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Abstract

JoeyS2T is a JoeyNMT (Kreutzer et al., 2019)
extension for speech-to-text tasks such as au-
tomatic speech recognition and end-to-end
speech translation. It inherits the core philos-
ophy of JoeyNMT, a minimalist NMT toolkit
built on PyTorch, seeking simplicity and acces-
sibility. JoeyS2T’s workflow is self-contained,
starting from data pre-processing, over model
training and prediction to evaluation, and is
seamlessly integrated into JoeyNMT’s compact
and simple code base. On top of JoeyNMT’s
state-of-the-art Transformer-based encoder-
decoder architecture, JoeyS2T provides speech-
oriented components such as convolutional lay-
ers, SpecAugment, CTC-loss, and WER eval-
uation. Despite its simplicity compared to
prior implementations, JoeyS2T performs com-
petitively on English speech recognition and
English-to-German speech translation bench-
marks. The implementation is accompanied
by a walk-through tutorial and available on
https://github.com/may-/joeys2t.

1 Introduction

End-to-end models recently have been shown to
be able to outperform complex pipelines of indi-
vidually trained components in many NLP tasks.
For example, in the area of automatic speech recog-
nition (ASR) and speech translation (ST), the per-
formance gap between end-to-end models and cas-
caded pipelines, where an acoustic model is fol-
lowed by an HMM for ASR, or an ASR model is
followed by a machine translation (MT) model for
ST, seems to be closed (Sperber et al., 2019; Ben-
tivogli et al., 2021). An end-to-end approach has
several advantages over a pipeline approach: First,
it mitigates error propagation through the pipeline.
Second, its data requirements are simpler since in-
termediate data interfaces to bridge components
can be skipped. Furthermore, intermediate com-
ponents such as phoneme dictionaries in ASR or
transcriptions in ST need significant amounts of ad-

ditional human expertise to build. For end-to-end
models, the overall model architecture is simpler,
consisting of a unified end-to-end neural network.
Nonetheless, end-to-end components can be ini-
tialized from non end-to-end data, e.g., in audio
encoding layers (Xu et al., 2021) or text decoding
layers (Li et al., 2021).

ASR or ST tasks usually have a higher entry bar-
rier than MT, especially for novices who have little
experience in machine learning, but also for NLP
researchers who have previously only worked on
text and not speech processing. This can also be
seen in the population of the different tracks of NLP
conferences. For example, the “Speech and Multi-
modality” track of ACL 2022 had only a third of
the number of papers in the “Machine Translation
and Multilinguality” track.1 However, thanks to
the end-to-end paradigm, those tasks are now more
accessible for students or entry-level practitioners
without huge resources, and without the experi-
ence of handling the different modules of a cas-
caded system or speech processing. The increased
adoption of Transformer architectures (Vaswani
et al., 2017) in both text (Kalyan et al., 2021) and
speech processing (Dong et al., 2018; Karita et al.,
2019a,b) has further eased the transfer of knowl-
edge between the two fields, in addition to making
joint modeling easier and more unified.

Reviewing existing code bases for end-to-end
ASR and ST—for example, DeepSpeech (Han-
nun et al., 2014), ESPnet (Inaguma et al., 2020;
Watanabe et al., 2020), fairseq S2T (Wang et al.,
2020), NeurST (Zhao et al., 2021) and Speech-
Brain (Ravanelli et al., 2021)—it becomes appar-
ent that the practical use of open-source toolkits
still requires significant experience in navigating
large-scale code, using complex data formats, pre-
processing, neural text modeling, and speech pro-
cessing in general. High code complexity and a

1https://public.tableau.com/views/ACL2022map/
Dashboard1?:showVizHome=no
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lack of documentation are frustrating hurdles for
novices. We propose JoeyS2T, a minimalist and
accessible framework, to help novices get started
with speech recognition and translation, to accel-
erate their learning process, and to make ASR and
ST more accessible and transparent, that is directly
targeting novices and their needs.

We hope that making more accessible imple-
mentations will also have trickle-down effects of
making the research built on top of it more ac-
cessible and more linguistically and geograph-
ically diverse (Joshi et al., 2020). This ef-
fect has already been observed for the adoption
of JoeyNMT for text MT for low-resource lan-
guages (∀ et al., 2020; Camgoz et al., 2020; Zhao
et al., 2020; Zacarías Márquez and Meza Ruiz,
2021; Ranathunga et al., 2021; Mirzakhalov et al.,
2021). Furthermore, speech technology has an even
higher potential for language inclusivity (Black,
2019; Abraham et al., 2020; Zhang et al., 2022; Liu
et al., 2022).

2 Speech-to-Text Modeling

Automatic speech recognition and translation re-
quire mapping a speech feature sequence X =
{xi ∈ Rd} to a text token sequence Y = {yt ∈ V}.
The continuous speech signal in its raw wave form
is pre-processed into a sequence of discrete frames
that are each represented as d-dimensional speech
feature vectors xi, e.g., log Mel filterbanks at the
i-th time frame. In contrast, a textual sequence is
naturally composed of discrete symbols that can
be broken down into units of different granularity,
e.g. characters, sub-words, or words. These units
then form a vocabulary, so in the above formulation
yt is the t-th target token from the vocabulary V .
The goal of S2T modeling is then to find the most
probable target token sequence Ŷ from all possible
vocabulary combinations V∗:

Ŷ = argmax
Y ∈V∗

p(Y | X). (1)

2.1 Why End-to-End Modeling?
In conventional HMM modeling, the posterior
probability p(Y | X) from Eq. 1 is decomposed
into three components by introducing the HMM
state sequences S = {st}:

p(Y | X) ≈ p(X | S)︸ ︷︷ ︸
Acoustic Model

p(S | Y )︸ ︷︷ ︸
Lexical Model

p(Y )︸ ︷︷ ︸
LM

. (2)

The components correspond to an acoustic model
p(X | S), a lexical representation model p(S |

Y ), and a language model p(Y ). For practitioners,
this means that three individual models need to be
implemented, trained and combined. This comes
with a large overhead, since each of them requires
dedicated linguistic resources and experience in
training and tuning. Attention-based deep neural
networks have reduced this burden significantly
since they implicitly model all three components
in a single neural network, mapping X directly to
Y (Chorowski et al., 2015; Chan et al., 2016).

2.2 Optimization
Most approaches to sequence-to-sequence learning
tasks like MT use the cross-entropy (Xent) loss for
optimization, and break the sequence prediction
task down to a token-level objective. The posterior
probability from above is modeled as the product
of output token probabilities conditioned on the
entire input sequence X and the target prefix y<t:

pxent(Y | X) :=
∏

t

p(yt | y<t;X). (3)

A popular alternative in ASR is to employ
Connectionist Temporal Classification (CTC) loss
(Graves and Jaitly, 2014). CTC uses a Markov as-
sumption to model the transition of states similar
to conventional HMM:

pctc(Y | X) :=
∑

A

∏

t

p(at | X), (4)

where A denotes the set of valid alignments from
X to Y , at ∈ A is one possible alignment at the
t-th time step, and marginalizing the conditional
probability p(at | X) over all valid possible align-
ments yields the sequence-level probability.

This CTC formulation is suitable to learn mono-
tonic alignments between audio and text, and it
also can handle very long sequences efficiently by
solving dynamic programming on the state tran-
sition graph. The assumption of conditional in-
dependence at different time steps is a potentially
harmful simplification which is compensated for
by a token-level objective and by jointly minimiz-
ing cross-entropy and CTC loss (Hori et al., 2017;
Watanabe et al., 2017). The final optimization ob-
jective in the JoeyS2T implementation is a loga-
rithmic linear combination of the label-smoothed
cross-entropy loss and the CTC loss defined above:

Ltotal :=(1− λ) log pxent(Y | X)

+ λ log pctc(Y | X), (5)

where λ ∈ [0, 1] is an interpolation parameter.
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3 Design Principles

Simplicity: We devoted considerable effort to
keep JoeyS2T’s module structure simple and flat. It
directly employs the PyTorch (Paszke et al., 2019)
backend and has a low level of abstraction (details
in Section 4.6). JoeyS2T has a minimal list of
external dependencies that can be easily installed
via the PyPI2 tool. Even for pre-processing, ex-
ternal dependencies on tools such as Kaldi (Povey
et al., 2011) are avoided. For filterbank feature ex-
traction, we use TorchAudio3 which is seamlessly
integrated into PyTorch. In contrast to other toolk-
its, speech modules extended in JoeyS2T are only
built for speech-to-text modeling. It does not imple-
ment speech enhancement, nor speaker detection
or speech generation. While this might appear like
a limitation, we believe that the reduction of func-
tionalities to a carefully identified minimum for ST
and ASR is the key for increased accessibility.4

Accessibility: We also have written extensive
documentation and walk-through tutorials to help
newcomers become more familiar with speech tech-
nologies. JoeyS2T also provides pretrained mod-
els including configuration files which lower the
barrier to get started. To guarantee the accessi-
bility of the code, we open-sourced JoeyS2T un-
der a very permissive license (Apache 2.0). The
JoeyS2T developer community actively supports
user questions and requests. We maintain an open
platform to discuss bug fixes, possible extensions
etc. All contributions are first automatically con-
trolled by the internal unit tests and will manually
be reviewed by our team.

Reproducibility: To ensure that the reported re-
sults are comparable and reproducible, we release
models trained on publicly available data. Our
evaluation metrics are described in detail (tokeniza-
tion, punctuation handling etc.). All pre- and post-
processing scripts are published with a data down-
load path and explicit hyperparameter configura-
tions. We track all code changes in our repository
and provide version information which is often a
critical factor for reproducibility as bug fixes can
affect evaluation scores.

2https://pypi.org/
3https://github.com/pytorch/audio
4A clean code base can always be extended by users once

they are more proficient. For example, JoeyNMT has been suc-
cessfully extended to other modalities and integrated into web
interfaces by advanced users. See https://github.com/
joeynmt/joeynmt#projects-and-extensions

4 Implementation and Usage

4.1 Hyperparameter Configuration
JoeyS2T sets up experiments based on a YAML-
style configuration file which declares the whole
pipeline, just like JoeyNMT. Processes are run in a
Python interface without relying on external Bash
or Perl scripts. In the configuration file, users can
choose between the tasks MT (Machine Translation)
or S2T (Speech-to-Text) in order to inform JoeyS2T
about the input data type: audio or text. The hy-
perparameters of speech-related modules such as
SpecAugment, 1d-Conv etc. can also be specified
in the same configuration file.5

4.2 Data Loading and Pre-processing
Source Audios: We separated computationally
heavy pre-processing steps from model training,
e.g., the conversion from raw wave forms to spec-
trograms by Fourier transformation. We employ
the TorchAudio API to extract audio features in
the pre-processing scripts. JoeyS2T includes mod-
ules for Cepstral Mean Variance Normalization
(CMVN) (Viikki and Laurila, 1998) and SpecAug-
ment (Park et al., 2019) by default. These are ap-
plied minibatch-wise before the input data are fed
into the encoder.

Data Loading: As a precautionary measure to
avoid memory allocation errors (which can happen
for large audio inputs) we implemented on-the-fly
data loading: we only store the path to the data
in the iterator, and load the actual spectrogram
features into memory every time a minibatch is
constructed.

Target Texts: For target texts, we expect users
to prepare a tokenization model independently and
to specify the path to the trained tokenizer. Be-
sides rule-based character-level tokenization and
basic white space splitting, we currently support
subword-nmt tokenizers (Sennrich et al., 2016)
and SentencePiece tokenizers (Kudo and Richard-
son, 2018). Users can specify tokenizer options
in JoeyS2T’s configuration file. During training,
JoeyS2T applies text tokenization on the fly. Since
the text length can be calculated only after tokeniza-
tion, instance filtering by length is applied in this
step. Thanks to this flexible on-the-fly tokeniza-
tion, dynamic data augmentation methods i.e., BPE
Dropout (Provilkov et al., 2020), SwitchOut (Wang

5Sample configuration files for different datasets are avail-
able at https://github.com/may-/joeys2t/configs
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Figure 1: Architecture of JoeyS2T. We reuse
JoeyNMT’s basic building blocks and extended them by
essential audio-specific modules.

et al., 2018) or ADA (Lam et al., 2021) can be
easily integrated.

4.3 Architectures

JoeyS2T supports a Transformer-based encoder-
decoder architecture (see Figure 1). We reuse
the self-attention encoder and decoder layers of
JoeyNMT, and modify them in order to support
speech-specific components.

Input Representations: Instead of converting to-
ken embeddings from discrete one-hot encodings
to continuous vectors (as done for text input), we
directly feed the sequence of filterbank vectors to
the encoder. The embedding size in text-based
JoeyNMT thus corresponds to the filterbank fre-
quency size in JoeyS2T.

Encoder: The biggest difference to the origi-
nal text-to-text Transformer architecture is the 1-
dimensional convolution layer (1d-Conv) placed
before the self-attention encoder. It compresses
potentially redundant features along the time di-
mension in order to capture phonetic structures.
Each 1d-Conv layer has a stride of 2. This further
downsamples the sequence by a factor of 2l, where
l is the number of 1d-Conv layers. The reduction
of the input length is essential for computation
speed: Speech feature sequences are usually much
longer than text token sequences, and the compu-
tational complexity of one self-attention block is
O(u2 · d) (Vaswani et al., 2017), where u is the
maximal input length (number of tokens in textual
input, or number of time frames in speech input),
and d is the embedding size.

Decoder: We reuse the decoder construction of
the original JoeyNMT code, but add one additional

linear layer for the CTC loss on top of the self-
attentive decoder layers.

Inference: We support greedy and beam search
based on the token probability distributions. All
inference enhancements introduced in JoeyNMT
v2.0 such as repetition penalty, n-gram blocker,
probability scoring, attention visualization of cross-
attention heads in transformer layers, etc. are sup-
ported by JoeyS2T as well.

4.4 Evaluation Metrics
JoeyS2T supports Character F-score
(ChrF) (Popović, 2015), BLEU (Papineni
et al., 2002) and Word Error Rate (WER) based
on Levenshtein distance (Navarro, 2001) as
evaluation metrics for ASR and ST. We import
sacrebleu7 (Post, 2018) for ChrF and BLEU,
and editdistance8 (Hyyrö, 2001) for WER. In
addition, perplexity and accuracy can be monitored
during training on Tensorboard (Abadi et al.,
2015).

4.5 Documentation and Tutorial
We follow the documentation strategy of JoeyNMT,
which means that all extended functions have their
own docstring and in-line comments for tensor
shapes. Unit tests covering essential modules are
automatically triggered on every commit to the
repository.

In the hands-on tutorial, we present working ex-
amples for ASR and ST as Jupyter notebooks.9 The
walk-through tutorial is self-contained and explains
the whole pipeline: installation steps, data down-
loading, data pre-processing, configuration, model
training/fine-tuning, inference and evaluation. We
will keep the tutorial up to date with potential future
API changes.

4.6 Code complexity
JoeyNMT exhibits the spirit of minimalism by aim-
ing to achieve 80% of the output quality with 20%
of a common toolkit’s code size (80/20 principle;
(Pareto, 1896)). Table 3 gives statistics on code

6nrefs:1|case:mixed|eff:no|tok:13a|smooth:exp|version:2.1.0
7https://github.com/mjpost/sacrebleu
8https://github.com/roy-ht/editdistance
9Demo video: https://youtu.be/bpBtq2jLolQ

10https://github.com/espnet/espnet/tree/master/
espnet2 (commit hash 039cc5d)

11https://github.com/pytorch/fairseq/tree/main/
fairseq (commit hash ad3bec5)

12https://github.com/may-/joeys2t/tree/main/
joeynmt (commit hash a80802a)
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LibriSpeech 100h (WER ↓)
System Architecture dev-clean dev-other test-clean test-other

Kahn et al. (2020)† BiLSTM 14.00 37.02 14.85 39.95
Laptev et al. (2020)† Transformer 10.3 24.0 11.2 24.9
ESPnet‡ Transformer 8.1 20.2 8.4 20.5
ESPnet‡ Conformer 6.3 17.4 6.5 17.3
JoeyS2T Transformer 10.66 ± 0.36 23.82 ± 0.34 12.02 ± 0.32 24.75 ± 0.37

LibriSpeech 960h (WER ↓)
System Architecture dev-clean dev-other test-clean test-other

Gulati et al. (2020)† Conformer 1.9 4.4 2.1 4.9
ESPnet‡ Conformer 2.3 6.1 2.6 6.0
SpeechBrain* Conformer 2.13 5.51 2.31 5.61
fairseq S2T* Transformer 3.23 8.01 3.52 7.83
fairseq wav2vec2* Conformer 3.17 8.86 3.39 8.57
JoeyS2T Transformer 3.79 ± 0.27 8.84 ± 0.39 4.31 ± 0.52 8.66 ± 0.35

Table 1: Averaged results in WER on the English LibriSpeech dataset over three runs with standard deviations
(±). We compute the WER on lowercased transcriptions without punctuations using SacreBLEU’s 13a tokenizer.
†: results were reported in the papers linked above. ‡: results were taken from the repository linked above. *: we
downloaded their pretrained models from the repository, and ran the inference and the evaluation on the same test
data as we use in JoeyS2T.

MuST-C ver. ASR (WER ↓) MT (BLEU ↑)
System train eval tst-COMMON tst-HE tst-COMMON tst-HE

Gangi et al. (2019)† v1 v1 27.0 - 25.3 -
Zhang et al. (2020)† v1 v1 - - 29.69 -
ESPnet‡ v1 v1 12.70 - 27.63 -
fairseq S2T* v1 v1 12.72 10.93 - -
JoeyS2T v2 v1 18.86±0.37 15.19±0.56 23.07±0.14 20.21±0.17
fairseq S2T* v1 v2 11.88 10.43 - -
JoeyS2T v2 v2 12.95±0.32 11.16±0.31 27.17±0.63 24.85±0.68

MuST-C ver. Cascade ST (BLEU ↑) End2End ST (BLEU ↑)
System train eval tst-COMMON tst-HE tst-COMMON tst-HE

Gangi et al. (2019)† v1 v1 18.5 - 17.3 -
Zhang et al. (2020)† v1 v1 22.52 - 20.67 -
ESPnet‡ v1 v1 - - 22.91 -
fairseq S2T* v1 v1 - - 22.70 21.70
JoeyS2T v2 v1 21.89±0.64 21.03±0.66 20.53±0.29 21.13±0.46
fairseq S2T* v1 v2 - - 23.20 22.23
JoeyS2T v2 v2 23.95±0.59 22.65±0.58 23.33±0.39 22.90±0.69

Table 2: Averaged results on the MuST-C en-de dataset over three runs with standard deviations (±). We compute
the BLEU on truecased translations with punctuations using SacreBLEU’s 13a tokenizer.6 †: results were reported
in the papers linked above. ‡: results were taken from the repository linked above. *: we downloaded their pretrained
models from the repository, and ran the inference and evaluation on the same test data as we use in JoeyS2T.

complexity. In terms of the numbers of Python files
and code lines, JoeyS2T is 10–11 times more com-
pact than ESPnet (Inaguma et al., 2020; Watanabe
et al., 2020) and fairseq (Wang et al., 2020). How-
ever, both ESPnet and fairseq are general-purpose
toolkits, covering a wide range of tasks beyond MT,

ASR or ST, such as language modeling or speech
synthesis, while JoeyS2T is designed for a speech-
to-text tasks only. Yet JoeyS2T’s comment-to-code
ratio is much higher than that of the competitors.

JoeyS2T offers a flat code structure in order
to make debugging along the stack trace easier
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ESPnet210 fairseq11 JoeyS2T12

Python files 287 407 24
Code lines 41427 65097 5450
Comment lines 10260 11042 2137

Comment/Code Ratio 0.25 0.17 0.39

Table 3: Code complexity measured using https://
github.com/AlDanial/cloc v1.94.

and to reduce the number of code files and nested
classes/functions to read through. In contrast,
fairseq’s codebase is organized hierarchically. This
deep hierarchy comes from the structured class
inheritance, which is an important component of
object-oriented programming for experienced de-
velopers. However, such hierarchical class in-
heritance is sometimes a big stumbling block for
novices (Wiedenbeck et al., 1999). We intention-
ally abandon deeply inherited class design and use
novice-friendly flat structure instead. As a result,
developers do not have to allocate their cognitive
resources to framework-specific software design
principles, but they can concentrate on the logic
they want to realize. JoeyS2T encourages novices
to dive into speech-to-text research before they ma-
ture in high-context system design such as hierar-
chical class inheritance or decorators.

5 Experimental Results on Benchmarks

Despite its simplicity, JoeyS2T achieves a perfor-
mance on standard benchmarks that is comparable
to other high-functional speech-to-text toolkits.

5.1 ASR on LibriSpeech

LibriSpeech (Panayotov et al., 2015) is the de-facto
standard English ASR benchmark that contains 960
hours of audiobooks in Project Gutenberg. The
corpus is publicly available under the CC BY 4.0
license and many works set their goal to achieve
state-of-the-art WER on its test splits.

Tables 1 present the results of models trained on
100h and 960h audio, respectively. JoeyS2T shows
comparable performance with current Transformer-
based models, which are generally outperformed
by Conformer (Gulati et al., 2020) models.

5.2 ST on MuST-C

MuST-C (Cattoni et al., 2021) is a publicly avail-
able speech translation corpus built from English
TED Talks. It consists of English transcriptions
and translations into 14 languages, contributed by

volunteers. We trained our model on the English-
German subset of version 2, and evaluated the
model both on version 1 and version 2 tst-COMMON,
and tst-HE splits.

MuST-C is a challenging dataset due to its spon-
taneous speech that contains hesitations, disfluent
utterances, etc. on the source side. Furthermore,
the ground-truth target texts derived from the sub-
titles are also noisy. There are some additional
descriptions of non-verbal information, i.e., “(ap-
plause)” “(laughter)”, or “♪ (music)”. Those are
not actually pronounced in the source, but provided
in the target, which makes learning more difficult.
We normalized such noisy expressions and spec-
ified them as special tokens during the subword
training, so that they are not tokenized into sub-
words but kept as single tokens. For the sake of
reproducibility, we provide a preprocessing script
for all normalization steps.

For ST tasks, we first pretrained ASR models
and MT models using the gold transcriptions. Then
we initialized the encoder layers of an end-to-end
ST model with the pretrained ASR encoders and
the decoder layers with the pretrained MT decoders,
and further trained it on the end-to-end ST task.

The ST results can be found in Table 2. JoeyS2T
shows competitive results, both in end-to-end sce-
narios and in a cascade using the same pre-trained
models. We also include the ASR and MT pretrain-
ing results for reference.

6 Conclusion & Future Work

We described JoeyS2T, an extension of the
JoeyNMT toolkit to the spoken language process-
ing tasks ASR and ST. JoeyS2T is characterized
by its minimalist design, prioritization of simplic-
ity, accessibility and reproducibility in its code and
documentation. The code is self-contained and
requires minimal prior experience with speech or
language processing. In benchmark evaluations,
JoeyS2T performed comparable or superior to other
ASR or ST code bases, while having much lower
code complexity.

While its functionality is kept minimal, support
for state-of-the-art architectures such as wav2vec
and Conformer might be desired for future exten-
sions.

Limitations

The limitations of our work mainly concern the
reproducibility of comparable state-of-the-art re-
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sults. First, there are many different preprocessing
variants which are quite complex (length filtering,
speed shift, lowercasing, punctuation normaliza-
tion etc.) and not always clearly documented. Sec-
ond, the same problem appears in evaluation. There
is no commonly accepted evaluation scheme (in-
cluding lower-cased vs. true-cased results, with or
without punctuation, etc.). While the sacrebleu
library is a first step to addressing this problem in
MT, we believe that the speech processing commu-
nity also needs such efforts to standardize speech-
to-text evaluation.

Since the goal of our work is not to present a new
state-of-the-art in speech-to-text modeling, we did
not invest a large effort into hyperparameter tuning,
but only varied three different random seeds in our
setup, and used the default settings for competitor
systems.
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Maja Popović. 2015. chrF: character n-gram F-score
for automatic MT evaluation. In Proceedings of the
Tenth Workshop on Statistical Machine Translation,
pages 392–395, Lisbon, Portugal. Association for
Computational Linguistics.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186–
191, Brussels, Belgium. Association for Computa-
tional Linguistics.

Daniel Povey, Arnab Ghoshal, Gilles Boulianne, Lukas
Burget, Ondrej Glembek, Nagendra Goel, Mirko
Hannemann, Petr Motlicek, Yanmin Qian, Petr
Schwarz, et al. 2011. The kaldi speech recognition
toolkit. In IEEE 2011 workshop on automatic speech
recognition and understanding, CONF. IEEE Signal
Processing Society.

Ivan Provilkov, Dmitrii Emelianenko, and Elena Voita.
2020. BPE-dropout: Simple and effective subword
regularization. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 1882–1892, Online. Association for
Computational Linguistics.

Surangika Ranathunga, En-Shiun Annie Lee, Mar-
jana Prifti Skenduli, Ravi Shekhar, Mehreen Alam,
and Rishemjit Kaur. 2021. Neural machine transla-
tion for low-resource languages: A survey. CoRR,
abs/2106.15115.

Mirco Ravanelli, Titouan Parcollet, Peter Plantinga,
Aku Rouhe, Samuele Cornell, Loren Lugosch, Cem
Subakan, Nauman Dawalatabad, Abdelwahab Heba,
Jianyuan Zhong, et al. 2021. SpeechBrain: A
general-purpose speech toolkit. arXiv preprint
arXiv:2106.04624.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1715–1725,
Berlin, Germany. Association for Computational Lin-
guistics.

Matthias Sperber, Graham Neubig, Jan Niehues, and
Alex Waibel. 2019. Attention-Passing Models for
Robust and Data-Efficient End-to-End Speech Trans-
lation. Transactions of the Association for Computa-
tional Linguistics, 7:313–325.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30.

Olli Viikki and Kari Laurila. 1998. Cepstral domain
segmental feature vector normalization for noise ro-
bust speech recognition. Speech Communication,
25(1-3):133–147.

Changhan Wang, Yun Tang, Xutai Ma, Anne Wu,
Dmytro Okhonko, and Juan Pino. 2020. Fairseq
S2T: Fast speech-to-text modeling with fairseq. In
Proceedings of the 1st Conference of the Asia-Pacific
Chapter of the Association for Computational Lin-
guistics and the 10th International Joint Conference

58

https://doi.org/10.18653/v1/2022.acl-long.272
https://doi.org/10.18653/v1/2022.acl-long.272
https://doi.org/10.18653/v1/2022.acl-long.272
https://doi.org/10.1145/375360.375365
https://doi.org/10.1145/375360.375365
https://doi.org/10.1109/ICASSP.2015.7178964
https://doi.org/10.1109/ICASSP.2015.7178964
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.18653/v1/W15-3049
https://doi.org/10.18653/v1/W15-3049
https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.18653/v1/2020.acl-main.170
https://doi.org/10.18653/v1/2020.acl-main.170
http://arxiv.org/abs/2106.15115
http://arxiv.org/abs/2106.15115
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.1162/tacl_a_00270
https://doi.org/10.1162/tacl_a_00270
https://doi.org/10.1162/tacl_a_00270
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://aclanthology.org/2020.aacl-demo.6
https://aclanthology.org/2020.aacl-demo.6


on Natural Language Processing: System Demon-
strations, pages 33–39, Suzhou, China. Association
for Computational Linguistics.

Xinyi Wang, Hieu Pham, Zihang Dai, and Graham Neu-
big. 2018. SwitchOut: an efficient data augmentation
algorithm for neural machine translation. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 856–861,
Brussels, Belgium. Association for Computational
Linguistics.

Shinji Watanabe, Florian Boyer, Xuankai Chang,
Pengcheng Guo, Tomoki Hayashi, Yosuke Higuchi,
Takaaki Hori, Wen-Chin Huang, Hirofumi Inaguma,
Naoyuki Kamo, et al. 2020. The 2020 ESPNet
update: New features, broadened applications, per-
formance improvements, and future plans. arXiv
preprint arXiv:2012.13006.

Shinji Watanabe, Takaaki Hori, Suyoun Kim, John R.
Hershey, and Tomoki Hayashi. 2017. Hybrid
CTC/Attention Architecture for End-to-End Speech
Recognition. IEEE Journal of Selected Topics in
Signal Processing, 11(8):1240–1253.

Susan Wiedenbeck, Vennila Ramalingam, Suseela
Sarasamma, and Cynthia L Corritore. 1999. A com-
parison of the comprehension of object-oriented and
procedural programs by novice programmers. Inter-
acting with Computers, 11(3):255–282.

Chen Xu, Bojie Hu, Yanyang Li, Yuhao Zhang, Shen
Huang, Qi Ju, Tong Xiao, and Jingbo Zhu. 2021.
Stacked acoustic-and-textual encoding: Integrating
the pre-trained models into speech translation en-
coders. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 2619–2630, Online. Association for Computa-
tional Linguistics.

Delfino Zacarías Márquez and Ivan Vladimir Meza Ruiz.
2021. Ayuuk-Spanish neural machine translator. In
Proceedings of the First Workshop on Natural Lan-
guage Processing for Indigenous Languages of the
Americas, pages 168–172, Online. Association for
Computational Linguistics.

Biao Zhang, Ivan Titov, Barry Haddow, and Rico Sen-
nrich. 2020. Adaptive feature selection for end-to-
end speech translation. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages
2533–2544, Online. Association for Computational
Linguistics.

Shiyue Zhang, Ben Frey, and Mohit Bansal. 2022. How
can NLP help revitalize endangered languages? a
case study and roadmap for the Cherokee language.
In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 1529–1541, Dublin, Ireland.
Association for Computational Linguistics.

Chengqi Zhao, Mingxuan Wang, Qianqian Dong, Rong
Ye, and Lei Li. 2021. NeurST: Neural speech transla-
tion toolkit. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Nat-
ural Language Processing: System Demonstrations,
pages 55–62, Online. Association for Computational
Linguistics.

Xingyuan Zhao, Satoru Ozaki, Antonios Anastasopou-
los, Graham Neubig, and Lori Levin. 2020. Auto-
matic interlinear glossing for under-resourced lan-
guages leveraging translations. In Proceedings of
the 28th International Conference on Computational
Linguistics, pages 5397–5408, Barcelona, Spain (On-
line). International Committee on Computational Lin-
guistics.

59

https://doi.org/10.18653/v1/D18-1100
https://doi.org/10.18653/v1/D18-1100
https://doi.org/10.1109/JSTSP.2017.2763455
https://doi.org/10.1109/JSTSP.2017.2763455
https://doi.org/10.1109/JSTSP.2017.2763455
https://doi.org/10.18653/v1/2021.acl-long.204
https://doi.org/10.18653/v1/2021.acl-long.204
https://doi.org/10.18653/v1/2021.acl-long.204
https://doi.org/10.18653/v1/2021.americasnlp-1.19
https://doi.org/10.18653/v1/2020.findings-emnlp.230
https://doi.org/10.18653/v1/2020.findings-emnlp.230
https://doi.org/10.18653/v1/2022.acl-long.108
https://doi.org/10.18653/v1/2022.acl-long.108
https://doi.org/10.18653/v1/2022.acl-long.108
https://doi.org/10.18653/v1/2021.acl-demo.7
https://doi.org/10.18653/v1/2021.acl-demo.7
https://doi.org/10.18653/v1/2020.coling-main.471
https://doi.org/10.18653/v1/2020.coling-main.471
https://doi.org/10.18653/v1/2020.coling-main.471

