tanya. NLE: Erin ordered a martini when Tanya only ordered a
tonic water with lemon, because was pregnant.

M2
Prediction: Tanya. NLE: Erin ordering a martini implies Erin ordering a
martini, and Tanya ordering a tonic implies Erin is pregnant.

M3 Prediction: Tanya. NLE: Erin ordered a martini

M4
Prediction: Erin. NLE: Erin ordering a martini implies Erin is pregnant. Erin
ordering a tonic water implies Erin is pregnant. Erin ordering a martini implies
Erin ordering a martini. Erin ordering a tonic water implies Eri [. . . ]

WinoGrande schema: The game on television was very important for Ian but not Dennis because
was into music instead. Options: Ian, Dennis. Ground-truth: Dennis.

Model Output

CD–fine-tune
Prediction: Dennis. NLE: The game on television was very important for Ian
but not for Dennis because he was into music instead.

CD–union
Prediction: Dennis. NLE: The game on television was very important for Ian,
but not for Dennis, because he was into music instead.

WT5–fine-tune
Prediction: Dennis. NLE: He is playing music instead of playing music instead
of playing music instead of playing music instead of playing music instead of
playing music instead of playing music instead of playing music inste [. . . ]

WT5

Prediction: Dennis. NLE: The Ian can’t be Dennis. Dennis can’t be Ian.
Dennis can’t be Ian. Dennis can’t be Dennis. Dennis can’t be Ian. Dennis can’t
be Ian. Dennis can’t be Dennis. Dennis can’t be Ian. Dennis can’t be Dennis
[. . . ]

M1
Prediction: Dennis. NLE: The game on television was very important for Ian
but not Dennis because he was into music instead.

M2
Prediction: Dennis. NLE: The game on television is more important for Ian
than Dennis because Dennis is more likely to be into music instead.

M3 Prediction: Dennis. NLE: The game on television is very important for Ian

M4
Prediction: Dennis. NLE: The game on television is very important for Ian, so
he is not into music.

WinoGrande schema: It was easier for the diner to follow their budget than the food truck
because the had more money to spend. Options: diner, food truck. Ground-truth: diner.

Model Output

CD–fine-tune
Prediction: diner. NLE: The diner has more money to spend than the food
truck.

CD–union
Prediction: diner. NLE: The diner has more money to spend than the food
truck, so it is easier for them to follow their budget.

WT5–fine-tune Prediction: diner. NLE: food truck
WT5 Prediction: food truck. NLE: diner

M1
Prediction: diner. NLE: The diner had more money to spend than the food
truck.

M2
Prediction: diner. NLE: The diner has more money to spend than the food
truck.

M3
Prediction: diner. NLE: The diner has more money to spend than the food
truck.

M4
Prediction: diner. NLE: More money to spend is a rephrasing of more money
to spend.
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ComVE Statement 1: He inserts his thumb into the car ignition switch. Statement 2: He inserts
the keys into the car ignition switch. Nonsensical statement: Statement 1.

Model Output

CD–fine-tune
Prediction: Statement 1. NLE: A thumb is not inserted into the car ignition
switch.

CD–union
Prediction: Statement 1. NLE: It’s not a car ignition switch, it’s a car ignition
switch, it’s a car ignition switch, it’s a car ignition switch, it’s a car ignition
switch, it’s a car ignition switch, it’s a car ignition switch, [. . . ]

WT5–fine-tune
Prediction: Statement 1. NLE: SIDEWALK INSTALLS THE KEYS INTO
THE CAR INFUSION SHUT.

WT5 Prediction: Statement 1. NLE: the keys are not the same as the thumb

M1
Prediction: Statement 1. NLE: One cannot insert his thumb into the car
ignition switch.

M2
Prediction: Statement 1. NLE: One cannot insert his thumb into the car
ignition switch.

M3
Prediction: Statement 1. NLE: You can’t use your thumb to insert keys into
the car ignition switch.

M4
Prediction: Statement 1. NLE: A thumb is not used to insert keys into a car
ignition switch

ComVE Statement 1: She was met with an accident and was rushed to the hospital Statement 2:
She was met with an accident and was rushed to the library Nonsensical statement: Statement 2.

Model Output
CD–fine-tune Prediction: Statement 2. NLE: The library is closed to the public

CD–union
Prediction: Statement 2. NLE: She was met with an accident and was rushed
to the library

WT5–fine-tune
Prediction: Statement 2. NLE: She was met with an accident and was rushed
to the hospital 1 explanation:

WT5 Prediction: Statement 2. NLE: .

M1
Prediction: Statement 2. NLE: The library is not the only place where a person
can have an accident.

M2 Prediction: Statement 2. NLE: A library is not a hospital.
M3 Prediction: Statement 2. NLE: A library is not a hospital.
M4 Prediction: Statement 2. NLE: A library is not a hospital.

ComVE Statement 1: She came off sailing across the pacific ocean Statement 2: She came off
walking across the pacific ocean Nonsensical statement: Statement 2.

Model Output
CD–fine-tune Prediction: Statement 2. NLE: She came off sailing across the pacific ocean

CD–union
Prediction: Statement 2. NLE: She came off sailing across the pacific ocean
Sailing across the pacific ocean Sailing across the pacific ocean Sailing across
the pacific ocean Sailing across the pacific ocean Sailing across the pac [. . . ]

WT5–fine-tune
Prediction: Statement 2. NLE: She came off sailing across the pacific ocean
Sentence 1:

WT5 Prediction: Statement 2. NLE: .

M1
Prediction: Statement 2. NLE: A person can’t be sailing and walking at the
same time.

M2 Prediction: Statement 2. NLE: sailing is not the same as walking
M3 Prediction: Statement 2. NLE: Sailing and walking are two different things.
M4 Prediction: Statement 2. NLE: sailing is not the same as walking
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ComVE Statement 1: Leena daily eats two bananas which are good for health. Statement 2:
Leena eats almost 1000 bananas daily as his morning breakfast. Nonsensical statement:
Statement 2.

Model Output

CD–fine-tune
Prediction: Statement 2. NLE: Leena eats two bananas a day which are good
for health.

CD–union
Prediction: Statement 2. NLE: Bananas are good for health and you can’t eat
them in the morning.

WT5–fine-tune
Prediction: Statement 2. NLE: Leena daily eats two bananas which are good
for health 1 explanation:

WT5 Prediction: Statement 2. NLE: .

M1
Prediction: Statement 2. NLE: Leena daily eats two bananas which are good
for health. is same as Leena eats almost 1000 bananas daily as his morning
breakfast

M2 Prediction: Statement 2. NLE: The bananas are good for health.

M3
Prediction: Statement 2. NLE: The bananas are not good for health, they are
good for health.

M4 Prediction: Statement 2. NLE: The bananas are good for health.

ComVE Statement 1: The fire will burn you if you touch it. Statement 2: The fire will cool you
if you touch it. Nonsensical statement: Statement 2.

Model Output
CD–fine-tune Prediction: Statement 2. NLE: The fire will burn you if you touch it.

CD–union
Prediction: Statement 2. NLE: The fire will burn you if you touch it and will
cool you if you touch it

WT5–fine-tune Prediction: Statement 2. NLE: The fire will burn you if you touch it.
WT5 Prediction: Statement 2. NLE: the fire will burn you if you touch it.

M1
Prediction: Statement 2. NLE: The fire will burn you is not the same as the
fire that will cool you.

M2 Prediction: Statement 2. NLE: The fire will burn you if you touch it
M3 Prediction: Statement 1. NLE: Fire can’t burn you
M4 Prediction: Statement 2. NLE: The fire will burn you.

ComVE Statement 1: Salsa is for hair Statement 2: Brushes are for hair Nonsensical statement:
Statement 1.

Model Output
CD–fine-tune Prediction: Statement 1. NLE: Salsa is for hair
CD–union Prediction: Statement 1. NLE: Salsa is for hair
WT5–fine-tune Prediction: Statement 1. NLE: SENTENCE 1:
WT5 Prediction: Statement 1. NLE: :
M1 Prediction: Statement 1. NLE: Brushes are for hair is not the same as a Salsa
M2 Prediction: Statement 1. NLE: Salsa is for hair

M3
Prediction: Statement 1. NLE: Brushes are for hair is a rephrasing of brushes
are for hair.

M4 Prediction: Statement 1. NLE: Salsa is for hair
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