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Abstract

In simultaneous speech translation (SimulST),
finding the best trade-off between high output
quality and low latency is a challenging task.
To meet the latency constraints posed by dif-
ferent application scenarios, multiple dedicated
SimulST models are usually trained and main-
tained, generating high computational costs.
In this paper, also motivated by the increased
sensitivity towards sustainable Al, we inves-
tigate whether a single model trained offline
can serve both offline and simultaneous appli-
cations under different latency regimes without
additional training or adaptation. Experiments
on en—{de, es} show that, aside from facili-
tating the adoption of well-established offline
architectures and training strategies without af-
fecting latency, the offline solution achieves
similar or better quality compared to the stan-
dard SimulST training protocol, also being
competitive with the state-of-the-art system.

1 Introduction

Many application contexts, such as conferences and
lectures, require automatic speech translation (ST)
to be performed in real-time. To meet this require-
ment, Simultaneous ST (SimulST) systems strive
not only for high output quality but also for low
latency (i.e. the elapsed time between the speaker’s
utterance of a word and the generation of its trans-
lation in the target language). Balancing quality
and latency is extremely complex as the two objec-
tives are conflicting: in general, the more a system
waits — which implies higher latency — the better it
translates thanks to a larger context to rely on.
SimulST models manage the quality-latency
trade-off by means of a decision policy: the rule
that determines whether a system has to wait for
more input or to emit one or more target words.
The most popular decision policy is the wait-k, a
straightforward heuristic that prescribes to wait for
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a predefined number of words before starting to
generate the translation. Initially proposed by Ma
et al. (2020b) for simultaneous machine translation
(SimulMT), the wait-k is now widely adopted in
SimulST (Ma et al., 2020b; Ren et al., 2020; Han
et al., 2020; Chen et al., 2021; Zeng et al., 2021;
Ma et al., 2021) thanks to its simplicity. Apart from
wait-k, other attempts have been made to develop
decision policies learned by the SimulST system
itself (Ma et al., 2019; Zaidi et al., 2021; Liu et al.,
2021a,b), all resulting in computationally expen-
sive models with limited diffusion.

Regardless of the decision policy, SimulST sys-
tems are usually trained simulating the conditions
faced at inference time, that is with only a partial
input available (Ren et al., 2020; Ma et al., 2020b;
Han et al., 2020; Zeng et al., 2021; Ma et al., 2021;
Zaidi et al., 2021; Liu et al., 2021a). Since the size
of the partial input — and consequently of the con-
text that the SimulST system can exploit to translate
— varies according to the latency requirements im-
posed by real-world applications,! several models
must be trained and maintained to accommodate
different quality-latency trade-offs. This results in
high computational costs that contrast with rising
awareness on the need to reduce energy consump-
tion (Strubell et al., 2019) towards more sustainable
Al (Vinuesa et al., 2020; Schwartz et al., 2020).

So far, the benefits of training systems on partial
inputs have been taken for granted and, although
works employing models trained in offline mode
are documented in literature (Nguyen et al., 2021;
Ma et al., 2021), the indispensability of simulta-
neous training in SimulST has never been demon-
strated. With an eye at the burden and environmen-
tal impact of training multiple dedicated models for
different tasks — offline, simultaneous — and latency

'For instance, the IWSLT SimulST shared task defines
three latency regimes (Anastasopoulos et al., 2021) — 1s, 2s,
and 4s — and limits of acceptability have been set between 2s
and 6s for the ear-voice span depending on different condi-
tions and language pairs (Yagi, 2000; Chmiel et al., 2017).
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regimes, in this work we address the following
question: Does simultaneous speech translation ac-
tually need models trained in simultaneous mode?
To this end, we experiment with a single, easy-to-
maintain offline model, which can effectively serve
both the simultaneous and offline tasks. Specif-
ically, we explore the application of the widely
adopted wait-k policy to the offline-trained ST sys-
tem only at inference time, bypassing any addi-
tional training neither to adapt the model to the
simultaneous scenario nor to accommodate differ-
ent latency requirements.” Through experiments
on two language directions (en—{de, es}), having
respectively different and similar word ordering
with respect to the source, we show that:

* In terms of sustainability, offline training
yields considerable reductions — by a factor of
9 in our evaluation setting — in carbon emis-
sion and electricity consumption (Section 4).

* The offline-trained model outperforms or is on
par with those trained in simultaneous within
the wait-k policy framework (Section 5);

* Recent advancements in offline architectures
and training strategies further improve output
quality without affecting latency (Section 6);

* The effectiveness of offline training also
emerges in comparison with the state of the art
in SimulST (Liu et al., 2021b): except for the
lowest latency regime, our system is superior
in the 2s-4s latency interval (ear-voice span)
with gains up to 4.0 BLEU (Section 7).

2 Background
2.1 wait-k

The wait-k policy requires to wait for a predefined
number of words before starting to translate. For
instance, a system using a wait-3 policy generates
the 1% target word when it receives the 4™ source
word, the 2™ target word when it receives the 5th
source word, and so on. The number of words to
wait is controlled by the k parameter. SimulST sys-
tems based on the wait-k policy are usually trained
considering the same & used for testing (Ren et al.,
2020; Ma et al., 2020b; Zeng et al., 2021) while, in
theory, its value can be different between the train-
ing and testing phases. A parameter ky,q;, can in-
deed be used to mask words at training time, while

’Code available at https://github.com/hlt-mt/
FBK-fairseq.

a parameter ky.5; can be used to directly control the
latency of the system at inference time according
to the requirements posed by the target application
scenario.

Since many values of k4, can be used to train
the SimulST systems, even for identical values of
kiest, the standard approach involves performing
several trainings to obtain the best translation qual-
ity while satisfying different latency requirements.
In SimulMT, Elbayad et al. (2020) tried to avoid
this large number of experiments by exposing the
model to different values of k;.q;, sampled at each
iteration. Surprisingly, they achieve the best per-
formance on several k;.s; using a single value of k&
for training (k¢rqin, = 7). However, it is not clear
if such a rule applies to SimulST, leaving the prob-
lem of performing a large number of trainings still
unsolved.

2.2  Word detection for wait-k in SimulST

Since SimulMT operates on a stream of words, ap-
plying the wait-k is straightforward because the
number of received words is explicit in the input.
Conversely, its application to SimulST is compli-
cated by the fact that the input is an audio stream
and the number of received words has to be inferred
by means of a so-called word detection strategy.

Two main categories of word detection strategies
are currently employed by the community: fixed
(Ma et al., 2020b), and adaptive (Ma et al., 2020b;
Ren et al., 2020; Zeng et al., 2021; Chen et al.,
2021). The fixed strategy is the easiest approach,
as it assumes that a fixed amount of time is required
to pronounce every word disregarding the informa-
tion actually contained in the audio. In contrast,
adaptive word detection determines the number of
uttered words by looking at the content of the audio.
This can be done either by means of an Automatic
Speech Recognition (ASR) decoder (Chen et al.,
2021),? or by means of a Connectionist Temporal
Classification (Graves et al., 2006) — CTC — mod-
ule (Ren et al., 2020; Zeng et al., 2021), every time
a speech chunk is received by the system.

In its simplicity, the fixed strategy does not con-
sider various aspects of the input speech, such as
different speech rates, duration, pauses, and si-
lences. For instance, if there are no words in the
speech (e.g. in the case of pauses or silences), the

3This solution involves the use of two separate synchro-
nized decoders (one for simultaneous ASR and one for ST)
and will not be analyzed in this work due to the higher com-
putational costs of training a double decoder architecture.
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fixed strategy forces the system to output some-
thing even if it cannot rely on sufficient context. In
the opposite case, in which more than one word is
pronounced in a speech chunk, the fixed strategy
forces the emission of only one word, consequently
accumulating a delay. By trying to guess the ac-
tual number of words contained in a speech chunk,
the adaptive strategy is in principle more faithful
to these audio phenomena. However, conflicting
results are reported in literature, some in support
of the adaptive strategy (Zeng et al., 2021) while
others showing no advantage from its application
(Ma et al., 2020b).

3 Do we need Simultaneous training?

While at training time the SimulST system has the
entire audio available, at inference time it receives a
partial, incremental input. This mismatch between
offline training and simultaneous testing makes the
system vulnerable to exposure bias (Ranzato et al.,
2016). To mitigate this potential problem, SimulST
models are trained under simulated simultaneous
conditions. On an attentive model, this simultane-
ous training is realized by masking future audio
frames when computing the encoder-decoder at-
tention. For a wait-k SimulST system, the choice
of the audio frames to be masked depends on two
factors: the value of k;,.4i, and the word detection
strategy. The kiyq;n, value determines the number
of source words to mask (e.g., in the case of wait-
3, the first target word is generated by looking at
the first three source words and so on). The word
detection strategy identifies the source words from
the audio by detecting the number of frames each
one corresponds to. Thus, the encoder-decoder at-
tention is computed by limiting each target word
to only attend to the audio frames that correspond
to the previous ki, source words identified by
the word detection strategy. As a result, testing
different word detection strategies requires training
several systems, which in turn are trained with dif-
ferent values of k.4, to obtain different latencies.

In this paper, we question the need of all these
experiments by investigating whether the simulta-
neous training of the ST systems is indispensable
to obtain a good quality-latency trade-off. Within
the framework of the wait-k policy, we explore the
ability to translate in real-time of an offline-trained
system that is neither trained nor adapted to the
simultaneous scenario. To obtain a simultaneous
prediction from the offline system, we add a pre-

decision module after the encoder at inference time.
Its role is to incorporate the logic of the word de-
tection strategy to decide whether to wait or to emit
words when a new speech chunk is received, ac-
cording to the selected k5. In particular, it takes
as input the encoder states representing the received
audio chunk and applies the word detection strat-
egy (either fixed or adaptive) to obtain the number
of source words present in the input. If this number
is equal or exceeds kiest, the module activates the
decoding part of the model and a word is emitted,
otherwise it keeps reading the source speech.

Since the offline system is not trained for the si-
multaneous task, the choice of k. and word detec-
tion strategy are not constrained to those used dur-
ing training as in the native SimulST case. Indeed,
an offline model is trained by always attending to
the entire source input. Different from the simulta-
neous training mode, the encoder-decoder attention
is computed without masking, that is by consider-
ing past, current, and future information. Although
this avoids multiple training for each k;yq;n, and
word detection strategy, it also exposes the model
to operate in conditions different from its training
setup, as it is not used to receive partial inputs.
To check if the exposure bias given by this mis-
match in training and testing conditions constitutes
a real limitation, we conduct a systematic analysis
of the quality-latency performance of the offline-
trained system in the simultaneous scenario. To this
aim, we compare the offline-trained system with
the same model trained in simultaneous mode by
varying the value of k¢..;,, and the word detection
strategy.

4 Experimental Settings

We perform all our experiments on the en— {de,
es} sections of the MuST-C dataset (Cattoni et al.,
2021). All the results presented are given on the
corpus test set (tst-COMMON). We use the Trans-
former architecture (Vaswani et al., 2017) with the
integration of the CTC in the encoder (Liu et al.,
2020; Gaido et al., 2021), which is used to realize
the adaptive word detection strategy. The hyper-
parameters, training and inference details are pre-
sented in Appendix A.1.

For the evaluation, we adopt BLEU* (Post, 2018)
for quality, and Length Adaptive Average Lagging
(Papi et al., 2022) — or LAAL - for latency, which
is the modified version of the popular Average Lag-

*BLEU+case.mixed+smooth.exp+tok.13a+version.1.5.1
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Figure 1: LAAL-BLEU curves of wait-k with fixed
word detection strategy.

ging for speech (Ma et al., 2020b) that correctly
evaluates both shorter and longer predictions with
respect to the reference. We report the simulta-
neous results in LAAL-BLEU graphs where each
curve corresponds to a system trained using a dif-
ferent value of k4, and each point to a different
ktest- The set of k values used for both training
the simultaneous model and testing all the models
is k = {3,5,7,9,11}. We also report the results
of the offline generation using the greedy search
and the beam search with the beam_size = 5 com-
monly used in offline ST.

Carbon Footprint. Each training contributed an
estimate of 70.3 kg of COg,, to the atmosphere and
used 184.7 kWh of electricity. This assumes 116
hours of runtime, a carbon intensity of 380.539¢
COq¢q per kWh, 4 NVIDIA Tesla K80 GPUs (uti-
lization 93%), and an Intel Xeon CPU E5-2683 v4
(utilization 100%).> This means that training a sin-
gle offline model instead of a model for each value
of kirqin (in our case, 5 models) and for each word

5The social cost of carbon uses models from (Ricke et al.,
2018) and carbon emissions information was estimated using
the experiment-impact-tracker (Henderson et al., 2020).
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Figure 2: LAAL-BLEU curves of wait-k with adaptive
word detection strategy.

detection strategy (in our case, 2 strategies) allows
us to save 5 - 2 — 1 = 9 experiments, amounting to
632.7 kg of CO2¢4 and 1662.3 kWh of electricity
for each language.

5 Results

Fixed Word Detection. The results of the wait-
k models with fixed word detection are shown in
Figure 1. The LAAL-BLEU curves indicate that
the latency of all the systems lies between 1700ms
and 3000ms, staying in a medium-high latency
regime® for both language pairs. Translation qual-
ity is lower for en-de, for which it ranges from
11 to 19 BLEU, while for en-es it ranges from
14 to 25 BLEU. The difference in performance
between the two language pairs is coherent with
the results of the offline generations (both greedy
and beam-5) and justified by the different level of
difficulty when translating into the two target lan-
guages (having respectively similar and different

®Henceforth referring to (Anastasopoulos et al., 2021),
we consider three latency regimes depending on the delay d
between the time in which the speech is heard and the output
translation is received. These are: low when d<1000ms,
medium when 1000<d<2000ms, and high when d>2000ms.

144



word ordering with respect to English). The curves
of the simultaneous-trained systems also show a
tendency: if k;.qip increases, both the quality and
latency improve (e.g. on en-de, the k=11 curve
lies higher — indicating better quality — and more
leftward — lower latency — than the others). Inter-
estingly, the offline-trained models (in solid black)
outperform the systems trained in simultaneous
at every latency regime, with gains from 1 to 7
BLEU for en-de and from 1 to 6 BLEU for en-es.
This indicates that, to achieve the best performance
and independently from the k.4 used, the offline-
trained model represents the best choice, at least
for the fixed strategy.

Adaptive Word Detection. The results of the
wait-k models with adaptive word detection are
shown in Figure 2. The systems latency lies be-
tween 1700ms and 3500ms and, as with the fixed
strategy, the quality is higher for en-es (from 15 to
26 BLEU) than for en-de (from 14 to 20 BLEU).
Looking at Figures 1 and 2, we observe that the
overall translation quality yielded by the adaptive
strategy is higher compared to that of the fixed one.
Moreover, the fixed strategy curves are far from
being comparable with their offline greedy values
(dashed lines), while the adaptive strategy curves
almost reach them at higher latency. However, the
models with fixed word detection perform better
at lower latency, with a gain of 1 BLEU for en-de
and 2 BLEU for en-es. In light of these results,
there is not a clear winner between the two word
detection strategies. From Figure 2, we also no-
tice that the adaptive curves are very close to each
other, in contrast with the fixed case. This phe-
nomenon indicates that, in the case of the adaptive
strategy, changing ki, does not significantly in-
fluence the model performance. This suggests that
the offline-trained model (comparable to a model
trained with kyq;, = 00) should be on par with
the simultaneous-trained ones, a consideration cor-
roborated by the trend of the offline-trained system
curves (in solid black) that are always above or on
par with those of the simultaneous-trained systems.

All in all, we can conclude that, when using the
wait-k policy, the offline-trained model achieves
similar or even better results compared to the
same models trained in simultaneous mode.
Based on this finding, in the next section we ex-
plore the actual potential of offline training for
SimulST by adopting the most promising offline
architectures and training techniques to improve

the quality-latency balancing of our systems.

6 Leveraging Offline Solutions

Offline training brings considerable advantages
in terms of reducing the computational costs of
SimulST technology. First, only one model can be
trained and maintained to serve both offline and
simultaneous tasks without performance degrada-
tion. Second, contrary to the simultaneous-training
mode, the choice of the word detection strategy
at run-time does not depend on the strategy used
during training. Rather, it can be made according
to the specific use case, making the offline-trained
model more flexible. This also means that other de-
cision policies can be applied to the offline-trained
system without the need to re-train it from scratch.

Using a single offline-trained model not only
speeds up its development but also opens up the
possibility to directly adopt powerful offline archi-
tectures and techniques without performing any
additional training nor adaptation to the simulta-
neous scenario. In the following, we test this hy-
pothesis to find out whether recent architectural
improvements (Section 6.1) and data augmentation
techniques (Section 6.2) designed for offline ST
also have a positive impact in SimulST.

In recent years, many architectures have been
proposed to address the offline ST task (Wang et al.,
2020; Inaguma et al., 2020; Le et al., 2020; Papi
et al., 2021). Among them, the Conformer (Gulati
et al., 2020) has recently shown impressive results
both in speech recognition, for which it was ini-
tially proposed, and in speech translation (Inaguma
et al., 2021). The main aspects characterizing this
encoder-decoder architecture are related to the en-
coder part. Inspired by the Macaron-Net (Lu et al.,
2019), the Conformer encoder is built with a sand-
wich structure and integrates the relative sinusoidal
positional encoding scheme (Dai et al., 2019).

Given the promising results it achieved in the of-
fline scenario, we choose to test if this architecture
also brings quality and latency gains in SimulST.
Since we found in Section 3 that fixed and adaptive
word detection strategies have their own use cases
(their best results are observed at different latency
regimes, respectively low for fixed and medium-
high for adaptive), we compare Conformer- and
Transformer-based architectures using both strate-
gies. For the offline training of Conformer, we
follow the same procedure used for Transformer.
Details about the model hyper-parameters are pre-
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Figure 3: LAAL-BLEU curves of the Transformer- and
Conformer-based architectures.

sented in Appendix A.2.

6.1 Scaling Architecture

The offline results of both architectures are pre-
sented in Table 1, while their simultaneous curves
are shown in Figure 3.

Model En-De En-Es
greedy beam-5 | greedy beam-5
Transformer 20.6 22.2 26.1 27.2
Conformer 23.3 24.8 28.5 29.6

Table 1: BLEU results of the offline generation.

As previously noticed by Inaguma et al. (2021),
Conformer outperforms Transformer in offline gen-
eration. The improvements, of at least 2.4 BLEU
points, are valid both for greedy and beam search.
From Figure 3, we can see that Conformer outper-
forms Transformer also in the simultaneous setting.
This holds both for fixed and adaptive word de-
tection, with larger BLEU gains at higher latency
regimes. As far as word detection strategies are
concerned, we also notice a similar trend between
Conformer and Transformer: the fixed one per-
forms better or on par at lower latency while being
outperformed by the adaptive one when the latency
increases.
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Figure 4: LAAL-BLEU curves of offline- and

simultaneous-trained Conformer models with sequence-
level KD.

In light of the better results obtained by Con-
former, we conclude that improving the architec-
ture of the offline system also has a positive im-
pact on its simultaneous performance, enhancing
translation quality without affecting latency.

6.2 Scaling Data

Data augmentation is a common practice used to
improve systems performance. One approach to
data augmentation is to apply knowledge distilla-
tion (KD), which was introduced to transfer knowl-
edge from big to small models (Hinton et al., 2015).
Among the possible methods, sequence-level KD
(Kim and Rush, 2016) is one of the most popular
ones in ST thanks to its application simplicity and
the consistent improvements observed (Potapczyk
and Przybysz, 2020; Xu et al., 2021; Gaido et al.,
2022a). Sequence-level KD consists of replacing
the target references of a given parallel training
corpus with the predicted sequences generated by a
teacher model (usually, an MT model), from which
we want to distill the knowledge to a student model.

To investigate the effects of such a knowledge
transfer on quality and latency, we apply sequence-
level KD to our offline-trained SimulST system.
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To this end, we translate the transcripts present in
the en—{de, es} sections of MuST-C with an MT
model (more details are provided in Appendix A.3)
and we substitute the gold translations with the M'T-
generated ones to build new data. As in (Liu et al.,
2021Db), to train the models we use both gold and
synthetic data by concatenating them. Since the
performance of the Conformer model scales with
data (Gaido et al., 2022b) and is better compared
to that of Transformer (Section 6.1), we adopt the
Conformer for the following study. We extend our
analysis to the simultaneous-trained systems to ver-
ify if the offline-trained one continues to perform
at least on par with them and we report the best
simultaneous-trained system curve for each word
detection strategy.

The effects of the additional KD data are shown
in Figure 4. Compared to Figure 3, we notice a
performance improvement that comes without sac-
rificing latency. On en-de, the quality of the offline-
trained Conformer with KD ranges from 18 to 25
BLEU, against the previous 15 to 22 BLEU. On en-
es, it ranges from 19 to 30 BLEU, against the previ-
ous 18 to 29 BLEU. Moreover, the offline-trained
system (solid curves) is still better or at least com-
parable with the simultaneous-trained ones (dotted
curves) for both language pairs. From Figure 4,
we also notice that adaptive word detection (blue
curves) shows overall better results compared to
the fixed one (pink curves), even at lower latency.
This suggests that comparing the two strategies by
using models with higher translation quality shows
the superiority of adaptive word detection at any
latency regime.

In light of these results, we conclude that data
augmentation improves the offline-trained sys-
tem quality without affecting latency. To better
assess these performance gains in the simultaneous
framework, in the next section we present a de-
tailed comparison of our offline-trained Conformer
with the state-of-the-art SimulST architecture.

7 Comparison with the state of the art

So far, we discovered that scaling to better perform-
ing architectures and more data further improves
the simultaneous results of offline-trained models.
But how good is their performance compared to the
state of the art in SimulST? To answer this question,
we compare our best system, the offline-trained
Conformer with adaptive word detection, with the
Cross Attention Augmented Transducer (Liu et al.,

2021b) — CAAT —used by the winning submissions
at IWSLT 2021 (Anastasopoulos et al., 2021) and
2022 (Anastasopoulos et al., 2022). Inspired by the
Recurrent Neural Network Transducer by Graves
(2012), CAAT is made of three Transformer stacks:
the encoder, the predictor, and the joiner. These
three elements are jointly trained in simultaneous
to optimize the quality of the translations while
keeping latency under control.

For training and testing the CAAT architecture,
we use the code published by the authors and
adopt the same hyper-parameters of their paper.
As the performance of the CAAT model is sensi-
tive to sequence-level KD (Liu et al. 2021b show
a2 BLEU degradation without it), we compare it
with the offline-trained Conformer model using the
same data settings — see Section 6.2. We report the
CAAT results obtained by adopting both the greedy
search used in our SimulST settings and the beam
search used by Liu et al. (2021b). As suggested
by Ma et al. (2020b), we also compute the Compu-
tational Aware (CA) version of the LAAL metric
(LAALca), which is defined as the time elapsed
from the beginning of the generation process to the
prediction of the partial target.” Since LAALcA
represents the real wall-clock elapsed time expe-
rienced by the user, it gives a more reliable eval-
uation of the SimulST performance in a real-time
scenario. For the sake of completeness, we also
report the results of Average Lagging (Ma et al.,
2020a) in Appendix C.

We present the comparison in Figure 5. From the
LAAL-BLEU curves, we see that, at low latency
regime, the CAAT model (in solid red) outperforms
our offline-trained Conformer model (in solid blue)
by 2 BLEU on en-de and 4 BLEU on en-es. How-
ever, moving to medium-high latency regime, the
Conformer significantly outperforms CAAT, reach-
ing gains of 4 BLEU on en-de and 2 BLEU on
en-es. We can also notice a degradation of the
CAAT en-de translation quality that is caused by
an under-generation problem at higher latency, for
which we give details in Appendix B.

When it comes to LAALca-BLEU, the scenario
changes, bringing CAAT curves much closer to
those of Conformer. The state of the art still out-

"Given that LAALcx depends on the computation time, we
perform all the generations on one NVIDIA Tesla K-80 GPU
and provide the results by averaging over 3 runs. However, we
notice a very small variance among the runs (in the order of
10ms), suggesting that averaging is not necessary to provide
sound results.
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Figure 5: LAAL/LAALcA-BLEU curves of our offline-trained Conformer and state of the art (CAAT) models.

performs the Conformer at lower latency but in this
case, waiting about 100/200ms more, the Con-
former performance starts to improve consistently.

Comparing the LAAL- and LAALcs-BLEU
curves, we see that our offline-trained system is
more coherent between computational and non-
computational aware metrics: while Conformer has
a computational overhead of 400/500ms, CAAT
requires 1400/1500ms more than its ideal LAAL.
The CAAT greedy curves (dotted red) show only a
little improvement in latency compared to the beam
search (solid red), suggesting that its higher com-
putational cost does not depend on the generation
strategy but on other factors like its complex and
more computationally expensive architecture.

All in all, we can say that, compared to the state
of the art in SimulST, the lower performance of
our offline-trained Conformer at low latency
regime is balanced by consistently higher BLEU
scores at medium and high latency.

8 Conclusions

To reduce the potentially large amount of experi-
ments usually performed to build SimulST mod-
els, we explored the use of a single offline-trained
model to serve both the offline and simultaneous

tasks. Through comparison with native SimulST
systems, we showed that our offline-trained model
can be successfully used in real-time, achieving
comparable or even better results. To further en-
hance its performance, we investigated the adop-
tion of consolidated techniques and emerging archi-
tectures from offline research, showing consistent
improvements also in the simultaneous scenario.
The benefits of offline training indicate the poten-
tial of applying this method without the need for
any additional training or adaptation. Besides facil-
itating system deployment, another important ad-
vantage of building and reusing one single model
to rule both tasks is the drastic reduction of the
carbon footprint of ST training (by a factor of 9 in
our evaluation setting). This represents an impor-
tant step in response to rising concerns about the
Al energy consumption and environmental impact
toward more sustainable development.

As regards SimulST evaluation, the dif-
ferences between results computed with non-
computationally and computationally aware la-
tency metrics suggest that including computational
time in the measurements heavily influences the
outcomes of system comparisons. In our partic-
ular case, the differences in latency between the
offline-trained models and the state of the art ob-
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served in terms of the non-computationally aware
LAAL metric become smaller when considering
its computational aware version. Although lower
latency is theoretically reached by the state of the
art CAAT model, this comes at the cost of a more
complex and computationally expensive architec-
ture that shows its limitations at inference time.
We therefore invite the SimulST community to use
computationally aware metrics for more sound eval-
uations, referring to ideal metrics only in the ab-
sence of similar testing assets, as machines with
comparable computational power.

9 Limitations

Although it relies on a simpler architecture and
generation strategy compared to the state-of-the-art
in SimulST, our offline-trained model exhibits a
high translation quality in real-time, which allows
it to achieve better results at medium and high la-
tency regimes. However, a performance gap of
2-3 BLEU points is still observed at low latency
regime. This can be attributed to the use of a sim-
ple policy such as wait-k. Being the most popular
and widely adopted one, we chose to focus on this
policy to conduct our analysis. Notwithstanding,
investigating better performing solutions to boost
performance at low latency and close the gap is still
necessary, and definitely among our future work
priorities.

Also, the experiments presented in the paper
are limited to two target languages, which were
selected as representatives of those having simi-
lar and different word ordering with respect to the
English source speech. Although this choice al-
lowed us to reliably test our hypotheses in diverse
conditions, verifying our findings on a wider set
of languages is another natural evolution of this
research.
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A  Models Architecture

A.1 Transformer

The models used in Section 5 are based on a
12 encoder and 6 decoder layers of Transformer
(Vaswani et al., 2017) architecture. The embed-
ding dimension is set to 256, the number of atten-
tion heads to 4 and the feed-forward embedding
dimension to 2048, both in the encoder and in the
decoder. The number of parameters is ~ 32.4M
We use Fairseq (Ott et al., 2019) library for all the
trainings. The wait-k with fixed word detection
strategy was already present in the Fairseq library,
while we implemented the adaptive one.

We use the hyper-parameters of (Ma et al.,
2020b) for all the trainings of the Transformer-
based model. We use a unigram SentencePiece
model (Kudo and Richardson, 2018) for the target
language vocabulary of size 8,000 (Di Gangi et al.,
2020). For the source language vocabulary of size
5,000 we use a BPE SubwordNMT model (Sen-
nrich et al., 2016) with Moses tokenizer (Koehn
et al., 2007). The reason for which we used Sub-
wordNMT instead of SentencePiece lies in the strat-
egy used for determining the end of a word, which
is crucial for simultaneous inference. While Sen-
tencePiece uses the character “_" at the beginning
of a new word, SubwordNMT appends “@ @ to
any token that does not represent the end of a word.

Thus, SentencePiece units require the generation
of the first token of the next word to determine if
the current word is over while SubwordNMT units
do not. For instance, the sentence “this is a phrase”,
1s encoded into SentencePiece units as “_th is _is
_a_phrase”. As such, to determine if “_this” is a
complete word, we have to wait for the next word
with the “_” character at the beginning, that is “_is”.
Instead, with SubwordNMT we have “th@ @ is is
a ph@ @rase ”, and we do not need to receive “is”
to determine that “th@ @ is” is finished.

We select the best checkpoint based on the loss
and early stop the training if the loss did not im-
prove for 10 epochs. We trained the system for 100
epochs at maximum. At the end of the training, we
make the average of the 7 checkpoints around the
best one.

For the inference part, we use the SimulEval tool
(Ma et al., 2020a) as in (Ma et al., 2020b) with
the additional force_finish tag that forces
the model to generate text until the source speech
has been completely ingested, i.e. to ignore the
end of sentence token if predicted before the end
of an utterance. In case of wait-k with adap-
tive word detection, we also force the model
to predict the successive most probable token if
the end of sentence is predicted (that we called
avoid_eos_while_reading), while for the
fixed we found that it degrades the performance.
The detection is taken every average word dura-
tion, that is every 280ms, as estimated by Ma et al.
(2020b) in the MuST-C dataset.

A.2 Conformer

For the Conformer model, we build an architecture
similar to Inaguma et al. (2021), we use 12 Con-
former encoder layers and 6 Transformer decoder
layers. The number of parameters is ~ 35.7M.
We use the same embedding dimension of our
Transformer-based architecture, 4 attention en-
coder heads and 8 attention decoder heads. For
the Conformer Feed-Forward layer, Attention layer,
and Convolution layer, we use 0.1 as dropout. We
use a kernel size of 31 for the point- and depth-wise
convolutions of the Convolution layer. The vocab-
ularies are the same of the Transformer-based, as
well as the selection of the checkpoint. At infer-
ence time, the force_finish tag is used with
the avoid_eos_while_reading for both the
word detection strategies.
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A.3 Machine Translation

The MT model used to generate the target for the
KD was trained on OPUS datasets (Tiedemann,
2016). It is a plain Transformer with 16 atten-
tion heads and 1024 features in encoder/decoder
embeddings, resulting in 212M parameters. The
English—German MT scores 32.1 BLEU and the
English— Spanish MT scores 35.8 BLEU on MuST-
C tst-COMMON.

B Under-generation Statistics

In Section7, while discussing the en-de curves of
Figure 5, we highlighted a performance degrada-
tion of CAAT at higher latency regimes. In fact,
during our experiments we observed that CAAT
tends to generate shorter sentences as the value of
k increases. This behaviour becomes apparent in
Table 2, where we report the word length difference
between the generated hypotheses and the corre-
sponding references. For en-de, CAAT exhibits
a strong tendency to under-generate (indicated by
negative values) at high latency and this is presum-
ably the reason why we observed the BLEU drop.

English—German
Model k=3 | k=5 | k=7 | k=9 | k=11
Conformer | -1 [-0.94|-0.93|-0.77| -0.63
CAAT |047| -0.3 |-0.79 |-1.26 | -1.55
English— Spanish
Model k=3| k=5 | k=7 | k=9 | k=11
Conformer | 0.48 | 0.49 | 0.53 | 0.74 | 0.80
CAAT |1.57|096 | 0.61 | 0.35 | 0.18

Table 2: Average word length difference w.r.t. the refer-
ence. Positive values indicate exceeding words, negative
values indicate missing words.
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Figure 6: AL/ALcA-BLEU curves of our offline-trained
Conformer and CAAT models.
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