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Abstract

Standard fine-tuning of large pre-trained lan-
guage models (PLMs) for downstream tasks
requires updating hundreds of millions to bil-
lions of parameters, and storing a large copy
of the PLM weights for every task resulting in
increased cost for storing, sharing and serving
the models. To address this, parameter-efficient
fine-tuning (PEFT) techniques were introduced
where small trainable components are injected
in the PLM and updated during fine-tuning. We
propose AdaMix as a general PEFT method that
tunes a mixture of adaptation modules — given
the underlying PEFT method of choice — intro-
duced in each Transformer layer while keeping
most of the PLM weights frozen. For instance,
AdaMix can leverage a mixture of adapters
like Houlsby (Houlsby et al., 2019) or a mix-
ture of low rank decomposition matrices like
LoRA (Hu et al., 2021) to improve downstream
task performance over the corresponding PEFT
methods for fully supervised and few-shot NLU
and NLG tasks. Further, we design AdaMix
such that it matches the same computational
cost and the number of tunable parameters as
the underlying PEFT method. By only tuning
0.1 — 0.2% of PLM parameters, we show that
AdaMix outperforms SOTA parameter-efficient
fine-tuning and full model fine-tuning for both
NLU and NLG tasks. Code and models are
made available at https://aka.ms/AdaMix.

1 Introduction

Standard fine-tuning of large pre-trained language
models (PLMs) (Devlin et al., 2019; Liu et al.,
2019; Brown et al., 2020; Raffel et al., 2019) to
downstream tasks requires updating all model pa-
rameters. Given the ever-increasing size of PLMs
(e.g., 175 billion parameters for GPT-3 (Brown
et al., 2020) and 530 billion parameters for MT-
NLG (Smith et al., 2022)), even the fine-tuning step
becomes expensive as it requires storing a full copy
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Figure 1: Performance of different parameter-efficient
fine-tuning methods on GLUE development set with
RoBERTa-large encoder following a setup similar
to (Houlsby et al., 2019) for fair comparison. We re-
port the performance of Pfeiffer (Pfeiffer et al., 2021),
Houlsby (Houlsby et al., 2019) and LoRA (Hu et al.,
2021) with their default number of fine-tuned parame-
ters as well as the number of fine-tuned parameters used
in AdaMix with a mixture of adaptations . Red dash
shows the performance of full model fine-tuning.

of model weights for every task. To address these
challenges, recent works have developed parameter-
efficient fine-tuning (PEFT) techniques. These
approaches typically underperform standard full
model fine-tuning, but significantly reduce the num-
ber of trainable parameters. There are many vari-
eties of PEFT methods, including prefix-tuning (Li
and Liang, 2021) and prompt-tuning (Lester et al.,
2021) to condition frozen language models via nat-
ural language task descriptions, low dimensional
projections using adapters (Houlsby et al., 2019;
Pfeiffer et al., 2020, 2021) and more recently us-
ing low-rank approximation (Hu et al., 2021). Fig-
ure 1 shows the performance of some popular PEFT
methods with varying number of tunable parame-
ters. We observe a significant performance gap
with respect to full model tuning where all PLM
parameters are updated.

In this paper, we present AdaMix, a mixture of
adaptation modules approach, and show that it out-
performs SOTA PEFT methods and also full model
fine-tuning while tuning only 0.1 — 0.2% of PLM
parameters.
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In contrast to traditional PEFT methods that use
a single adaptation module in every Transformer
layer, AdaMix uses several adaptation modules that
learn multiple views of the given task. In order to
design this mixture of adaptations, we take inspi-
ration from sparsely-activated mixture-of-experts
(MoE) models. In traditional dense models (e.g.,
BERT (Devlin et al., 2019), GPT-3 (Brown et al.,
2020)), all model weights are activated for every
input example. MoE models induce sparsity by
activating only a subset of the model weights for
each incoming input.

Consider adapters (Houlsby et al., 2019), one
of the most popular PEFT techniques, to illustrate
our method. A feedforward layer (FFN) is intro-
duced to down-project the hidden representation
to a low dimension d (also called the bottleneck
dimension) followed by another up-project FEN to
match the dimensionality of the next layer. Instead
of using a single adapter, we introduce multiple
project-up and project-down FFNs in each Trans-
former layer. We route input examples to one of
the project-up and one of the project-down FFN’s
resulting in the same amount of computational cost
(FLOPs) as that of using a single adapter. For meth-
ods like LoRA (Hu et al., 2021), that decomposes
the gradient of pre-trained weights into low-rank
matrices (A and B), we introduce multiple low-
rank decompositions and route the input examples
to them similar to adapters.

We discuss different routing mechanism and
show that stochastic routing yields good perfor-
mance while eliminating the need for introducing
any additional parameters for module selection. To
alleviate training instability that may arise from
the randomness in selecting different adaptation
modules in different training steps, we leverage
consistency regularization and the sharing of adap-
tation modules during stochastic routing.

The introduction of multiple adaptation modules
results in an increased number of adaptation param-
eters. This does not increase computational cost
but increases storage cost. To address this, we de-
velop a merging mechanism to combine weights
from different adaptation modules to a single mod-
ule in each Transformer layer. This allows us to
keep the number of adaptation parameters the same
as that of a single adaptation module. Our merging
mechanism is inspired by model weight averaging
model soups (Wortsman et al., 2022) and multi
BERTSs (Sellam et al., 2022). Weight averaging

of models with different random initialization has
been shown to improve model performance in re-
cent works (Matena and Raffel, 2021; Neyshabur
et al., 2020; Frankle et al., 2020) that show the op-
timized models to lie in the same basin of error
landscape. While the above works are geared to-
wards fine-tuning independent models, we extend
this idea to parameter-efficient fine-tuning with ran-
domly initialized adaptation modules and a frozen
language model.

Overall, our work makes the following contribu-
tions:
(a) We develop a new method AdaMix as a mixture
of adaptations for parameter-efficient fine-tuning
(PEFT) of large language models. Given any PEFT
method of choice like adapters and low-rank de-
compositions, AdaMix improves downstream task
performance over the underlying PEFT method.
(b) AdaMix is trained with stochastic routing and
adaptation module merging to retain the same com-
putational cost (e.g., FLOPs, #tunable adaptation
parameters) and benefits of the underlying PEFT
method. To better understand how AdaMix works,
we demonstrate its strong connections to Bayesian
Neural Networks and model ensembling.
(c) By tuning only 0.1 — 0.2% of a pre-trained lan-
guage model’s parameters, AdaMix is the first PEFT
method to outperform full model fine-tuning meth-
ods for all NLU tasks on GLUE, and outperforms
other competing methods for NLG and few-shot
NLU tasks.
Practical benefits of PEFT methods. The most
significant benefit of PEFT methods comes from
the reduction in memory and storage usage. For
a Transformer, the VRAM consumption can be
significantly reduced as we do not need to keep
track of optimizer states for the frozen parameters.
PEFT methods also allow multiple tasks to share
the same copy of the full (frozen) PLM. Hence,
the storage cost for introducing a new task can be
reduced by up to 444x (from 355MB to 0.8MB
with RoBERTa-large encoder in our setting).

We present background on Mixture-of-Experts
(MoE) and adapters in Section A of Appendix.

2 Mixture-of-Adaptations

Consider a set of M adaptation modules injected
in each Transformer layer, where A;; : i €
{1---L},j € {1--- M} represents the j"* adap-
tation module in the ' Transformer layer. For
illustration, we will consider adapters (Houlsby
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Figure 2: Mixture-of-Adaptations (AdaMix) with adapters (Houlsby et al., 2019) as the underlying PEFT mechanism.
For illustration, we show M = 4 adaptation modules consisting of feedforward up (FFN_U) feedforward down
(FFN_D) projection matrices. The above block shown for one Transformer layer is repeated across all the layers.
AdaMix stochastically routes instances from an input batch via randomly selected adaptation modules resulting
in FLOPs match to a single module with consistency regularization and parameter sharing. Adaptation merging
(Figure 3) collapses multiple modules to match single-module parameters in each layer.

et al., 2019) as the underlying parameter-efficient
fine-tuning (PEFT) mechanism as a running exam-
ple. Similar principles can be used for other PEFT
mechanism like LoRA (Hu et al., 2021) for low-
rank decompositions as we show in experiments.
We adopt the popularly used Transformer archi-
tecture (Vaswani et al., 2017) consisting of L re-
peated Transformer blocks, where each block con-
sists of a self-attention sub-layer, a fully connected
feed-forward network (FFN) and residual connec-
tions around the sub-layers followed by layer nor-
malization. Each adaptation module A;; corre-
sponding to the adapters (Houlsby et al., 2019)
consists of a feedforward up W, and a feedfor-

ward down Widjow” projection matrices.

2.1 Routing Policy

Recent work like THOR (Zuo et al., 2021) has
demonstrated stochastic routing policy like random
routing to work as well as classical routing mecha-
nism like Switch routing (Fedus et al., 2021) with
the following benefits. Since input examples are
randomly routed to different experts, there is no
requirement for additional load balancing as each
expert has an equal opportunity of being activated
simplifying the framework. Further, there are no
added parameters, and therefore no additional com-
putation, at the Switch layer for expert selection.
The latter is particularly important in our setting for
parameter-efficient fine-tuning to keep the parame-
ters and FLOPs the same as that of a single adap-

tation module. To analyze the working of AdaMix,
we demonstrate connections to stochastic routing
and model weight averaging to Bayesian Neural
Networks and model ensembling in Section 2.5.

In the stochastic routing policy for AdaMix with
adapters, at any training step, we randomly select
a pair of feedforward up and feedforward down
projection matrices in the i*"* Transformer layer as
A = WV wgern) and B = WV, wigen
respectively. Given this selection of adaptation
modules A; and B; in each Transformer layer in
every step, all the inputs in a given batch are pro-
cessed through the same set of modules. Given an
input representation x in a given Transformer layer,
the above pair of modules perform the following
transformations:

x4 x + f(x - Wewny pyup (1)

Such stochastic routing enables adaptation mod-
ules to learn different transformations during train-
ing and obtain multiple views of the task. However,
this also creates a challenge on which modules to
use during inference due to random routing proto-
col during training. We address this challenge with
the following two techniques that further allow us
to collapse adaptation modules and obtain the same
computational cost (FLOPs, #tunable adaptation
parameters) as that of a single module.
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Figure 3: Stochastic routing during training acti-
vates different adaptation modules to have multiple
views of the task with FLOPs match to a single mod-
ule. Merging weights of the adaptation modules
({FFN_U,},{FFN_D;} : i € {1---4}) by averaging
preserves improved performance with parameter match
to a single-module.

2.2 Consistency regularization

Consider A = {AL_} and B = {BL ,} to be the
sets of adaptation modules (e.g., projection matri-
ces) activated during two stochastic forward passes
through the network for an input x across L layers
of the Transformer. The objective of consistency
regularization is to enable the adaptation modules
to share information and prevent divergence. To
this end, we add the following consistency loss as a
regularizer to the task-specific optimization loss:

C
L=— ( S Z(x, ¢) log softmax(zA () +
c=1
(LA @)128 (@) + KL (@)1 (x»)
2)

where Z(z, c) is a binary indicator (0 or 1) if class
label c is the correct classification for x and z(‘) (x)

1
2

and zf) (x) are the predicted logits while routing
through two sets of adaptation modules .4 and B re-
spectively with KL denoting the Kullback-Leibler
divergence. x is the input representation from the
PLM with frozen parameters and only the parame-
ters of modules {WW*?, Wd°wn} are updated during
training.

2.3 Adaptation module merging

While the above regularization mitigates inconsis-
tency in random module selection during inference,
it still results in increased serving cost to host sev-
eral adaptation modules. Prior works in fine-tuning
language models for downstream tasks have shown
improved performance on averaging the weights of
different models fine-tuned with different random
seeds outperforming a single fine-tuned model. Re-
cent work (Wortsman et al., 2022) has also shown
that differently fine-tuned models from the same

initialization lie in the same error basin motivating
the use of weight aggregation for robust task sum-
marization. We adopt and extend prior techniques
for language model fine-tuning to our parameter-
efficient training of multi-view adaptation modules.

In contrast to the aforementioned techniques like
stochastic routing and consistency regularization
that are applied at the training phase, we employ
adaptation merging only during inference. Given
a set of adaptation modules, W!¥ and W4e™ for
i € {1---L} and {j,k} € {1--- M}, we sim-
ply average the weights of all the corresponding
modules (e.g., project-up or project-down matrices)
in every Transformer layer to collapse to a single
module {W'}"? W4 \where:

M

M
u 1 u down 1 own
WP MZWI.JP W MZW;‘J-
j=1 Jj=1
3)
2.4 Adaptation module sharing

While stochastic routing to multi-view adaptation
modules increases the model capacity, it can also
impact downstream tasks with less amounts of la-
beled data for tuning several sets of adaptation mod-
ules. To address this challenge, we use another
mechanism to share some of the adaption modules
(e.g., project-down or the project-up operations)
to improve training efficiency. In the standard set-
ting for adapters, we share only the feedforward
projection-up matrices i.e., W;;" = W;". We in-
vestigate these design choices via ablation studies
in our experiments in Section 3.3 and Section C in
Appendix.

2.5 Connection to Bayesian Neural Networks
and Model Ensembling

Bayesian Neural Network (BNN) (Gal and Ghahra-
mani, 2015) replaces a deterministic model’s
weight parameters by a distribution over the param-
eters. For inference, BNN averages over all the pos-
sible weights, also referred to as marginalization.
Consider V) e RY to be the d—dimensional
output of such a neural network where the model
likelihood is given by p(y|f*V(*)). In our setting,
W = (W Wdown) along with frozen PLM pa-
rameters that are dropped from the notation for
simplicity. For classification, we can further ap-
ply a softmax likelihood to the output to obtain:
Py = c|lz, W) = softmaz(f"V®). Given an
instance x, the probability distribution over the
classes is given by marginalization over the pos-
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terior distribution as: p(y = clz) = [, p(y =
el YE WX, Y )dW.

This requires averaging over all possible model
weights, which is intractable in practice. Therefore,
several approximation methods have been devel-
oped based on variational inference methods and
stochastic regularization techniques using dropouts.
In this work, we leverage another stochastic regu-
larization in the form of random routing. Here, the
objective is to find a surrogate distribution gg(w) in
a tractable family of distributions that can replace
the true model posterior that is hard to compute.
The ideal surrogate is identified by minimizing the
Kullback-Leibler (KL) divergence between the can-
didate and the true posterior.

Consider gg(WV) to be the stochastic routing
policy which samples 7" masked model weights
WY, ~ go(W). For classification tasks, the ap-
proximate posterior can be now obtained by Monte-
Carlo integration (Gal et al., 2017) as:

p(y = clz) = p(y = o| ¥ (x))go (W) dW

L
~F Lo=ede)

T .
= % Z softmax(fYV(x))
t=1

However, computing the approximate posterior
above in our setting requires storing all the stochas-
tic model weights W, () which increases the serv-
ing cost during inference. To reduce this cost, we
resort to the other technique for weight averaging
via adaptation module merging during inference.

Let LHM = E,, L(softmaz(fV(z),y) de-
note the expected loss with merging of the
stochastic adaptation weights with W =
% >« W (from Equation 3) and £ denoting
the cross-entropy loss.  Consider E{?V”S =
EuyL( ST softmaz(fV(z),y)) denote the
expected loss from logit-level stochastic model en-
sembling (from Equation 4).

Prior work (Wortsman et al., 2022) shows that av-
eraging the weights of multiple models fine-tuned
with different hyper-parameters improves model
performance. They analytically show the similar-
ity in loss between weight-averaging (,C{}VM in our
setting) and logit-ensembling (E{?V”S in our setting)
as a function of the flatness of the loss and confi-
dence of the predictions. While the above analysis
is geared towards averaging of multiple indepen-
dently fine-tuned model weights, we can apply a

similar analysis in our setting towards averaging of
multiple stochastically obtained adaptation weights
in obtaining a favorable loss ﬁl’j‘VM . Further, adap-
tation merging reduces the serving cost during in-
ference since we need to retain only one copy of
the merged weights as opposed to logit-ensembling
which requires copies of all the adaptation weights.

3 Experiments
3.1 Experimental Setup

Dataset. We perform experiments on a wide range
of tasks including eight natural language under-
standing (NLU) tasks in the General Language Un-
derstanding Evaluation (GLUE) benchmark (Wang
et al., 2019) and three natural language generation
(NLG) tasks, namely, E2E (Novikova et al., 2017),
WebNLG (Gardent et al., 2017) and DART (Nan
et al., 2020). For the NLU and NLG tasks, we fol-
low the same setup as (Houlsby et al., 2019) and (Li
and Liang, 2021; Hu et al., 2021), respectively.
Baselines. We compare AdaMix to full model
fine-tuning and several state-of-the-art parameter-
efficient fine-tuning (PEFT) methods, namely,
Pfeiffer Adapter (Pfeiffer et al., 2021), Houlsby
Adapter (Houlsby et al., 2019), BitFit (Zaken
et al., 2021), Prefix-tuning (Li and Liang, 2021),
UNIPELT (Mao et al., 2021) and LoRA (Hu et al.,
2021). We use BERT-base (Devlin et al., 2019) and
RoBERTa-large (Liu et al., 2019) as encoders for
NLU tasks (results in Table 1 and Table 2), and
GPT-2 (Brown et al., 2020) for NLG tasks (results
in Table 3).

AdaMix implementation details. We implement
AdaMix in Pytorch and use Tesla V100 gpus for ex-
periments with detailed hyper-parameter configura-
tions presented in Section E in Appendix. AdaMix
with adapters uses a dimension of 16 and 48 using
BERT-base and RoBERTa-large encoders follow-
ing the setup of (Hu et al., 2021; Mao et al., 2021)
for fair comparison. AdaMix with LoRA uses rank
r = 4 following the setup of (Hu et al., 2021)
to keep the same number of adaptation parame-
ters during inference. The number of adaptation
modules in AdaMix is set to 4 for all the tasks and
encoders unless otherwise specified. The impact of
adapter dimension and number of adaptation mod-
ules for NLU tasks are investigated in Table 9 and
10. For most of the experiments and ablation anal-
ysis, we report results from AdaMix with adapters
for NLU tasks. For demonstrating the generaliz-
ability of our framework, we report results from
AdaMix with LoRA (Hu et al., 2021) as the under-
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Model #Param. MNLI QNLI SST2 QQP MRPC CoLA RTE STS-B Avg.
Acc Acc Acc Acc Acc Mcc Acc  Pearson
Full Fine-tuning* 355.0M 90.2 94.7 96.4 92.2 90.9 68.0 86.6 924 88.9
Pfeiffer AdapterT 3.0M 90.2 94.8 96.1 91.9 90.2 68.3 83.8 92.1 88.4
Pfeiffer AdapterT 0.8M 90.5 94.8 96.6 91.7 89.7 67.8 80.1 91.9 87.9
Houlsby AdapterJr 6.0M 89.9 94.7 96.2 92.1 88.7 66.5 834 91.0 87.8
Houlsby AdapterJr 0.8M 90.3 94.7 96.3 91.5 87.7 66.3 72.9 91.5 86.4
LoRAT 0.8M 90.6 94.8 96.2 91.6 90.2 68.2 85.2 92.3 88.6
AdaMix Adapter 0.8M 90.9 95.4 97.1 92.3 91.9 70.2 89.2 924 89.9

Table 1: Results for NLU tasks on GLUE development set with RoOBERTa-large encoder. The best result on each
task is in bold and “-” denotes missing measure. AdaMix with a mixture of adapters outperforms all competing
methods as well as fully fine-tuned large model with only 0.23% tunable parameters.’ denotes results reported from
(Hu et al., 2021). Mcc refers to Matthews correlation coefficient, and Pearson refers to Pearson correlation. #Param.
denotes the number of tunable adaptation parameters used during inference.

lying PEFT mechanism for NLG tasks.

3.2 Key Results

3.2.1 NLU Tasks

Tables 1 and 2 show the performance compari-
son among PEFT models with RoBERTa-large and
BERT-base encoders respectively. Fully fine-tuned
RoBERTa-large and BERT-base provide the ceiling
performance. We observe AdaMix with a mixture-
of-adapters to significantly outperform other state-
of-the-art baselines on most tasks with different
encoders. AdaMix with adapters is the only PEFT
method which outperforms full model fine-tuning
on all the tasks and on average score.

Model #Param.  Avg.
Full Fine-tuning® 110M 827
Houlsby Adapter’ 09M 83.0
BitFit® 0.1IM 823
Prefix-tuning’ 02M  82.1
LoRAT 03M 822
UNIPELT (AP) 1.1M  83.1
UNIPELT (APL)" 14M 835
AdaMix Adapter 09M 84.5

Table 2: Results for NLU tasks on GLUE develop-
ment set with BERT-base encoder and AdaMix with
a mixture-of-adapters. The best result on each task is in
bold. T and © denote results reported from (Mao et al.,
2021; Zaken et al., 2021). Detailed task-specific results
are reported in Table 13 of Appendix. #Param. refers
to the number of tunable adaptation parameters during
inference.

3.2.2 NLG Tasks

AdaMix leverages mixture of adaptations to im-
prove over underlying PEFT method as demon-
strated in Table 3 for E2E NLG i.e. AdaMix
with LoRA and AdaMix with adapters outperform

LoRA (Huetal.,2021) and adapters (Houlsby et al.,
2019) respectively. We report results on DART and
WebNLG in Tables 4 and 5 in Appendix.

3.2.3 Few-shot NLU

In contrast to the fully supervised setting in the
above experiments, we also perform few-shot ex-
periments on six GLUE tasks following the same
setup (e.g., shots, train and test splits) and eval-
uation as in (Wang et al., 2021). Detailed exper-
imental configuration presented in Section B of
Appendix. AdaMix uses a mixture-of-adapters with
prompt-based fine-tuning (Gao et al., 2021).

Table 6 shows the performance comparison
among different PEFT methods with |K| = 30
labeled examples with RoBERTa-large as frozen
encoder. We observe significant performance gap
for most PEFT methods with full model prompt-
based fine-tuning i.e. with all model parameters
being updated. AdaMix with adapters outperforms
full model tuning performance for few-shot NLU
similar to that in the fully supervised setting. Note
that AdaMix and LiST (Wang et al., 2021) use simi-
lar adapter design with prompt-based fine-tuning.

3.3 Ablation Study

We perform all the ablation analysis on AdaMix
with adapters for parameter-efficient fine-tuning.

Analysis of adaptation merging. In this abla-
tion study, we do not merge adaptation modules
and consider two different routing strategies at in-
ference time: (a) randomly routing input to any
adaptation module, and (b) fixed routing where we
route all the input to the first adaptation module in
AdaMix. From Table 7, we observe AdaMix with
adaptation merging to perform better than any of
the other variants without the merging mechanism.
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Model #Param. BLEU NIST MET ROUGE-L CIDEr
Full Fine-tuning 354.92M  68.2 8.62  46.2 71.0 247
Lin AdapterL' 0.37M  66.3 8.41 45.0 69.8 2.40
Lin Adapter 11.09M  68.9 8.71 46.1 71.3 247
Houlsby Adapter 11.09M 673 850  46.0 70.7 2.44
Fr7or2’ 25.19M 68.1 859  46.0 70.8 2.41
PreLayer 0.35M  69.7 8.81 46.1 71.4 2.49
LoRAT 035M 704 8.85 46.8 71.8 2.53
LoRA (repr.) 0.35M  69.8 877  46.6 71.8 2.52
AdaMix Adapter 042M  69.8 8.75 46.8 71.9 2.52
AdaMix LoRA 035M 710 8.89 46.8 72.2 2.54

Table 3: Results on E2E NLG Challenge with GPT-2 medium backbone. Best result on each task is in bold. We
report AdaMix results with both adapters and LoRA as underlying PEFT method. AdaMix outperforms all competing
methods as well as fully fine-tuned large model with only 0.1% tunable parameters.! denotes results reported from
(Hu et al., 2021) and repr. denotes reproduced results. #Param. denotes the number of tunable adaptation parameters
used during inference. Results on DART and WebNLG presented in Tables 4 and 5 in Appendix.

Model #Param. BLEU
Full Fine-tuning®  354.92M  46.2
Lin AdapterL’ 037M 424
Lin Adapter! 11.09M 452
FrTor?’ 2519M  41.0
PrefLayer’ 035M 464
LoRAT 0.35M  47.1
LoRA (repr.) 0.35M  47.35
AdaMix Adapter 042M  47.72
AdaMix LoRA 0.35M  47.86

Table 4: Results on DART with GPT-2 backbone en-
coder. Best result on each task is in bold. We report
AdaMix results with both adapters and LoRA as under-
lying PEFT method. AdaMix outperforms all competing
methods as well as fully fine-tuned large model with
only 0.1% tunable parameters.’ denotes results reported
from (Hu et al., 2021) and repr. denotes reproduced re-
sults. #Param. denotes the number of tunable adaptation
parameters used during inference.

Notably, all of the AdaMix variants outperform full
model tuning.

Moreover, Figure 4 shows that the performance
of merging mechanism is consistently better than
the average performance of random routing and
comparable to the best performance of random rout-
ing.

Averaging weights v.s. ensembling logits. We
compare AdaMix with a variant of logit ensem-
bling, denoted as AdaMix-Ensemble. To this end,
we make four random routing passes through the
network for every input (7'=4) and average the log-
its from different passes as the final predicted logit.
Inference time for this ensembling method is 4 x
AdaMix. We run repeated experiments with three
different seeds and report mean performance in Ta-

Model #Param. BLEU
Full Fine-tuning?  354.92M  46.5
Lin AdapterL’ 037M 502
Lin Adapter 11.09M 549
FrTor?’ 2519M 360
Prefix’ 0.35M  55.1
LoRAT 035M 553
LoRA (repr.) 0.35M  55.37
AdaMix Adapter 042M  54.94
AdaMix LoRA 0.35M  55.64

Table 5: Results on WebNLG with GPT-2 medium back-
bone. The results are based on all categories in the test
set of WebNLG. Best result on each task is in bold. We
report AdaMix results with both adapters and LoRA as
underlying PEFT method. AdaMix outperforms all com-
peting methods as well as fully fine-tuned large model
with only 0.1% tunable parameters.” denotes results
reported from (Hu et al., 2021) and repr. denotes repro-
duced results. #Param. denotes the number of tunable
adaptation parameters used during inference.

ble 7. We observe AdaMix with adaptation weight
averaging to outperform logit-ensembling follow-
ing our analysis (E{}VM V.S. Eﬁ,"s) in Section 2.5.
Analysis of consistency regularization. We drop
consistency regularization during training for ab-
lation and demonstrate significant performance
degradation in Table 8.

Analysis of adaptation module sharing. We re-
move adaptation module sharing in AdaMix for ab-
lation and keep four different copies of project-
down and four project-up FFN layers. From Table 8
we observe the performance gap between AdaMix
and AdaMix w/o sharing to increase with decrease
in the dataset size demonstrating the importance
of parameter sharing for low-resource tasks (e.g.,
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Model MNLI RTE QQP SST2 Subj MPQA  Avg.
Full Prompt Fine-tuning”  62.8 26y 66.1 22 7l.1as 91500 91.00s 827¢s 77.5
Head-only” 541an 58826 56745 85600 82.1es5 64.1en 669
BitFit" 54413 59835 58644 87301 839@3 65808 683
Prompt—tuning* ‘ 473 02 53006 39907 757amn 51504 7094 564
Houlsby Adapter* 357an 510360 62830 57062 83264 57235 57.8
LiST Adapter” 62417 66.639 71226 91.7a0 909a3 8260 77.6
AdaMix Adapter 65.6 26p 69.634 72602 918an 91520 847ae¢ 793

Table 6: Average performance and standard deviation of several parameter-efficient fine-tuning strategies based on
RoBERTa-large with |/C| = 30 training labels. The best performance is shown in bold. Prompt-tuning, Head-only
and BitFit tune 1M model parameters during inference. Houlsby Adapter, LiST Adapter and AdaMix Adapter tune
14M model parameters. * denotes that the results are taken from (Wang et al., 2021).

Model #Param.  Avg.
Full Fine-tuning 110M 82.7
AdaMix w/ Merging 0.9M 84.5
AdaMix w/o Merging + RandomRouting  3.6M 83.3
AdaMix w/o Merging + FixedRouting 0.9M 83.7
AdaMix w/o Merging + Ensemble 3.6M 83.2

Table 7: AdaMix without adaptation merging and differ-
ent routing and ensembling strategies. Average results
are presented on GLUE development set with BERT-
base encoder. Detailed task results in Table 14 of Ap-
pendix for BERT-base and RoBERTa-large encoders.

90.7 96.6 95.0 90.0
MNLI sST2 QnLI MRPC

Score
©

92.30 . 924

92.25

9220

922
9215 68 88
9210 921

Qap STSB COLA RTE

Figure 4: Violin plot of AdaMix-RandomRouting perfor-
mance distribution with RoOBERTa-large encoders. Red
dot denotes the performance of AdaMix.

Model/# Train MNLI QNLI SST2 MRPCRTE

393k 108k 67k 3.7k 2.5k

Full Fine-tuning 90.2 947 964 90.9 86.6
AdaMix 909 954 971 919 89.2
w/o Consistency 90.7 950 971 914 8438
w/o Sharing 909 950 964 904 84.1

Table 8: Ablation study demonstrating the impact of
consistency regularization and sharing in AdaMix.

RTE, MRPC). This is further demonstrated in Fig-
ure 7 in Appendix which shows a faster conver-
gence and lower training loss of AdaMix with shar-

ing compared to that without given the same num-
ber of training steps. We explore which adaptation
module to share (project-up v.s. project-down) in
Table 11 in Appendix that depict similar results.
Impact of the number of adaptation modules.
In this study, we vary the number of adaptation
modules in AdaMix as 2, 4 and 8 during training.
Table 9 shows diminishing returns on aggregate
task performance with increasing number of mod-
ules. As we increase sparsity and the number of
tunable parameters by increasing the number of
adaptation modules, low-resource tasks like RTE
and SST-2 — with limited amount of labeled data
for fine-tuning — degrade in performance compared
to high-resource tasks like MNLI and QNLI.

Adaptation MNLI QNLI SST2 MRPC RTE
Module 393k 108k 67k 3.7k 2.5k
2 909 952 968 909 874
4 909 954 971 919 89.2
8 909 953 969 914 874

Table 9: Varying the number of adaptation modules in
AdaMix with RoBERTa-large encoder. * denotes the
number of modules used in AdaMix with adapters.

Impact of adapter bottleneck dimension. Ta-
ble 10 shows the impact of bottleneck dimension
of adapters with different encoders in AdaMix. The
model performance improves with increase in the
number of trainable parameters by increasing the
bottleneck dimension with diminishing returns af-
ter a certain point.

4 Related Work

Parameter-efficient fine-tuning of PLMs. Recent
works on parameter-efficient fine-tuning (PEFT)
can be roughly categorized into two categories:
(1) tuning a subset of existing parameters includ-
ing head fine-tuning (Lee et al., 2019), bias term
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Adapter #Param. MNLI QNLI SST2 MRPC RTE
Dimension 393k 108k 67k 3.7k 2.5k
8 0.4M 90.7 952 968 912 87.7
16 0.8M 909 954 971 919 89.2
32 1.5M 91.0 954 96.8 90.7 89.2

Table 10: Varying the bottleneck dimension of adapters
in AdaMix with RoBERTa-large encoder. * denotes the
bottleneck dimension used in AdaMix with adapters. Re-
sults with BERT-base encoder in Table 12 in Appendix.

tuning (Zaken et al., 2021), (2) tuning newly-
introduced parameters including adapters (Houlsby
et al, 2019; Pfeiffer et al., 2020), prompt-
tuning (Lester et al., 2021), prefix-tuning (Li and
Liang, 2021) and low-rank adaptation (Hu et al.,
2021). As opposed to prior works operating on
a single adaptation module, AdaMix introduces a
mixture of adaptation modules with stochastic rout-
ing during training and adaptation module merging
during inference to keep the same computational
cost as with a single module. Further, AdaMix can
be used on top of any PEFT method to further boost
its performance.

Mixture-of-Expert (MoE). Shazeer et al., 2017
introduced the MoE model with a single gating
network with T'op-k routing and load balancing
across experts. Fedus et al., 2021 propose initializa-
tion and training schemes for T'op-1 routing. Zuo
et al., 2021 propose consistency regularization for
random routing; Yang et al., 2021 propose k T'op-1
routing with expert-prototypes, and Roller et al.,
2021; Lewis et al., 2021 address other load balanc-
ing issues. All the above works study sparse MoE
with pre-training the entire model from scratch. In
contrast, we study parameter-efficient adaptation
of pre-trained language models by tuning only a
very small number of sparse adapter parameters.
Averaging model weights. Recent explo-
rations (Szegedy et al., 2016; Matena and Raf-
fel, 2021; Wortsman et al., 2022; Izmailov et al.,
2018) study model aggregation by averaging all
the model weights. (Matena and Raffel, 2021) pro-
pose to merge pre-trained language models which
are fine-tuned on various text classification tasks.
(Wortsman et al., 2022) explores averaging model
weights from various independent runs on the same
task with different hyper-parameter configurations.
In contrast to the above works on full model fine-
tuning, we focus on parameter-efficient fine-tuning.
We explore weight averaging for merging weights
of adaptation modules consisting of small tunable

parameters that are updated during model tuning
while keeping the large model parameters fixed.

5 Conclusions

We develop a new framework AdaMix for
parameter-efficient fine-tuning (PEFT) of large pre-
trained language models (PLM). AdaMix leverages
a mixture of adaptation modules to improve down-
stream task performance without increasing the
computational cost (e.g., FLOPs, parameters) of
the underlying adaptation method. We demonstrate
AdaMix to work with and improve over different
PEFT methods like adapters and low rank decom-
positions across NLU and NLG tasks.

By tuning only 0.1 — 0.2% of PLM parameters,
AdaMix outperforms full model fine-tuning that up-
dates all the model parameters as well as other
state-of-the-art PEFT methods.

6 Limitations

The proposed AdaMix method is somewhat
compute-intensive as it involves fine-tuning large-
scale language models. The training cost of the
proposed AdaMix is higher than standard PEFT
methods since the training procedure involves mul-
tiple copies of adapters. Based on our empirical
observation, the number of training iterations for
AdaMix is usually between 1~2 times the training
for standard PEFT methods. This imposes nega-
tive impact on carbon footprint from training the
described models.

AdaMix is orthogonal to most of the existing
parameter-efficient fine-tuning (PEFT) studies and
is able to potentially improve the performance
of any PEFT method. In this work, we explore
two representative PEFT methods like adapter and
LoRA but we did not experiment with other combi-
nations like prompt-tuning and prefix-tuning. We
leave those studies to future work.
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Appendix
A Background

A.1 Mixture-of-Experts

The objective of sparsely-activated model design
is to support conditional computation and increase
the parameter count of neural models like Trans-
formers while keeping the floating point operations
(FLOPs) for each input example constant. Mixture-
of-Experts (MoE) Transformer models (Shazeer
et al., 2017; Fedus et al., 2021; Lepikhin et al.,
2020; Zuo et al., 2021) achieve this by using N
feed-forward networks (FFN), namely “experts"
denoted as Efil, each with its own set of learnable
weights that compute different representations of
an input token z based on context. In order to spar-
sify the network to keep the FLOPs constant, there
is an additional gating network G whose output
is a sparse N-dimensional vector to route each to-
ken via a few of these experts. Note that, a sparse
model with N = 1 corresponding to only one FFN
layer in each Transformer block collapses to the
traditional dense model.

Consider x, as the input token representation in
the s*" position to the MOE layer comprising of
the {E} | expert FFNs. Also, consider w" and
w?" to be the input and output projection matrices

)

for i*" expert. Expert output E;(z,) is given by:

Ei(xs) = wf™ - GeLU (wi™ - x) Q)

Consider G(x5) to be output of the gating network.
Output of the sparse MoE layer is given by:

h(zs) = Z G(xs)i Ei(zs) (6)

where G(z); the i logit of the output of G(z;)
denotes the probability of selecting expert [E;.

In order to keep the number of FLOPs in the
sparse Transformer to be the same as that of a dense
one, the gating mechanism can be constrained
to route each token to only one expert FFN, i.e.

> i Gy(xs)s = 1.
A.2 Adapters

The predominant methodology for task adaptation
is to tune all of the trainable parameters of the
PLMs for every task. This raises significant re-
source challenges both during training and deploy-
ment. A recent study (Aghajanyan et al., 2021)
shows that PLMs have a low instrinsic dimension

)

Add & Norm

Feedforward-
intermediate

Add & Norm
Multi-Head
Attention

Embedding

Figure 5: Conventional adapter design in standard Trans-
former architecture.

that can match the performance of the full parame-
ter space.

To adapt PLMs for downstream tasks with a
small number of parameters, adapters (Houlsby
et al., 2019) have recently been introduced as an
alternative approach for lightweight tuning.

The adapter tuning strategy judiciously intro-
duces new parameters into the original PLMs. Dur-
ing fine-tuning, only the adapter parameters are
updated while keeping the remaining parameters
of the PLM frozen. Adapters usually consist of
two fully connected layers as shown in Figure 5,
where the adapter layer uses a down projection
wdown ¢ RAXT 1o project input representation x
to a low dimensional space r (referred as the bottle-
neck dimension) with d being the model dimension,
followed by a nonlinear activation function f(-),
and a up-projection with W ¢ R"*? to project
the low-dimensional features back to the original
dimension. The adapters are further surrounded by
residual connections.

Given the above adapter design with parame-
ters 1, the dataset D, a pre-trained language
model encoder enc with parameters Opry 1, where
OprMm > ¥, we want to perform the following
optimization for efficient model adaptation:

Y < argming L(Dy; OpLm, V) (7

B Few-shot NLU Datasets

Data. In contrast to the fully supervised setting
in the above experiments, we also perform few-
shot experiments following the prior study (Wang
et al., 2021) on six tasks including MNLI (Williams
et al., 2018), RTE (Dagan et al., 2005; Bar Haim
et al., 2006; Giampiccolo et al., 2007; Bentivogli
et al., 2009), QQP! and SST-2 (Socher et al.). The
results are reported on their development set fol-

1https: //www.quora.com/q/quoradata/
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lowing (Zhang et al., 2021). MPQA (Wiebe et al.,
2005) and Subj (Pang and Lee, 2004) are used for
polarity and subjectivity detection, where we fol-
low (Gao et al., 2021) to keep 2, 000 examples for
testing. The few-shot model only has access to
|IC| labeled samples for any task. Following true
few-shot learning setting (Perez et al., 2021; Wang
et al., 2021), we do not use any additional vali-
dation set for any hyper-parameter tuning or early
stopping. The performance of each model is re-
ported after fixed number of training epochs. For a
fair comparison, we use the same set of few-shot
labeled instances for training as in (Wang et al.,
2021). We train each model with 5 different seeds
and report average performance with standard devi-
ation across the runs. In the few-shot experiments,
we follow (Wang et al., 2021) to train AdaMix via
the prompt-based fine-tuning strategy. In contrast
to (Wang et al., 2021), we do not use any unlabeled
data.

C Ablation Study

Model MNLI  SST2
Acc Acc
Sharing Project-up 90.9 97.1

Sharing Project-down ~ 90.8 97.1

Table 11: Ablation study demonstrating the impact of
parameter sharing in AdaMix adapter framework.

Adapter Dim  #Param. MNLI QNLI SST2 MRPC RTE

393k 108k 67k 3.7k 2.5k

BERTgask
8 0.1M 822 911 922 873 726
16 0.3M 830 915 922 882 729
32 0.6M 836 913 922 885 736
48" 0.9M 847 915 924 895 747
64 1.2M 844 918 923 882 751
ROBERTEI],AR(;E

8 0.4M 90.7 952 9.8 912 877
16" 0.8M 9.9 954 971 919 892
32 1.5M 910 954 968 907  89.2

Table 12: Varying the bottleneck dimension of adapters
in AdaMix with BERT-base and RoBERTa-large encoder.
* denotes the bottleneck dimension used in AdaMix with
adapters.

D Detailed Results on NLU Tasks

The results on NLU tasks are included in Table 1
and Table 13. The performance AdaMix with

RoBERTa-large encoder achieves the best perfor-
mance in terms of different task metrics in the
GLUE benchmark. AdaMix with adapters is the
only PEFT method which outperforms full model
fine-tuning on all the tasks and on average score.
Additionally, the improvement brought by AdaMix
is more significant with BERT-base as the encoder,
demonstrating 2.2% and 1.2% improvement over
the performance of full model fine-tuning and the
best performing baseline UNIPELT with BERT-
base. The improvement is observed to be consis-
tent as that with RoBERTa-large on every task. The
NLG results are included in Table 4 and 5.

E Hyper-parameter

Detailed hyper-parameter configuration for differ-
ent tasks presented in Table 15 and Table 16.
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Model #Param. MNLI QNLI SST2 QQP MRPC CoLA RTE STS-B  Avg.
Acc Acc Acc Acc /F1  Acc/F1 Mcc Acc  Pearson
Full Fine—tuningT 110M 83.2 90.0 91.6 -/187.4 -/90.9 62.1 66.4 89.8 82.7
Houlsby Adapter’ 09M  83.1 90.6 91.9 -/86.8 -/89.9 615 718 88.6 83.0
BitFit® 0.1M 81.4 90.2 92.1 -/84.0 -190.4 58.8 72.3 89.2 82.3
Preﬁx—tuningT 0.2M 81.2 90.4 90.9 -/83.3 -/91.3 554 76.9 87.2 82.1
LoRAT 0.3M 82.5 89.9 91.5 -/86.0 -/90.0 60.5 71.5 85.7 82.2
UNIPELT (AP) 1.IM 83.4 90.8 91.9 -/86.7 -/90.3 61.2 71.8 88.9 83.1
UNIPELT (APL)* 1.4M 83.9 90.5 91.5 85.5 -/90.2 58.6 73.7 88.9 83.5
AdaMix Adapter 0.9M 84.7 91.5 924 90.7/ 89.5/ 62.9 74.7 89.9 84.5
0.9M 87.6 924

Table 13: Main results on GLUE development set with BERT-base encoder. The best result on each task is in bold
and “-” denotes the missing measure.  and © denote that the reported results are taken from (Mao et al., 2021;
Zaken et al., 2021). The average performance is calculated based on F1 of QQP and MRPC. #Param. refers to the
number of updated parameters in the inference stage.
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Figure 6: Violin plot of AdaMix-RandomRouting performance distribution with BERT-base and RoBERTa-large
encoders. Red dot denotes the performance of AdaMix.
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Model #Param. MNLI QNLI SST2 QQP MRPC CoLA RTE STS-B Avg.
Acc Acc Acc Acc /F1  Acc/F1 Mcc Acc  Pearson

BERT3ase

Full Fine-tuning 110M 83.2 90.0 91.6 -/187.4 -/90.9 62.1 66.4 89.8 82.7

AdaMix 0.9M 84.7 91.5 92.4 90.7/ 89.5/ 62.9 74.7 89.9 84.5
87.6 92.4

AdaMix-RandomRouting 3.6M 84.3 91.1 91.8 90.6/ 85.6/ 60.5 72.1 89.8 83.3
87.4 89.1

AdaMix-FixedRouting 0.9M 84.5 91.1 91.6 90.5/ 87.5/ 61.4 73.3 89.8 83.7
87.3 90.8

AdaMix-Ensemble 3.6M 84.3 91.2 91.6 90.5/ 85.9/ 59.4 72.1 89.8 83.2
87.4 89.4

RoBERTaLARGE

Full Fine-tuning 355.0M 90.2 94.7 96.4 92.2/- 90.9/- 68.0 86.6 92.4 88.9

AdaMix 0.8M 90.9 95.4 97.1 92.3/ 91.9/ 70.2 89.2 92.4 89.9
89.8 94.1

AdaMix-RandomRouting 3.2M 90.8 95.2 96.8 92.2/ 90.8/ 68.8 88.5 92.2 89.4
89.6 933

AdaMix-FixedRouting 0.8M 90.7 95.1 96.8 92.1/ 91.2/ 68.6 89.2 92.2 89.5
89.5 93.6

AdaMix-Ensemble 3.2M 90.9 95.3 97.0 92.2/ 91.0/ 69.3 89.1 92.4 89.7
89.7 93.5

Table 14: Comparing the impact of different routing and ensembling strategies with AdaMix. Results are presented
on GLUE development set with BERT-base and RoBERTa-large encoders. Average results are calculated following
Table 1 and Table 2 for consistency. The best result on each task is in bold and “-” denotes the missing measure.

Task |Learning rate| epoch| batch size| warmup| weight decay|adapter size|adapter num

BERT3Ase
MRPC 4e—4 100 16 0.06 0.1 48 4
CoLA Se—4 100 16 0.06 0.1 48 4
SST 4e-4 40 64 0.06 0.1 48 4
STS-B Se-4 80 32 0.06 0.1 48 4
QNLI 4e-4 20 64 0.06 0.1 48 4
MNLI 4e-4 40 64 0.06 0.1 48 4
QQP Se-4 60 64 0.06 0.1 48 4
RTE Se-4 80 64 0.06 0.1 48 4
RoBERTaLARGE
MRPC 3e-4 60 64 0.6 0.1 16 4
CoLA 3e-4 80 64 0.6 0.1 16 4
SST 3e-4 20 64 0.6 0.1 16 4
STS-B 3e-4 80 64 0.6 0.1 16 4
QNLI 3e-4 20 64 0.6 0.1 16 4
MNLI 3e-4 20 64 0.6 0.1 16 4
QQP Se-4 80 64 0.6 0.1 16 4
RTE Se-4 60 64 0.6 0.1 16 4

Table 15: Hyperparameter configurations for GLUE tasks.
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Task lepoch| warmup steps|adapter size|no. of experts

Adapter with Adamix
E2E NLG Challenge| 20 2000 8 8
WebNLG 25 2500 8 8
DART 20 2000 8 8
LoRA with Adamix
E2E NLG Challenge| 20 2000 — 8
WebNLG 25 2500 — 8
DART 20 2000 — 8

Table 16: Hyperparameter configurations for GPT-2 pegium On NLG tasks. We retain all other default training and
generation specific hyper-parameters from LoRA (Hu et al., 2021).
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