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Abstract

Paraphrase generation using deep learning has
been a research hotspot of natural language
processing in the past few years. While pre-
vious studies tackle the problem from differ-
ent aspects, the essence of paraphrase gen-
eration is to retain the key semantics of the
source sentence and rewrite the rest of the con-
tent. Inspired by this observation, we pro-
pose a novel two-stage model, PGKPR, for
paraphrase generation with keyword and part-
of-speech reconstruction. The rationale is to
capture simultaneously the possible keywords
of a source sentence and the relations between
them to facilitate the rewriting. In the first stage,
we identify the possible keywords using a pre-
diction attribution technique, where the words
obtaining higher attribution scores are more
likely to be the keywords. In the second stage,
we train a transformer-based model via multi-
task learning for paraphrase generation. The
novel learning task is the reconstruction of the
keywords and part-of-speech tags, respectively,
from a perturbed sequence of the source sen-
tence. The learned encodings are then decoded
to generate the paraphrase. We conduct the
experiments on two commonly-used datasets,
and demonstrate the superior performance of
PGKPR over comparative models on multiple
evaluation metrics.

1 Introduction

The task of paraphrase generation is to rephrase
a given sentence by preserving its key seman-
tics. While the problem was solved using rule-
based approaches (McKeown, 1979; Meteer and
Shaked, 1988) and traditional machine learning
techniques (Quirk et al., 2004; Wubben et al.,
2010), recent attentions have been shifted to devis-
ing effective deep neural networks (Prakash et al.,
2016; Gupta et al., 2018; Li et al., 2018), which gen-
erally adopt the encoder-decoder framework. More
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recently, controllable paraphrase generation has
been extensively investigated and offers the mecha-
nisms to guide the generation process by providing
a reference such as a syntactic template (Iyyer et al.,
2018; Goyal and Durrett, 2020; Huang and Chang,
2021), a sentential exemplar (Chen et al., 2019; Su
et al., 2021) and so on.

SRC what are good workouts to lose belly fat ?

POS [WDT] [VBP] [TO] [.]

TGT what is the best way to lose belly fat ?

POS [WP] [VBZ] [DT] [TO] [.]

GNT what are some good exercises to get rid of belly fat ?

POS [WDT] [VBP] [DT] [TO] [.]

Table 1: A running example.

Although the problem has been studied from dif-
ferent aspects, the fundamental goal of paraphrase
generation is to preserve the key semantics of a
source sentence and rewrite the rest of the con-
tent. Taking the paraphrase pair in Table 1 as a
running example, the key semantics are entailed by
the words “good workouts”, “lose belly fat” and
“best way” in the source (SRC) and target (TGT)
sentence, respectively. The rest of the content can
be considered as auxiliary words that express the
relations between the keywords. Inspired by the
observation, we propose to enhance the representa-
tiveness of the encodings of a source sentence by
learning simultaneously the possible keywords and
the relations between them, before the encodings
are fed into the decoder for text generation. To this
end, we use a prediction attribution technique (Li
et al., 2016a) to identify the possible keywords
and use the part-of-speech (POS) tags to label the
rest of the words, which represent the relations be-
tween the keywords. Table 1 shows the predicted
keywords (in red) and the POS tags of the other
words in the source sentence. Finally, the sentence

1234



generated (GNT) by our model successfully pre-
serves both the semantics of the keywords using
synonyms (in blue) and the relations between the
keywords using the auxiliary words with similar
POS tags.

Specifically, we propose a novel two-stage
model, PGKPR, for paraphrase generation with
keyword and part-of-speech reconstruction. In the
first stage (Section 3), we fine-tune a BERT model
to identify the keywords in a source sentence. The
identification is based on a prediction attribution
technique (Li et al., 2016a) that computes the gra-
dient vector of each input word. We compute as
the attribution score of each input word the L2-
norm of the corresponding gradient vector, where
the words with higher scores are more likely to
be the keywords. In the second stage(Section 4),
we adopt Transformer (Vaswani et al., 2017) and
devise a multi-task learning model for paraphrase
generation. Given a pair of paraphrase sentences,
the learning tasks include 1) reconstructing the key-
words and the POS tags of all words in the source
sentence, 2) distinguishing the latent features of the
pair from the features of non-paraphrase pairs, and
3) generating the paraphrase sentence. Finally, the
objective function is the combination of the loss
function in each learning task. In the experiments,
we show that PGKPR outperforms the comparative
models by a notable margin on both BLEU and
ROUGE scores. The ablation study shows the ef-
fectiveness of each learning task, and the case study
and user study show that PGKPR could produce
paraphrases with higher quality.

A similar study was conducted by (Su et al.,
2021), where they proposed a novel identification
algorithm, PSI, to identify the primary and sec-
ondary content in a source sentence. Our work
differs from theirs at least on the following three as-
pects. First, our strategy for keyword identification
is purely data-driven, whereas the PSI algorithm
uses a rule-based method and is sensitive to the sim-
ilarity measurement used in the algorithm. Second,
the PGKPR model is trained with multiple learning
tasks, whereas the IANet model proposed in (Su
et al., 2021) only has the learning task of predicting
the target sentence. Third, PGKPR determines the
keywords in a source sentence with the probabil-
ity transformed from the attribution scores, which
gives the model a more flexible way to separate the
keywords and the other content, whereas the IANet
model deterministically separates the primary and

secondary content using a manually-tuned thresh-
old based on the PSI scores.

2 Related Work

2.1 Paraphrase Generation

Recent studies have extensively applied various
deep learning techniques for paraphrase genera-
tion. Representative studies have devised stacked
residual LSTM networks (Prakash et al., 2016),
copy mechanisms (Cao et al., 2017), reinforce-
ment learning algorithms (Li et al., 2018), and
unsupervised training methods (Roy and Grang-
ier, 2019), etc. While performing much better
than rule-based methods, these models do not offer
user-defined mechanisms to control the paraphrase
generation process. As such, (Iyyer et al., 2018)
propose to generate paraphrases conditioned on a
user-provided syntax template. (Chen et al., 2019)
propose to extract the syntax exemplar from a given
sentence instead of using a syntax template. (Goyal
and Durrett, 2020) propose to perturb the preorder
of the syntax structure of a source sentence for
paraphrase generation. Two studies are related to
our work. (Su et al., 2021) propose a Primary/Sec-
ondary Identification algorithm to separate the pri-
mary and secondary content of a source sentence.
(Fu et al., 2019) propose to sample a latent bag of
words from the encoder, which is an implicit way
of extracting the keywords of a source sentence.

2.2 Prediction Attribution Techniques

Given a trained model, a prediction attribution tech-
nique calculates the attribution (i.e., contribution)
of each input unit to a model prediction, which
explains the faithfulness or reasoning process of
the model (Bastings and Filippova, 2020). Repre-
sentative techniques include gradient-based meth-
ods (Baehrens et al., 2010; Li et al., 2016a; Sun-
dararajan et al., 2017), propagation-based meth-
ods (Bach et al., 2015; Arras et al., 2017; Binder
et al., 2016) and occlusion-based methods (Zeiler
and Fergus, 2014; Li et al., 2016b). The method
used in the current work is the first-derivative
saliency (i.e., the gradient) (Li et al., 2016a), which
belongs to the first category. Take NLP models for
example, an input unit in NLP tasks is usually the
embedding of a word. Given a model’s output, the
method computes the gradient vector of the output
with respect to the input embedding, and takes the
L2-norm of the gradient vector as the contribution
of the input to the output.
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3 Stage One: Keyword Prediction

In the first stage, we train a BERT model to predict
the keywords in a source sentence. The prediction
is based on an attribution technique that computes
the gradients of the input elements (Li et al., 2016a).
In particular, given a binary classification model
f and an input sequence X = {x1, x2, . . . , xl},
where l is the number of input elements (i.e., the
sequence length), the gradient vector gi of xi (1 ≤
i ≤ l) is computed as,

gi = ∇xif(X ), (1)

which represents how much the element xi is re-
sponsible for the prediction f(X ). In practice, one
can compute the L2-norm of gi and normalize over
all the L2-norms of the input sequence to obtain a
score pi ∈ [0, 1], which represents the contribution
(attribution) of xi to a positive prediction for X .

Based on the technique, we devise the following
training task for keyword prediction. Denote by
N the number of paraphrase pairs in the training
set, and (si, ti) the source sentence and the target
sentence of the ith pair, respectively, 1 ≤ i ≤ N .
We first construct N positive data points (i.e., each
data point corresponds to a paraphrase pair) where
the ith data point consists of si, the special token
[SEP] and ti, sequentially, i.e., (si,[SEP], ti).
Because during inference the target sentence is
unknown, we construct another N positive data
points (si,[SEP], si) for training. Then for each
si, we randomly select two different target sen-
tences ti1 and ti2 , such that i1 ̸= i and i2 ̸= i,
and form two negative data points (si,[SEP], ti1)
and (si,[SEP], ti2). As such there are in total 2N
positive and 2N negative data points. Then we fine-
tune a BERT model using the 4N data points to
predict whether each data point is a paraphrase pair.
After fine-tuning, given a new data point consisting
of a source sentence and its paraphrase (the source
sentence itself during inference), we first compute
the output in the forward pass, and then compute
the attribution scores of all the input words in the
backward pass. Since the attribution score reflect
how much each word contributes to the paraphrase
prediction, the words with higher scores are more
likely to be the keywords that capture the common
semantics of the two sentences. For keyword pre-
diction, we just use the attribution scores of the
words in the source sentence. Figure 1 shows the
inference process for predicting the keywords of
the source sentence in the running example. We

observe the five words “good”, “workouts”, “lose”,
“belly” and “fat” are more likely to be the keywords.

Figure 1: Stage One of PGKPR.

4 Stage Two: Multi-task Learning for
Paraphrase Generation

Figure 2 shows the overview of the second stage.
The model is trained simultaneously with three
tasks: reconstruction of keywords and POS tags,
contrastive learning for distinguishing paraphrase
pairs from others, and paraphrase generation.

4.1 Task 1: Reconstruction of Keywords and
POS Tags

Given a source sentence si, the task is learning to
reconstruct the keywords of si and the POS tags
of all the words, so that both the key semantics
of si and the relations between the keywords are
captured in the latent feature. After obtaining the at-
tribution scores of si in the first stage, we consider
each score as the probability that the correspond-
ing word is a keyword. Then we flip a coin for
each word with the probability and identify the fi-
nal keywords of si. In this way, we flexibly set the
keywords in each sentence and avoid overfitting the
training set to some extent. On the left part of Fig-
ure 2, we observe that the five words in red are com-
puted as the keywords based on the probabilities.
Then we form an input token sequence TSsi as a
two-part representation based on the perturbation
to si, which contains the POS-tag information of
si while also distinguishing the keywords from the
non-keywords, as follows. The first part of TSsi is
a perturbation of si, where the keywords are pre-
served in the sequence and the non-keywords are
replaced by their corresponding POS tags. The sec-
ond part is another perturbation of si in the other
way round, where the non-keywords are preserved
and the keywords are replaced by their correspond-
ing POS tags. There is a special token [SEP]
connecting the two parts. The idea is to use the first
part to emphasize the keywords and their relations
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Figure 2: Stage Two of PGKPR: the Transformer-based model with three learning tasks for paraphrase generation.

(via POS tags), and use the second part to empha-
size the POS information of the keywords and the
content information of non-keywords. The process
to form TSsi for the running example is depicted
in the left part of Figure 2.

Then we feed TSsi into the Transformer’s en-
coder. Essentially, we want to produce the encod-
ings that preserve the POS and semantic feature
of keywords, and only preserve the POS feature
of non-keywords1 of si. We devise the following
task to achieve the goal, which attempts to recon-
struct the keywords and POS tags of si. For each
encoding in the first part of TSsi , we train it to
predict the POS tag of the corresponding word in
si. As such the output encodings could learn the
syntactic feature of si and particularly the relations
between the keywords. The encoding of the spe-
cial token [SEP] learns to reconstruct itself, so
that it still separates the output encodings into two
groups with different emphasis. For each encod-
ing in the second part of TSsi , if it corresponds
to the POS tag of a keyword, we use it to recon-
struct the keyword so that the encoding learns the
semantic of the keyword; otherwise, it corresponds
to a non-keyword and we use it to predict a spe-
cial token [NOK] (representing “non-keyword”),
which forces the encoding to downplay the seman-
tic feature of the non-keyword and learn more the
position feature. The task is depicted in the middle
part of Figure 2. Denote by yij the target token of
the jth token of TSsi and by p(yij) the predicted
probability, the reconstruction loss function Li

rec

1The semantic feature of non-keywords is captured in the
generation task.

for si is computed using cross-entropy:

Li
rec = − 1

2ls + 1

2ls+1∑
j=1

p(yij) log(p(y
i
j)), (2)

where ls and 2ls + 1 are the length of si and TSsi .

4.2 Task 2: Contrastive Learning for
Distinguishing Paraphrase Pairs from
Others

Inspired by (Yang et al., 2021; Pan et al., 2021),
we devise a contrastive learning task to distinguish
the syntactic and semantic features of paraphrase
pairs from non-paraphrase pairs, so that the learned
encodings of a source sentence are more discrimi-
native. The general principle of contrastive learn-
ing (Chen et al., 2020) is to minimize the distances
between the data point and the positive counter-
parts while maximizing the distances between the
data point with the negative counterparts, in the
latent space.

In our task, for each si, we use the correspond-
ing target sentence ti as the positive counterpart
and use all other sentences in the same batch as
the negative counterparts. We denote the nega-
tive counterparts by {negi ∈ B|negi ̸∈ {si, ti}},
where B is a minibatch containing (si, ti). For
each counterpart, we form an input token sequence
by concatenating the original sentence, [SEP] and
the POS tag sequence of the sentence. By doing
this, we can not only make the input length of the
counterparts conform with TSsi , but also keep both
the syntactic and semantic information of the coun-
terpart sentences. As such, the encoding of si could
learn more discriminative features pertaining to the
keywords and their relations. The token sequences
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of ti and negi are denoted by TSti and TSnegi ,
respectively, as depicted in the middle part of Fig-
ure 2. We apply average pooling over the token
encodings and obtain the encoded TSsi , TSti and
TSnegi . Note that we don’t perform perturbation to
the counterpart sentences because the average pool-
ing layer would eliminate the effect of perturbation.
Denote by esi , eti and enegi the corresponding en-
codings, the contrastive loss function Li

con for si is
computed as follows,

Li
con = − log

exp(
esi ·eti

τ
)

exp(
esi ·eti

τ
) +

negi ̸∈{si,ti}∑
negi∈B

exp(
esi ·enegi

τ
)

,

(3)

where · denotes the dot product and τ is the tem-
perature parameter.

4.3 Task 3: Paraphrase Generation

The last learning task is to generate the paraphrase
sentence on the decoder side, which is depicted on
the right part of Figure 2. All the token encodings
output by the encoder participate into the computa-
tion of the encoder-decoder attention layer, so that
the decoder can retrieve the information pertaining
to both the key semantics of the source sentence via
the encodings of the keywords and the relations be-
tween the keywords via the encodings of the POS
tags. Denote by tij the jth word in the target sen-
tence ti, the generation loss function Li

gen for si is
computed using the sum of negative log-likelihood
as follows,

Li
gen = −

lt∑
j=1

log p(tij | si, {ti0, ti1, . . . , tij−1}),

(4)
where lt is the length of the target sentence.

4.4 The Objective Function

The final objective function of PGKPR is the lin-
ear combination of the loss functions in the three
learning tasks, which is computed as follows,

Li = λ1Li
rec + λ2Li

con + Li
gen, (5)

where λ1 and λ2 are the two hyperparameters.

5 Performance Evaluation

We implement all the models using Pytorch 1.4 and
run all experiments on a Centos machine installed
with Tesla V100.

5.1 The DataSets and Evaluation Metrics

We conduct the experiments on two benchmark
datasets for paraphrase generation, which are
Quora2 and MSCOCO (Lin et al., 2014). The
Quora dataset contains duplicated questions raised
by real users, in which each data point consists of
a source question and a target question with the
similar meaning. The MSCOCO dataset contains
images and the corresponding captions annotated
by humans. Since each image has five captions, we
randomly choose one of them as the source sen-
tence and use the other four as the targets. As such
each image brings four pairs of paraphrases.

Following (Gupta et al., 2018; Fu et al., 2019),
we split the pre-processed datasets into the training
and testing set. For the Quora dataset, there are
100K training paraphrase pairs and 20K testing
pairs. The sentences are truncated or zero-padded
to the same length 17 to facilitate batch training.
For the MSCOCO dataset, there are 93K training
pairs and 20K testing pairs. The sentence length is
set to 16.

For the main results, we use the commonly-
adopted metrics BLEU (Papineni et al., 2002) and
ROUGE (Lin, 2004) to evaluate the models, as
they are proved to correlate with human judgement
well (Li et al., 2018; Fu et al., 2019). We report
the metrics of 1-4 grams in BLEU, 1-2 grams in
ROUGE and ROUGE-L.

5.2 The Comparative Models

Although paragraph generation draws lots of atten-
tion, few studies have tried to explicitly preserve
the keywords as well as their relations in the source
sentence. Among the existing studies, we identified
two models that are closely related to ours.

The first model is IANet (Su et al., 2021),
which proposes the Primary/Secondary Identifica-
tion (PSI) algorithm to separate the primary and
secondary content of a source sentence. We imple-
mented the two variants mentioned in the paper3,
IANet+X and IANet+S, which use the rule-based
method and the pre-training method to identify the
primary content. Both variants rely on a manually-
determined threshold to separate the primary and
secondary content.

The second model is LBOW (Fu et al., 2019),
which samples a latent bag of words from the en-

2https://www.kaggle.com/c/
quora-question-pairs

3The authors have not released the source code.
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Quora
Models B-1 B-2 B-3 B-4 R-1 R-2 R-L
Residual-LSTM (Prakash et al., 2016) 55.06 40.73 31.41 25.06 56.92 32.70 54.37
Transformer (Vaswani et al., 2017) 57.26 43.44 34.20 27.79 58.89 34.92 56.16
LBOW-Topk (Fu et al., 2019) 55.94 42.02 32.64 26.10 58.60 34.33 56.17
LBOW-gumbel (Fu et al., 2019) 55.82 41.82 32.48 25.96 58.09 33.88 55.59
IANet+X (Su et al., 2021) 57.69 43.78 34.30 27.70 59.00 35.15 56.43
IANet+S (Su et al., 2021) 57.72 43.74 34.24 27.65 59.03 35.10 56.41
PGKPR 58.89 45.08 35.69 29.23 60.94 36.69 58.16
PGKPR-ref 58.89 45.07 35.68 29.24 60.82 36.58 58.02
PGKPR-PSI+X 58.37 44.21 34.78 28.31 58.32 35.18 56.36
PGKPR-PSI+S 58.46 44.22 34.77 28.27 59.44 35.09 56.39

MSCOCO
Models B-1 B-2 B-3 B-4 R-1 R-2 R-L
Residual-LSTM (Prakash et al., 2016) 71.67 49.88 34.57 24.50 41.85 15.74 37.76
Transformer (Vaswani et al., 2017) 71.41 50.86 35.42 25.14 41.60 15.52 37.46
LBOW-Topk (Fu et al., 2019) 72.62 51.00 35.53 25.30 42.16 16.09 38.20
LBOW-gumbel (Fu et al., 2019) 72.41 51.85 35.51 25.16 42.20 16.05 38.15
IANet+X (Su et al., 2021) 70.43 49.50 34.09 23.95 40.76 14.80 36.78
IANet+S (Su et al., 2021) 71.46 50.93 35.29 24.80 41.37 15.36 37.40
PGKPR 72.67 52.55 37.22 26.70 42.49 16.31 38.25
PGKPR-ref 72.67 52.66 37.34 26.87 42.46 16.16 38.16
PGKPR-PSI+X 70.61 49.99 34.68 24.46 41.39 15.15 37.22
PGKPR-PSI+S 72.03 51.73 36.37 25.95 42.18 15.89 37.82

Table 2: The main results on Quora and MSCOCO. All the numbers are obtained from either implementing the
corresponding models, if the source code is not available, or from running the source code released by the authors.

coder to assist the paraphrase generation. The
words in the latent bag could be considered to have
similar semantics with the keywords in the source
sentence, and therefore the model is related to ours.
We obtained the code released by the authors4 and
evaluate the two variants LBOW-Topk and LBOW-
Gumbel. The former directly chooses the most k
probable words from the encoder, and the latter
samples randomly from the BOW distribution with
gumbel reparameterization.

We include another two models as baselines.
The first model is Residual-LSTM (Prakash et al.,
2016), which is the very first study that applies
deep learning to paraphrase generation. The sec-
ond model is the original Transformer (Vaswani
et al., 2017). We train it directly with the para-
phrase pairs in the simple sequence-to-sequence
manner.

5.3 The Hyperparameters
Both the encoder and decoder of PGKPR have 6
layers and each layer uses 8 attention heads. The
embedding size is set to 512. When training, we
set dropout rate to 0.1, learning rate to 0.0001, and
use Adam for optimization. The batch size is set to
128. After tuning, we set λ1 and λ2 in the objective
function to 1 and 0.1 for the Quora dataset, and set

4https://github.com/FranxYao/dgm_
latent_bow

to 1 and 1 for the MSCOCO dataset, respectively.

5.4 Main Results

The main results are reported in Table 2. We ob-
serve that our PGKPR model outperforms all the
comparative models by a notable margin on both
datasets.

To further justify the effectiveness of PGKPR,
we implemented two additional variants of the
model. The first variant is PGKPR-ref, which uses
the true paraphrase pairs to identify the keywords
in the first stage during inference. Remember that
in PGKPR we concatenate a source sentence with
itself during inference, since the target sentence is
unknown. However, the upper bound of the perfor-
mance should be achieved when the target sentence
is disclosed, i.e., using the true pair of a source
sentence and a target sentence to predict the key-
words. In Table 2 we observe that PGKPR-ref does
not always outperform PGKPR and the overall per-
formance of PGKPR is very close to PGKPR-ref.
The reason is that we add the pairs of two source
sentences in the training set (see the second para-
graph of Section 3), so that PGKPR generalizes
well at inference time when the target sentence is
unknown.

The second variant is PGKPR-PSI, which uses
the PSI algorithm in IANet to identify the key-
words. Following (Su et al., 2021), we imple-
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Quora
Models B-1 B-2 B-3 B-4 R-1 R-2 R-L
PGKPR 58.89 45.08 35.69 29.23 60.94 36.69 58.16
PGKPR w/o Lcon 58.63 44.74 35.26 28.61 60.31 36.45 57.73
PGKPR w/o Lrec 58.33 44.27 34.87 28.42 59.91 35.35 57.04
PGKPR w/o Lcon and Lrec 58.1 43.89 34.42 27.91 58.90 35.35 56.84

MSCOCO
Models B-1 B-2 B-3 B-4 R-1 R-2 R-L
PGKPR 72.67 52.55 37.22 26.70 42.49 16.31 38.25
PGKPR w/o Lcon 72.29 51.99 36.71 26.29 42.34 16.12 38.04
PGKPR w/o Lrec 72.12 51.94 36.60 26.18 42.33 16.00 37.99
PGKPR w/o Lcon and Lrec 71.87 51.59 36.28 25.85 42.26 15.95 37.97

Table 3: Ablation Study.

mented PGKPR-PSI+X and PGKPR-PSI+S, which
are the counterparts of IANet+X and IANet+S.
In Table 2 we observe two points. First, the
PGKPR-PSI variants perform worse than the orig-
inal PGKPR. Since the only difference between
them is the mechanism for keyword identification,
we may conclude that our model-based identifi-
cation strategy is more suitable for extracting key-
words from a source sentence. Second, the PGKPR-
PSI variants perform better than the IANet counter-
parts on almost all metrics. Since both models use
PSI to identify the keywords, the results show the
effectiveness of multi-task learning in the PGKPR
model.

5.5 Ablation Study
We conduct an ablation study to show the effect
of the reconstruction loss and the contrastive loss
in the multi-task learning. In particular, we re-
move from the original PGKPR model only the
contrastive loss, only the reconstruction loss and
both losses, respectively, which results in three ab-
lation models PGKPR w/o Lcon, PGKPR w/o Lrec

and PGKPR w/o Lcon and Lrec. The results are
reported in Table 3. We observe a significant perfor-
mance drop after removing the losses. Specifically,
removing the reconstruction loss results in a larger
performance drop than removing the contrastive
loss. This justifies the motivation of the current
study, i.e., capturing the key semantics and the rela-
tions between the keywords in the source sentence
should benefit paraphrase generation.

5.6 Comparing with the PSI Algorithm
Only our PGKPR model and the IANet model (Su
et al., 2021) explicitly identify the keywords from
a source sentence. While IANet uses a rule-based
algorithm PSI to identify the keywords, PGKPR
adopts the purely data-driven approach based on

Figure 3: The frequency distribution of the POS tags on
Quora.

Figure 4: The frequency distribution of the POS tags on
MSCOCO.

a prediction attribution technique that computes
the gradients. It is thus interesting to compare the
keywords identified by the two methods.

To this end, we first extract the keywords from
the dataset using the two methods, respectively, and
then plot the frequency distribution of the POS tags
pertaining to the keywords. For PSI, we set the
threshold of the PSI score to separate the primary
and secondary content when the IANet-S model
achieves the best performance on the testing set.
For PGKPR, the keywords are selected with the
probabilities calculated from the L2-norms of their
gradients (see the first paragraph of Section 4.1).
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Quora MSCOCO

Source what are good workouts to lose belly fat ? a woman with a toothbrush in her mouth

Target what is the best way to lose belly fat ? a person standing with a toothbrush in their mouth

Residual-LSTM what are the best ways to lose belly fat ? a woman with a toothbrush in her mouth

Transformer what are some good ways to get rid of belly fat ? a bunch of food on a table outside

LBOW-Topk how can i reduce my belly fat ? a woman is holding a toothbrush in her mouth

IANet+S what are some workouts to lose weight ? a woman with a toothbrush in her mouth

PGKPR what are some good exercises to get rid of belly fat ? a woman brushing her teeth with a tooth brush

Table 4: Case Study.

The results are shown in Figure 3 and 4, which
are the plots on Quora and MSCOCO, respectively.
On the X-axis, we use five POS tags, namely,
NN, JJ, PRP, RB and VB, which correspond to
nouns, adjectives or numerals, pronouns, adverbs
and verbs, respectively. It is of the common sense
that the words of these POS tags preserve the key
semantics of a sentence, and thus we refer to them
as the key POS tags. The Y -axis shows the number
of each POS tag extracted by the two methods. We
observe that on both datasets our gradient-based
method extracts more key POS tags than the PSI
algorithm does. The results may explain why the
original PGKPR model performs better than the
PGKPR-PSI variants in Table 2.

5.7 Case Study

In Table 4, we show the generated paraphrases of
the five models for two source sentences in the
Quora and MSCOCO dataset, respectively. On the
left part, we see PGKPR captures the keywords
“good workouts” and “lose belly fat”, and uses the
synonyms “exercises” and “get rid of” in the para-
phrase. Other models are generally good, but the
paraphrases are not as accuracy and diverse as ours.
The sentence produced by IANet+S fails to capture
the keyword “belly”. On the right part, PGKPR
not only captures the key semantics of the source
sentence, but also changes the syntax structure. All
other models either fail to capture the key seman-
tics or produce a paraphrase syntactically similar
to the source sentence. The sentence produced by
IANet+S simply repeats the source sentence.

5.8 User Study

We conduct a user study on the quality of the
paraphrases generated by the compared models.
For LBOW and IANet, we choose the variants
with overall better performance in Table 2, namely,

Models Fluency Accuracy Diversity
Residual-LSTM 1.49 1.14 0.8
Transformer 1.7 1.33 1.11
LBOW-Topk 1.55 1.21 0.85
IANet+S 1.68 1.37 0.97
PGKPR 1.79 1.5 1.29
Target 1.85 1.59 1.47

Table 5: The results of human evaluation. Statistical
significance between PGKPR and others is computed
with a 2-tailed Student’s t-test; p-value < 0.05.

LBOW-Topk and IANet+S. As such there are five
models for this study. The evaluated metrics are
Fluency, Accuracy, and Diversity. Fluency mea-
sures whether a sentence is grammatically correct.
Accuracy measures whether the semantics of a gen-
erated sentence comply with that of the correspond-
ing source sentence. Diversity measures whether a
generated sentence differs from the corresponding
source sentence in terms of syntax structure.

We invite ten Master’s students to rate the gener-
ated paraphrases. We randomly choose 100 source
sentences from the testing sets (50 for Quora and
50 for MSCOCO) and generate the paraphrases
for each sentence using the five models. We repli-
cate three times each source sentence and its five
paraphrases and obtain 1,500 pairs of paraphrases.
We randomly assign the paraphrases to the 10 stu-
dents, so that each student is assigned with 150
different pairs. We ask the students to rate each
generated paraphrase on the three metrics on a scale
between 0 to 2, where a higher score means bet-
ter quality. Then we compute the average scores
for each model and the statistical significance be-
tween PGKPR and other models. The results are
reported in Table 5, where “Target” means the tar-
get sentence. We observe that PGKPR performs
the best on the three metrics among the models and
the difference between PGKPR and each model is
statistically significant (p-value < 0.05), verified
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using a 2-tailed Student’s t-test. The results justify
the effect of learning simultaneously the keywords
and the relations between them and the design of
the multiple learning tasks in PGKPR.

6 Conclusion

We propose a new model with multi-task learn-
ing for paraphrase generation. The motivation is
to simultaneously capture the key semantics of a
source sentence and the relations between the key-
words. The proposed model, PGKPR, has two
stages. In the first stage, PGKPR leverages a data-
driven technique to identify the possible keywords
in the source sentence. In the second stage, PGKPR
adopts the Transformer model and devises three
learning tasks, including 1) reconstructing the key-
words and the POS tags of all words in the source
sentence, 2) contrastive learning for distinguishing
the latent features of the paraphrase pair from oth-
ers, and 3) generating the paraphrase sentence. We
conduct extensive experiments to show the superior
performance of PGKPR over comparative models,
as well as the effect of the keyword identification
strategy and the multiple learning tasks. Our future
research would focus on how to apply the model in
the current study to controllable paraphrase genera-
tion and produce more diverse sentences.
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