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Abstract

Conventional phrase grounding aims to local-
ize noun phrases mentioned in a given caption
to their corresponding image regions, which
has achieved great success recently. Appar-
ently, sole noun phrase grounding is not enough
for cross-modal visual language understanding.
Here we extend the task by considering pro-
nouns as well. First, we construct a dataset
of phrase grounding with both noun phrases
and pronouns to image regions. Based on
the dataset, we test the performance of phrase
grounding by using a state-of-the-art literature
model of this line. Then, we enhance the base-
line grounding model with coreference infor-
mation which should help our task potentially,
modeling the coreference structures with graph
convolutional networks. Experiments on our
dataset, interestingly, show that pronouns are
easier to ground than noun phrases, where the
possible reason might be that these pronouns
are much less ambiguous. Additionally, our
final model with coreference information can
significantly boost the grounding performance
of both noun phrases and pronouns.

1 Introduction

Grounded language learning has been prevailing
for decades in many fields (Chandu et al., 2021),
generally aiming to learn the real-world meaning
of textual units (e.g., words or phrases) by con-
jointly leveraging the perception data (e.g., images
or videos). Bisk et al. (2020) advocate that we
cannot overlook the physical world that language
describes when doing language understanding re-
search from a novel perspective. In particular, with
the stimulation of modeling techniques and multi-
modal data collection paradigms, the task has made
excellent progress in the downstream tasks, which
involves multi-modal question answering (Agrawal
et al., 2017; Chang et al., 2022), video-text align-
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C: Two kids are eating food at a table.

Q: What color hair do they have? 

A: Dirty blonde.

Q: What type of food are they eating? 

A: Pizza. 

Q: Are they drinking anything? 
A: Looks like water. 

Figure 1: An example of grounding noun phrases and
pronouns referred in the caption and dialogue (partly) to
the associated image regions. With an image described
by a caption, two people are discussing what they can
see. Here, we annotate the same object with the same
color, respectively. And obviously, the same object men-
tioned in the text naturally forms a coreference chain.

ment (Yang et al., 2021) and robot navigation (Ro-
man Roman et al., 2020; Gu et al., 2022).

Typically, as one branch of grounded language
learning, phrase grounding, first proposed by Plum-
mer et al. (2015), also plays a key role in visual
language understanding. Its goal is to ground the
phrases in a given caption to the corresponding
image regions. Recently, many researchers have at-
tempted varied approaches to explore this task. Mu
et al. (2021) propose a novel graph learning frame-
work for phrase grounding to distinguish the diver-
sity of context among phrases and image regions.
Wang et al. (2020) develop a multimodal alignment
framework to utilize the caption-image datasets
under weak supervision. Kamath et al. (2021)
advance phrase grounding with their end-to-end
modulated pre-trained network named MDETR.
Overall, the natural language processing (NLP) and
computer vision (CV) communities have seen huge
achievements in the task of phrase grounding.

In spite of its apparent success, there remains
a worth-thinking weakness. Almost all previous
works mainly focus on the noun phrases/words,
which can derive their meanings by the expres-
sional forms to some extent. There is little work
that takes account into pronouns. As shown in Fig-
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ure 1, pronouns definitely have underlying effects
on the performance of visual grounding, which
should be carefully examined (Yu et al., 2019). As
a result, here we shift our eyes from the common
(almost noun) phrase grounding with the extension
of pronouns for the first time.

In this paper, we present the first work for inves-
tigating phrase grounding that includes pronouns,
and explore how coreference chains can have an ef-
fect on the performance of our task. We annotate an
initial dataset based on visual dialogue (Das et al.,
2017), as shown in Figure 1. For the model, we
can directly apply MDETR (Kamath et al., 2021),
which is an end-to-end modulated detector. How-
ever, the model does offer much information to
understand pronouns. Thus, we enhance the vanilla
model with coreference information from the dia-
logue end, where a graph neural network is adopted
to encode the graph-style coreference knowledge.

Finally, we conduct experiments on our con-
structed dataset to benchmark the extended phrase
grounding task. According to the results, we find
that interestingly, pronouns are easier to ground
by MDETR than phrases. The underlying reason
might be that the pronouns are always more im-
portant during dialogue, leading to less ambiguity
in speech communication. In addition, our final
model can be significantly enhanced by adding the
gold graph-style coreference knowledge; however,
the model fails to obtain any positive gain when
the coreference information is sourced from a state-
of-the-art machine learning model. We conduct
several in-depth analyses for comprehensive under-
standing of our task as well as the model.

In summary, our contributions are as follows:
• We extend the task of phrase grounding by

taking account of pronouns, and correspond-
ingly establish a new dataset manually, named
VD-Ref, which is the first dataset with ground-
truth mappings from both noun phrases and
pronouns to image regions.

• We benchmark the extended phrase grounding
task by a state-of-the-art model, and also in-
vestigate our task with the coreference knowl-
edge of the text, which should benefit our task
straightforwardly.

• We observe several unexpected results by our
empirical verification, and to understand these
results, in-depth analyses are offered to illus-
trate them, which might be useful for the fu-
ture investigation of phrase grounding.

Sect. #Img #Pronoun #Phrase #Box #Coref

Train 6199 18600 35118 16559 14582
Dev 1063 3256 5739 3074 2503
Test 1595 4033 7941 4347 3754

Table 1: Data statistics of our constructed dataset. #Box
means the number of bounding boxes in the image.
#Coref means the number of coreference chains.

2 Our Task and The VD-Ref Dataset

2.1 Task Description
The phrase grounding task’s general purpose is to
map multiple noun phrases to the image regions,
however, in this paper, we take the challenge a
step further by grounding various noun phrases
and pronouns from the given dialogue to the ap-
propriate regions of an image. Take Figure 1 for
example, with all the expressions mentioned in the
dialogue, like the coreference chain that includes
“Two kids” and “they”, the task needs to predict the
corresponding regions of the object “kids” using
bounding boxes in image.

Formally, we define the task as follows: given
an image I and the corresponding ground-truth
dialogue D, we denote M = {N,P} as all the lan-
guage expressions, typically, N is the oun phrases
and P is the pronouns, the prime objective of the
task is to predict a bounding box (or bounding
boxes) B for each expression.

2.2 Data Collection
With the aim to build a high-quality dataset that
includes sufficient pronouns, we adopt the large-
scaled VisDialog dataset (Das et al., 2017) which
contains 120k images from the COCO (Lin et al.,
2014), where each image is associated with a dia-
logue1 around to the image. We randomly choose
a set of 10k complete sets from the VisDialog
dataset, and use the StanfordCoreNLP (Manning
et al., 2014) tool to tokenize the sentences, making
it proper for the succeeding human annotation.

2.3 Annotation Process
The whole annotation workflow is divided into
three stages as follows: (i) developing a conve-
nient online tool for the user annotation; (ii) setting
up a standard annotation guideline according to our
task purpose; (iii) Recruiting sufficient expert users
to annotate the dataset and ensuring each instance

1If not specified, the following dialogues that are discussed
all contain a caption.
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Note: C means the Coreference Chain.Note: C means the Coreference Chain.

Figure 2: The proportion of noun phrases and pronouns
in different number coreference chains.

with three annotations. Firstly, we adopt the label-
studio platform (Tkachenko et al., 2020-2022) as
the basis to design a user-friend interface targeted
to our task, where the concreted interface is shown
in Appendix A. Then, we let three people with the
visual grounding research experience previously as
our experts. They annotate 100 data-pairs together
as examples, and establish an annotation guideline
based on their consensus after several discussions.

Next, we recruit a number of college students
who are expertised at English skills to annotate
our dataset. Before starting our task, the students
are asked to read the guideline of the annotation
process carefully and attempt to annotate some
test sets of data, during this period, we examine
these students and choose 20 of them to do the
following annotation task. In the annotation of
each datapoint, the prepared data is split into micro-
tasks so that each one consists of 500 dialogues.
We assign three workers to each micro-task, and
their identities are remained hidden from each other.
After all annotation tasks are finished, we let our
experts check the results and make corrections of
the unconsistent annotations as well.

Finally, we establish the VD-Ref dataset, which
is annotated manually with the noun phrases and
pronouns that naturally form the coreference chains
as well as the relevant bounding boxes in images.

2.4 Statistics of the VD-Ref Dataset
Totally, we collect 74,687 entity mentions and
23,980 objects from 8,857 VisDialog datasets,
where the mentions include 48,798 noun phrases
and 25,889 pronouns, on average, a dialogue con-
sists of 5.51 noun phrases and 2.92 pronouns.
On the contrary, the existing datasets for phrase
grounding hardly consider the pronouns. The
ReferItGame dataset (Kazemzadeh et al., 2014)
only involves in the noun and noun phrases, while
the Flickr30k Entities dataset does not label the
corresponding bounding boxes in images, although
it annotate the pronouns in captions.

Alternatively, because of the diversity of our
dataset, the number of coreference chains varies.
As Figure 2 shows, the pie charts display the dis-
tinctive distributions of noun phrases and pronouns
in the VD-Ref dataset. It is clear that whether for
the noun phrases or the pronouns, the dialogues
that have no more than three coreference chains
account for the major proportion, up to 70%, ac-
cordingly, the dialogues that have more than three
coreference chains constitute the rest proportion.

Moreover, as the mentions of the coreference
chains and bounding boxes come in pairs, we can
define the coreference chain into four types:

• one mention vs. one box: This type contains
only one mention and one corresponding box,
indicating that the chain exclude pronoun.

• one mention vs. boxes: As the referred object
is separated into several regions, more than
one box is needed to annotate.

• mentions vs. one box: In this coreference
chain, all noun phrases and pronouns refer to
the same single box on the image.

• mentions vs. boxes: This type contains sev-
eral mentions that have noun phrases and pro-
nouns and associated multiple boxes.

Finally, the train, validation and test sets con-
tain 6,199 (70.00%), 1,063 (12.00%) and 1,595
(18.00%) image-dialogue pairs, respectively. We
report other statistics in Table 1 as well.

3 Method

Recent works (Kamath et al., 2021; Li et al., 2022)
bring the successful vision-language transformer ar-
chitecture and the pre-train-then-finetune paradigm
to the phrase grounding task, achieving state-of-
the-art performance. To explore our constructed
dataset, we adopt the representative MDETR (Ka-
math et al., 2021) model. Meanwhile, we propose
to enhance the textual representations with the natu-
ral coreference chains in texts by Relational Graph
Convolutional Networks (R-GCN) (Schlichtkrull
et al., 2018). Bellow, we briefly describe how
MDETR learns and grounds, and then present our
suggested coreference graph encoding.

3.1 Grounding Model

As depicted in Figure 3, for a given image-text pair,
MDETR first use an image-encoder (Tan and Le,
2019, EfficientNet) to extract visual features. Then,
the features are projected to the image-text shared
embedding space by a conv layer, flattened to a se-
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Figure 3: MDETR Model (right) and our suggested coreference graph encoding (left, dashed). Here, we use R-GCN
encode the coreference graph into the roberta representation and directly fed the output into the linear layer.

quence, and added with 2-D positional embeddings.
Similiarly, a text-encoder (Liu et al., 2019, Roberta)
and a linear layer are used to extract and project
textual features, respectively. Next, we concatenate
vectors of two modalities into one sequence, en-
coding it by a transformer (Vaswani et al., 2017)
encoder. We set N queries and apply a transformer
decoder to cross attend the encoded sequence.

Finally, for each one of N hidden states from
the decoder, two feedforward networks (FFN) sep-
arately predict the object box and a distribution
over all token positions that correspond to the ob-
ject, which named soft token prediction. Figure 3
shows an example that a query predict the box of
the cat and a distribution where tokens refer to this
cat are with highest values.

Training. MDETR uses the bipartite matching
(Carion et al., 2020; Tan et al., 2021) to find the
best match between the predicted boxes and the
gold-standard objects then computes the box losses
(L1 & GIoU). The soft token prediction is super-
vised by a soft-cross-entropy between the predicted
distribution and a uniform distribution, where to-
kens refered to the matched gold box have equal
probabilities and sum to 1. In addition, the match-
ing cost consists of this grounding loss and the box
L1 & GIoU losses. The final loss for the MDETR
training is the weighted sum of the above losses
and a extra contrastive alignment loss2.

Inference. For each referring expression, we
rank all N proposed boxes by scores of the max
over scores assigned to the tokens in this expres-
sion, and output the top 10 boxes for the evaluation.

2This loss is able to align the query hidden state from the
decoder and it’s matched referring tokens, please refer to the
§2.2.2 of Kamath et al.’s (2021) paper for more details.

3.2 Coreference Graph Encoding

By carefully examining the MDETR model in our
extended task, we find that it actually predicts the
coreferenced expressions for each detected object
to some extend. We guess that explicitly injecting
the text coreference information into the represen-
tations could boost the model performance to some
extent. Thus we propose to encode a simple coref-
erence graph via R-GCN.

Graph Construction. Following the previous
graph-based NLP studies (Sahu et al., 2019; Wu
et al., 2021; Hu et al., 2020, 2021), we construct
our coreference graph in two steps. For the node
building, we first initiate the word nodes by the in-
put text embeddings. To represent the multi-word
mention in text, we generate a virtual span node3

and setup the embedding by the mean embedding
of all words in it.

Based on the above two node types (i.e., word
& span), we build the coreference graph with the
following six edge types:

• self-loop: include the information of itself.
• next-word: to keep the sequential informa-

tion, we link a word to its next word.
• last-word: likewise link a word to the last.
• span-word: we link a span node to its words

for the graph message passing.
• word-span: likewise link a word to its span.
• coref: we use this undirected edge to connect

words or spans refered to the same object.

R-GCN Encoding. We compute node represen-
tations on this edge-labeled graph by the R-GCN
(Schlichtkrull et al., 2018). Formally, we denote

3We offer an ablation study (§4.4) to verify the effective-
ness of this scheme.
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Coref Recall@1 Recall@5 Recall@10
Model F1 Overall Pronoun Phrase Overall Pronoun Phrase Overall Pronoun Phrase

ANY-BOX-PROTOCOL

MDETR - 43.35 50.15 39.94 57.18 67.35 52.13 65.04 75.41 60.29
MDETR + NeuralCoref 37.6 42.04 49.39 38.36 53.72 63.50 48.84 61.91 72.60 56.60
MDETR + C2f-SpanBERT 66.0 42.36 49.45 38.87 54.80 64.07 50.28 63.58 73.48 58.61
MDETR + Gold† 100 47.54 58.79 41.91 59.30 70.52 53.69 66.67 76.83 61.59

MERGED-BOX-PROTOCOL

MDETR - 51.98 60.86 47.59 62.86 71.98 58.40 68.03 77.20 63.61
MDETR + NeuralCoref 37.6 51.04 62.14 45.60 62.01 72.45 56.79 67.03 77.03 61.99
MDETR + C2f-SpanBERT 66.0 51.96 62.45 46.71 62.44 72.46 57.43 67.55 76.90 62.33
MDETR + Gold† 100 55.43 65.86 50.26 65.72 74.73 61.23 70.52 78.64 66.50

Table 2: Test results. † means the result is statistically significant compared with MDETR.

the hidden representation of node i in the l-th R-
GCN layer as x(l)

i ∈ Rd(l) , where d(l) is the hidden
dimension. The message-passing framework of
R-GCN is defined as follows:

x
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i = σ
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i


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where R denotes the relation set except the
self-loop. N r

i is the set of neighbouring nodes
under the relation r ∈ R. Wr is the feature trans-
formation matrix for relation r, while Wo corre-
sponds to the self-loop.

In the end, we re-construct the sequence from
all word node representations of the last layer. It is
worth to note that this coreference graph encoding
is general and could be applied to any grounding
models. In our experiments, the output of the R-
GCN is directly fed to the Linear layer.

4 Experiment

4.1 Settings
Implementation. We use the pretrained MDETR
with Roberta-base and EfficientNet-B3.4 We em-
ploy 2-layer R-GCN5 to encode the Roberta repre-
sentations. We use the AdamW (Loshchilov and
Hutter, 2019) to update model parameters with lr
1e−5, weight decay 1e−4, and batch size 16. The
lr of the re-initiated MDETR soft token prediction
head and R-GCN module is set to 1e−4. The 2-
norms of gradients are clipped to a maximum of 0.1
to avoid the gradient explosion problem. All exper-
iments are implemented with AllenNLP (Gardner
et al., 2018) and conducted on a RTX 3090 GPU.

4https://github.com/ashkamath/mdetr
5We use the R-GCN implemetation from PyTorch Geomet-

ric (Fey and Lenssen, 2019).

Coreference. We consider three ways to obtain
coreference chains for our graph-encoding:

• Gold: the gold-standard coreference chains
annotated in our dataset.

• NeuralCoref: the off-the-shelf coreference
resolution toolbox based-on SpaCy from Hug-
gingFace (2019), we load the “en-core-web-
md” model for SpaCy.

• C2f-SpanBERT: the widely used span-based
coarse-to-fine model (Lee et al., 2018) with a
pretrained SpanBERT-large-cased (Joshi et al.,
2020).6 We train it with the gold coreferences
and perform an 5-fold cross-validation to get
predictions of the whole dataset.

In our main results, we train the MDETR +
NeuralCoref or C2f-SpanBERT with only pseudo
coreferences, which would fit the real scenario. We
will investigate the recent state-of-the-art works of
text coreference resolution(Wu et al., 2020) and
update the results in the future version paper.

Evaluation. Following previous studies, we com-
pute the Recall@k to measure whether the model
is able to give the “correct” box in top k predic-
tions, where a box is treated as “correct” if the
Intersection-over-Union (IoU) between it and a
ground-truth box is above a threshold of 0.5. For
each text mention, we consider k ∈ {1, 5, 10}.
We conduct experiments on both Any-Box and
Merged-Box protocol, where the former decides
a proposed box is correct to a mention when it has
an Iou > 0.5 with any of the gold boxes of this
mention, while the latter merges all ground-truth
boxes of a mention into one smallest enclosing box.

We use the best-performing model on the devset
to evaluate the performance of the testset. We run

6https://github.com/allenai/allennlp-models
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Coref Miss Part Correct
Model F1 Protocol Overall Pronoun Phrase Overall Pronoun Phrase Overall Pronoun Phrase

#Mention 498 5507 3335 2107 125 300

+ NeuralCoref 37.6
Any-Box 34.52 45.78 33.50 48.44 48.19 48.84 39.76 45.60 37.33

Merged-Box 42.10 54.22 41.00 60.69 63.27 56.62 47.29 64.00 40.33

#Mention 410 2921 2497 3452 1051 1541

+ C2f-SpanBERT 66.0
Any-Box 26.06 45.12 23.38 47.96 47.94 47.97 45.99 46.72 45.49

Merged-Box 32.81 49.02 30.54 60.30 63.84 57.73 57.48 64.41 52.76

Table 3: Test recall@1 of MDETR with NeuralCoref or C2f-SpanBERT, by the mention prediction types, where
Miss means a mention is not extracted by coref models, Part (resp. Correct) denote a mention is extracted with
the incorrect (resp. correct) coreference cluster. We also provide the number of each type, i.e., the #Mention row.

56%15%

11%
7%
5%6%

Maximum Number 
Pronouns 

n<3 n=3 n=4
n=5 n=6 n>7

C: A woman sits on a bench.

Q: Are there others around?

A: No, she is alone.

Q: Does she have a bucket?

A: No, I can not see that.

Q: Is she wearing a dress?

A: I do not think so.

Q: Does she have shoes on?

A: Yes, flip flops.

Q: Is there grass nearby?

A: Yes, everywhere.

One Example

Figure 4: The assessment of our whole dataset on
the maximum number of pronouns (in one coreference
chain) for every dialogue(left) and one example (right).

each setting by 5 different random seeds, and the
average test scores are reported. We regard a result
as statistically significant when the p-value is below
0.05 by the paired t-test with baseline MDETR.

4.2 Main Results

Table 2 summarizes the main results of phrase
grounding experiments on our VD-Ref dataset. We
group the models into two settings, Any-Box and
Merged-Box protocols, and report the performance
of grounding pronouns and phrases in terms of
Recall@k (k = 1, 5, 10). In details, we have the
following intriguing findings:

Among all the models, we find that pronouns
are easier to ground than phrases, no matter the
protocol setting. The possible reason is that as an
essential part of the sentence in dialogue, pronouns
are straightforward and appear more frequently,
containing richer details in context, thus promoting
the performance to be grounded.

Besides, after comparing the results of the
MDETR with gold (MDETR + Gold) and with-
out (MDETR), we see that adding the gold graph-
style coreference knowledge can also considerably
improve the model’s performance. This empiri-

cally supports the value of introducing coreference
knowledge. Noticeably, the Recall@10 is generally
utilized to evaluate the best recall performance, and
at this point, MDETR would reach its limit on this
task, making it hard to be improved to some extent,
while the addition of the gold graph-style corefer-
ence increase that by more than 1%, which further
proof the significance of coreference knowledge.

However, we still observe that performance de-
clines when we apply machine learning models
(e.g., NeuralCoref and C2f-SpanBERT) to obtain
the coreference chains for our graph structure repre-
sentations. One possible reason is that these models
do not do so well in dialogues, making investigat-
ing the more thorough sense worthwhile.

4.3 Analysis

Pronouns outperform phrases. To dig into the
in-deep reasons for this performance, we count
the maximum number of pronouns (in one coref-
erence chain) for every dialogue, and select one
annotated dialogue as an example (see Figure 4).
Here, we find that pronouns frequently occur in
dialogues, and the maximum number of pronouns
larger than three accounts for 44% in our dataset,
indicating the importance of pronouns in dialogues.
Besides, take Figure 4 (right) for an example. Four
pronouns refer to “woman” in the dialogue. The
reason behind this is that expressing pronouns are
more concise to refer to the specific object, reduc-
ing ambiguity in communication.

Detailed Comparison of Non-Gold Methods.
To find reasons for the unexpected failure
of MDETR with pseudo coreferences from
NeuralCoref and C2f-SpanBERT, we split testset
mentions by the coreference cluster prediction of
each of them is failed/partially correct/correct. De-
tailed R@1 values in the three types are in Table 3.
When the prediction fails (Miss), model perfor-

7619



# coreference cluster (visual concept)
1 2 3 4 5 6 7

10

20

30

40

50

60

70

R
ec

al
l@

1
O

ve
ra

ll

MDETR
+ NeuralCoref

+ C2f-SpanBERT
+ Gold

1 2 3 4 5 6 7

20

30

40

50

60

70

80
MDETR

+ NeuralCoref
+ C2f-SpanBERT

+ Gold

(a) ANY-BOX (b) MERGED-BOX

Figure 5: The test Recall@1 (overall) scores grouped
by #cluster, which act as the number of visual concepts
and represent the difficulty of a data point.

mances are significantly lower than the average,
which hurts the overall performances much since
these mentions took considerable portions. Sur-
prisingly, the partially correct scores are above the
average, which means that even with the defective
coreference knowledge, models could precisely
ground to a certain extent. Improving the coref
model recall could be an effective way to promote
grounding performance of suggested method.

Understanding Complex Scenarios. Generally,
models would perform worse in a complex scene
than in a simple one. We design analysis to validate
it in practice to evaluate model abilities in complex
scenarios. We measure the difficulty of a scenario
(data point) by the number of coreference clusters,
which represents the number of visual concepts
that need identifying, grouping testset into differ-
ent parts. As shown in Figure 5, performances of
all methods decline as the clusters increase. The
Gold offers notable improvements in the simple
data (#cluster ≤ 3). All methods perform poorly
in complex scenarios, which would be one major
limitation of phrase grounding models currently.

Grounding Single/Multi-Object Mentions. As
discussed by Kamath et al. (2021), the Any-Box
and Merged-Box protocols are used to handle that
the recall@k implies each mention referring to sin-
gle object. Here we divide mentions into two types,
single and multi reference (e.g., the multi reference
“two kids” referred two boxes in Figure 1), and
compare the performances. In Figure 6, indeed
the multiple reference are much challenging, show-
ing shocking gaps to the single. That is, except
for the challenges in complex scenarios (instance-
level), the model ability on multi-object mentions
(prediction-level) also need to be upgraded. Be-
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Figure 6: The test Recall@1 of one phrase/pronoun
referring to Single/Multi visual objects.

Objective Model R@1 R@5 R@10

ANY-BOX-PROTOCOL

Phrase
MDETR 38.98 52.01 60.43
MDETR + Gold 41.43 53.15 61.54

Pronoun
MDETR 59.98 69.77 74.93
MDETR + Gold 62.31 70.51 75.71

MERGED-BOX-PROTOCOL

Phrase
MDETR 47.34 57.75 63.60
MDETR + Gold 48.48 58.03 63.89

Pronoun
MDETR 65.75 73.62 76.69
MDETR + Gold 67.03 73.81 76.98

Table 4: Results of different grounding objective, where
for the pronoun (resp. noun phrase) task, the noun
phrase (resp. pronoun) is not trained and evaluated.

sides, the performance of pronouns is consistently
better than that of noun phrases as expected.

Single Grounding Objective. Our extended task
grounds the noun phrases and pronouns simulta-
neously, as illustrated in §4.2. We now evaluate
the MDETR and Gold in single grounding objec-
tives, i.e., ground only noun phrases or pronouns.
Table 4 lists the test scores. First, our suggested
coreference graph encoding with Gold annotations
could consistently boost performance in both sub-
tasks. Then, all methods in phrase grounding only
task exists notable performance gap to our ex-
tended task results (Table 2), e.g., in ANY-BOX

recall@1, 39.94 (extended) → 38.98 (phrase only)
of MDETR, 41.91 → 41.43 of Gold. This shows
that learning to ground both pronouns and noun
phrases could promote the dialog and scenery un-
derstanding, thus improving the phrase grounding.
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Recall@1

Model Overall Pronoun Phrase

ANY-BOX-PROTOCOL

MDETR + Gold 47.54 58.79 41.91
w/o coref 44.22 54.48 39.58
w/o Virtual Span 46.21 55.61 41.52
w/o coref & Virtual Span 43.56 52.60 39.04

MDETR 43.35 50.15 39.94

MERGED-BOX-PROTOCOL

MDETR + Gold 55.43 65.86 50.26
w/o coref 52.71 63.74 47.19
w/o Virtual Span 54.31 64.41 48.63
w/o coref & Virtual Span 51.96 62.46 46.71

MDETR 51.98 60.86 47.59

Table 5: Ablation study of graph encoding.

4.4 Ablation Study
To verify the effectiveness of our designed coref-
erence graph, we conduct ablation experiments in
the gold coreference setting.

Coreference Edge. We first drop coref edges to
show the importance of text coreference knowledge.
As presented in Table 5, obviously, the model per-
formance decrease dramatically in both protocols.
However, the graph with virtual spans provides
mild improvements, we investigate this at the last.

Virtual Span Node. The virtual spans are used
to represent the multi-word text mentions. Here
we remove them and the span-word & word-span
edges, then densely connect every words with each
other in one coreference cluster by the coref edge.
As shown, the model performance is degraded to
a certain extent. Thus, the virtual span scheme is
with not only conceptual advantages but also better
performance. In addition, we can directly use the
span node features when applying to other span-
based models, like Liu and Hockenmaier (2019).

Only Word Node and Relation. In the end, we
remove both coref and virtual span, keeping only
next-word, last-word, and self-loop edges. In
Table 5, we can see that this model is only compara-
ble to the baseline. First, this corroborates, without
virtual spans, the coreference is still effective (the
above paragraph). Moreover, virtual span nodes
alone act as the span indicator could improve the
model as well (the first paragraph).

5 Related work

Visual Grounding. General visual grounding,
also known as referring expression comprehension

(Deng et al., 2021; Qiao et al., 2021), is akin to
phrase grounding to some extent, since they all
aim to study the mapping from the expressions to
the specific image regions. The main difference be-
tween them is that the visual grounding particularly
focuses on one single expression, while the phrase
grounding is more general and can be applied to
multiple expressions.

Phrase Grounding. A wealth of prior work (Yu
et al., 2020; Dogan et al., 2019; Wang et al., 2020;
Kamath et al., 2021) on phrase grounding has
achieved promising results. Typically, Bajaj et al.
(2019) present an end-to-end framework with a
separate graph neural network to explore phrase
grounding, and Liu et al. (2020) enhance this task
by proposing a language-guided graph represen-
tation to capture the global context of grounding
entities and their relations. In this work, we first
propose that grounding pronouns is indispensable,
then follow the foundation of using graph struc-
tures to our task, positing that the extra coreference
knowledge in texts are positive and useful.

Visual Coreference Resolution. It is true that
our proposed task has some similarities with the
visual coreference resolution task. Yu et al. (2019)
formalizes visual-aware pronoun coreference res-
olution (PCR), builds a dataset for PCR in visual-
supported dialogues, and then presents a PCR
model with image features. In other words, It
solves the pronoun coreference at the text side with
the help of visual information. In contrast, our
task tackles coreference across the text and image,
and in addition, we are also concerned about noun
phrases, not only the pronouns. Additionally, Kot-
tur et al. (2018) indeed presents visual coreference
resolution (VCR) very similar to ours, with only
a difference in the coreference direction (image-
to-text v.s. ours text-to-image). As it targets vi-
sual question answering, the work does not build a
dataset for VCR nor evaluate it. Moreover, it han-
dles VCR at the sentence level for each question in
the visual dialogue. In our work, we focus on VCR
directly, with a released benchmark dataset, initial
models as well as benchmark results.

Related Datasets. The usual visual grounding
datasets (Yu et al., 2016), RefCOCO, RefCOCO+
and RefCOCOg, only include one simple expres-
sion without pronouns. There are several bench-
mark datasets (Lin et al., 2014; Krishna et al., 2017)
for phrase grounding, and the most well-known is
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Flickr30k Entities dataset (Plummer et al., 2015).
Nevertheless, since these datasets are among the
first to build the relations between the noun phrases
mentioned in a sentence and the specific localiza-
tion of a corresponding image, they may ignore the
pronouns, which can also be grounded and assistant
to visual language understanding.

6 Conclusion

In this work, we proposed to extend phrase ground-
ing task with pronouns, additionally, we established
our dataset, VD-Ref, the first dataset which contains
ground-truth mappings from both noun phrases and
pronouns to image regions. Furthermore, we took
the state-of-the-art model MDETR as our base-
line and introduced extra coreference knowledge
with graph neural networks. Experiments on our
dataset showed the exciting phenomenon that pro-
nouns are more accessible grounded than phrases
and demonstrated the significance of coreference
knowledge in visual language understanding. To
this end, we conducted in-depth analyses of our
results. In the future, we would expand more so-
phisticated dataset, and do more richer experiments
on our dataset.

Our dataset and baseline code are avaliable
at https://github.com/izhx/Phrase-Grounding-with-
Pronoun.

Limitations

In this work, we collect our dataset and extend
phrase grounding with pronouns by a series of ex-
plored experiments. Admittedly, due to the uneven
distribution of raw data and complex annotation
process, the main limitation is that our dataset only
considers the visual phrases and pronouns, while
lacking the annotations on non-visual textual ex-
pressions, and giving no insight into the scenery
regions as well, which could restrict the research
on more sophisticated conditions with varied coref-
erence chains. Future work should be undertaken
to expand a more complicated dataset and do more
abundant experiments with coreference chains.

Ethical Statement

We build the dataset VD-Ref to go on our re-
searches, aiming to extend the phrase grounding
task with pronouns, and study the performance
where the coreference chains impact on.In the data
annotation process, we adhere to a certain code of
conduct on ethical consideration. When recruiting

annotators for our task, we claim that all the po-
tential annotators are free to choose whether they
want to participate, and they can withdraw from
the study anytime without any negative repercus-
sions. Additionally, the whole annotation tasks are
anonymized, totally agnostic to any private infor-
mation of annotators. Furthermore, the annotation
results and dataset do not involve any sensitive
information that may harm others. Overall, the es-
tablishment of our dataset is compliant with ethics.
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A Annotation Interface

Figure 7: The designed interface of our annotation plat-
form using label-studio tool.

We designed the annotation interface. As illus-
trated in Figure 7, the left panel is the image sec-
tion, while the right panel is the text section. They
both have several boxes with distinct colors, which
are used to annotate image regions and textual ex-
pressions. Moreover, the interface provides seven
colors to choose from since the number of objects
in the dialogue does not exceed 7 as a precondi-
tion. Notably, there is one option, “Are you sure to
delete the data?”, for the annotators and reviewers
to remove vague and ambiguous datasets, where
the dialogue contains too much irrelevant content
or the image is incomplete, making it challenging
to be recongnized.
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