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Abstract

Few-shot named entity recognition (NER) sys-
tems aim at recognizing novel-class named en-
tities based on only a few labeled examples.
In this paper, we present a decomposed meta-
learning approach which addresses the problem
of few-shot NER by sequentially tackling few-
shot span detection and few-shot entity typing
using meta-learning. In particular, we take the
few-shot span detection as a sequence labeling
problem and train the span detector by introduc-
ing the model-agnostic meta-learning (MAML)
algorithm to find a good model parameter ini-
tialization that could fast adapt to new entity
classes. For few-shot entity typing, we pro-
pose MAML-ProtoNet, i.e., MAML-enhanced
prototypical networks to find a good embed-
ding space that can better distinguish text span
representations from different entity classes.
Extensive experiments on various benchmarks
show that our approach achieves superior per-
formance over prior methods.1

1 Introduction

Named entity recognition (NER) aims at locating
and classifying text spans into pre-defined entity
classes such as locations, organizations, etc. Deep
neural architectures have shown great success in
fully supervised NER (Lample et al., 2016; Ma and
Hovy, 2016; Chiu and Nichols, 2016; Peters et al.,
2017) with a fair amount of labeled data available
for training. However, in practical applications,
NER systems are usually expected to rapidly adapt
to some new entity types unseen during training.
It is costly while not flexible to collect a number
of additional labeled data for these types. As a
result, the problem of few-shot NER, which in-
volves learning unseen entity types from only a

*Equal contributions.
†Work during internship at Microsoft Research Asia.
1Our implementation is publicly available at https:

//github.com/microsoft/vert-papers/tree/
master/papers/DecomposedMetaNER

few labeled examples for each class (also known
as support examples), has attracted considerable
attention from the research community in recent
years.

Previous studies on few-shot NER are typically
based on token-level metric learning, in which a
model compares each query token to the proto-
type (Snell et al., 2017) of each entity class or each
token of support examples and assign the label ac-
cording to their distances (Fritzler et al., 2019; Hou
et al., 2020; Yang and Katiyar, 2020). Alterna-
tively, some more recent attempts have switched to
span-level metric-learning (Yu et al., 2021; Wang
et al., 2021a) to bypass the issue of token-wise la-
bel dependency while explicitly utilizing phrasal
representations.

However, these methods based on metric learn-
ing might be less effective when encountering large
domain gap, since they just directly use the learned
metric without any further adaptation to the target
domain. In other words, they do not fully explore
the information brought by the support examples.
There also exist additional limitations in the current
methods based on span-level metric learning. First,
the decoding process requires careful handling of
overlapping spans due to the nature of span enumer-
ation. Second, the class prototype corresponding to
non-entities (i.e., prototype of the “O” class) is usu-
ally noisy because non-entity common words in the
large vocabulary rarely share anything together in
common. Moreover, when targeting at a different
domain, the only available information useful for
domain transfer is the limited number of support
examples. Unfortunately, these key examples are
only used for inference-phase similarity calculation
in previous methods.

To tackle these limitations, this paper presents
a decomposed meta-learning framework that ad-
dresses the problem of few-shot NER by sequen-
tially conducting few-shot entity span detection
and few-shot entity typing respectively via meta-
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learning. Specifically, for few-shot span detection,
we model it as a sequence labeling problem to avoid
handling overlapping spans. Note that the detection
model aims at locating named entities and is class-
agnostic. We only feed the detected entity spans
to the typing model for entity class inference, and
hence the problem of noisy “O” prototype could
also be eliminated. When training the span detec-
tor, we specifically use the model-agnostic meta-
learning (MAML) (Finn et al., 2017) algorithm
to find a good model parameter initialization that
could fast adapt to new entity classes with learned
class-agnostic meta-knowledge of span boundaries
after updating with the target-domain support exam-
ples. The boundary information of domain-specific
entities from the support examples is supposed
to be effectively leveraged via these update steps
such that the model could better transfer to the tar-
get domain. For few-shot entity typing, we imple-
ment the typing model with standard prototypical
networks (Snell et al., 2017, ProtoNet), and pro-
pose MAML-ProtoNet to narrow the gap between
source domains and the target domain. Compared
with ProtoNet which only uses support examples
for inference-phase similarity calculation, the pro-
posed MAML-Proto additionally utilizes these ex-
amples to modify the shared embedding space of
spans and prototypes by clustering spans represen-
tations from the same entity class while dispersing
those from different entity classes for more accu-
rate predictions.

We evaluate our proposed framework on sev-
eral benchmark datasets with different few-shot
settings. Experimental results show that our frame-
work achieves superior performance over previous
state-of-the-art methods. We also conduct qualita-
tive and quantitative analyses over how the different
strategies to conduct meta-learning might affect the
performance.

2 Task Definition

Given an input sequence x = {xi}Li=1 with L to-
kens, an NER system is supposed to output a label
sequence y = {yi}Li=1, where xi is the i-th token,
yi ∈ Y∪{O} is the label of xi, Y is the pre-defined
entity class set, and O denotes non-entities.

In this paper, we focus on the standard N -way
K-shot setting as in Ding et al. (2021). An ex-
ample of 2-way 1-shot episode is shown in Ta-
ble 1. In the training phase, we consider train-
ing episodes Etrain = {(Strain,Qtrain,Ytrain)}

built from source-domain labeled data, where
Strain = {(x(i),y(i))}N×K

i=1 denotes the support
set, Qtrain = {x(j),y(j)}N×K′

j=1 denotes the query
set, Ytrain denotes the set of entity classes, and
|Ytrain| = N . In the testing phase, we consider
novel episodes Enew = {(Snew,Qnew,Ynew)}
constructed with data from target domains in a simi-
lar way. In the few-shot NER task, a model learned
with training episodes Etrain is expected to lever-
age the support set Snew = {(x(i),y(i))}N×K

i=1

of a novel episode (Snew,Qnew,Ynew) ∈ Enew
to make predictions on the query set Qnew =
{x(j)}N×K′

j=1 . Here, Ynew denotes the set of en-
tity classes with a cardinality of N . Note that,
∀ Ytrain,Ynew, Ytrain ∩ Ynew = ∅.

Target Types Y [person-actor], [art-film]

Support set S

(1) Jack Gordon[person-actor] ( born 27
June 1985 ) is an English actor .
(2) This location had also been used
to shoot the film “ Saving Private
Ryan[art-film] ” .

Query Set Q
Kurland starred in “ Taps ” , which
won first prize at the Rhode Island
International Film Festival in 2006 .

Expected output

Kurland[person-actor] starred in “
Taps[art-film] ” , which won first prize
at the Rhode Island International
Film Festival in 2006 .

Table 1: An example of the simplest 2-way 1-shot set-
ting, which contains two entity classes and each class
has one example (shot) in the support set S. Different
colors indicate different entity classes.

3 Methodology

Figure 1 illustrates the overall framework of our
decomposed meta-learning approach for few-shot
named entity recognition. It is composed of two
steps: entity span detection and entity typing.

3.1 Entity Span Detection
The span detection model aims at locating all the
named entities in an input sequence. The model
should be type-agnostic, i.e., we do not differen-
tiate the specific entity classes. As a result, the
parameters of the model can be shared across dif-
ferent domains and classes. With this in mind,
we train the span detection model by exploiting
model-agnostic meta-learning (Finn et al., 2017)
to promote the learning of the domain-invariant in-
ternal representations rather than domain-specific
features. In this way, the meta-learned model is
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Figure 1: The framework of our proposed approach is decomposed into two modules: (a) entity span detection with
parameters Θ and (b) entity typing with parameters γ. Two modules are trained independently using (Strain, Qtrain).
At meta-test time, these two modules firstly are finetuned on the support set Snew, then given a query sentence in
Qnew, the spans detected by (a) are sent to (b) for entity typing.

expected to be more sensitive to target-domain sup-
port examples, and hence only a few fine-tune steps
on these examples can make rapid progress without
overfitting.

3.1.1 Basic Detector
Model In this work, we implement a strong span
detector via sequence labeling. We apply the
BIOES tagging scheme instead of the standard
BIO2 to provide more specific and fine-grained
boundary information of entity spans.2 Given an
input sequence x = {xi}Li=1 with L tokens, we
first leverage an encoder fθ to obtain contextual-
ized representations h = {hi}Li=1 for all tokens:

h = fθ(x). (1)

With each hi derived, we then use a linear clas-
sification layer to compute the probability distribu-
tion of labels that indicate whether the token xi is
inside an entity or not, using a softmax function:

p(xi) = softmax(Whi + b), (2)

where p(xi) ∈ R|C| with C = {B, I,O,E, S}
being the label set. Θ = {θ,W, b} are trainable
parameters.

Training Generally, the learning loss w.r.t. x
is modeled as the averaged cross-entropy of the
predicted label distribution and the ground-truth
one over all tokens. Following Wu et al. (2020), we

2We found BIOES to be stronger than BIO for type-
agnostic span detection as it explicitly encourages the model
to learn more specific and fine-grained boundary information.
Besides, our entity typing model aims to assign an entity type
for each detected span, which does not involve any tagging
scheme.

add a maximum term here to mitigate the problem
of insufficient learning for tokens with relatively
higher losses, which can be formulated as:

L(Θ) =
1

L

L∑
i=1

CrossEntropy (yi, p(xi))

+ λ max
i∈{1,2,...,L}

CrossEntropy (yi, p(xi)) ,

(3)
where λ ≥ 0 is a weighting factor.

Inference For inference, we use the learned
model to predict the label distribution for each
token in a given test case. We apply the Viterbi
algorithm (Forney, 1973) for decoding. It is worthy
to note that we do not train a transition matrix here,
but simply add constraints to ensure that the pre-
dicted label sequence would not violate the BIOES
tagging scheme.

3.1.2 Meta-Learning Procedure
Here we elaborate on the proposed meta-learning
procedure which consists of two phases: meta-
training on Etrain and meta-testing on Enew. The
Appendix A.1 describes the general framework of
meta-learning for reference.

Meta-Training In this phase, we train a mention
detection modelMΘ by repeatedly simulating the
Meta-Testing phase, where the meta-trained model
is fine-tuned with the support set of a novel episode
and then tested on the corresponding query set.

Specifically, we first randomly sample an
episode (S(i)train,Q

(i)
train,Y

(i)
train) from Etrain and

perform inner-update:

Θ′
i = Un(Θ;α,S(i)train), (4)

1586



where Un denotes n-step gradient updates with the
learning rate α to minimize L(Θ;S(i)train), i.e., the
loss in Eq. (3) derived from the support set S(i)train.

We then evaluate Θ′ on the query set Q(i)
train

and perform meta-update by aggregating multiple
episodes:

min
Θ

∑
i

L(Θ′
i;Q

(i)
train). (5)

Since Eq. (5) involves the second order deriva-
tive, we employ its first-order approximation for
computational efficiency:

Θ← Θ− β
∑
i

∇Θ′
i
L(Θ′

i;Q
(i)
train), (6)

where β denotes the learning rate used in meta-
update.

Meta-Testing In this phase, we first fine-tune the
meta-trained span detection modelMΘ∗ with the
loss function defined in Eq. (3) on the support set
Snew from a novel episode, and then make predic-
tions for corresponding query examplesQnew with
the fine-tuned modelMΘ′ .

3.2 Entity Typing
For entity typing, we aim to assign a specific entity
class for each span output by the mention detection
model. In the few-shot learning scenario, we take
the prototypical networks (ProtoNet) (Snell et al.,
2017) as the backbone for entity typing. To ex-
plore the knowledge brought by support examples
from a novel episode, we propose to enhance the
ProtoNet with the model-agnostic meta-learning
(MAML) algorithm (Finn et al., 2017) for a more
representative embedding space, where text spans
from different entity classes are more distinguish-
able to each other.

3.2.1 Basic Model: ProtoNet
Span Representation Given an input sequence
with L tokens x = {xi}Li=1, we use an encoder gγ
to compute contextual token representations h =
{hi}Li=1 in the same way as Eq. (1):

h = gγ(x). (7)

Assume x[i,j] being the output of the span de-
tection model which starts at xi and ends at xj ,
we compute the span representation of x[i,j] by av-
eraging representations of all tokens inside x[i,j]:

s[i,j] =
1

j − i+ 1

j∑
k=i

hk. (8)

Class Prototypes Let Sk = {x[i,j]} denotes the
set of entity spans contained in a given support
set S that belongs to the entity class yk ∈ Y , we
compute the prototype ck for each entity class yk
by averaging span representations of all x[i,j] ∈ Sk:

ck(S) =
1

|Sk|
∑

x[i,j]∈Sk

s[i,j]. (9)

Training Given a training episode denoted as
(Strain,Qtrain,Ytrain), we first utilize the sup-
port set Strain to compute prototypes for all en-
tity classes in Ytrain via Eq. (9). Then, for each
span x[i,j] from the query set Qtrain, we calculate
the probability that x[i,j] belongs to an entity class
yk ∈ Y based on the distance between its span
representation s[i,j] and the prototype of yk:

p(yk;x[i,j]) =
exp

{
−d

(
ck(Strain), s[i,j]

)}∑
yi∈Y

exp
{
−d

(
ci(Strain), s[i,j]

)} ,
(10)

where d(·, ·) denotes the distance function. Let
y[i,j] ∈ Y denote the ground-truth entity class w.r.t.
x[i,j], the parameters of the ProtoNet, i.e., γ, are
trained to minimize the cross-entropy loss:

L(γ) =
∑

x[i,j]∈Qtrain

− log p(y[i,j];x[i,j]). (11)

Inference During inference time, given a novel
episode (Snew,Qnew,Ynew) for inference, we first
leverage the learned model to compute prototypes
for all yk ∈ Ynew on Snew. Then, upon the mention
detection model, we inference the entity class for
each detected entity span x[i,j] in Qnew by taking
the label yk ∈ Ynew with the highest probability in
Eq. (10):

ŷ[i,j] = argmax
yk

p(yk;x[i,j]). (12)

3.2.2 MAML Enhanced ProtoNet
Here, we elaborate on the procedure to integrate the
ProtoNet and the model-agnostic meta-learning.

Meta-Training Given a randomly sampled
episode (S(i)train,Q

(i)
train,Y

(i)
train) from Etrain, for

inner-update, we first compute prototypes for each
entity class in Ytrain using S(i)train via Eq. (9), and
then take each span x[i,j] ∈ S

(i)
train as the query

item in conventional ProtoNet for gradient update:

γ′i = Un(γ;α,S(i)train), (13)
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where Un denotes n-step gradient updates with the
learning rate α to minimize the cross-entropy loss
L(γ;S(i)train) as in Eq. (11).

As for meta-update, we first re-compute proto-
types for each entity class in Y(i)

train with γ′, i.e.,
the model parameters obtained from inner-update.
After that, we perform meta-update by evaluating
γ′ on the query set Q(i)

train. We employ the first-
order approximation again for computational effi-
ciency. When aggregating gradients from multiple
episodes, it could be formulated as:

γ ← γ − β
∑
i

∇γ′
i
L(γ′i;Q

(i)
train), (14)

Meta-Testing Given (Snew,Qnew,Ynew), a
novel episode unseen during training, conventional
ProtoNet directly adopts the meta-trained model to
compute prototypes with Snew, and then inference
on Qnew. Here, we first take the support examples
from Snew to fine-tune the meta-learned model
γ∗ for a few steps in a way the same as Eq. (13),
however, the loss is computed on Snew. Then, we
leverage Snew again to compute prototypes with
the fine-tuned model, and further inference the
entity class for each detected span in Qnew as in
Eq. (12).

4 Experiments

4.1 Settings
4.1.1 Datasets
We conduct experiments to evaluate the proposed
approach on two groups of datasets.

Few-NERD (Ding et al., 2021). It is annotated
with a hierarchy of 8 coarse-grained and 66 fine-
grained entity types. Two tasks are considered
on this dataset: i) Intra, where all entities in
train/dev/test splits belong to different coarse-
grained types. ii) Inter, where train/dev/test splits
may share coarse-grained types while keeping the
fine-grained entity types mutually disjoint. 3

Cross-Dataset (Hou et al., 2020). Four datasets
focusing on four domains are used here:
CoNLL-2003 (Tjong Kim Sang, 2002) (news),
GUM (Zeldes, 2017) (Wiki) , WNUT-2017 (Der-
czynski et al., 2017) (social), and Ontonotes (Prad-
han et al., 2013) (mixed). We take two domains for
training, one for validation, and the remaining for
test. For fair comparison, we directly use sampled

3https://github.com/thunlp/Few-NERD

episodes by Hou et al. (2020). For more details of
these datasets, please refer to the Appendix A.2.

4.1.2 Evaluation
For evaluation on Few-NERD, we employ
episode evaluation as in Ding et al. (2021) and cal-
culate the precision (P), recall (R), and micro F1-
score (F1) over all test episodes. For evaluation on
Cross-Dataset, we calculate P, R, F1 within each
episode and then average over all episodes as in
Hou et al. (2020). For all results, we report the
mean and standard deviation based on 5 runs with
different seeds.

4.1.3 Implementation Details
We implement our approach with PyTorch 1.9.04.
We leverage two separate BERT models for fθ
in Eq. (1) and gγ in Eq. (7), respectively. Fol-
lowing previous methods (Hou et al., 2020; Ding
et al., 2021), we use the BERT-base-uncased model
(Devlin et al., 2019). The parameters of the em-
bedding layer are frozen during optimization. We
train all models for 1,000 steps and choose the best
model with the validation set. We use a batch size
of 32, maximum sequence length of 128, and a
dropout probability of 0.2. For the optimizers, we
use AdamW (Loshchilov and Hutter, 2019) with a
1% linearly scheduled warmup. We perform grid
search for other hyper-parameters and select the
best settings with the validation set. For more de-
tails, please refer to the Appendix A.3.

4.2 Main Results
Baselines For FewNERD, we compare the pro-
posed approach to ESD (Wang et al., 2021a), CON-
TAINER (Das et al., 2021), and methods from
Ding et al. (2021), e.g., ProtoBERT, StructShot,
etc. For Corss-Dataset, we compare our method
to L-TapNet+CDT (Hou et al., 2020) and other
baselines from Hou et al. (2020), e.g., Transfer-
BERT, Matching Network, etc. Please refer to the
Appendix A.4 for more details about baselines.

Results Table 2 and Table 3 report the results of
our approach alongside those reported by previous

4https://pytorch.org/
5To make fair comparison with CONTAINER (Das

et al., 2021) and ESD (Wang et al., 2021a), we use the
data from https://cloud.tsinghua.edu.cn/f/
8483dc1a34da4a34ab58/?dl=1, which corresponds
to the results reported in https://arxiv.org/pdf/
2105.07464v5.pdf. For results of our approach
on data from https://cloud.tsinghua.edu.cn/f/
0e38bd108d7b49808cc4/?dl=1, please refer to our
Github.
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Models
Intra Inter

1∼2-shot 5∼10-shot 1∼2-shot 5∼10-shot

5 way 10 way 5 way 10 way 5 way 10 way 5 way 10 way

ProtoBERT† 23.45±0.92 19.76±0.59 41.93±0.55 34.61±0.59 44.44±0.11 39.09±0.87 58.80±1.42 53.97±0.38

NNShot† 31.01±1.21 21.88±0.23 35.74±2.36 27.67±1.06 54.29±0.40 46.98±1.96 50.56±3.33 50.00±0.36

StructShot† 35.92±0.69 25.38±0.84 38.83±1.72 26.39±2.59 57.33±0.53 49.46±0.53 57.16±2.09 49.39±1.77

CONTAINER (Das et al., 2021) 40.43 33.84 53.70 47.49 55.95 48.35 61.83 57.12
ESD (Wang et al., 2021a) 41.44±1.16 32.29±1.10 50.68±0.94 42.92±0.75 66.46±0.49 59.95±0.69 74.14±0.80 67.91±1.41

Ours 52.04±0.44 43.50±0.59 63.23±0.45 56.84±0.14 68.77±0.24 63.26±0.40 71.62±0.16 68.32±0.10

Table 2: F1 scores with standard deviations on Few-NERD for both inter and intra settings. † denotes the results
reported in Ding et al. (2021).5 The best results are in bold.

Models
1-shot 5-shot

News Wiki Social Mixed News Wiki Social Mixed

TransferBERT‡ 4.75±1.42 0.57±0.32 2.71±0.72 3.46±0.54 15.36±2.81 3.62±0.57 11.08±0.57 35.49±7.60

SimBERT‡ 19.22±0.00 6.91±0.00 5.18±0.00 13.99±0.00 32.01±0.00 10.63±0.00 8.20±0.00 21.14±0.00

Matching Network‡ 19.50±0.35 4.73±0.16 17.23±2.75 15.06±1.61 19.85±0.74 5.58±0.23 6.61±1.75 8.08±0.47

ProtoBERT‡ 32.49±2.01 3.89±0.24 10.68±1.40 6.67±0.46 50.06±1.57 9.54±0.44 17.26±2.65 13.59±1.61

L-TapNet+CDT (Hou et al., 2020) 44.30±3.15 12.04±0.65 20.80±1.06 15.17±1.25 45.35±2.67 11.65±2.34 23.30±2.80 20.95±2.81

Ours 46.09±0.44 17.54±0.98 25.14±0.24 34.13±0.92 58.18±0.87 31.36±0.91 31.02±1.28 45.55±0.90

Table 3: F1 scores with standard deviations on Cross-Dataset. ‡ denotes the results reported in Hou et al. (2020).
The best results are in bold.

state-of-the-art methods.6 It can be seen that our
proposed method outperforms the prior methods
with a large margin, achieving an performance im-
provement up to 10.60 F1 scores on Few-NERD
(Intra, 5way 1∼2 shot) and 19.71 F1 scores on
Cross-Dataset (Wiki, 5-shot), which well demon-
strates the effectiveness of the proposed approach.
Table 2 and Table 3 also depict that compared with
the results of Few-NERD Inter, where the train-
ing episodes and test episodes may be constructed
with the data from the same domain while still fo-
cusing on different fine-grained entity classes, our
approach attains more impressive performance in
other settings where exists larger transfer gap, e.g.,
transferring across different coarse entity classes
even different datasets built from different domains.
This suggests that our approach is good at dealing
with difficult cases, highlighting the necessity of
exploring information contained in target-domain
support examples and the strong adaptation ability
of our approach.

4.3 Ablation Study
To validate the contributions of different compo-
nents in the proposed approach, we introduce the
following variants and baselines for ablation study:
1) Ours w/o MAML, where we train both the men-

6We also provide the intermediate results, i.e., F1-scores
of entity span detection in the Appendix A.5.

tion detection model and the ProtoNet in a conven-
tional supervised manner and then fine-tune with
few-shot examples. 2) Ours w/o Span Detector,
where we remove the mention detection step and
integrate MAML with token-level prototypical net-
works. 3) Ours w/o Span Detector w/o MAML,
where we further eliminate the meta-learning pro-
cedure from Ours w/o Span Detector, and thus
becomes the conventional token-level prototypical
networks. 4) Ours w/o ProtoNet, where we di-
rectly apply the original MAML algorithm to train
a BERT-based tagger for few-shot NER.

Intra Inter

Ours 52.04 68.77
1) Ours w/o MAML 48.76 64.44
2) Ours w/o Span Detector 36.06 53.56
3) Ours w/o Span Detector w/o MAML 23.45 44.44
4) Ours w/o ProtoNet 21.20 45.71

Table 4: Ablation study: F1 scores on Few-NERD 5-
way 1∼2-shot are reported.

Table 4 highlights the contributions of each com-
ponent in our proposed approach. Generally speak-
ing, removing any of them will generally lead to a
performance drop. Moreover, we can draw some in-
depth observations as follows. 1) Ours outperforms
Ours w/o MAML and Ours w/o Span Detector out-
performs Ours w/o Span Detector w/o MAML in-
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New-Query: The production opened on   Broadway at the   New Century Theatre   where it ran from November.

New-Support: Youth Sing Praise performed the show at the National Shrine of Our Lady of the Snows in Belleville .

Training-Support: He also functioned as a drama critic , allowing him free entry to Broadway and downtown shows .

Sup-Span-f.t.

Sup-Span

MAML-Span-f.t. (Ours)

Sup-Span-f.t. False Prediction

True prediction

Figure 2: Case study of span detection. Sup-Span: train a span detector in the fully supervised manner on available
data from all training episodes, and then directly use it for span detection. Sup-Span-f.t.: further fine-tune the
model learned by Sup-Span as in the proposed approach.

dicate that exploring information contained in sup-
port examples with the proposed meta-learning pro-
cedure does bring performance gain for few-shot
transfer. 2) Ours outperforms Ours w/o Span De-
tector and Ours w/o MAML outperforms Ours w/o
Span Detector w/o MAML demonstrate the essen-
tiality of the decomposed framework (i.e., mention
detection and entity typing) to mitigate the prob-
lem of noisy prototype for non-entities. 3) Though
MAML plays an important role in learning from
few-shot support examples, Ours w/o ProtoNet,
which requires the model to adapt the up-most clas-
sification layer without sharing knowledge with
training episodes leads to unsatisfactory results,
verifying the reasonableness and the effectiveness
of our decomposed meta-learning procedure.

How does MAML promote the span detector?
To bring up insights on how MAML promotes the
span detector, here we introduce two baselines and
compare them to our approach by case study. As
shown in Figure 2, given a query sentence from a
novel episode, Sup-Span only predicts a false pos-
itive span “Broadway” while missing the golden
span “New Century Theatre”. Note that “Broad-
way” appears in training corpus as an entity span,
indicating that the span detector trained in a fully
supervised manner performs well on seen entity
spans, but struggles to detect un-seen entity spans.
Figure 2 also shows that both our method and Sup-
Span-f.t. can successfully detect “New Century
Theatre”. However, Sup-Span-f.t. still outputs
“Broadway” while our method can produce more
accurate predictions. This shows that though fine-
tuning can benefit full supervised model on new
entity classes to some extend, it may bias too much
to the training data.

We further investigate how performances of
aforementioned span detectors vary with differ-
ent fine-tune steps. As shown in Figure 3, our
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Figure 3: F1 scores of differently trained span detectors
w.r.t. fine-tune steps on Few-NERD 5-way 1∼2-shot
test set. The light-colored area indicates the range of
results obtained from multiple random seeds.

Intra Inter

Ours (w/ MAML-ProtoNet) 52.04 68.77
Ours w/ ProtoNet 50.53 67.79

Table 5: Analysis on entity typing under Few-NERD
5-way 1∼2-shot setting. F1 scores are reported. Ours
w/ ProtoNet: built upon the same span detection model
as Ours, directly leverage ProtoNet for inference.

model (MAML-Span-f.t.) consistently outperforms
Sup-Span-f.t., suggesting that the proposed meta-
learning procedure could better leverage support
examples from novel episodes and meanwhile, help
the model adapt to new episodes more effectively.

How does MAML enhance the ProtoNet? We
first compare the proposed MAML-Proto to the
conventional ProtoNet based on the same span
detector proposed in this paper. Table 5 shows
that our MAML-ProtoNet achieves superior per-
formance than the conventional ProtoNet, which
verifies the effectiveness of leveraging the support
examples to refine the learned embedding space at
test time. To further analyze how MAML adjusts
the representation space of entity spans and proto-
types, we utilize t-SNE (van der Maaten and Hinton,
2008) to reduce the dimension of span representa-
tions obtained from ProtoNet and MAML-ProtoNet
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(a) Proto

theater
restaurant
disaster
sportsevent
election

(b) MAML-Proto

Figure 4: t-SNE visualization of span representations
for entity typing on Few-NERD Intra, 5-way 5∼10-
shot dev set. The representations are obtained from
BERT trained with ProtoNet, and our MAML enhanced
ProtoNet respectively.

for entity typing, the visualization is shown in Fig-
ure 4. We can see that MAML enhanced Proto can
cluster span representations of the same entity class
while dispersing span representations of different
entity classes . Therefore, compared with ProtoNet,
it is easier for the proposed MAML-ProtoNet to
assign an entity class for a query span by measur-
ing similarities between its representation and the
prototype of each entity class.

5 Related Work

Neural NER Modern NER systems usually for-
mulate the NER task as a sequence labeling prob-
lem and tackle it by implementing deep neural net-
works and a token-level classification layer with
a conditional random field (Lafferty et al., 2001,
CRF) layer on top (Ma and Hovy, 2016; Chiu and
Nichols, 2016; Liu et al., 2019; Devlin et al., 2019).
Alternative approaches for NER are also proposed
to handle the problem based on span classification
(Ouchi et al., 2020; Fu et al., 2021), machine read-
ing comprehension (Li et al., 2020b), and sequence
generation (Yan et al., 2021).

Few-Shot Learning and Meta-Learning Re-
cently, few-shot learning has received increasing
attention in the NLP community (Han et al., 2018;
Geng et al., 2019; Chen et al., 2019; Brown et al.,
2020; Schick and Schütze, 2021; Gao et al., 2021).
and meta-learning has become a popular paradigm
for few-shot settings. Typical meta-learning ap-
proaches can be divided into three categories:
black-box adaption based methods (Santoro et al.,
2016), optimization based methods (Finn et al.,
2017), and metric learning based methods(Vinyals
et al., 2016; Snell et al., 2017). Our work takes ad-
vantages of two popular meta-learning approaches,
i.e., prototypical network (Snell et al., 2017) and

MAML (Finn et al., 2017). The most related work
of this paper is Triantafillou et al. (2020), which
similarly implements MAML updates over proto-
typical networks for few-shot image classification.

Few-Shot NER Studies on few-shot NER typ-
ically adopt metric learning based approaches at
either token-level (Fritzler et al., 2019; Hou et al.,
2020; Yang and Katiyar, 2020; Tong et al., 2021)
or span-level (Yu et al., 2021; Wang et al., 2021a).
Athiwaratkun et al. (2020) and Cui et al. (2021)
also propose to address the problem via sequence
generation and adapt the model to a new domain
within the conventional transfer learning paradigm
(training plus finetuning). Differently, Wang et al.
(2021b) propose to decompose the problem into
span detection and entity type classification to bet-
ter leverage type description. They exploit a tradi-
tional span-based classifier to detect entity spans
and leverage class descriptions to learn represen-
tations for each entity class. When adapting the
model to new domains in the few-shot setting, they
directly fine-tune the model with the support exam-
ples. In this paper, we propose a decomposed meta-
learning based method to handle few-shot span
detection and few-shot entity typing sequentially
for few-shot NER. The contribution and novelty
of our work lie in that: i) Previous work trans-
fers the metric-learning based model learned in
source domains to a novel target domain either
without any parameter updates (Hou et al., 2020;
Wang et al., 2021a) or by simply applying con-
ventional fine-tuning (Cui et al., 2021; Das et al.,
2021; Wang et al., 2021b), while we introduce the
model-agnostic meta-learning and integrate it with
the prevalent prototypical networks to leverage the
information contained in support examples more ef-
fectively. ii) Existing studies depend on one (Hou
et al., 2020) or multiple prototypes (Tong et al.,
2021; Wang et al., 2021a) to represent text spans
of non-entities (“O”) for class inference, while we
avoid this problem by only locating named entities
during span detection. Moreover, meta-learning
has also been exploited in a few recent studies
(Li et al., 2020a; de Lichy et al., 2021) for few-
shot NER. However, our work substantially differs
from them in that we proposed a decomposed meta-
learning procedure to separately optimize the span
detection model and the entity typing model.
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6 Conclusion

This paper presents a decomposed meta-learning
method for few-shot NER problem, i.e., sequen-
tially tackle few-shot span-detection and few-shot
entity typing using meta-learning. We formulate
the few-shot span detection as a sequence labeling
problem and employ MAML to learn a good param-
eter initialization, which enables the model to fast
adapt to novel entity classes by fully exploring in-
formation contained in support examples. For few-
shot entity typing, we propose MAML-ProtoNet,
which can find a better embedding space than con-
ventional ProtoNet to represent entity spans from
different classes more distinguishably, thus making
more accurate predictions. Extensive experiments
on various benchmarks show that our approach
achieves superior performance over prior methods.
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A Appendix

A.1 Meta learning

The goal of meta-learning is to learn to fast adapt
to a new few-shot task that is never-seen-before.
To train a meta-learning model, a large number
of episodes Ttrain (few-shot tasks) are constructed
from training data Dtrain, which usually follows
the N -way K-shot task formulation and are used
to train the meta-learning model. One episode con-
tains a small training set Strain, called support set,
and a test set Qtrain, called query set. The meta-
learner generates a task-specific model for a new
task Ti via updating on support set Strain, then the
task-specific model is tested on Qtrain to get a test
error. The meta-learner then learns to learn new
tasks by considering how to reduce the test error
on Qtrain by updating on Strain. To evaluate the
task learning ability of a meta-learner, a bunch of
episodes Ttest are constructed from the normal test
data Dtest, and the expectation of performance on
Qtest from all test episodes is severed as evalua-
tion protocol. To distinguish the training phase of
meta-learner on episodes Ttrain and training of a
task-specific model on support set S , the former is
called meta-training and the latter is called training.
Similarly, the testing of a meta-learner on Ttest is
called meta-testing, and the evaluating of a task-
specific model on query set Q is called testing.

A.2 Datasets

Table A.1 shows the dataset statistics of original
data for constructing few-shot episodes.

Dataset Domain # Sentences # Classes

Few-NERD Wikipedia 188.2k 66
CoNLL03 News 20.7k 4

GUM Wiki 3.5k 11
WNUT Social 5.6k 6

OntoNotes Mixed 159.6k 18

Table A.1: Evaluation dataset statistics

For Few-NERD, we use episodes released by
Ding et al. (2021)7 which contain 20,000 episodes
for training, 1,000 episodes for validation, and
5,000 episodes for testing. Each episode is an
N-way K∼2K-shot few-shot task. As for Cross-
Dataset, two datasets are used for constructing
training episodes, one dataset is used for valida-
tion, and episodes from the remained dataset are

7https://ningding97.github.io/fewnerd/

used for evaluation. We use public episodes8 con-
structed by Hou et al. (2020). For 5shot, 200
episodes are used for training, 100 episodes for
validation, and 100 for testing. For the 1shot ex-
periment, 400/100/200 episodes are used for train-
ing/validation/testing, except for experiments on
OntoNotes(Mixed), where 400/200/100 episodes
are constructed for train/dev/test.

A.3 Additional Implementation Details

Parameter Setting We use BERT-base-unca
sed from Huggingface Library (Wolf et al., 2020)
as our base encoder following Ding et al. (2021).
We use AdamW (Loshchilov and Hutter, 2019) as
our optimizer with a learning rate of 3e-5 and 1%
linear warmup steps at both the meta-training and
finetuning in meta-testing time for all experiments.
The batch size is set to 32, the max sequence length
is set to 128 and we keep dropout rate as 0.1. At
meta-training phase, the inner update step is set to
2 for all experiments. When finetuning the span
detector at meta-testing phase, the finetune step is
set to 3 for all inter settings on Few-NERD dataset
and 30 for other experiments. For entity typing,
the finetune step at meta-testing phase is set to 3
for all experiments on Few-NERD dataset, 20 for
all Cross-Dataset experiments. To further boost
the performance, we only keep entities that have a
similarity score with its nearest prototype greater
than a threshold of 2.5. We set max-loss coefficient
λ as 2 at meta-training query set evaluation phase,
5 at other phases. We validate our model on dev
set every 100 steps and select the checkpoint with
best f1 score performance on dev set within the
max train steps 1,000. We use grid search for hy-
perparameter setting, the search space is shown in
Table A.2. The total model has 196M parameters
and trains in ≈60min on a Tesla V100 GPU.

Learning rate {1e-5, 3e-5, 1e-4}
Meta-test fine-tune steps {3, 5, 10, 20, 30}
Max-loss coefficient λ {0, 1, 2, 5, 10}
Type similarity threshold {1, 2.5, 5}
Mini-batch size {16, 32}

Table A.2: Hyper-parameters search space used in our
experiments.

8https://github.com/AtmaHou/
FewShotTagging
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A.4 Baselines
We consider the following metric-learning based
baselines:

SimBERT (Hou et al., 2020) applies BERT with-
out any finetuning as the embedding function, then
assign each token’s label by retrieving the most
similar token in the support set .

ProtoBERT (Fritzler et al., 2019) uses a token-
level prototypical network (Snell et al., 2017)
which represents each class by averaging token
representation with the same label, then the label
of each token in the query set is decided by its
nearest class prototype.

MatchingBERT (Vinyals et al., 2016) is similar
to ProtoBERT except that it calculates the similar-
ity between query instances and support instances
instead of class prototypes.

L-TapNet+CDT (Hou et al., 2020) enhances
TapNet (Yoon et al., 2019) with pair-wise embed-
ding, label semantic, and CDT transition mecha-
nism.

NNShot (Yang and Katiyar, 2020) pretrains
BERT for token embedding by conventional classi-
fication for training, a token-level nearest neighbor
method is used at testing.

StructShot (Yang and Katiyar, 2020) improves
NNshot by using an abstract transition probability
for Viterbi decoding at testing.

ESD (Wang et al., 2021a) is a span-level metric
learning based method. It enhances prototypical
network by using inter- and cross-span attention
for better span representation and designs multiple
prototypes for O label.

Besides, we also compare with the finetune-
based methods:

TransferBERT (Hou et al., 2020) trains a token-
level BERT classifier, then finetune task-specific
linear classifier on support set at test time.

CONTAINER (Das et al., 2021) uses token-
level contrastive learning for training BERT as to-
ken embedding function, then finetune the BERT
on support set and apply a nearest neighbor method
at inference time.

A.5 Results of Span Detection
Table A.3 and Table A.4 show the performance
of our span detection module on Few-NERD and
Cross-Dataset.

Models 1∼2-shot 5∼10-shot

5 way 10 way 5 way 10 way

Intra 73.69±0.14 74.32±1.84 77.76±0.24 78.66±0.15

Inter 76.71±0.30 76.63±0.24 75.97±0.14 76.62±0.11

Table A.3: F1 scores of our entity span detection module
on Few-NERD for both inter and intra settings.

Models News Wiki Social Mixed

1-shot 65.06±0.91 35.63±2.17 38.89±0.55 46.52±1.24

5-shot 74.20±0.33 46.26±1.28 43.16±1.23 54.70±0.88

Table A.4: F1 scores of our entity span detection module
on Cross-Dataset.

1596


