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Abstract

Large pretrained multilingual language models
(ML-LMs) have shown remarkable capabili-
ties of zero-shot cross-lingual transfer, without
direct cross-lingual supervision. While these
results are promising, follow-up works found
that, within the multilingual embedding spaces,
there exists strong language identity informa-
tion which hinders the expression of linguistic
factors shared across languages. For seman-
tic tasks like cross-lingual sentence retrieval,
it is desired to remove such language identity
signals to fully leverage semantic information.
In this work, we provide a novel view of pro-
jecting away language-specific factors from a
multilingual embedding space. Specifically, we
discover that there exists a low-rank subspace
that primarily encodes information irrelevant
to semantics (e.g., syntactic information). To
identify this subspace, we present a simple but
effective unsupervised method based on singu-
lar value decomposition with multiple mono-
lingual corpora as input. Once the subspace is
found, we can directly project the original em-
beddings into the null space to boost language
agnosticism without finetuning. We system-
atically evaluate our method on various tasks
including the challenging language-agnostic
QA retrieval task. Empirical results show that
applying our method consistently leads to im-
provements over commonly used ML-LMs.

1 Introduction

Large language models pretrained with self-
supervised objectives (e.g., masked language mod-
eling) have become the de-facto standard for var-
ious NLP tasks (Peters et al., 2018; Devlin et al.,
2019; Liu et al., 2019). Follow-up extensions to
the multilingual setting inherit similar training ob-
jectives and show very promising results (Con-
neau and Lample, 2019; Conneau et al., 2020b;
K et al., 2020). Despite these models are trained
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without explicit cross-lingual signals (i.e., trans-
lation pairs), they surprisingly exhibit impressive
zero-shot cross-lingual transferability on natural
language inference (Conneau et al., 2018), ques-
tion answering (Lewis et al., 2020), sentence re-
trieval (Artetxe and Schwenk, 2019), etc.

While these ML-LMs offer practical solutions
for cross-lingual tasks, there is an enduring debate
about why the ML-LMs work. From a positive per-
spective, Pires et al. (2019) conduct an exploratory
study on mBERT (Devlin et al., 2019), suggesting
that cross-lingual transfer is possible even to lan-
guages in different scripts. Chi et al. (2020) probe
mBERT for structural phenomena and find that its
representations can recover syntactic tree distances
in languages other than English. These findings
present shreds of evidence that the pretrained mul-
tilingual representations do capture cross-lingual
properties in various aspects. On the flip side, a line
of research shows that pretrained ML-LMs encode
strong language-specific signals. This causes their
multilingual representations to cluster by language
identities instead of semantic meaning (Wu and
Dredze, 2019; Roy et al., 2020; Libovický et al.,
2020). The property largely hinders the expression
of linguistic signals shared across languages. For
applications like cross-lingual sentence retrieval
that mainly consider semantic information, ML-
LMs with strong language-specific signals tend to
retrieve answers from specific languages, regard-
less of their semantic meaning (Roy et al., 2020).

Motivated by previous findings about language
identity information, we aim to locate language-
specific factors captured by the pretrained ML-
LMs for recovering a language-agnostic embed-
ding space. Inspired by advances in domain gen-
eralization (Muandet et al., 2013; Motiian et al.,
2017; Piratla et al., 2020), we explore a simple but
effective approach, LSAR, to discover a Low-rank
Subspace for language-Agnostic Representations
within an ML-LM. The subspace primarily encodes
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information irrelevant to semantics, and can be
identified without any translation pairs based on
singular value decomposition. Once the subspace is
found, we can directly factor out language-specific
factors from the multilingual embeddings by pro-
jecting them into the null space without finetuning.

To evaluate LSAR, we focus on semantic tasks
for multilingual sentence embeddings. On standard
cross-lingual zero-shot transfer tasks including clas-
sification and sentence retrieval, LSAR consistently
achieves significant improvements. Especially, ap-
plying LSAR leads to significant improvements
for pretrained ML-LMs on LAReQA (Roy et al.,
2020), a challenging benchmark targeting strong
language agnosticism.

We further examine what information exactly
the subspace contains. By performing correlation
analysis between structural language similarities
obtained from the URIEL database (Littell et al.,
2017) and the language similarities captured on the
subspace, we observe that the subspace encodes a
great deal of syntactic information. This implies
that LSAR successfully erases linguistic signals
that are redundant to semantic tasks to facilitate
language agnosticism.

To conclude, our main contributions are:

• We present one of the pioneering efforts to
discover that there exist low-rank subspaces of
pretrained ML-LMs’ embeddings that mainly
encode language-specific signals.

• To identify the subspace in a ML-LM, we
present a simple unsupervised approach called
LSAR based on singular value decomposition.
By projecting embeddings onto the null space,
LSAR can exclude the unwanted factors to
facilitate language agnosticism.

• Empirical results show that LSAR is surpris-
ingly effective for a variety of semantic tasks.
We also elucidate that the subspace encodes
strong syntactic signals with careful experi-
mental analysis.

2 Related Work

Understanding Pretrained Multilingual Rep-
resentations Recently, there has been a surge
of interest in probing pretrained ML-LMs like
mBERT (Devlin et al., 2019). Pires et al. (2019)
present an exploratory study on the cross-linguality
of mBERT, showing that mBERT exhibits strong

zero-shot performances for typologically similar
languages. Libovický et al. (2020) find that the
original mBERT embeddings can be decomposed
into a language-specific component and a language-
neutral component. Chi et al. (2020) probe mBERT
for universal grammatical relations and show that
mBERT does encode fine-grained syntactic distinc-
tions across languages. Muller et al. (2021) find
that mBERT operates as the stacking of two sub-
networks and mainly the lower part of the model is
crucial for cross-lingual transfer.

Language-agnostic Representations To further
facilitate semantic downstream tasks like text clas-
sification, retrieval, and question answering, it is
appealing to remove language-specific signals from
the original embeddings without destroying the in-
trinsic semantic meaning.

LASER (Artetxe and Schwenk, 2019) utilizes
parallel data to train a BiLSTM-based multilin-
gual sentence encoder. Zhao et al. (2021) obtain
language-agnostic embeddings from mBERT and
XLM-R by explicitly aligning the word pairs and
further normalizing the latent spaces with zero
mean and unit variance. Yang et al. (2021) regard
the top principal components from each language’s
embedding space as the primary source of language
bias and propose to project them away to boost lan-
guage agnosticism.

Our work bears resemblance to Yang et al.
(2021), but with clear distinctions in that: 1) we
model language-specific signals jointly in the mul-
tilingual embedding space instead of locating it
separately within each language; 2) we further
verify what exactly the linguistic signals are iden-
tified, and present evidences that LSAR primar-
ily removes syntactic information. A few previ-
ous works (Gonen et al., 2020; Liang et al., 2021;
Chang et al., 2022) also attempt to locate language-
agnostic embeddings in subspaces of ML-LMs.
Apart from the dissimilarity of methodology, we
focus on sentence-level instead of token-level tasks
and provide shreds of evidence that the identified
subspace exhibits strong correlation with syntactic
information.

Low-rank Subspaces in Other Applications
Low-rank subspaces have been employed in
various applications. In face recognition, the
most expressive features for face representations
are located via subspace analysis methods like
PCA (Turk and Pentland, 1991; Wang and Tang,
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Figure 1: Conceptual illustration of our alignment method LSAR. There exists strong language identity information
from the original pretrained multilingual representations. By projecting away language-specific components that
reside in a low-rank subspace discovered in identification process (in top-right), we can produce a language-agnostic
embedding space via language agnosticism rectification (in bottom). The probing procedure (colored in blue-grey)
and the inference procedure (colored in yellow) can be done separately.

2004). For domain adaptation and domain gener-
alization, a typical idea is to uncover a shared sub-
space on which the distribution mismatch between
domains is reduced (Muandet et al., 2013; Pan et al.,
2011; Motiian et al., 2017). Recent advances in
probing Generative Adversarial Networks (GANs)
also observe meaningful latent subspaces that en-
able precise control of GAN generation (Wang and
Ponce, 2021; Zhu et al., 2021). These findings to
some extent motivate this paper.

3 Methodology

In this section, we first introduce our method to
identify the low-rank language-specific subspace
in an unsupervised manner. Once the subspace is
found, we can then suppress the language iden-
tity from the original multilingual embeddings
to achieve language agnosticism rectification by
projecting them to the null space. This post-
training alignment procedure can largely benefit
downstream tasks like cross-lingual retrieval which
solely utilize semantic-related information.

3.1 Multilingual Embedding Decomposition

To locate the language-specific factors, we follow
previous works (Pires et al., 2019; Libovický et al.,
2020; Yang et al., 2021) to hypothesize that each
multilingual embedding el ∈ Rd in language l can

be decomposed in an additive form:

el := sl + al,

where sl ∈ Rd and al ∈ Rd represent the language-
specific component to remove and the language-
agnostic component to keep, respectively.

Built on the above assumption, previous unsu-
pervised approaches extract the language identity
information separately for each language space.
Given an ML-LM (e.g., mBERT), the extracted
embeddings El := {eil}ni=1 from n samples of
task training data or external monolingual corpora
contain mixed linguistic information of semantic-
relevant and semantic-irrelevant signals about lan-
guage l. Libovický et al. (2020) use the empir-
ical mean 1

n

∑n
i=1 e

i
l to obtain sl. Yang et al.

(2021) use the top-k principal components C l =
PCA(El) ∈ Rd×k to encode language identity sig-
nals, and propose to factor them out with sl =
C lC

⊤
l el to facilitate language agnosticism.

In spite of their promising results for semantic-
related tasks, these methods fall short of compre-
hensively discovering cross-lingual relationship in
the latent space. For each language l, both of them
leverage solely El to locate language-specific in-
formation, which fails to distinguish itself from
semantic signals as other languages’ characteris-
tics is unknown. Without careful tuning, this can
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lead to unexpected semantic information loss (Kho-
dak et al., 2018). Besides, it is also unclear what
exactly language-specific signals are captured by
these approaches.

3.2 Low-rank Subspace Identification
To alleviate the above issues, we attempt to glob-
ally capture language-specific information from
the multilingual latent space. Inspired by previous
works in domain adaptation and domain general-
ization (Muandet et al., 2013; Motiian et al., 2017;
Piratla et al., 2020), we present a simple approach
that identifies a low-rank subspace of the original
multilingual latent space, M s ∈ Rd×r, spanned by
r components. Intuitively, the subspace encodes
language-specific signals via measuring the latent
discrepancy among languages.

To be specific, we first extract the mean embed-
ding µl = 1

n

∑n
i=1 e

i
l of each language l in the

same spirit of previous approaches. Concatenat-
ing µl of L languages column-by-column results
in the mean embedding matrix M ∈ Rd×L. As
discussed in Section 3.1, the mean embeddings can
unexpectedly mix the desired language-specific sig-
nals with semantic information. To avoid removing
the semantic information shared among languages,
we decompose M into two components: 1) a vec-
tor µ representing what is commonly shared across
languages in the latent space; 2) a matrix M s spec-
ifying a low-rank subspace on which different lan-
guages express different linguistic signals. With
the orthogonality constraint, our objective is:

min
µ,Ms,Γ

∥∥∥M − µ1⊤ −M sΓ
⊤
∥∥∥
2

F

s.t. µ ⊥ Span (M s) ,

(1)

where Γ ∈ RL×r is the coordinates of language-
specific signals along the subspace’s r components
and 1 ∈ Rd contains all ones.

The optimal solution of Equation 1 can be com-
puted efficiently via Singular Value Decomposi-
tion (SVD), as proved in Appendix A. Algorithm 1
presents the detailed procedure. The only hyper-
parameter r < L controls the amount of language-
specific information captured by the identified sub-
space. The larger r is, the more language-specific
signals we can identify.

3.3 Language Agnosticism Rectification
Once we find the low-rank subspace with seman-
tically irrelevant information encoded, we can im-

Algorithm 1: language-specific Subspace
Identification

In: languages’ mean embeddings M , rank
of subspace r

Out: language-agnostic component µ,
language-specific subspace M s,
coordinates Γ

/* 1) Approximate M in low rank */
1 µ′ ← 1

dM1;
2 M ′

s, _,Γ′ ← Top-r SVD
(
M − µ′

1
⊤);

3 M ′ ← µ′
1
⊤ +M ′

sΓ
′⊤;

/* 2) Force orthogonality */

4 µ← 1
∥M ′+

1∥2M
′+
1;

5 M s, _,Γ← Top-r SVD
(
M ′ − µ1⊤)

prove language agnosticism via projecting multi-
lingual embeddings onto the null space of M s:

al =

(
I −M s

(
M⊤

s M s

)−1
M⊤

s

)
el

= el −M sM
⊤
s el.

Given that usually l ≪ d, the information re-
moved is restricted to aspects that emerges to be
language-specific and will not lead to dimensional
collapse.

4 Experiments

We systematically evaluate our method on various
tasks followed by further analyses1, with the pur-
poses of understanding: 1) whether the proposed
approach can benefit downstream tasks; 2) what
exactly the identified low-rank subspace captures.

To begin with, we describe our evaluation proto-
col for the alignment methods, which largely fol-
lows Yang et al. (2021) but with a broader scope
to include more base models as listed in Section B.
Given one of the pretrained ML-LMs, we first ran-
domly collect 10,000 sentences for each language
from the OSCAR corpus (Ortiz Suárez et al., 2020)
covering all the evaluated languages and their web
crawl texts2. The sentence embeddings extracted
by the pretrained model are then used for finding

1Code: https://github.com/fffffarmer/LSAR.
2Yang et al. (2021) use Wiki-40B (Guo et al., 2020) for

collecting sentence embeddings. The corpus fails to cover
all the languages evaluated in Tatoeba. We also report the
numbers using Wiki-40B as the text resource for LAReQA
and Amazon Reviews in Appendix C.2.
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mBERT XLM XLM-R LABSE
Cross-lingual zero-shot transfer (w/o finetuning)

Original 37.53+00.00% 28.13+00.00% 57.68+00.00% 95.47+00.00%

Centered (Libovický et al., 2020) 39.57+05.43% 27.13-03.57% 61.08+05.89% 95.56+00.10%

LIR (k = 1) (Yang et al., 2021) 39.70+05.77% 28.75+02.22% 61.60+06.80% 95.63+00.16%

LIR (k = 15) (Yang et al., 2021) 41.21+09.80% 31.65+12.51% 62.80+08.87% 95.56+00.10%

LSAR 44.64+18.94% 33.16+17.89% 65.05+12.77% 95.54+00.08%

Cross-lingual zero-shot transfer (w/ finetuning)
Full-Model-FS (Xu et al., 2022)† - - 60.5+04.9%/66.2+14.8% -

S4-Tuning (Xu et al., 2022)† - - 66.1+14.6%/69.5+20.5% -
Full-Model (Ruder et al., 2021)‡ 42.8+14.0% - 76.6+32.8% -

Table 1: Retrieval accuracy (%) on Tatoeba (averaged over all 36 languages). †Results from Xu et al. (2022) report
few-shot performances with different numbers of shots (64/128). ‡Results are calculated from Ruder et al. (2021).
We use “-” to indicate results that are not reported in the references and use “+%” to report relative improvements.

the low-rank subspace described in Equation 1. Un-
less otherwise indicated, we consistently report
LSAR with r = l− 1, where l is the number of the
evaluated languages. We evaluate language agnos-
ticism over pretrained ML-LMs that are commonly
used, as described in Appendix B. Detailed results
are listed in Appendix C.3.

4.1 Baselines

Apart from Original that keeps the pretrained ML-
LM intact, we compare LSAR with the following
baselines. The baselines share the same setting as
ours in that both of them require no parallel text
and aim at removing language-specific factors in a
post-training manner.

Centered Libovický et al. (2020) extract
language-neutral embeddings from the original
pretrained multilingual sentence encoders via
subtracting the mean embedding for each language.
The mean embeddings are calculated from the
multi-monolingual OSCAR corpus.

LIR Yang et al. (2021) propose to project away
the top-k principal components of each language’s
embeddings to facilitate language agnosticism,
where k is the hyperparameter. Again, the top
principal components are extracted from the multi-
monolingual corpus.

4.2 Sentence Retrieval

Tatoeba (Artetxe and Schwenk, 2019) is a com-
monly used dataset for evaluating ML-LMs. It
comprises up to 1,000 sentences for each language
along with their English translations. We follow
the evaluation procedure of XTREME (Hu et al.,

2020) that covers 36 languages. For each language
pair, we go through each sentence in the source
language and find the closest sentence in the target
language using cosine similarity.

The top-1 retrieval accuracy results are shown
in Table 1. For mBERT (Devlin et al., 2019),
XLM (Conneau and Lample, 2019), and XLM-
R (Conneau et al., 2020a), applying LSAR brings
significant performance gains of up to 19% rela-
tive improvement. Compared with Centered and
LIR which separately remove information for each
language, LSAR jointly utilizes the encoded in-
formation from all the languages to better locate
language-specific factors. Furthermore, we observe
that LSAR consistently achieves the best results
with hyperparameter r (the rank of the low-rank
subspace) equal to the number of the evaluated
languages, as shown in Appendix C.1. As the lan-
guages are diversely distributed, it is reasonable
that each language possesses its own linguistic char-
acteristics, resulting in a larger language-specific
subspace to factor out. In contrast, we find that LIR
is vulnerable to its hyperparameter k (the number
of the removed principal components), which is
best shown in Figure 7.

For LABSE (Feng et al., 2022), all the methods
fail to provide marked enhancement. This can be
mainly attributed to the fact that LABSE already
uses parallel corpora to explicitly align multilin-
gual embeddings. Despite that the improvement
is marginal, it is still promising to combine LSAR
with existing pretraining objectives to produce bet-
ter language-agnostic embeddings.

We also include several representative baselines
that finetune either mBERT or XLM-R for bet-
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Figure 2: 2D PCA visualization on LAReQA. We display the embeddings collected from mBERT (X-X) on the
XQuAD-R sub-dataset. Embeddings of the candidate answers (C) in English, Thai, and Mandarin are shown in small
scatters. Embeddings of the question (Q) in English and the ground-truth answers (A) in English, Thai, and Mandarin
are shown in large scatters. Higher opacity indicates higher predicted ranking (color bars: / / ).

XQuAD-R MLQA-R
En-En X-X En-En X-X

Original 28.57 23.36 35.71 26.21
Centered 35.37 44.66 35.36 42.14

LIR (k = 1) 37.70 44.25 38.03 41.96
LSAR 41.13 45.89 40.55 43.32

Table 2: Answer retrieval mAP (%) on XQuAD-R and
MLQA-R of LAReQA (averaged over all languages).

ter cross-lingual transfer results. Although these
methods are not directly comparable to ours, we be-
lieve it provides additional valuable findings to in-
clude them. Full-Model-FS and S4-Tuning finetune
XLM-R on full English labeled examples and then
K-shot data over target languages (K = 64/128).
For Full-Model, the pretrained models are fine-
tuned on the English SQuAD data. On mBERT,
LSAR outperforms Full-Model by a large margin.
We also observe on XLM-R that LSAR is compet-
itive with finetuning the full model on 128-shot
data as well as finetuning a dedicated language sub-
network (S4-Tuning) on 64-shot data. The results
are quite promising given that we obtain better per-
formances with the original encoders intact and no
task-relevant training data.

4.3 Language-agonstic Answer Retrieval

While Tatoeba reveals the cross-lingual transfer-
ability across English-centric language pairs, it is
restricted to monolingual pools (i.e., the set of can-
didates is restricted to certain language). Therefore,
it fails to thoroughly evaluate whether texts with a
similar semantic meaning are grouped together in

the latent space, regardless of their languages.

With that in mind, we further examine the align-
ment methods on LAReQA (Roy et al., 2020), a
challenging cross-lingual answer retrieval task. Un-
like Tatoeba, the targets of LAReQA must be re-
trieved from a large multilingual candidate pool.
It consists of two sub-datasets, XQuAD-R and
MLQA-R, whose candidate pool covers 11 and
7 languages respectively.

We follow Yang et al. (2021) to evaluate the
alignment methods on two models, mBERT (En-
En) and mBERT (X-X). Specifically, mBERT (En-
En) finetunes the original mBERT model on the
English QA pairs collected from the SQuAD v1.1
dataset. mBERT (X-X) employs the same train-
ing procedure but with an extended dataset where
each sample is translated into the 11 XQuAD lan-
guages. Since all positive samples for finetuning
are within the same language as the question query,
both models exhibit strong self-language bias while
preserving the weak alignment property. For eval-
uation, we use the dot product of embeddings to
score a QA pair, which accords with the finetuning
protocol. The retrieval performance is measured by
mean Average Precision (mAP).

Table 2 reports our LAReQA results. We can
observe that applying LSAR again results in sig-
nification improvements, nearly doubling mAP of
mBERT (X-X) on XQuAD-R. Since in the candi-
date pool each language has one of the relevant
answers, better retrieval performances directly in-
dicate better language agnosticism. Centered and
LIR (k = 1) also show impressive performances,
suggesting that in weakly aligned multilingual sys-
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mBERT XLM XLM-R
Original 74.73 75.31 80.32

LIR (k = 1) 75.39 75.73 81.14
LSAR (r = 1) 75.58 74.93 81.47
LSAR (r = 2) 75.49 75.85 82.37

LSAR 75.24 75.27 81.25

Table 3: Classification accuracy (%) on Amazon Re-
views (averaged over English, French, German and
Japanese). We exclude Centered as the embeddings
are already normalized and hence Centered produces
the same results as Original. The results of LABSE are
placed in Appendix C due to limited space.

tems, the mean embeddings and principal compo-
nents do encode language-specific signals. But for
LIR, it is shown that removing the first principal
component consistently leads to the best perfor-
mance. This is opposite to what we observe on
Tatoeba, where the optimal k is around 15.

To further illustrate the degree of language ag-
nosticism, we project an English question (What
theory best explains gravity?) as well as all candi-
dates and the ground-truth answers in English, Thai,
and Mandarin via PCA. As plotted in Figure 2,
candidates in English are retrieved from mBERT
(X-X) with higher priority than those in Thai and
Mandarin. Applying LSAR can effectively elimi-
nate strong language identity information residing
in the original embedding space and draw closer
the question and answers from different languages.
LIR with k = 1, however, falls short of rectify-
ing language-specific signals as illustrated by the
embedding spectrum in Figure 2b.

4.4 Zero-shot Classification

We also include the Amazon Reviews classification
task (Prettenhofer and Stein, 2010) to assess zero-
shot cross-lingual transfer. The dataset consists of
product reviews in English, French, German, and
Japanese. Each review is labeled as positive or neg-
ative, making it a binary classification task. We use

mBERT XLM XLM-R
Original 0.2815 0.5422 0.2457
Centered 0.0975 0.2483 0.2004

LIR (k = 1) 0.0900 0.1875 0.2203
LSAR 0.0801 0.1320 0.0856

Table 4: Clustering performance (NMI) of embeddings
obtained by mBERT on Tatoeba. The results of LABSE
are placed in Appendix C due to limited space.
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Figure 3: Answer retrieval mAP on XQuAD-R broken
down by question language (row) and answer language
(column), with model mBERT (X-X). Only one correct
answer is included in the multilingual candidate pool.

the same procedure to extract sentence embeddings
as in Section 4.2, and normalize them to make reg-
ularization hyperparameters more consistent across
languages. Appendix C.1 specifies how we select
hyperparameters. Following (Yang et al., 2021),
the performance is evaluated via training a logistic
regression classifier3 on the English training data
and then evaluating it on the test sets of all four
languages.

From Table 3, we observe that the classifier
trained on English data benefits from LSAR for
classifying reviews based on semantics as the
language-specific factors are effectively erased. An-
other interesting observation is that unlike sentence
retrieval, removing more directions does not result
in better performance. This indicates that classi-
fication tasks can be more sensitive to semantic
information.

4.5 Analysis

In this section, we present analysis on a variety
of aspects towards what exactly language-specific
information LSAR captures.

4.5.1 Language-specific Signals are Rectified

From previous findings, we conjecture that our
method achieves impressive cross-lingual perfor-
mance by effectively removing language identity
signals. To quantitatively verify this, we measure
the strength of language identity information from
the perspective of clustering quality. If the em-
beddings are clustered by language types, we can
generally state that language-specific signals still
play a prominent role in the multilingual latent
space.

3sklearn.linear_model.LogisticRegressionCV().
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Figure 4: Removed components along the top two basis
vectors of the identified low-rank subspace on mBERT.

We perform K-Means clustering on sentence rep-
resentations of Tatoeba with the number of clusters
equal to the number of languages, and then evaluate
the resulting clusters using the Normalized Mutual
Information (NMI) metric (Jawahar et al., 2019)4.
As shown in Table 4, the original pretrained embed-
dings have relatively high NMI scores, suggesting
the existence of strong language identity informa-
tion. Our method consistently achieves smaller
NMI scores. This indicates that the embeddings
have a lower tendency to group by language types
since LSAR successfully winnows down language-
specific information.

The same conclusion can be drawn from the
limit-to-one-target setting of LAReQA (Roy et al.,
2020). Specifically, we remove 10 targets from
the multilingual pool of XQuAD-R to evaluate on
each target separately. We choose the most biased
X-X variant as the base model. The heatmaps in
Figure 3 show for each question language (row),
the retrieval mAP on the pool containing just
one target in different answer languages (column).
Since X-X has strong self-language bias, Origi-
nal shows better performance on the diagonal than
off-diagonal. After applying LSAR, we observe
a significant increase in average off-diagonal per-
formance (23.76% vs. 5.89%), without sacrific-
ing much on-diagonal performance (81.57% vs.
84.57%). This again verifies that applying LSAR
effectively removes language-specific information.

4.5.2 Removed Components Form Groups of
Language Families

We next examine whether the removed components
found by the low-rank subspace are truly language-

4sklearn.metrics.normalized_mutual_info_score().
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Figure 5: Language similarity obtained from syntactic
signals vs. language similarity measured by language-
specific sL of mBERT. Each point is a language.

specific. This is demonstrated via plotting the re-
moved components for different languages along
top basis vectors of the subspace. For the ease of
visualization, we group them by language family.

Figure 4 shows the histograms of removed com-
ponents along the top two basis vectors extracted
from mBERT on 36 languages of Tatoeba, accord-
ing to Equation 1. We can observe that the removed
components disperse in groups of language fami-
lies along these directions. This implies that the
identified subspace do capture language-specific
signals and hence removing them along the basis
vectors can narrow down latent discrepancy.

4.5.3 The Identified Subspace Primarily
Encodes Syntactic Information

Finally, given that the removed components are
language-specific, we investigate to what extent the
low-rank subspace encodes typological relations
among languages. Specifically, we use the URIEL
database (Littell et al., 2017) to collect distances
between English and other languages set out by
experts based on certain typological information
(e.g., syntax and phonology). We then compare
the typological distances with languages similari-
ties obtained from the removed language-specific
embeddings sL as well as the resulting language-
agnostic embeddings aL by calculating the cosine
similarity between languages’ mean embeddings.

Among all types of typological signals listed
in URIEL, we find that the removed language-
specific factors are mostly correlated with syntac-
tic information. Table 5 shows the Pearson cor-
relations on English and other 36 languages from
Tatoeba. The removed language-specific compo-
nent sL is highly correlated with syntactic infor-
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mBERT XLM XLM-R LABSE
sL 0.6910 0.6378 0.7526 0.6894
aL -0.2711 0.2239 0.1338 -0.2362

Table 5: Pearson correlations between syntactic lan-
guage similarities obtained from the URIEL database,
and the language similarities obtained from language-
specific sL as well as language-agnostic aL.

mation, whereas the correlation is much smaller
in the language-agnostic embedding space with
sL removed. This finding is in line with previous
works (Chi et al., 2020; Zhao et al., 2021) that ob-
serve the pretrained multilingual models encode
rich syntactic information.

We find no prominent correlation between the
removed components along certain basis vectors
of the subspace and typological information. As
we do not presuppose any correspondence between
basis vectors and linguistic signals, a specific basis
vector falls short of individually encoding language-
specific information.

5 Conclusion

We present a simple yet effective approach called
LSAR to boost language agnosticism for pretrained
multilingual encoders. LSAR identifies a low-rank
subspace residing in a pretrained model that primar-
ily encodes language-specific signals in an unsu-
pervised manner via singular value decomposition.
Once the subspace is discovered, it can be used to
efficiently project away the language identity in-
formation. Empirical results demonstrate the great
effectiveness of LSAR on semantic tasks and shed
light on its ability to locate syntactic relations be-
tween languages.

Limitations

Our method LSAR is designed and evaluated for se-
mantic tasks. For future work, we are interested in
continuing our study for locating more fine-grained
linguistic information, which can potentially boost
a larger variety of downstream tasks. While the
simplicity of the proposed LSAR is appealing, it
also opens up directions for future work by general-
izing the first-moment mean embeddings to higher-
moment statistics and combining with pretraining
objectives in more sophisticated ways.
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A Theoretical Justification

In this section, we present Theorem 1 and the cor-
responding proof. We follow the same proving
procedure in Piratla et al. (2020).
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Theorem 1. For any matrix M ∈ Rd×L, Algo-
rithm 1 returns µ ∈ Rd,M s ∈ Rd×r,Γ ∈ RL×r

that minimize Equation 1 where µ ⊥ Span (M s).

Proof. Algorithm 1 first obtains the best approx-
imation of M with rank r + 1 and 1 in its row
space (Line 1-3). The orthogonal constraint µ ⊥
Span (M s) is then forced without obeying the low-
rank property (Line 4-5).

To begin with, note that the optimization prob-
lem in Equation 1 is equivalent to the following:

min
M̂

∥∥∥M − M̂
∥∥∥
2

F

s.t. rank
(
M̂

)
≤ r + 1 and

1 ∈ Span
(
M̂

⊤)
.

(2)

Let U ,Σ,V = SVD
(
M − µ′

1
⊤). We have

that 1 ⊥ Span
(
V ⊤) given

(
M − µ′

1
⊤)
1 =

0. Denote by U rΣrV
⊤
r the top-r component of

UΣV ⊤, by σi (A) the i-th largest singular value
of A and by Ai the best rank-i approximation of
A.

The first step is to show that µ′
1
⊤ +U rΣrV

⊤
r

minimizes the objective in Equation 2. Following
the proof of Eckart-Young-Mirsky theorem for low-
rank approximation (Schmidt, 1907; Eckart and
Young, 1936), let M̃ := M−M̂ with any feasible
M̂ fixed. We have

σi

(
M̃

)
=
∥∥∥M̃ − M̃ i−1

∥∥∥
F

=
∥∥∥M̃ − M̃ i−1

∥∥∥
F
+
∥∥∥M̂ − M̂

∥∥∥
F

≥
∥∥∥M̃ + M̂ − M̃ i−1 − M̂

∥∥∥
F

=
∥∥∥M − M̃ i−1 − M̂

∥∥∥
F

≥min
M̄

∥∥M − M̄
∥∥
F
,

where the minimum is taken over all M̄ with
rank

(
M̄

)
= i + r and 1 ∈ Span

(
M̄

⊤
)

. By

taking M̄ = µ′
1
⊤ +U i+r−1Σi+r−1V

⊤
i+r−1, we

have σi

(
M̃

)
≥ σi+r

(
UΣV ⊤) and therefore

∥∥∥M − M̂
∥∥∥
2

F
≥

∥∥M − µ′
1
⊤ −U rΣrV

⊤
r

∥∥2
F

.
Next, we find µ and M s that meet the orthog-

onality constraint while preserving the low-rank
structure. Suppose µ1⊤ + M sΓ

⊤ = µ′
1
⊤ +

M ′
sΓ

′⊤ with µ ⊥ Span (M s), we have that
µ⊤ (

µ1⊤ +M sΓ
⊤) = ∥µ∥2 1⊤ which yields

µ⊤ = ∥µ∥2
(
µ′
1
⊤ +M ′

sΓ
′⊤
)+

1
⊤.

B Base Models

We evaluate the alignment methods based on a num-
ber of established pretrained multilingual models.
We mainly build on the Transformers library (Wolf
et al., 2020) for our experiments.

mBERT5 Multilingual BERT (Devlin et al.,
2019) is a transformer model (Vaswani et al., 2017)
pretrained on Wikipedia, with the objective of
Masked Language Modeling (MLM) and a shared
vocabulary across all languages.

XLM6 XLM (Conneau and Lample, 2019) also
uses the MLM objective and the monolingual
Wikipedia corpus for pretraining, with a larger
model and a larger vocabulary.

XLM-R7 XLM-R (Conneau et al., 2020a) fol-
lows a similar training procedure as XLM but col-
lects the larger-scale CommonCrawl corpus.

LABSE8 LABSE (Feng et al., 2022) is the state-
of-the-art multilingual sentence encoder that lever-
ages bilingual sentence pairs for pretraining.

Following previous works (Jawahar et al., 2019;
Ruder et al., 2021) that observe certain intermediate
layers of Transformer consistently outperform the
last layer for cross-lingual tasks, we use the 8th
layer for mBERT and XLM, and the 12th layer for
XLM-R. We apply mean-pooling to obtain sentence
embeddings as it is widely used (Conneau et al.,
2020b; Muller et al., 2021). For LABSE as well
as mBERT (X-X) and mBERT (En-En) used in
LAReQA, we evaluate the alignment methods on
the original sentence embeddings.

C Supplementary Results

In this section, we provide supplementary experi-
mental results.

C.1 Hyperparameter Selection
For the considered baselines, we do not conduct
sophisticated hyperparameter search given that it is
non-trivial for LIR. To provide fair comparison, for
LIR and LSAR that both have one single hyperpa-
rameter (the number of top principal components
k and the number of basis vectors to span the low-
rank subspace r), we exhaustively enumerate all

5https://huggingface.co/
bert-base-multilingual-cased.

6https://huggingface.co/xlm-mlm-100-1280.
7https://huggingface.co/xlm-roberta-large.
8https://huggingface.co/sentence-transformers/

LaBSE.
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Figure 6: Retrieval accuracy on Tatoeba (averaged over all 36 languages) at different layers.

XQuAD-R MLQA-R
En-En X-X En-En X-X

Original 28.57 23.36 35.71 26.21
Centered 35.38 45.47 35.87 43.27

LIR (k = 1) 36.71 45.24 37.56 43.24
LIR (k = 2) 36.70 44.74 37.11 42.42
LIR (k = 3) 36.82 44.54 36.87 42.28

LSAR (r = 1) 30.51 26.38 36.79 28.79
LSAR (r = 2) 32.31 29.22 38.05 31.70
LSAR (r = 3) 34.05 31.99 39.00 35.28

LSAR 40.95 46.39 40.70 44.02

Table 6: Answer retrieval mAP (%) on XQuAD-R and
MLQA-R of LAReQA (averaged over all languages),
using Wiki-40B as the text resource.

values within a scope and report the best perfor-
mances on the test data. Figure 7 shows the trend
of accuracy on Tatoeba as the hyparameters change.

C.2 Wiki40-B Results

In this section we list the results of LAReQA (Ta-
ble 6) and Amazon Reviews (Table 8-11) with
Wiki-40B (Guo et al., 2020)9 as the text resource.
For Amazon Reviews, we also report the perfor-
mances obtained in the last layers to reproduce
those in Yang et al. (2021).

For Amazon Reviews, we determine the L2 reg-
ularization strength using a hyperparameter sweep
on the 5-fold cross-validation routine, over the
range between 1e-4 and 1e4 with 10 logarithmi-
cally spaced steps. This training procedure is im-
plemented using the Scikit-Learn library (Buitinck
et al., 2013).

9https://www.tensorflow.org/datasets/catalog/
wiki40b.

XQuAD-R MLQA-R
En-En X-X En-En X-X

Original 28.57 23.36 35.71 26.21
Centered 35.37 44.66 35.36 42.14

LIR (k = 1) 37.70 44.25 38.03 41.96
LIR (k = 2) 36.83 43.58 37.60 41.63
LIR (k = 3) 36.21 43.15 36.89 41.03

LSAR (r = 1) 30.50 26.27 36.68 28.59
LSAR (r = 2) 32.36 28.69 37.94 31.15
LSAR (r = 3) 34.20 31.49 38.82 34.46

LSAR 41.13 45.89 40.55 43.32

Table 7: Answer retrieval mAP (%) on XQuAD-R and
MLQA-R of LAReQA (averaged over all languages),
using OSCAR as the text resource.

C.3 OSCAR Results
The detailed results with OSCAR is provided in
this section.

Tatoeba We report the results for all languages
on Tatoeba in Table 17-20. Additionally, the com-
plete set of results for clustering performance is
shown in Table 12.

LAReQA We report the detailed results on
LAReQA in Table 7. We omit listing all languages
due to limited space.

Amazon Reviews We provide the results for all
languages on Amazon Reviews in Table 13-16.
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Layer 8 Layer 12
en de fr jp avg. em de fr jp avg.

Original 81.13 72.82 76.02 68.98 74.74 80.07 70.05 73.75 64.86 72.18
LIR (k = 1) 81.12 72.33 76.80 72.25 75.62 80.03 70.00 71.73 67.51 72.32
LIR (k = 2) 81.05 71.90 76.80 72.35 75.52 79.98 71.15 72.50 69.04 73.17
LIR (k = 3) 81.10 72.23 76.22 71.06 75.15 80.03 70.85 73.67 69.36 73.48

LSAR (r = 1) 81.12 72.77 75.87 72.30 75.51 79.98 71.17 73.68 71.15 73.99
LSAR (r = 2) 81.13 72.50 76.85 72.33 75.70 80.08 71.23 73.45 70.91 73.92

LSAR 81.12 72.43 76.67 72.36 75.64 79.87 70.10 71.95 68.69 72.65

Table 8: Classification accuracy (%) on Amazon Reviews (mBERT), using Wiki-40B as the text resource.

Layer 8 Layer 12
en de fr jp avg. em de fr jp avg.

Original 85.45 69.07 81.50 65.21 75.31 84.43 55.42 72.87 58.23 67.74
LIR (k = 1) 85.52 73.68 81.52 65.66 76.59 84.50 75.77 79.88 60.98 75.28
LIR (k = 2) 85.52 73.32 81.45 64.31 76.15 84.65 75.58 79.73 60.79 75.19
LIR (k = 3) 85.60 72.10 81.62 62.46 75.44 84.52 75.52 79.40 63.03 75.62

LSAR (r = 1) 85.53 70.98 81.52 66.44 76.12 84.45 56.75 75.20 66.64 70.76
LSAR (r = 2) 85.48 73.77 81.65 65.43 76.58 84.48 60.35 71.25 66.54 70.66

LSAR 85.50 73.78 81.63 65.41 76.58 84.48 75.78 79.57 64.99 76.21

Table 9: Classification accuracy (%) on Amazon Reviews (XLM), using Wiki-40B as the text resource.

Layer 11 Layer 24
en de fr jp avg. em de fr jp avg.

Original 84.33 78.32 82.30 76.35 80.32 90.55 78.08 83.57 67.14 79.84
LIR (k = 1) 84.33 82.47 81.68 80.18 82.17 90.53 88.67 89.88 86.16 88.81
LIR (k = 2) 84.45 82.18 82.10 80.08 82.20 90.62 88.48 88.27 85.61 88.25
LIR (k = 3) 84.33 81.40 83.08 78.48 81.82 90.67 88.55 88.40 85.61 88.31

LSAR (r = 1) 84.35 77.95 81.93 79.78 81.00 90.62 69.20 90.00 83.98 83.45
LSAR (r = 2) 84.33 82.52 81.17 80.53 82.14 90.60 88.73 79.18 79.30 84.45

LSAR 84.30 82.67 81.80 80.56 82.33 90.58 88.42 89.33 85.95 88.57

Table 10: Classification accuracy (%) on Amazon Reviews (XLM-R), using Wiki-40B as the text resource.

en de fr jp avg.
Original 83.32 81.37 84.27 79.26 82.05

LIR (k = 1) 83.18 81.70 84.32 79.51 82.18
LIR (k = 2) 83.20 81.92 84.18 79.33 82.16
LIR (k = 3) 83.18 81.83 84.32 79.45 82.19

LSAR (r = 1) 83.32 81.30 84.28 79.21 82.03
LSAR (r = 2) 83.10 81.63 83.90 79.61 82.06

LSAR 83.27 81.77 83.95 79.75 82.18

Table 11: Classification accuracy (%) on Amazon Reviews (LABSE), using Wiki-40B as the text resource.

mBERT XLM XLM-R LABSE
Original 0.2815 0.5422 0.2457 0.0344
Centered 0.0975 0.2483 0.2004 0.0388

LIR (k = 1) 0.0900 0.1875 0.2203 0.0352
LSAR 0.0801 0.1320 0.0856 0.0306

Table 12: Clustering performance (NMI) of embeddings obtained by mBERT on Tatoeba.
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Figure 7: Retrieval accuracy on Tatoeba (averaged over all 36 languages) with different hyperparameters (k for LIR
and r for LSAR). We observe that removing more principal components within each language for LIR does not
result in better performances and can instead lead to information loss. For mBERT and XLM, the best k is found 17,
whereas it is 14 for XLM-R. LSAR, however, consistently achieves the best results with r = 36 as larger subspaces
encode more language-specific signals.

Layer 8 Layer 12
en de fr jp avg. em de fr jp avg.

Original 81.13 72.82 76.02 68.98 74.74 80.07 70.05 73.75 64.86 72.18
LIR (k = 1) 81.12 72.90 75.08 72.43 75.38 80.07 71.08 71.40 67.11 72.42
LIR (k = 2) 81.03 71.47 70.58 66.09 72.29 79.97 69.35 72.07 66.29 71.92
LIR (k = 3) 80.85 68.67 74.38 67.53 72.86 79.88 66.10 69.80 66.59 70.59

LSAR (r = 1) 81.25 72.78 75.80 72.48 75.58 79.98 71.03 73.62 70.45 73.77
LSAR (r = 2) 81.27 72.57 75.85 72.30 75.49 80.07 71.12 73.48 70.11 73.69

LSAR 81.15 72.90 75.22 71.68 75.24 79.88 70.80 71.70 67.79 72.54

Table 13: Classification accuracy (%) on Amazon Reviews (mBERT), using OSCAR as the text resource.

Layer 8 Layer 12
en de fr jp avg. em de fr jp avg.

Original 85.45 69.07 81.50 65.21 75.31 84.43 55.42 72.87 58.23 67.74
LIR (k = 1) 85.58 77.57 80.05 59.74 75.74 84.52 75.75 80.20 55.26 73.93
LIR (k = 2) 85.40 76.72 79.82 60.86 75.70 84.48 75.57 77.95 55.46 73.36
LIR (k = 3) 85.15 77.42 81.07 51.51 73.79 84.48 74.55 76.13 51.26 71.61

LSAR (r = 1) 85.47 69.08 81.42 63.78 74.94 84.50 56.33 74.63 66.84 70.58
LSAR (r = 2) 85.37 74.53 81.60 61.88 75.84 84.50 57.75 72.80 66.86 70.48

LSAR 85.45 77.15 80.25 58.24 75.27 84.62 75.87 80.65 57.14 74.57

Table 14: Classification accuracy (%) on Amazon Reviews (XLM), using OSCAR as the text resource.

Layer 11 Layer 24
en de fr jp avg. em de fr jp avg.

Original 84.33 78.32 82.30 76.35 80.32 90.55 78.08 83.57 67.14 79.84
LIR (k = 1) 84.32 82.55 77.82 79.93 81.15 90.53 88.85 87.67 86.11 88.29
LIR (k = 2) 84.42 82.27 78.15 79.45 81.07 90.63 89.12 85.93 85.86 87.89
LIR (k = 3) 84.33 81.05 77.57 79.16 80.53 90.68 89.85 84.68 86.30 87.88

LSAR (r = 1) 84.32 78.80 82.12 80.66 81.47 90.55 83.47 77.67 80.86 83.14
LSAR (r = 2) 84.32 82.55 82.08 80.53 82.37 90.55 87.63 76.57 77.66 83.10

LSAR 84.27 82.60 77.85 80.28 81.25 90.57 89.37 88.03 86.01 88.50

Table 15: Classification accuracy (%) on Amazon Reviews (XLM-R), using OSCAR as the text resource.
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en de fr jp avg.
Original 83.32 81.37 84.27 79.26 82.05

LIR (k = 1) 83.40 81.85 82.62 79.81 81.92
LIR (k = 2) 83.28 80.92 78.37 78.73 80.32
LIR (k = 3) 82.88 78.92 78.82 78.85 79.87

LSAR (r = 1) 83.07 81.52 83.88 79.20 81.92
LSAR (r = 2) 83.02 82.10 83.55 79.66 82.08

LSAR 83.13 81.92 83.18 79.48 81.93

Table 16: Classification accuracy (%) on Amazon Reviews (LABSE), using OSCAR as the text resource.

af ar bg bn de el es et eu fa fi fr
Original 38.90 24.50 48.80 17.00 75.40 29.80 64.10 28.10 25.50 41.20 39.00 64.30
Centered 40.90 27.30 48.50 17.30 74.70 35.10 66.40 29.60 27.40 43.70 40.30 65.30

LIR (k = 1) 41.00 27.20 48.60 17.90 74.90 35.10 66.40 30.10 27.70 44.00 40.50 64.90
LSAR 44.70 31.80 55.00 21.90 79.00 38.70 71.20 35.30 32.00 49.80 46.40 69.10

he hi hu id it ja jv ka kk ko ml mr
Original 40.10 34.80 36.90 53.50 57.30 40.90 17.56 19.57 27.13 36.00 17.90 20.10
Centered 41.50 35.40 41.40 53.40 58.30 41.60 18.54 23.32 30.96 38.70 27.66 23.00

LIR (k = 1) 41.70 35.40 41.60 53.70 58.20 41.90 18.05 23.73 30.96 38.80 28.82 23.00
LSAR 45.70 43.90 46.00 60.00 61.90 51.00 24.88 28.28 34.09 45.30 36.83 26.40

nl pt ru sw ta te th tl tr ur vi zh
Original 63.70 68.40 59.40 10.77 13.36 14.10 13.69 16.00 32.90 30.80 61.00 68.60
Centered 64.30 69.50 62.40 12.56 14.33 14.96 17.15 18.10 38.20 31.40 62.20 69.00

LIR (k = 1) 65.10 69.30 62.10 12.31 14.33 14.96 17.15 18.20 38.20 32.10 62.00 69.20
LSAR 69.20 73.10 67.20 14.36 18.57 21.37 21.72 22.00 41.90 38.00 67.10 73.30

Table 17: Retrieval accuracy (%) on Tatoeba for each language (mBERT), using OSCAR as the text resource.

af ar bg bn de el es et eu fa fi fr
Original 34.20 17.80 34.80 5.70 62.20 24.90 56.00 18.40 11.90 30.50 28.10 52.80
Centered 30.30 17.30 35.30 5.00 62.20 22.50 53.50 19.20 14.70 29.90 31.30 49.20

LIR (k = 1) 32.20 18.20 37.30 5.80 65.10 25.60 54.10 21.10 16.60 31.00 32.00 51.70
LSAR 37.50 20.10 42.40 9.90 68.20 30.50 58.80 25.50 22.00 35.00 36.10 55.10

he hi hu id it ja jv ka kk ko ml mr
Original 31.20 15.70 29.50 44.60 52.20 32.20 19.51 22.12 14.26 25.20 0.58 6.30
Centered 30.00 14.50 30.00 45.10 49.90 28.60 17.56 19.71 14.78 22.70 0.44 5.50

LIR (k = 1) 31.40 17.40 31.20 45.40 50.60 31.90 19.02 21.85 16.70 24.50 0.87 6.20
LSAR 34.10 24.30 36.70 49.20 55.10 36.80 22.44 24.80 20.87 29.30 4.95 10.70

nl pt ru sw ta te th tl tr ur vi zh
Original 55.00 58.40 44.20 8.97 1.63 5.56 27.74 12.40 24.90 17.80 45.70 39.70
Centered 55.60 58.10 42.50 6.92 2.28 5.13 18.43 14.60 27.70 16.40 43.70 36.00

LIR (k = 1) 57.30 58.80 43.60 9.49 2.28 5.56 23.91 15.20 28.80 17.20 45.20 40.10
LSAR 59.70 61.90 47.60 11.79 6.84 11.54 32.66 20.10 33.50 22.90 52.00 42.90

Table 18: Retrieval accuracy (%) on Tatoeba for each language (XLM), using OSCAR as the text resource.

af ar bg bn de el es et eu fa fi fr
Original 58.20 47.50 71.60 43.00 88.80 61.80 75.70 52.20 35.80 70.50 71.60 73.70
Centered 59.30 49.60 75.00 45.30 90.90 65.80 76.60 57.10 45.80 72.10 78.40 73.00

LIR (k = 1) 59.80 50.30 75.30 46.10 90.70 66.30 77.20 57.50 47.00 72.60 78.80 73.80
LSAR 65.20 55.00 76.50 52.60 91.60 71.30 80.90 60.90 52.00 75.90 78.90 77.50

he hi hu id it ja jv ka kk ko ml mr
Original 66.40 72.20 65.40 77.00 68.30 60.60 14.15 52.28 48.52 61.40 65.36 56.80
Centered 69.10 74.10 67.90 80.00 70.60 62.50 21.95 62.60 49.57 63.00 70.01 60.30

LIR (k = 1) 69.50 75.00 68.20 80.40 71.50 62.60 20.98 63.00 50.78 63.50 69.87 61.20
LSAR 71.80 79.40 72.70 81.50 73.70 68.20 26.34 61.53 55.65 69.70 76.71 67.60

nl pt ru sw ta te th tl tr ur vi zh
Original 80.80 82.20 74.10 20.26 26.38 35.90 29.38 36.70 65.70 23.40 74.70 68.30
Centered 81.80 81.50 78.20 24.10 30.62 41.45 30.29 37.30 74.00 26.90 79.70 72.60

LIR (k = 1) 82.10 82.20 78.80 25.64 31.60 41.88 31.02 37.60 74.50 27.00 80.40 73.10
LSAR 84.10 84.30 79.00 26.92 36.16 44.02 35.04 47.00 75.50 32.90 79.90 73.80

Table 19: Retrieval accuracy (%) on Tatoeba for each language (XLM-R), using OSCAR as the text resource.

5632



af ar bg bn de el es et eu fa fi fr
Original 97.70 90.60 95.50 91.60 99.30 96.70 98.10 98.00 95.40 96.30 97.00 96.10
Centered 97.60 90.40 95.60 91.60 99.30 96.60 98.30 98.10 95.70 96.20 97.20 96.30

LIR (k = 1) 97.70 90.40 95.60 91.60 99.30 96.80 98.10 98.10 95.80 96.10 97.00 96.30
LSAR 97.40 90.90 95.40 91.60 99.30 96.60 98.20 97.90 95.60 95.90 97.10 96.30

he hi hu id it ja jv ka kk ko ml mr
Original 92.40 97.90 97.00 95.60 95.30 96.40 85.37 95.71 91.13 94.10 98.98 95.00
Centered 92.10 97.90 97.10 95.80 95.20 96.70 87.80 95.58 91.30 94.20 99.13 95.00

LIR (k = 1) 92.10 97.90 97.00 95.60 95.40 96.50 87.80 95.71 91.83 94.00 99.13 95.20
LSAR 92.40 97.80 97.10 95.80 95.40 96.50 85.85 95.71 91.65 93.90 99.13 94.80

nl pt ru sw ta te th tl tr ur vi zh
Original 97.50 95.70 95.30 89.49 90.23 98.29 97.08 98.00 98.20 96.00 97.80 96.10
Centered 97.70 95.60 95.00 89.23 90.23 98.72 97.26 97.90 98.20 95.70 97.90 96.00

LIR (k = 1) 97.70 95.70 95.20 90.26 90.55 98.72 97.45 98.00 98.30 95.90 97.80 96.00
LSAR 97.50 96.00 95.40 90.26 90.55 98.72 96.90 97.80 98.30 96.00 97.70 96.20

Table 20: Retrieval accuracy (%) on Tatoeba for each language (LABSE), using OSCAR as the text resource.
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