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Abstract

Logical reasoning is of vital importance to nat-
ural language understanding. Previous stud-
ies either employ graph-based models to in-
corporate prior knowledge about logical rela-
tions, or introduce symbolic logic into neu-
ral models through data augmentation. These
methods, however, heavily depend on anno-
tated training data, and thus suffer from over-
fitting and poor generalization problems due
to the dataset sparsity. To address these two
problems, in this paper, we propose MERIt, a
MEta-path guided contrastive learning method
for logical ReasonIng of text, to perform self-
supervised pre-training on abundant unlabeled
text data. Two novel strategies serve as indis-
pensable components of our method. In partic-
ular, a strategy based on meta-path is devised
to discover the logical structure in natural texts,
followed by a counterfactual data augmenta-
tion strategy to eliminate the information short-
cut induced by pre-training. The experimental
results on two challenging logical reasoning
benchmarks, i.e., ReClor and LogiQA, demon-
strate that our method outperforms the SOTA
baselines with significant improvements.1

1 Introduction

Logical reasoning has long been recognized as one
key critical thinking ability of human being. Un-
til very recently, some pioneer researchers have
crystallized this for the NLP community, and built
several public challenging benchmarks, such as
ReColor (Yu et al., 2020) and LogiQA (Liu et al.,
2020). Logical reasoning2 requires to correctly
infer the semantic relations with respect to the
constituents among different sentences. A typi-
cal formulation of logical reasoning is illustrated

*Corresponding author: Yangyang Guo and Liqiang Nie.
1Our code and pre-trained models are available at https:

//github.com/SparkJiao/MERIt.
2We refer the term logical reasoning to the task itself in

the remaining of this paper.

Figure 1: An instance of logical reasoning from the Re-
Clor dataset. To infer the right answer, we should un-
cover the underlying logical structure, as shown in the
bottom. (x) represents the logical variable (e.g., entity
or phrase) and rj denotes the relation (e.g., predicate)
between two logical variables. r̄j is the passive relation
of rj .

in Figure 1, namely, a real-world examination in-
stance from ReClor. As can be seen, to find the
correct answer for the given question, one needs to
extract the logical structures residing in a pair of
each option and the whole context, and justify its
reasonableness.

As a matter of fact, logical reasoning is still at its
initial stage, thence, existing studies are somewhat
rare in literature. Some efforts have been devoted
to designing specific model architectures or inte-
grating symbolic logic as the hints attached to the
potential logical structure. For instance, Huang
et al. (2021) and Ouyang et al. (2021) first con-
structed a graph of different constituents and then
performed implicit reasoning with graph neural
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networks (GNNs). Wang et al. (2022) proposed
LReasoner, a unified context extension and data
augmentation framework based on the parsed logi-
cal expressions.

These approaches have achieved some progress
on benchmark datasets. However, though equipped
with pre-trained language models, they still suf-
fer from problems like overfitting and poor gen-
eralization. We attribute these drawbacks to the
difficulty of building a model aware of the logi-
cal relations beneath natural language, which is
revealed from two sides: 1) the high sparsity of
the existing datasets, and 2) the goal of general
pre-training, i.e., masked language modeling (De-
vlin et al., 2019), which however, deviates largely
from that of the logical reasoning. To tackle this
issue, we aim to build a bridge between logical
reasoning and self-supervised pre-training, and ac-
cordingly inherit the strong generalization power
from pre-trained language models.

Our proposed method is inspired by the recent
progress of contrastive learning based pre-training.
It mainly consists of two novel components: meta-
path guided data construction and counterfactual
data augmentation. Both components are leveraged
to perform automatic instance composition from
unlabeled corpus (e.g., Wikipedia) for contrastive
learning. Regarding the first component, we pro-
pose to employ the meta-path to define a symbolic
form of logical structure. The intuition behind this
is that the logical structure can be expressed as a
reasoning path composed of a series of relation
triplets, and a meta-path inherently offers such a
means of consistency (Liu et al., 2021). Specif-
ically, given an arbitrary document and a pair of
entities in it, we try to find a positive instance pair
in the document according to the logical structure.
And the negative ones can thus be generated by
modifying the relations involved in the structure,
which explicitly break the logical consistency. Nev-
ertheless, the contrastive learning often fails when
models easily locate trivial solutions (Lai et al.,
2021). In this context, the pre-trained language
model may exclude the negative options through
their conflicts with the world knowledge. To elimi-
nate this information shortcut, in our second novel
component, we devise a strong counterfactual data
augmentation (Zeng et al., 2020b) strategy. By
mixing counterfactual data during pre-training, of
which the positive instance pair is also against the
world knowledge, this component shows more ad-

vantage in reasoning over logical relations.
We integrate this method with both AL-

BERT (Lan et al., 2020) and RoBERTa (Liu et al.,
2019)3 for further pre-training, and then fine-tune
them on two downstream logical reasoning bench-
marks, i.e., ReClor and LogiQA. The experimental
results demonstrate that our method can outperform
all the existing strong baselines, yet without any
augmentation from the original training data. Be-
sides, the ablation studies also show the effective-
ness of the two essential strategies in our method.
The contribution of this paper is summarized as
follows:

1. We propose MERIt, a MEta-path guided con-
trastive learning method for logical Reason-
Ing of text, to reduce the heavy reliance on
annotated data. To the best of our knowledge,
we are the first to explore self-supervised pre-
training for logical reasoning.

2. We successfully employ the meta-path strat-
egy to mine the potential logical structure in
raw text. It is able to automatically generate
negative candidates for contrastive learning
via logical relation editing.

3. We propose a simple yet effective counterfac-
tual data augmentation method to eliminate
the information shortcut during pre-training.

4. We evaluate our method on two logical rea-
soning tasks, LogiQA and ReClor. The exper-
imental results show that our method achieves
the new state-of-the-art performance on two
benchmark datasets.

2 Related Work

2.1 Self-Supervised Pre-training
With the success of language modeling based pre-
training (Devlin et al., 2019; Brown et al., 2020),
designing self-supervised pretext tasks to facili-
tate specific downstream ones has been extensively
studied thus far. For example, Guu et al. (2020) pro-
posed to train the retriever jointly with the encoder
via retrieval enhanced masked language modeling
for open-domain question answering. Jiao et al.
(2021) devised a retrieval-based pre-training ap-
proach to bridge the gap between language mod-
eling and machine reading comprehension by en-
hancing the evidence extraction ability. Deng et al.

3In this paper, we refer ALBERT-xxlarge and RoBERTa-
large to ALBERT and RoBERTa for simplicity, respectively.
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(2021) proposed ReasonBERT to facilitate complex
reasoning over multiple and hybrid contexts. The
model is pre-trained on automatically constructed
query-evidence pairs, which involve different types
of corpora and long-range relations.

In addition, contrastive learning (Hadsell et al.,
2006) contributes to a strong toolkit to implement
self-supervised pre-training. The key to contrastive
learning is to build efficacious positive and nega-
tive counterparts. For example, Gao et al. (2021)
leveraged Dropout (Srivastava et al., 2014) to build
positive pairs from the same sentence while keep-
ing the semantics untouched. Other sentences in
the same mini-batch serve as negative candidates
to obtain better sentence embeddings. ERICA (Qin
et al., 2021) is a knowledge enhanced language
model pre-trained through entity and relation dis-
crimination, where the negative candidates are sam-
pled from the pre-defined dictionaries. Neverthe-
less, directly employing these contrastive learning
approaches to logical reasoning is arduous. One
possible reason to this is the absence of distant la-
bels or strong assumptions to group the naturally
occurring text by its logical structure.

2.2 Logical Reasoning

Logical reasoning has attracted increasing research
attention recently. Devising specific model archi-
tectures and integrating symbolic logic have been
proved to be two effective solutions. For exam-
ple, Huang et al. (2021) and Ouyang et al. (2021)
proposed to extract the basic units for logical rea-
soning, e.g., the elementary discourse or fact units,
and then employed GNNs to model possible rela-
tionships. The graph structure of constituents can
be viewed as a form of prior knowledge pertaining
to logical relations. Differently, Betz et al. (2021)
and Clark et al. (2020) used synthetically generated
datasets to prove that the Transformer (Vaswani
et al., 2017) or pre-trained GPT-2 is able to per-
form complex reasoning, motivating following re-
searchers to introduce symbolic rules into neural
models. For example, Wang et al. (2022) devel-
oped a context extension and data augmentation
framework, which is based on the extracted log-
ical expressions. Superior performance over its
contenders can be observed on the ReClor dataset.

In this paper, we propose a self-supervised con-
trastive learning approach to enhance the logical
reasoning ability of neural models. Orthogonal to
existing methods, our approach is endowed with
two intriguing merits: 1) it shows strong advan-

tage in utilizing the unlabeled text data, and 2) the
symbolic logic is seamlessly introduced into neural
models via the guidance of meta-path for automatic
data construction.

3 Preliminary

3.1 Contrastive Learning

Contrastive Learning (CL) aims to learn recogniz-
able representations by pulling the semantically
similar examples close and pushing apart the dis-
similar ones (Hadsell et al., 2006). Given an in-
stance x, a semantically similar example x+, and a
set of dissimilar examples X− to x, the objective
of CL can be formulated as:

LCL = L(x, x+,X−)

= − log
exp f(x, x+)∑

x′∈X−∪{x+} exp f(x, x′)

(1)

where f is the model to be optimized.

3.2 Symbolic Logical Reasoning

As shown in Figure 1, given a context containing
a series of logical variables {v1, v2, · · · , vn}, and
the relations between them, the logical reasoning
objective is to judge whether a triplet 〈 vi, ri,j , vj 〉
in language, where ri,j is the relation between vi
and vj , can be inferred from the context through a
reasoning path:

〈 vi, ri,j , vj 〉 ← (vi
ri,i+1−→ vi+1 · · ·

rj−1,j−→ vj). (2)

The equation is also referred to symbolic logic
rules (Clark et al., 2020; Liu et al., 2021).

3.3 Meta-Path

Given an entity-level knowledge graph, where the
nodes refer to entities and edges are the relations
among them, the meta-path connecting two target
entities 〈 ei, ej 〉 can be given as,

ei
ri,i+1−→ ei+1

ri+1,i+2−→ · · · ej−1
rj−1,j−→ ej , (3)

where ri,j denotes the relation between entities ei
and ej . The meta-path in the entity-level knowl-
edge graph are often employed as a particular data
structure expressing the relation between two indi-
rectly connected entities (Zeng et al., 2020a; Xu
et al., 2021).
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The screenplay was written by
Mirror Mask, from a story by
Gaiman and Stephanie Leonidas.

The screenplay was written by
Stephanie Leonidas, from a story by
Gaiman and McKean.

Negative Sentence 𝑠𝑠5−

Option 𝑎𝑎−

Option-oriented Contrastive Learning:

Context-oriented Contrastive Learning:

𝑓𝑓 𝒮𝒮, 𝑎𝑎 ≫ 𝑓𝑓 𝒮𝒮, 𝑎𝑎−

𝑓𝑓 𝒮𝒮,𝑎𝑎 ≫ 𝑓𝑓 𝒮𝒮−,𝑎𝑎

A children’s fantasy which …, “Mirror
Mask” was produced by … and stars a
British cast Stephanie Leonidas, …,
and Gina McKee.

A children’s fantasy which …,
“[ENT A]” was produced by …
and stars a British cast [ENT
B], …, and Gina McKee.

The screenplay was written by
[ENT A], from a story by Gaiman
and [ENT B].

𝑎𝑎

𝑎𝑎−

(𝒔𝒔𝟏𝟏) “Mirror Mask (𝑒𝑒1)”, McKean (𝑒𝑒2)’s first feature film as director,
premiered at … in January 2005. (𝒔𝒔𝟐𝟐) The screenplay was written by Neil
Gaiman (𝑒𝑒3), from a story by Gaiman and McKean. (𝑠𝑠3) A children’s
fantasy …, “Mirror Mask” was produced by Jim Henson Studios (𝑒𝑒4) and
stars a British cast Stephanie Leonidas (𝑒𝑒5), … and Gina McKee (𝑒𝑒6). (𝑠𝑠4)
Before “Mirror Mask”, McKean directed a number of …. (𝑠𝑠5) McKean has
directed “The Gospel of Us (𝑒𝑒7)”, …. A new feature film, “Luna”, written
and directed by McKean and starring Stephanie Leonidas, ..., debuted at ….

Answer: 𝑎𝑎 = 𝑠𝑠3

A children’s fantasy …, “Mirror
Mask” was produced by … and
stars a British cast Stephanie
Leonidas, …, and Gina McKee.

A new feature film, “Luna”, …
and directed by McKean and
starring Stephanie Leonidas ….

Context Sentence 𝑠𝑠5

Negative Context 𝒮𝒮− = 𝑠𝑠1, 𝑠𝑠5−

The screenplay was written by
Neil Gaiman, from a story by
Gaiman and McKean.

Relation Provider z

Entity

Intra-Sentence
Relation

External
Relation

𝑒𝑒1

𝑒𝑒2

𝑒𝑒4𝑒𝑒5

𝑒𝑒3

𝑒𝑒6𝑒𝑒7

The screenplay was written by Mirror
Mask, from a story by Gaiman and
Stephanie Leonidas.

𝑒𝑒1: Mirror Mask
𝑒𝑒2: McKean
𝑒𝑒5: Stephanie LeonidasPossible Answers

𝒜𝒜+ = 𝑠𝑠3

Target Entities
𝑒𝑒1, 𝑒𝑒5

Meta-Path
𝒫𝒫 = 𝑒𝑒1, 𝑒𝑒2, 𝑒𝑒5

𝑒𝑒1

𝑒𝑒2

𝑒𝑒5

𝑠𝑠1 𝑠𝑠5

Positive Data Pair
𝒮𝒮 = 𝑠𝑠1, 𝑠𝑠5 ↔ 𝑠𝑠3

(a) Graph Construction

(b) Meta-Path Guided Positive Instance Construction

(c) Negative Candidate Generation

(d) Counterfactual Data Augmentation

Context-oriented

(e) Objectives of Contrastive Learning

Option-oriented

Figure 2: The overall framework of our proposed method. (a) A document D from Wikipedia and the correspond-
ing entity-level graph construction. The sentences in black will be extracted as the context input for (b). (b) Given
two target entities 〈 e1, e5 〉, the possible answersA+ and the meta-path are firstly extracted. The context sentences
S connecting the entities in the meta-path, and the answers in A, are leveraged to yield positive instance pairs. (c)
Given a sentence z with alternative relations, the relation modification for negative context sentence and option
construction is implemented through entity replacement. The top operation is performed for negative options while
the bottom one is to facilitate negative contexts. (d) The counterfactual sentences are generated by entity replace-
ment to eliminate the information shortcut during pre-training. (e) The generated positive and negative samples
are used for contrastive learning.

4 Method

In this paper, we study the problem of logical
reasoning on the task of multiple choice ques-
tion answering (MCQA). Specifically, given a pas-
sage P , a question Q and a set of K options
O = {O1, · · · , OK}, the goal is to select the cor-
rect option Oy, where y ∈ [1,K]. Notably, to
tackle this task, we devise a novel pre-training
method equipped with contrastive learning, where
the abundant knowledge contained in the large-
scale Wikipedia documents is explored. We then
transfer the learned knowledge to the downstream
logical reasoning task.

4.1 From Logical Reasoning to Meta-Path
In a sense, in MCQA for logical reasoning, both
the given context (i.e., passage and question) and
options express certain relations between different
logical variables (Figure 1). Go a step further, fol-
lowing Equation 2, the relation triplet contained
in the correct option should be deduced from the
given context through a reasoning path, while that
in the wrong options should not. In other words,
the context is logically consistent with the correct

option only.
In light of this, the training instances for our con-

trastive learning based pre-training should be in the
form of a context-option pair, where the context
consists of multiple sentences and expresses the
relations between the included constituents, while
the option should illustrate the potential relations
between parts of the constituents. Nevertheless,
it is non-trivial to derive such instance pairs from
large-scale unlabeled corpus like Wikipedia due to
the redundant constituents, e.g., nouns and pred-
icates. In order to address it, we propose to take
the entities contained in unlabeled text as logical
variables, and Equation 2 can be transformed as:

〈 ei, ri,j , ej 〉 ← (ei
ri,i+1−→ ei+1 · · ·

rj−1,j−→ ej). (4)

As can be seen, the right part above is indeed a
meta-path connecting 〈 ei, ej 〉 as formulated in
Equation 3, indicating an indirect relation between
〈 ei, ej 〉 through intermediary entities and relations.
In order to aid the logical consistency conditioned
on entities to be established, we posit an assump-
tion that under the same context (in the same pas-
sage), the definite relation between a pair of en-
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tities can be inferred from the contextual indirect
one, or at least not logically contradict to it. Tak-
ing the passage in Figure 2 as an example, it can be
concluded from the sentences s1 and s5 that, the
director McKean has cooperated with Stephanie
Leonidas. Therefore, the logic is consistent be-
tween {s1, s5} and s3. This can be viewed as a
weaker constraint than the original one in Equa-
tion 2 for logical consistency, yet it can be further
enhanced by constructing negative candidates vio-
lating logics.

Motivated by this, given an arbitrary document
D = {s1, · · · , sm}, where si is the i-th sentence,
we can first build an entity-level graph, denoted as
G = (V, E), where V is the set of entities contained
in D and E denotes the set of relations between en-
tities. Notably, to comprehensively capture the rela-
tions among entities, we take into account both the
external relation from the knowledge graph and the
intra-sentence relation. As illustrated in Figure 2
(a), there will be an intra-sentence relation between
two entities if they are mentioned in a common sen-
tence. Thereafter, we can derive the pre-training
instance pairs according to the meta-paths extracted
from the graph, which will be detailed in the fol-
lowing subsections.

4.2 Meta-Path Guided Positive Instance
Construction

As defined in Equation 4, in the positive instances,
the answer should contain a relation triplet that is
logically consistent with the given context. Since
we take the intra-sentence relationship into consid-
eration, given a pair of entities contained in the
document, we first collect the sentences mention-
ing both of them as the set of answer candidates.
Accordingly, we then try to find a meta-path con-
necting the entity pair and hence derive the corre-
sponding logically consistent context.

In particular, as shown in Figure 2 (b), given an
entity pair 〈 ei, ej 〉, we denote the collected answer
candidates as A+, and then we use Depth-First
Search (Tarjan, 1972) to find a meta-path linking
them on G, following Equation 3. Thereafter, the
context sentences S corresponding to the answer
candidates in A+ are derived by retrieving those
sentences undertaking the intra-sentence relations
during the search algorithm. Finally, for each an-
swer candidate a ∈ A+, the pair (S, a) is treated as
a positive context-answer pair to facilitate our con-
trastive learning. The details of positive instance

generation algorithm are described in Appendix A.

4.3 Negative Instance Generation

In order to obtain the negative instances (i.e., neg-
ative context-option pairs) where the option is not
logically consistent with the context, the most
straightforward way is to randomly sample the sen-
tences from different documents. However, this
approach could lead to trivial solutions by simply
checking whether the entities involved in each op-
tion are the same as those in the given context. In
the light of this, we resort to directly breaking the
logical consistency of the positive instance pair by
modifying the relation rather than the entities in
the context or the option, to derive the negative
instance pair.

In particular, given a positive instance pair
(S, a), we devise two negative instance genera-
tion methods: the context-oriented and the option-
oriented method, focusing on generating negative
pairs by modifying the relations involved in the
context S and answer a of the positive pair, re-
spectively. Considering that the relation is difficult
to be extracted, especially the intra-sentence rela-
tion, we propose to implement this reversely via
the entity replacement. In particular, for the option-
oriented method, suppose that 〈 ei, ej 〉 is the target
entity pair for retrieving the answer a, we first
randomly sample a sentence z that contains at least
one different entity pair 〈 ea, eb 〉 from 〈 ei, ej 〉 as
the relation provider. We then obtain the negative
option by replacing the entities ea and eb in z with
ei and ej , respectively. The operation is equivalent
to replacing the relation contained in a with that in
z. Formally, we denote the operation as

a− = Relation_Replace(z → a).

Pertaining to the context-oriented negative in-
stance generation method, we first randomly sam-
ple a sentence si ∈ S , and then conduct the modifi-
cation process as follows,

s−i = Relation_Replace(z → si),

where the entity pair to be replaced in si should
be contained in the meta-path corresponding to
the target entity pair 〈 ei, ej 〉. Accordingly, the
negative context can be written as S− = S \{si}∪
{s−i }. Figure 2 (c) illustrates the above operations
on both the answer and context sentence.
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4.4 Counterfactual Data Augmentation

According to Ko et al. (2020); Guo et al. (2019);
Lai et al. (2021); Guo et al. (2022), the neural mod-
els are adept at finding a trivial solution through the
illusory statistical information in datasets to make
correct predictions, which often leads to inferior
generalization. In fact, this issue can also occur
in our scenario. In particular, since the correct an-
swer is from a natural sentence and describes a real
world fact, while the negative option is synthesized
by entity replacement, which may conflict with
the commonsense knowledge. As a result, the pre-
trained language model tends to identify the correct
option directly by judging its factuality rather than
the logical consistency with the given context. For
example, as shown in Figure 2 (d) (left), the lan-
guage model deems a as correct, simply due to
that the other synthetic option a− conflicts with the
world knowledge.

To overcome this problem, we develop a sim-
ple yet effective counterfactual data augmentation
method to further improve the capability of log-
ical reasoning (Zeng et al., 2020b). Specifically,
given the entities P that are involved in the meta-
path, we randomly select some entities from P and
replace their occurrences in the context and the an-
swer of the positive instance pair (S, a) with the
entities extracted from other documents. In this
manner, the positive instance also contradicts to
the world knowledge. Notably, considering that the
positive and negative instance pairs should keep
the same set of entities, we also conduct the same
replacement for a− or S−, if they mention the se-
lected entities. As illustrated in Figure 2 (d) (right),
a counterfactual instance can be generated by re-
placing Mirror Mask and Stephanie Leonidas in a
and a− with [ENT A] and [ENT B], where [ENT
A] and [ENT B] are arbitrary entities. Ultimately,
the key to infer the correct answer lies in the ac-
curate inference of the logical relation between
entities [ENT A] and [ENT B] implied in each
context-option pair. We provide more cases of the
constructed data and their corresponding counter-
factual samples in Appendix D.

4.5 Contrastive Learning based Pre-training

As discussed in previous subsection, there are two
contrastive learning schemes: option-oriented CL
and context-oriented CL. Let A− be the set of all
constructed negative options with respect to the
correct option a. The option-oriented CL can be

Wikipedia 
Documents

Downstream 
Tasks Data

𝑓𝑓(𝜃𝜃,𝜔𝜔0)
𝑓𝑓(𝜃𝜃,𝜔𝜔0,𝜙𝜙)

𝑓𝑓(𝜃𝜃,𝜔𝜔1)

Prompt-Tuning

Fine-Tuning

Figure 3: The overall training scheme of our method.

formulated as:

LOCL = L(S, a,A−). (5)

In addition, given C− as the set of all generated
negative contexts corresponding to S , the objective
of context-oriented CL can be written as:

LCCL = L(a,S, C−). (6)

To avoid the catastrophic forgetting problem, we
also add the MLM objective during pre-training
and the final loss is:

L = LOCL + LCCL + LMLM. (7)

4.6 Fine-tuning
During the fine-tuning stage, to approach the task
of MCQA, we adopt the following loss function:

LQA = − log
exp f(P,Q,Oy)∑
i exp f(P,Q,Oi)

, (8)

where Oy is the ground-truth option for the ques-
tion Q, given the passage P .

Figure 3 shows the overall training scheme of our
method. f is the model to be optimized, θ, ω0, ω1

and φ are parameters of different modules. During
pre-training, we use a 2-layer MLP as the output
layer. The parameters of the output layer are de-
noted as ω0, and θ represents the pre-trained Trans-
former parameters. As for the fine-tuning stage,
we employ two schemes. For simple fine-tuning,
we follow Devlin et al. (2019) to add another 2-
layer MLP with randomly initialized parameters
ω1 on the top of the pre-trained Transformer. In
addition, to fully take advantage the knowledge
acquired during pre-training stage, we choose to
directly fine-tune the pre-trained output layer with
optimizing both θ and ω0. In order to address the
discrepancy that the question is absent during pre-
training, the prompt-tuning technique (Lester et al.,
2021) is employed. Specifically, some learnable
embeddings with randomly initialized parameters φ
are appended to the input to transform the question
in downstream tasks into declarative constraint.
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Model / Dataset
ReClor LogiQA

Dev Test Test-E Test-H Dev Test
RoBERTa 62.6 55.6 75.5 40.0 35.0 35.3
DAGN 65.2 58.2 76.1 44.1 35.5 38.7
DAGN (Aug) 65.8 58.3 75.9 44.5 36.9 39.3
LReasoner (RoBERTa)‡ 64.7 58.3 77.6 43.1 — —
Focal Reasoner 66.8 58.9 77.1 44.6 41.0 40.3
MERIt 66.8 59.6 78.1 45.2 40.0 38.9
MERIt + LReasoner 67.4 60.4 78.5 46.2 — —
MERIt + Prompt 69.4 61.6 79.3 47.8 39.9 40.7
MERIt + Prompt + LReasoner 67.3 61.4 79.8 46.9 — —
ALBERT 69.1 66.5 76.7 58.4 38.9 37.6
MERIt (ALBERT) 74.2 70.1 81.6 61.0 43.7 42.5
MERIt (ALBERT) + Prompt 74.7 70.5 82.5 61.1 46.1 41.7
max
LReasoner (RoBERTa) 66.2 62.4 81.4 47.5 38.1 40.6
MERIt 67.8 60.7 79.6 45.9 42.4 41.5
MERIt + Prompt 70.2 62.6 80.5 48.5 39.5 42.4
LReasoner (ALBERT) 73.2 70.7 81.1 62.5 41.6 41.2
MERIt (ALBERT) 73.2 71.1 83.6 61.3 43.9 45.3
MERIt (ALBERT) + Prompt 75.0 72.2 82.5 64.1 45.8 43.8

Table 1: The overall results on ReClor and LogiQA. We adopt the accuracy as the evaluation metric and all the
baselines are based on RoBERTa except specific statement. For each model we repeated training for 5 times using
different random seeds and reported the average results. ‡: The results are reproduced by ourselves. max: The
results of the model achieving the best accuracy on the test set.

5 Experiment

5.1 Dataset and Baseline

We evaluated our method on two challenging log-
ical reasoning benchmarks, i.e., LogiQA and Re-
Clor, with several strong baselines, including the
pre-trained language models, DAGN (Huang et al.,
2021), Focal Reasoner (Ouyang et al., 2021) and
LReasoner (Wang et al., 2022). For more details,
please refer to Appendix B.

5.2 Implementation Detail

We further pre-trained RoBERTa and ALBERT on
Wikipedia for another 500 and 100 steps, respec-
tively, and the batch size for pre-training is set to
4,096. All experiments conducted on downstream
tasks are repeated for 5 times with different random
seeds. The knowledge graph we used for construct-
ing training data is provided by Qin et al. (2021).
More implementation details can be found in Ap-
pendix C.

6 Result and Analysis

6.1 Overall Results

The overall results on ReClor and LogiQA are
shown in Table 1. It can be observed that 1)
MERIt outperforms all the strong baselines using
the same backbone with significant improvements.
Besides, our method achieves the new state-of-the-
art performance on both datasets. 2) Our method

leads to drastic contribution to the original mod-
els without further pre-training, i.e., RoBERTa and
ALBERT, and the prompt-tuning further enhances
our model with a significant performance margin,
which both demonstrate the potential of our pre-
training method. 3) MERIt achieves better perfor-
mance on the more difficult split of ReClor (Test-
H), indicating that our pre-training method is less
affected by the statistical shortcut (Yu et al., 2020).
4) MERIt + Prompt does not benefit from the frame-
work of LReasoner significantly. This is probably
because the basic knowledge about logic rules has
been covered in our method. 5) We also report the
best result on the test set on LogiQA and ReClor
for fair comparison with the published results of
LReasoner. It can be observed that in terms of
the best accuracy on the test set, our model still
outperforms LReasoner consistently based on both
RoBERTa and ALBERT.

6.2 Ablation Study
Table 2 shows the results of our ablation studies. To
observe the impacts brought by the meta-path strat-
egy, we built a baseline model without the meta-
path strategy by randomly selecting the sentences
in a passage to form the context-answer pairs.

From this table we can conclude that: 1) the
model without counterfactual data augmentation
(- DA) has a severe performance degradation. It
suggests that the counterfactual data is essential for
MERIt to conduct logical reasoning. As for the
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Model Dev Dev (P.) Test Test (P.)
MERIt 66.8 69.4 59.6 61.6
- DA 63.0 64.5 57.9 59.8
+ DA2 65.3 67.8 60.2 61.3
+ DA3 66.2 68.0 59.3 61.9
- Option-oriented CL 63.8 65.4 58.9 61.5
- Context-oriented CL 64.0 66.5 58.8 60.2
- Meta-Path 64.8 65.1 58.0 60.8

Table 2: Performance comparisons on ReClor between
different variants of MERIt. DA means data augmenta-
tion and DAN refers to 1:N ratio of the original data to
the augmented data. P. is short for Prompt Tuning.

Figure 4: Results on the test set (left) and the test-H set
(right) of ReClor.

ratio of original data to the counterfactual one, on
test set, we found that 1:3 (+ DA3) leads to bet-
ter performance using prompt tuning while 1:2 (+
DA2) obtains the best performance using simple
fine-tuning. 2) The model without the guidance
of meta-path (- Meta-Path) demonstrates a much
worse performance than MERIt, indicating that
the meta-path strategy plays an important role by
discovering the potential logic structure. 3) Consid-
ering the results of models without the objectives
of option-oriented CL and context-oriented CL, it
can be seen that both contrastive learning schemes
are beneficial for logical reasoning. In addition, the
context-oriented CL is more effective than option-
oriented CL. One possible reason to this is that the
context-oriented CL is more diverse in format since
each sentence can be disturbed while the option-
oriented CL will make the model pay more atten-
tion to the option, leading to a worse generalization
during fine-tuning.

6.3 Performance with Limited Training Data
Figure 4 shows the accuracy on the test set and test-
H set of ReClor with respect to different amount
of training data. We reported the average results of
MERIt + Prompt, LReasoenr and RoBERTa. It can
be observed that: 1) With the scale of training data
becoming larger, the performance of all models

Pre-training Steps

Figure 5: The prompt-tuning results on ReClor using
the models pre-trained with different steps.

Model Dev Test
RoBERTa 84.9 84.2
+ MERIt 85.9 85.5

Table 3: The accuracy of different models on DREAM
dataset.

achieves improvements. 2) MERIt + Prompt shows
better performance under low resource, especially
on test-H. Our method trained on 40% data has
achieved comparable performance with RoBERTa.
In addition, on test-H, our method outperforms
RoBERTa and LReasoner trained on full dataset us-
ing only 20% and 40% training data, respectively,
evidently demonstrating the generalization capa-
bility of our method. 3) Further improvements to
LReasoner become insignificant when consuming
more training data. This suggests that the basic
logic rules can be easily fitted.

6.4 Effect of Pre-training Steps

In order to explore the effects of pre-training steps,
we fine-tuned the models pre-trained for different
steps on ReClor and the results are shown in Fig-
ure 5. From the histogram we can find that our
method achieves the best performance on dev set
at 500 steps. Besides, the model pre-trained with
100 steps (using only around 410k samples) has
achieved comparable performance with the best
one, indicating that our method is very competitive
with few training iterations.

6.5 Performance on DREAM

We also evaluated our method on another
benchmark requiring complex reasoning abilities,
DREAM (Sun et al., 2019), to verify its gener-
alization ability to different tasks. As shown in
Table 3, our method can also make significant im-
provements compared with RoBERTa, demonstrat-
ing the generalization ability of our method.
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Model Dev Test Test-E Test-H
DeBERTa-v2-xlarge 76.7 71.0 83.8 60.9

+ MERIt 78.0 73.1 86.2 64.4
DeBERTa-v2-xxlarge 78.3 75.3 84.0 68.4

+ MERIt 80.6 78.1 84.6 72.9

Table 4: Results on ReClor with DeBERTa as the back-
bone.

6.6 Results of DeBERTa

Table 4 shows the results of DeBERTa-v2-xlarge
and DeBERTa-v2-xxlarge on ReClor, which val-
idate that our method can be scaled to stronger
pre-trained language models with significant im-
provements.

7 Conclusion and Future Work

In this paper, we present MERIt, a meta-path
guided contrastive learning method to facilitate
logical reasoning via self-supervised pre-training.
MERIt is built upon the meta-path strategy for auto-
matic data construction and the counterfactual data
augmentation to eliminate the information shortcut
during pre-training. With the evaluation on two
logical reasoning benchmarks, our method has ob-
tained significant improvements over strong base-
lines relying on task-specific model architecture
or augmentation of original dataset. Pertaining to
the further work, we plan to strengthen our method
from both data construction and model architecture
design angles. More challenging instances are ex-
pected to be constructed if multiple meta-paths can
be considered at the same time. Besides, leveraging
GNNs may bring better interpretability and gener-
alization since the graph structure can be integrated
into both pre-training and fine-tuning stages.
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A DFS-based Algorithm for Meta-Path
Extraction

Algorithm 1 The DFS algorithm to obtain the
meta-paths.

Input: The graph G = (E ,V); The sentences of
the document D = {s1, · · · , sm}; The entity
set of the i-th sentence Vi;

Output: P , S , and A+;
1: for each (ei, ej) ∈ V × V and i 6= j do
2: A+ = {sk|ei ∈ Vk, ej ∈ Vk};
3: D′ = D \ A+;
4: cond,P,S ←

DFS(ei, {ei},∅, ej ,G,D′);
5: if cond is TRUE and A+ is not ∅ then
6: return A+,P, S;
7: end if
8: end for
9: return ∅,∅, ∅;

10:

11: function DFS(ei,P ′,S ′, ed,G = (E ,V),D′)
12: if ei = ed then
13: return TRUE, P ′,S ′;
14: end if
15: for each (ej , sk) ∈ V × D′ and (ei, ej) ∈
E , ej ∈ Vk do

16: G′ = (E ,V \ {ej});
17: P ′′ = P ′ ∪ {ej};
18: if ei ∈ Vk then
19: D′′ = D′ \ {sk};
20: S ′′ = S ′ ∪ {sk};
21: else
22: D′′ = D′,S ′′ = S ′;
23: end if
24: return DFS(ej ,P ′′,S ′′, ed,G′,D′′);
25: end for
26: return FALSE, ∅, ∅;
27: end function

B Details of Experimental Setup

B.1 Dataset

ReClor (Yu et al., 2020) is extracted from logi-
cal reasoning questions of standardized graduate
admission examinations. The held-out test set is
further divided into EASY and HARD subsets, de-
noted as test-E and test-H, respectively. The in-
stances in test-E are biased and can be solved even
without knowing contexts and questions by neu-

ral models. A leaderboard4 is also host for public
evaluation.
LogiQA (Liu et al., 2020) consists of 8,678
multiple-choice questions collected from National
Civil Servants Examinations of China and are
manually translated into English by experts. The
dataset is randomly split into train/dev/test sets with
7,376/651/651 samples, respectively. LogiQA con-
tains various logical reasoning types, e.g., categori-
cal reasoning and sufficient conditional reasoning.

B.2 Baseline

DAGN (Huang et al., 2021) is a discourse-aware
graph network that reasons on the discourse struc-
ture of texts. It is based on elementary discourse
units and discourse relations. DAGN (Aug) is a
variant that augments the graph features.
Focal Reasoner (Ouyang et al., 2021) is a fact-
driven logical reasoning model, which builds super-
graphs on the top of fact units as the basis for logi-
cal reasoning. It captures both global connections
between facts and the local concepts or actions
inside the fact.
LReasoner (Wang et al., 2022) includes a con-
text extension framework and a data augmentation
algorithm, which are all conducted based on the
extracted logical expressions. This method has
achieved new state-of-the-art performance on Re-
Clor recently.

Besides, we also compare the performance with
the directly fine-tuned large pre-trained language
models, including RoBERTa and ALBERT.

C Implementation Detail

C.1 Data Construction

During the data construction process, we have em-
ployed two tricks to improve the complexity of the
pretext task:

1. For the sentence z as the relation provider for
negative instance construction, the sentences
from the document are primarily to be con-
sidered because they share the same entities
with the context or describe the same topic.
This can also be viewed as a trick to avoid
trivial solution by checking whether the sam-
ples come from the same domain. Another
problem is that if z comes from the same doc-
ument, taking the option-oriented method as

4https://eval.ai/web/challenges/
challenge-page/503/leaderboard/1347.
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ALBERT RoBERTa
Batch Size 4096 4096
Peak Learning Rate 5e-5 1e-4
Training Steps 100 500
Warmup Proportion 0.2 0.1
Weight Decay 0.01 0.01
Adam ε 1e-6 1e-6
Adam β1 0.9 0.9
Adam β2 0.98 0.98
Max Sequence Length 256 320
Gradient Clipping 5.0 5.0
Hidden Size of MLP 8192 2048

Table 5: Hyper-parameters for ALBERT and RoBERTa
during pre-training, respectively.

example, the replacement may not work if
ei = ea and ej = eb. To address it, we will
change the order of the entities to be replaced,
i.e., swapping the mentions of ei and ej .

2. Similarly, for counterfactual data augmenta-
tion, supposing the extracted meth-path of
a training instance connects an entity pair
〈 ei, ej 〉, ei and ej are always considered to
be replaced for generating counterfactual data.
And thus the sets of answer candidates A+

constructed from other documents, where the
corresponding meta-paths also link 〈 ei, ej 〉,
can be employed as negative candidates di-
rectly. The motivation of the trick is to avoid
modifications on the original texts as many as
possible.

C.2 Pre-training Setting

We employed the model implementation of Trans-
former from Huggingface (Wolf et al., 2020) and
pytorch5 framework. The corpus for pre-training
is generated from the dataset provided by Qin et al.
(2021)6, which includes the pre-processed passages
from Wikipedia and the recognized entities with
their distantly annotated relations. The generated
corpus contains one million samples and each sam-
ple has 3 negative options.

During pre-training, we adopted the LAMB (You
et al., 2020) optimizer, warming up the learn-
ing rate to the peak and then linearly decaying
it. It takes 32 hours on 4 RTX 2080Ti GPUs for
RoBERTa pre-training and 3 days on 2 TeslaT4
GPUs for ALBERT pre-training. Other hyper-
parameters for pre-training are reported in Table 5.

5https://pytorch.org.
6https://github.com/thunlp/ERICA.

Model Dev Test Test-E Test-H
RoBERTa 35.8 35.7 44.5 28.8
MERIt (500 steps) 39.0 35.2 41.8 30.0
100 steps 37.5 38.1 47.5 30.6
200 steps 38.1 38.0 47.3 30.7
300 steps 37.4 36.4 43.6 30.7
400 steps 38.5 35.9 42.5 30.7

ALBERT 43.6 40.2 46.6 35.2
MERIt (ALBERT) 46.3 44.6 51.8 38.9

Table 6: Results of Linear Probing on ReClor.

C.3 Hyper-parameters for Fine-tuning

The random seeds we utilized for repeated exper-
iments are 42, 43, 44, 45 and 4321. The hyper-
parameters for fine-tuning are shown in Table 7.

D Case Study for Generated Examples

Figure 6 shows the constructed examples for con-
trastive learning as well as the corresponding coun-
terfactual examples.

E Results for Linear Probing

Table 6 shows the results of linear probing on Re-
Clor, where we used a single linear layer as the
output layer and only fine-tuned its parameters.
As shown in the table, MERIt (100 steps) and
MERIt (ALBERT) outperform RoBERTa and AL-
BERT on both dev and test set, respectively.

F A Different View from Contrastive
Graph Representation Learning

To understand why the pre-training approach can
promote logical reasoning, we provide a different
view from the contrastive learning for graphs. Fol-
lowing Qiu et al. (2020), x and x+ in Equation 1
are different sub-graphs extracted from the same
graph through random walk with restart (Tong et al.,
2006) while x− is sub-graph sampled from a dif-
ferent graph. To avoid the trivial solution by sim-
ply checking whether the node indices of two sub-
graphs match, they also developed an anonymiza-
tion operation by relabeling the nodes of each sub-
graph. In fact, our proposed method can be taken as
a special case of graph contrastive learning. Firstly,
the context and answer based on the meta-path
can be viewed as sub-graphs of G. In particular,
the answer is the sub-graph with only two nodes
(the two entities connected by the meta-path). Sec-
ondly, the entity replacement for negative candi-
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dates construction and counterfactual data gener-
ation play similar roles with the anonymization
operation. Both of them aim at guiding the model
focus on the logical/graph structure. The only as-
sumption our approach built upon is that inferring
the consistency defined in Equation 4 is in demand
of logical reasoning, which has already been ex-
plored in many studies for document-level relation
extraction (Zeng et al., 2021, 2020a).
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ALBERT RoBERTa
ReClor LogiQA ReClor LogiQA

Batch Size 24 24 24 16
Peak Learning Rate 2e-5♣/3e-5 2e-5 1e-5♣/1.5e-5♠ 8e-6
Epoch 10 10 10 10
Warmup Proportion 0.1 0.1 0.1 0.2
Weight Decay 0.01 0.01 0.01 0.01
Adam ε 1e-6 1e-6 1e-6 1e-6
Adam β1 0.9 0.9 0.9 0.9
Adam β2 0.98 0.98 0.98 0.98
Max Sequence Length 256♣/231♠ 256♣/231♠ 256♣/231♠ 256♣/231♠
Prefix Length 0♣/5♠ 0♣/5♠ 0♣/5♠ 0♣/5♠
Gradient Clipping 0.0 0.0 0.0 0.0
Dropout 0.1 0.0♣/0.1♠ 0.1 0.1

Table 7: Hyper-parameters for fine-tuning on ReClor and LogiQA. ♣: Fine-Tuning. ♠: Prompt Tuning.

Figure 6: Two cases of the generated and the counterfactual examples. The target entities used for extracting
meta-path are colored in red.
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