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Abstract
Do all instances need inference through the big
models for a correct prediction?
Perhaps not; some instances are easy and can
be answered correctly by even small capacity
models. This provides opportunities for im-
proving the computational efficiency of sys-
tems. In this work, we present an explorative
study on ‘model cascading’, a simple technique
that utilizes a collection of models of varying
capacities to accurately yet efficiently output
predictions. Through comprehensive experi-
ments in multiple task settings that differ in the
number of models available for cascading (K
value), we show that cascading improves both
the computational efficiency and the prediction
accuracy. For instance, in K=3 setting, cascad-
ing saves up to 88.93% computation cost and
consistently achieves superior prediction accu-
racy with an improvement of up to 2.18%. We
also study the impact of introducing additional
models in the cascade and show that it further
increases the efficiency improvements. Finally,
we hope that our work will facilitate develop-
ment of efficient NLP systems making their
widespread adoption in real-world applications
possible.

1 Introduction

Pre-trained language models such as RoBERTa
(Liu et al., 2019), ELECTRA (Clark et al., 2020),
and T5 (Raffel et al., 2020) have achieved remark-
able performance on numerous natural language
processing benchmarks (Wang et al., 2018, 2019;
Talmor et al., 2019). However, these models have
a large number of parameters which makes them
slow and computationally expensive; for instance,
T5-11B requires ∼87 × 1011 floating point oper-
ations (FLOPs) for an inference. This limits their
widespread adoption in real-world applications that
prefer computationally efficient systems in order to
achieve low response times.

The above concern has recently received consid-
erable attention from the NLP community leading

Figure 1: Illustrating a cascading approach with three
models (Mini, Med, and Base) arranged in increasing
order of capacity. An input is first passed through the
smallest model (Mini) which fails to predict with suf-
ficient confidence. Therefore, it is then inferred using
a bigger model (Med) that satisfies the confidence con-
straints and the system outputs its prediction (‘contradic-
tion’ as dog has four legs). Thus, by avoiding inference
through large/expensive models, the system saves com-
putation cost without sacrificing the accuracy.

to development of several techniques, such as (1)
network pruning that progressively removes model
weights from a big network (Wang et al., 2020;
Guo et al., 2021), (2) early exiting that allows mul-
tiple exit paths in a model (Xin et al., 2020), (3)
adaptive inference that adjusts model size by adap-
tively selecting its width and depth (Goyal et al.,
2020; Kim and Cho, 2021), (4) knowledge distilla-
tion that transfers ‘dark-knowledge’ from a large
teacher model to a shallow student model (Jiao
et al., 2020; Li et al., 2022), and (5) input reduc-
tion that eliminates less contributing tokens from
the input text to speed up inference (Modarressi
et al., 2022). These methods typically require ar-
chitectural modifications, network manipulation,
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saliency quantification, or even complex training
procedures. Moreover, computational efficiency
in these methods often comes with a compromise
on accuracy. In contrast, model cascading, a sim-
ple technique that utilizes a collection of models
of varying capacities to accurately yet efficiently
output predictions has remained underexplored.

In this work, we address the above limitation by
first providing mathematical formulation of model
cascading and then exploring several approaches to
do it. In its problem setup, a collection of models of
different capacities (and hence performances) are
provided and the system needs to output its predic-
tion by leveraging one or more models. On one ex-
treme, the system can use only the smallest model
and on the other extreme, it can use all the available
models (ensembling). The former system would
be highly efficient but usually poor in performance
while the latter system would be fairly accurate but
expensive in computation. Model cascading strives
to get the best of both worlds by allowing the sys-
tem to efficiently utilize the available models while
achieving high prediction accuracy. This is in line
with the ‘Efficiency NLP’ (Arase and et al., 2021)
policy document put up by the ACL community.

Consider the case of CommitmentBank
(de Marneffe et al., 2019) dataset on which
BERT-medium model having just 41.7M param-
eters achieves 75% accuracy and a bigger model
BERT-base having 110M parameters achieves 82%
accuracy. From this, it is clear that the performance
of the bigger model can be matched by inferring
a large number of instances using the smaller
model and only a few instances using the bigger
model. Thus, by carefully deciding when to use
bigger/more expensive models, the computational
efficiency of NLP systems can be improved. So,
how should we decide which model(s) to use for
a given test instance? Figure 1 illustrates an
approach to achieve this; it infers an instance
sequentially through models (ordered in increasing
order of capacity) and uses a threshold over the
maximum softmax probability (MaxProb) to
decide whether to output the prediction or pass it to
the next model in sequence. The intuition behind
this approach is that MaxProb shows a positive
correlation with predictive correctness. Thus,
instances that are predicted with high MaxProb
get answered at early stages as their predictions
are likely to be correct and the remaining ones get
passed to the larger models. Hence, by avoiding

inference through large and expensive models
(primarily for easy instances), cascading makes the
system computationally efficient while maintaining
high prediction performance.

We describe several such cascading methods in
Section 3.2. Furthermore, cascading allows custom
computation costs as different number of models
can be used for inference. We compute accuracies
for a range of costs and plot an accuracy-cost curve.
Then, we calculate its area (AUC) to quantify the
efficacy of the cascading method. Larger the AUC
value, the better the method is as it implies higher
accuracy on average across computation costs.

We conduct comprehensive experiments with 10
diverse NLU datasets in multiple task settings that
differ in the number of models available for cascad-
ing (K value from Section 3). We first demonstrate
that cascading achieves considerable improvement
in computational efficiency. For example, in case
of QQP dataset, cascading system achieves 88.93%
computation improvement over the largest model
(M3) in K=3 setting i.e. it requires just 11.07%
of the computation cost of model M3 to attain
equal accuracy. Then, we show that cascading
also achieves improvement in prediction accuracy.
For example, on CB dataset, the cascading system
achieves 2.18% accuracy improvement over M3

in the K=3 setting. Similar improvements are ob-
served in settings with different values of K. Lastly,
we show that introducing additional model in the
cascade further increases the efficiency benefits.

In summary, our contributions and findings are:
1. Model Cascading: We provide mathematical

formulation of model cascading, explore several
methods, and systematically study its benefits.

2. Cascading Improves Efficiency: Using
accuracy-cost curves, we show that cascading
systems require much lesser computation cost
to attain accuracies equal to that of big models.

3. Cascading Improves Accuracy: We show that
cascading systems consistently achieve superior
prediction performance than even the largest
model available in the task setting.

4. Comparison of Cascading Methods: We
compare performance of our proposed cascad-
ing methods and find that DTU (3.2) outper-
forms all others by achieving the highest AUC
of accuracy-cost curves on average.
We note that model cascading is trivially easy to

implement, can be applied to a variety of problems,
and can have good practical values.
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2 Related Work

In recent times, several techniques have been de-
veloped to improve the efficiency of NLP systems,
such as network pruning (Wang et al., 2020; Guo
et al., 2021; Chen et al., 2020), quantization (Shen
et al., 2020; Zhang et al., 2020; Tao et al., 2022),
knowledge distillation (Clark et al., 2019; Jiao et al.,
2020; Li et al., 2022; Mirzadeh et al., 2020), and
input reduction (Modarressi et al., 2022). Our work
is more closely related to dynamic inference (Xin
et al., 2020) and adaptive model size (Goyal et al.,
2020; Kim and Cho, 2021; Hou et al., 2020; Sol-
daini and Moschitti, 2020).

Xin et al. (2020) proposed Dynamic early exit-
ing for BERT (DeeBERT) that speeds up BERT
inference by inserting extra classification layers be-
tween each transformer layer. It allows an instance
to choose conditional exit from multiple exit paths.
All the weights (including newly introduced classi-
fication layers) are jointly learnt during training.

Goyal et al. (2020) proposed Progressive Word-
vector Elimination (PoWER-BERT) that reduces
intermediate vectors computed along the encoder
pipeline. They eliminate vectors based on signif-
icance computed using self-attention mechanism.
Kim and Cho (2021) extended PoWER-BERT to
Length-Adaptive Transformer which adaptively de-
termines the sequence length at each layer. Hou
et al. (2020) proposed a dynamic BERT model
(DynaBERT) that adjusts the size of the model by
selecting adaptive width and depth. They first train
a width-adaptive BERT and then distill knowledge
from full-size models to small sub-models.

Lastly, cascading has been studied in machine
learning and vision with approaches such as Haar-
cascade (Soo, 2014) but is underexplored in NLP
(Li et al., 2021). We further note that cascading is
non-trivially different from ‘ensembling’ as ensem-
bling always uses all the available models instead
of carefully selecting one or more models for infer-
ence.

Our work is different from existing methods in
the following aspects: (1) Existing methods typi-
cally require architectural changes, network manip-
ulation, saliency quantification, knowledge distilla-
tion, or complex training procedures. In contrast,
cascading is a simple technique that is easy to im-
plement and does not require such modifications,
(2) The computational efficiency in existing meth-
ods often comes with a compromise on accuracy.
Contrary to this, we show that model cascading

surpasses the accuracy of even the largest models,
(3) Existing methods typically require training a
separate model for each computation budget; on
the other hand, a single cascading system can be
adjusted to meet all the computation constraints.
(4) Finally, cascading does not require an instance
to be passed sequentially through the model lay-
ers; approaches such as routing (section 3) allow
passing it directly to a suitable model.

3 Model Cascading

We define model cascading as follows:
Given a collection of models of varying capac-

ities, the system needs to leverage one or more
models in a computationally efficient way to output
accurate predictions.

As previously mentioned, a system using only
the smallest model would be highly efficient but
poor in accuracy and a system using all the avail-
able models would be fairly accurate but expen-
sive in computation. The goal of cascading is to
achieve high prediction accuracy while efficiently
leveraging the available models. The remainder of
this section is organized as follows: we provide
mathematical formulation of cascading in 3.1 and
describe its various approaches in 3.2.

3.1 Formulation

Consider a collection of K trained models
(M1, ...,MK) ordered in increasing order of their
computation cost i.e. for an instance x, cxj < cxk (∀
j < k) where c corresponds to the cost of inference.
The system needs to output a prediction for each
instance of the evaluation dataset D leveraging one
or more models. Let Mx

j be a function that indi-
cates whether model Mj is used by the system to
make inference for the instance x i.e.

Mx
j =

{
1, if model Mj is used for instance x

0, otherwise

Thus, the average cost of the system for the entire
evaluation dataset D is calculated as:

CostD =

∑
xi∈D

∑K
j=1M

xi
j × cxi

j

|D|

In addition to this cost, we also measure accuracy
i.e. the percentage of correct predictions by the
system. The goal is to achieve high prediction
accuracy while being computationally efficient.
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Performance Evaluation: With the increase in
the computation cost, the accuracy usually also in-
creases as the system leverages large models (that
are often more accurate) for more number of in-
stances. To quantify the performance of a cascad-
ing method, we first plot its accuracy-cost curve by
varying the computation costs and then calculate
the area under this curve (AUC). Larger the AUC
value, the better the cascading method is as it
implies higher accuracy on average across all com-
putation costs. We note that the computation cost
of the cascading system can be varied by adjusting
the confidence thresholds of models in the cascade
(described in the next subsection).

Along with the AUC metric, we evaluate efficacy
of cascading on two additional parameters:
1. Comparing computation cost of the cascad-

ing system at accuracies achieved by each
individual model of cascade: Consider a set-
ting in which the model M2 achieves accuracy
a2 at computation cost c2; from the accuracy-
cost curve of the cascading system, we compare
c2 with the cost of the cascading system when
its accuracy is a2.

2. Comparing the maximum accuracy of the
cascading system with that of the largest
model of collection: We compare accuracy of
the largest individual model with the maximum
accuracy achieved by the cascading system.

Note that the first parameter corresponds to the
point of intersection obtained by drawing a horizon-
tal line from accuracy-cost point of each individual
model on the accuracy-cost curve. Refer to the
red dashed lines in Figure 2 and 4 for illustration.
For a cascading system to perform better than the
individual models in the cascade, it should have a
lower computation cost (in parameter one) and a
higher accuracy (in parameter two).

3.2 Approaches

We explore the following approaches of selecting
which model(s) to use for inference.

Maximum Softmax Probability (MaxProb):
Usually, the last layer of a model has a softmax
activation function that distributes its prediction
probability P (y) over all possible answer candi-
dates Y . MaxProb corresponds to the maximum
softmax probability assigned by the model i.e.

MaxProb = max
y∈Y

P (y)

MaxProb (often termed as prediction confidence)
has been shown to be positively correlated with pre-
dictive correctness (Hendrycks and Gimpel, 2017;
Hendrycks et al., 2020; Varshney et al., 2022c) i.e.
a high MaxProb value implies a high likelihood for
the model’s prediction to be correct. We leverage
this characteristic of MaxProb in our first cascad-
ing approach. Specifically, we infer the given input
instance sequentially through the models starting
with M1 and use a confidence threshold over Max-
Prob value to decide whether to output the pre-
diction or pass the instance to the next model in
sequence.

Consider an instance x for which the models till
Mz−1 fail to surpass their confidence thresholds
and Mz exceeds its threshold then:

Mx
j =

{
1, if j ≤ z

0, if j > z

The confidence thresholds could be different at
different stages. Figure 1 illustrates this approach.

It provides efficiency benefits as it avoids pass-
ing easy instances (that can be potentially answered
correctly by low-compute models) to the compu-
tationally expensive models. Furthermore, it does
not sacrifice the accuracy of system because the dif-
ficult instances would often end up being answered
by the large (and more accurate) models. We note
that this approach requires additional computation
for comparing MaxProb values with thresholds but
its cost is negligible in comparison to the cost of
model inferences and hence ignored in the overall
cost calculation.

Distance To Uniform Distribution (DTU): In
this approach, we use the distance between the
model’s softmax probability distribution and the
uniform probability distribution as the confidence
estimate (in place of MaxProb) to decide whether
to output the prediction or pass the instance to the
next model in sequence i.e.

DTU = ||P (Y )− U(Y )||2

where U(Y ) corresponds to the uniform output dis-
tribution. For example, in case of a task with 4 clas-
sification labels, U(Y ) = [0.25, 0.25, 0.25, 0.25].
The intuition behind this approach is to leverage the
entire shape of the output probability distribution
and not just the highest probability as in MaxProb.
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Random: In this approach, instead of using a
metric such as MaxProb or DTU to decide which
instances to pass to the next model in sequence, we
do this instance selection process at random. This
serves as a baseline cascading method.

Heuristic: Here, we use a heuristic derived from
the input text to decide which instances to pass to
the next model in sequence. Specifically, we use
length of the input text as the heuristic.

Routing: In this approach, instead of sequen-
tially passing an instance to bigger and bigger mod-
els, we skip intermediate models and pass the in-
stance directly to a suitable model based on its
maxProb value. For example, in K = 3 setting, we
first infer using M1 and if its maxProb is very low
then we skip M2 and directly pass it to M3. On the
other hand, if its maxProb is sufficiently high (but
below M1’s output threshold) then we pass it to
M2. The intuition behind this approach is that the
system might save inference cost of intermediate
models by directly using a suitable model that is
likely to answer it correctly. This approach is not
applicable for K = 2 as there is only one option to
route after inference through the model M1.

4 Experiments

4.1 Experimental Details
Datasets: We experiment with a diverse set of
NLU classification datasets: SNLI (Bowman et al.,
2015), Multi-NLI (Williams et al., 2018), Dialogue-
NLI (Welleck et al., 2019), Question-NLI (Wang
et al., 2018), QQP (Iyer et al., 2017), MRPC (Dolan
and Brockett, 2005), PAWS (Zhang et al., 2019),
SST-2 (Socher et al., 2013), COLA (Warstadt et al.,
2019), and CommitmentBank (de Marneffe et al.,
2019).

Models: We use the following variants of BERT
(Devlin et al., 2019): BERT-mini (11.3M parame-
ters), BERT-medium (41.7M parameters), BERT-
base (110M parameters), and BERT-large (340M
parameters) for our experiments. Table 1 shows
the computation cost (in FLOPs) of these models
for different input text sequence lengths. We use
sequence length of 50 for COLA, 80 for SST2,
100 for QQP, 120 for MNLI, DNLI, SNLI, 150 for
QNLI, MRPC, PAWS, and 275 for Commitment-
Bank datasets following the standard experimental
practice. We run all our experiments on Nvidia
V100 GPUs with a batch size of 32 and learning
rate ranging in {1−5}e−5.

Mini Medium Base Large
Length (128M) (474M) (1.3G) (3.8G)

50 0.16 1.26 4.25 5.10
80 0.25 2.01 6.80 24.16
100 0.31 2.52 8.49 30.20
120 0.38 3.02 10.19 36.24
150 0.47 3.78 12.74 45.30
220 0.69 5.54 18.69 66.44
275 0.87 6.92 23.36 83.05

Table 1: Inference cost (in 109 FLOPs) of BERT vari-
ants for different input text sequence lengths. We also
specify the storage size of the models in this table.

In the following subsections, we study the effect
of cascading in multiple settings that differ in the
number of models in the cascade i.e. K value in
the task formulation.

4.2 Cascading with Two Models (K=2)
4.2.1 Problem Setup
In this setting, we consider two trained models
BERT-medium (41.7M parameters) as M1 and
BERT-base (110M parameters) as M2. We ana-
lyze results for other model combinations (such as
medium, large and mini, large) in Appendix C.

4.2.2 Results
Recall that the computation cost of a cascading sys-
tem can be controlled by changing the Mj values.
For example, in case of MaxProb, changing the
confidence threshold value would result in different
Mj values and hence different cost and accuracy
values. Figure 2 shows accuracy-cost curves for
two cascading approaches: MaxProb (in blue) and
Random Baseline (in black). In the same figure,
we also show accuracy-cost points for the individ-
ual models M1 and M2. To avoid cluttering these
figures, we plot accuracy-cost curves for other ap-
proaches in separate figures and present them in
Appendix C. However, to compare the performance
of these methods, we provide their AUC values (of
their respective accuracy-cost curves) in Table 2.

Efficiency Improvement: The accuracy-cost
curves show that the cascading system matches
the accuracy of the larger model M2 at consider-
ably lesser computation cost. This cost value cor-
responds to the point of intersection on the curve
with a straight horizontal line drawn from M2 (red
dashed line). For example, in case of QQP, model
M2 achieves 89.99% accuracy at average computa-
tion cost of 8.49× 109 FLOPs while the cascading
system achieves the same accuracy at only 2.82

11011



Figure 2: Accuracy-computation cost curves for cascading with MaxProb (in blue) and Random baseline (in black)
methods in K=2 setting. Red points correspond to the accuracy-cost values of individual models M1 and M2.
Points of intersection of red dashed lines drawn from M2 on the blue curve correspond to the evaluation parameters
described in Section 3. MaxProb outperforms Random baseline as it achieves considerably higher AUC.

Method MNLI QNLI QQP SST2 COLA CB DNLI MRPC PAWS SNLI

Random 81.16 84.24 89.64 89.64 77.97 77.27 85.35 81.76 91.63 89.50
Heuristic 81.13 84.15 89.69 89.06 79.45 76.79 85.30 81.54 91.65 89.45

MaxProb 82.38 85.73 90.19 90.16 80.25 80.40 85.27 82.74 92.30 90.15
DTU 82.38 85.73 90.18 90.16 80.25 80.70 85.24 82.74 92.30 90.16

Table 2: Comparing AUC values of different cascading methods in K=2 setting. Random and Heuristic correspond
to the cascading baselines. MaxProb and DTU outperform both the baselines.

× 109 FLOPs. Similarly, in case of MNLI, M2

achieves 82.53% accuracy at cost of 10.19 × 109

FLOPs while the cascading system achieves the
same accuracy at only 5.26 × 109 FLOPs. Such
improvements are observed for all datasets. This
efficiency benefit comes from using the smaller
models for a large number of instances and passing
only a few instances to the larger models.

Accuracy Improvement: From the accuracy-
cost curves, it can be observed that beyond the cost
value identified in the previous paragraph (where
the red dashed line intersects the accuracy-cost
curve), the cascading system outperforms model
M2 in terms of accuracy. For example, in case of
QQP, cascading with MaxProb achieves accuracy
of up to 90.39% that is higher than the accuracy of
M2 (89.99%). Similar improvements are observed
for all other datasets. We note that the accuracy
improvement is a by-product of cascading, its pri-
mary benefit remains to be the improvement in
computational efficiency.

Higher accuracy achieved by the cascading sys-
tem (that uses M1 for some instances and condi-
tionally also uses M2 for others) than the larger
model M2 implies that M1, despite being smaller
in size is more accurate than M2 on at least a few
instances. Though, on average across all instances,
M2 has higher accuracy than M1. The cascading
system uses M1 for instances on which it is suffi-
ciently confident and thus more likely to be correct.
Only the instances on which it is not sufficiently
confident get passed to the bigger model. This sup-
ports the findings of recent works such as (Zhong
et al., 2021; Varshney et al., 2022b) that conduct
instance-level analysis of models’ predictions. We
further analyze these results in the next paragraphs.

Comparing Cascading Approaches: Figure 2
demonstrates that MaxProb cascading approach
clearly outperforms the ‘Random’ cascading base-
line. In Table 2, we compare AUC of respec-
tive accuracy-cost curves of various cascading ap-
proaches. Both MaxProb and DTU outperform
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Figure 3: Comparing accuracy of individual models M1

and M2 on the instances answered by each model when
used as cascade for MNLI dataset in K=2 setting.

both the baseline methods (Random and Heuristic).
In K = 2 setting, both MaxProb and DTU achieve
roughly the same performance on average across
all datasets. The gap between MaxProb and DTU
becomes more significant in K = 3 setting (4.3).

Contribution of M1 and M2 in the Cascade: To
further analyze the performance of the cascading
system, we study the contribution of individual
models M1 and M2 in the cascade. Figure 3 shows
the contribution of M1 and M2 for MNLI dataset
when the cost is 5.26 × 109 FLOPs i.e. the point
at which the accuracy of the cascading system is
equal to that of the bigger model M2 (intersection
point of the horizontal red dashed line with the
accuracy-cost curve of the cascading system in Fig
2). At this point, the cascade system uses M1 for
78% instances and M2 for the remaining 22% in-
stances. The accuracy of M1 on its 78% instances
(87.6%) would be equal to that of M2 on those
78% instances as the overall accuracy of system
on complete dataset (100% instances) is equal to
that of M2. However, this does not imply that the
instance-level predictions of the two models on
those 78% would be exactly the same. Though,
their predictions overlap in majority of the cases.

Figure 3 also shows that the accuracy of model
M1 on the instances that got passed to M2 in the
cascade system is significantly lesser (by 33.12%)
than on the instances that M1 answered (blue bars).
M2 achieves 10.12% higher accuracy on those in-
stances than M1. Therefore, the cascading system
utilizes the models efficiently by using the smaller
model M1 for the easy instances and the larger
model M2 for the difficult ones. We analyze these
results for other datasets in Appendix C.2.1.

4.3 Cascading with Three Models (K=3)

4.3.1 Problem Setup
Now, we study the effect of introducing another
model in the problem setup of K=2 setting. Specif-
ically, we consider three models: BERT-mini
(11.3M parameters) as M1, BERT-medium (41.7M
parameters) as M2, and BERT-base (110M param-
eters) as M3 in this setting. Note that BERT-
medium is referred to as M2 in this setting as
it is the second model in cascading setup unlike
the K = 2 setting (4.2) in which it was M1.

4.3.2 Results and Analysis
Figure 4 shows the accuracy-cost curves of two
cascading approaches: MaxProb (in blue) and Ran-
dom Baseline (in black) and Table 3 compares AUC
values achieved by various cascading approaches.
In general, cascading achieves larger improvement
(in magnitude) in K=3 setting than K=2 setting.

Efficiency Improvement: The accuracy-cost
curves show that the cascading system matches the
accuracy of larger models M2 and M3 at consider-
ably lesser respective computation costs. For ex-
ample, in case of QQP, cascading system matches
the accuracy of model M3 by using just 11.07% of
M3’s computation cost and of model M2 by using
just 23.53% of M2’s computation cost. The mag-
nitude of efficiency improvement in this setting is
higher than that in the K=2 setting.

Accuracy Improvement: Cascading also
achieves improvement in the overall accuracy. For
example, on the CB dataset, cascading system
achieves 83.93% accuracy that is even higher than
the largest model M3. Similar improvements are
observed for other datasets also.

Comparing Cascading Approaches: Table 3
compares AUC values achieved by various cascad-
ing approaches. DTU clearly outperforms all other
cascading methods as it achieves the highest AUC
values. We attribute this to DTU’s characteristic of
utilizing the entire shape of the output probability
distribution and not just the highest probability in
computing its confidence.

Contribution of M1, M2, and M3 in Cascade:
Figure 5 shows the contribution of individual mod-
els M1, M2, and M3 in the cascade for MNLI
dataset when the cost is 4.8× 109 FLOPs i.e. the
point at which accuracy of cascade is equal to that
of the largest model M3 (where the horizontal red
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Figure 4: Accuracy-computation cost curves for cascading with MaxProb (in blue) and Random baseline (in black)
methods in K=3 setting. Accuracy-cost values of individual models M1, M2, and M3 are shown in red. Note that
M1 here is different from M1 in Figure 2. MaxProb outperforms Random baseline as it achieves higher AUC.

Method MNLI QNLI QQP SST2 COLA CB DNLI MRPC PAWS SNLI

Random 78.77 80.58 88.97 87.00 76.55 77.28 84.49 78.30 87.74 88.12
Heuristic 78.85 80.44 88.87 87.67 76.28 77.11 84.46 77.59 88.28 88.27

MaxProb 80.89 82.97 90.1 89.45 78.66 78.31 85.17 80.2 90.23 89.67
DTU 80.98 83.28 90.15 89.6 78.87 78.52 85.20 80.42 90.46 89.72
Routing 80.55 82.93 89.92 89.52 78.60 74.58 85.20 80.97 90.68 89.46

Table 3: Comparing AUC values of different cascading methods in K=3 setting. Random and Heuristic correspond
to the cascading baselines. DTU outperforms other cascading methods on average.

Figure 5: Comparing accuracy of individual models M1,
M2, and M3 on the instances answered by each model
when used in the cascade for MNLI dataset.

dashed line drawn from M3 intersects the accuracy-
cost curve in Fig 4). The figure shows that the accu-
racy of M1 on the instances that were passed to M2

drops by 20.04% and accuracy of M2 on instances

that were passed to M3 drops by 28.53%. This
shows that the cascading system is good at identi-
fying potentially incorrect predictions of M1 and
passes those instances to M2 and similarly good at
identifying potentially incorrect predictions of M2

and passes those instances to M3 .

Advantage of introducing another model in the
Cascade: Comparing figure 5 for the K=3 set-
ting with the figure 3 for K=2 setting, we find that
by introducing a smaller model in the collection,
the cascading system can be made more efficient.
This is because the BERT-medium model answered
78% instances in K=2 setting and that portion got
split into BERT-mini (smaller cost than medium)
and medium models in K=3 setting while maintain-
ing the accuracy. This suggests that the cascading
technique utilizes the available models efficiently
without sacrificing the accuracy. We analyze these
results for other datasets in Appendix D.1.1.
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5 Conclusion and Discussion

We systematically explored model cascading and
proposed several methods for it. Through compre-
hensive experiments with 10 diverse NLU datasets,
we demonstrated that cascading improves both the
computational efficiency and the prediction accu-
racy. We also studied the impact of introducing
another model in the collection and showed that it
further improves the computational efficiency of
the cascading system.

Selecting Optimal Operating Threshold: The
selection of confidence threshold for models in the
cascade is dependent on the computation budget
of the system. A low-budget system can select
low threshold for the low-cost models (so that low-
cost models answer majority of the questions lead-
ing to less computation cost) and similarly, high-
budget systems can afford to select high thresh-
olds to achieve higher accuracy. In order to select
thresholds in an application-independent manner,
the ML’s standard practice of using the validation
data to tune the hyperparameters can be used.

Outlier/OOD Detection Techniques: Out-
lier/OOD detection techniques such as (Lee et al.,
2018; Hsu et al., 2020; Liu et al., 2020) can also be
explored to decide which instance to pass to the
bigger models in the cascade.

Including Linear Models in the Cascade: This
idea can be extended to include non-transformer
based less expensive models like linear models
or LSTM based models. Since the computation
cost of these models is significantly lower than the
transformer based models and yet they achieve non-
trivial predictive performance, a cascading system
with these models could achieve even more im-
provement in computational efficiency. We plan to
explore this aspect in the future work.

Limitations

A potential downside of cascading is that it requires
multiple models to be stored. However, we note
that the additional space required for models (mini
and medium) in K=3 setting is merely 0.44 times
that required for base model (Table 1). Thus, it
does not pose a serious concern.
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Appendix

A Efficiency in NLP

With the introduction of large-scale pre-trained lan-
guage models, the efficiency topic has attracted a
lot of research attention. Efficiency is being studied

from diverse lenses such as training data efficiency
(Lewis et al., 2019; Schick and Schütze, 2021;
Varshney et al., 2022a; Wang et al., 2021; Mishra
and Sachdeva, 2020; Ben Zaken et al., 2022), eval-
uation efficiency (Rodriguez et al., 2021; Varshney
et al., 2022b), parameter efficiency tuning meth-
ods (Li and Liang, 2021; Houlsby et al., 2019),
and inference efficiency. In this work, we focus
on inference efficiency and propose model cascad-
ing, a simple technique that utilizes a collection
of models of varying capacities to accurately yet
efficiently output predictions.

B Dataset Statistics

Table 4 shows the statistics of all evaluation
datasets considered in this work. We consider a
diverse set of NLU datasets spanning over several
tasks, such as natural language inference, duplicate
detection, and sentiment classification.

C Cascading with Two Models (K=2)

C.1 Other Model Combinations

C.1.1 Medium and Large

Figure 6 shows accuracy-cost curves with Max-
Prob (in blue) and Random (in black) as cascading
approaches with M1 as BERT-medium and M2

as BERT-large. MaxProb approach clearly outper-
forms Random approach and achieves considerably
higher AUC value.

C.1.2 Mini and Large

Figure 7 shows accuracy-cost curves with Max-
Prob (in blue) and Random (in black) as cascad-
ing approaches with M1 as BERT-mini and M2

as BERT-large. MaxProb approach clearly outper-
forms Random approach and achieves considerably
higher AUC value.

C.2 Contribution of M1 and M2 in the
Cascade

C.2.1 Medium and Base

Figure 8 shows the contribution of individual mod-
els M1 and M2 in the cascade when accuracy of
M2 is same as that of cascading system. We ana-
lyze this for MNLI dataset in section 4.2 and pro-
vide figures for a few other datasets here.
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Figure 6: Accuracy-Cost curves for K=2 setting with M1 as BERT-medium and M2 as BERT-large models.

Dataset Size Dataset Size

MNLI 19645 QNLI 5650
QQP 40371 SST2 872
COLA 1042 CB 56
DNLI 16396 MRPC 1639
PAWS 7994 SNLI 9840

Table 4: Statistics of evaluation datasets considered in
this work.

D Cascading with Three Models (K=3)

D.1 Contribution of M1, M2, and M3 in the
Cascade

D.1.1 Mini, Medium, and Base
Figure 9 shows the contribution of individual mod-
els M1, M2, and M3 in the cascade when accuracy
of M3 is same as that of cascading system. We
analyze this for MNLI dataset in section 4.3 and
provide figures for a few other datasets here.

D.2 Overall Efficiency and Accuracy
Improvement

Figure 10 (left) illustrates efficiency improvements
achieved by a cascading method over the largest
model (M3) in K=3 setting. For example, in case
of QQP dataset, the cascading system achieves
88.93% computation improvement over M3 i.e. it
requires just 11.07% of the computation cost of
model M3 to attain equal accuracy. Then, we show
that cascading also achieves improvement in predic-
tion performance. Figure 10 (right) illustrates the
accuracy improvements achieved over M3 in K=3

setting. For example, on CB dataset, the cascad-
ing system achieves 2.18% accuracy improvement
over M3.
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Figure 7: Accuracy-Cost curves for K=2 setting with M1 as BERT-mini and M2 as BERT-large models.

Figure 8: Contribution of M1 and M2 for K=2 setting with M1 as BERT-medium and M2 as BERT-base.
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Figure 9: Contribution of M1, M2, and M3 for K=3 setting with M1 as BERT-mini, M2 as BERT-medium, and M3

as BERT-base.

Figure 10: Efficiency and accuracy improvement achieved by the cascading system (using DTU method (3.2)) over
the largest model M3 in K=3 setting.
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