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Abstract

As the first step of modern natural language pro-
cessing, text representation encodes discrete
texts as continuous embeddings. Pre-trained
language models (PLMs) have demonstrated
strong ability in text representation and signif-
icantly promoted the development of natural
language understanding (NLU). However, ex-
isting PLMs represent a text solely by its con-
text, which is not enough to support knowledge-
intensive NLU tasks. Knowledge is power, and
fusing external knowledge explicitly into PLMs
can provide knowledgeable text representa-
tions. Since previous knowledge-enhanced
methods differ in many aspects, making it
difficult for us to reproduce previous meth-
ods, implement new methods, and transfer be-
tween different methods. It is highly desirable
to have a unified paradigm to encompass all
kinds of methods in one framework. In this
paper, we propose , a knowledge-
enhanced text representation toolkit for nat-
ural language understanding. According to
our proposed Unified Knowledge-Enhanced
Paradigm (UniKEP), CogKTR consists of four
key stages, including knowledge acquisition,
knowledge representation, knowledge injection,
and knowledge application. CogKTR currently
supports easy-to-use knowledge acquisition in-
terfaces, multi-source knowledge embeddings,
diverse knowledge-enhanced models, and vari-
ous knowledge-intensive NLU tasks. Our uni-
fied, knowledgeable and modular toolkit is pub-
licly available at GitHub 1, with an online sys-
tem 2 and a short instruction video 3.

1 Introduction

In modern natural language processing (NLP), texts
need to be represented into a machine-readable
form. Many work has shown that pre-trained lan-

*These authors contribute equally to this work.
1https://github.com/CogNLP/CogKTR/
2http://cognlp.com/cogktr/
3https://youtu.be/SrvXrXdDiVY

guage models (PLMs) (Qiu et al., 2020) can pro-
vide powerful distributed representations for natu-
ral language texts, leading to great successes on var-
ious natural language understanding (NLU) (Wang
et al., 2018a) tasks.

Recently, some studies (Manning et al., 2020;
Roberts et al., 2020; Penha and Hauff, 2020) have
shown that specific knowledge is implicitly stored
in the parameters of PLMs. This implicit knowl-
edge is vague so that it is hard to dynamically up-
date this knowledge to satisfy the needs of real-
world applications (Yin et al., 2022). Existing
PLMs (Peters et al., 2018; Devlin et al., 2019) rep-
resent and understand a text solely by its context,
which is insufficient to solve knowledge-intensive
NLU tasks. These tasks are highly dependent on
background knowledge. It is necessary to leverage
external knowledge to enhance the text represen-
tations explicitly. For word sense disambiguation,
synonyms, sense definitions, and other linguistic
knowledge play an essential role in identifying
the meaning of ambiguous words. For common-
sense question answering, commonsense knowl-
edge like structured knowledge graph (KG) triples
can enhance the models’ reasoning capacity.

As illustrated above, knowledge-enhanced text
representations are essential for NLU tasks, mean-
while, many methods (Wei et al., 2021; Ding et al.,
2022; Zhu et al., 2022) have been proposed. How-
ever, previous methods differ in many aspects, espe-
cially in knowledge acquisition procedure, knowl-
edge representation form, and knowledge fusion
approach. These differences make it challenging to
reproduce previous methods, implement new meth-
ods, and transfer between different methods. So
we need a unified paradigm to implement various
knowledge-enhanced methods in the same frame-
work. Therefore, designing the framework should
consider the following key principles.

First, the process of knowledge acquisition is
laborious and complex, including knowledge tag-
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ging (e.g., named entity recognition and semantic
role labeling), knowledge grounding (e.g., entity
linking) and knowledge retrieving (e.g., regular ex-
pression matching and SPARQL query). A good
framework should let users pay more attention to
the details in the models rather than tedious data
processing. Second, different knowledge embed-
dings vary in knowledge sources (e.g., Wikidata
(Vrandečić and Krötzsch, 2014) and ConceptNet
(Speer et al., 2017)) and knowledge representation
algorithms (e.g., TransE (Bordes et al., 2013) and
Wikipedia2Vec (Yamada et al., 2020a)). To make
rigorous comparisons between them, it is highly
desirable to have a toolkit that provides built-in
knowledge embeddings. Third, although a lot of
knowledge fusion approaches have been proposed,
there is still a lack of a comprehensive framework
to encompass them. Such a framework should pro-
vide knowledgeable text representations which can
be directly used in numerous downstream tasks.

To this end, we propose , a
Knowledge-enhanced Text Representation toolkit
for natural language understanding. CogKTR
is built on the Unified Knowledge-Enhanced
Paradigm (UniKEP), which can be formalized
in four stages, including knowledge acquisition,
knowledge representation, knowledge injection,
and knowledge application. First, knowledge ac-
quisition aims to identify structured information
from unstructured texts, then ground them in knowl-
edge sources. Then, knowledge representation
can transform knowledge from discrete form to
continuous form. Next, knowledge injection, as
the most critical stage, combines raw texts and ex-
ternal knowledge for knowledgeable text represen-
tation. In the end, knowledge application verifies
the effectiveness of knowledge-enhanced methods
in downstream tasks.

In detail, CogKTR has the following functions.
First, our toolkit provides user-friendly knowledge
acquisition interfaces. Users can use our toolkit to
enhance the given texts with one click. And we also
implement plenty of knowledge-enhanced methods
so researchers can quickly reproduce these models.
Moreover, CogKTR supports many built-in NLU
tasks to evaluate the effectiveness of knowledge-
enhanced methods. In our paradigm, users can
easily conduct their research via a pipeline. Be-
sides the toolkit, we also release an online CogKTR
demo to show the process of knowledge acquisition
and the effect of knowledge enhancement.

In summary, the main features and contributions
are as follows:

• Unified. CogKTR is designed and built on
our Unified Knowledge-Enhanced Paradigm,
which consists of four stages: knowledge ac-
quisition, knowledge representation, knowl-
edge injection, and knowledge application.

• Knowledgeable. CogKTR integrates multi-
ple knowledge sources, including Wikidata,
Wikipedia, ConceptNet, WordNet (Miller,
1995) and CogNet (Wang et al., 2021a), and
implements a series of knowledge-enhanced
methods, such as K-BERT (Liu et al., 2020),
SemBERT (Zhang et al., 2020a), QAGNN
(Yasunaga et al., 2021), etc.

• Modular. CogKTR modularizes our proposed
paradigm and consists of Enhancer, Model,
Core and Data modules, each of which is
highly extensible so that researchers can im-
plement new components easily.

2 Unified Knowledge-Enhanced
Paradigm

As mentioned above, it is vital to propose
a paradigm that can formalize the knowledge-
enhanced process. As shown in Figure 1, our
proposed Unified Knowledge-Enhanced Paradigm
(UniKEP) consists of four key stages: knowledge
acquisition, knowledge representation, knowl-
edge injection and knowledge application. Below
are the detailed descriptions of the four stages.

2.1 Knowledge Acquisition
Knowledge acquisition, the first step towards our
knowledge-enhanced paradigm, aims at detecting
knowledge concealed beneath the raw texts. Details
of our implementation of the acquisition process
can be found in Section 3.1. The obtained knowl-
edge can be divided into three categories according
to the different sources they belong to.

World Knowledge. It contains general facts
about some particular entities or events. For ex-
ample, given a sentence “Elmo and Bert read
books in the Sesame street library.”, “Elmo”, “Bert”
and “Sesame street” can be spotted as entities via
named entity recognition. Then, “Bert” can be
linked to the target entity “Bert (Sesame Street)” in
Wikipedia via entity linking. World knowledge is
helpful in many entity-related tasks, such as entity
typing, relation extraction and fact verification.
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Figure 1: The Unified Knowledge-Enhanced Paradigm of CogKTR.

Linguistic Knowledge. It refers to the internal
syntactic structure and the meaning of words and
phrases in the texts. As shown in Figure 1, the de-
pendency tree describes the directed grammatical
relations between words and semantic role labeling
extracts the predicate-argument structure. Incorpo-
rating linguistic knowledge can bring better text
representations in downstream tasks like informa-
tion retrieval and machine reading comprehension.

Commonsense Knowledge. It tries to catch im-
plicit facts in our daily life. For example, (Bert, is
a type of, fictional character) and (library, is used
for, reading) are the commonsense triples extracted
from ConceptNet. Current models usually have
a poor commonsense awareness, thus leveraging
commonsense knowledge can help models gain
stronger capability on commonsense reasoning.

2.2 Knowledge Representation

The aforementioned knowledge can be represented
in two forms, including discrete representation and
continuous representation.

Discrete Representation. Discrete knowledge is
usually represented as texts, triples, subgraphs and
symbols. Texts are the most commonly used repre-
sentation forms, such as descriptions of nodes and
relations in KGs or definitions of words in lexicons.
Triples describe a particular connection between
two nodes in KGs. A subgraph’s topology con-

tributes a lot to the comprehension of the central
node. However, discrete knowledge cannot be di-
rectly used in deep learning systems and need to be
further represented.

Continuous Representation. It usually refers to
the dense vectors in a unified continuous repre-
sentation space. The traditional skip-gram model
can be used to compute the embeddings of words
(Yamada et al., 2020a). Entities and relations in
triples can be viewed as translational operations
and points from the perspective of conventional
knowledge embedding models (Bordes et al., 2013).
The continuous representation can be easily fused
to models as prior knowledge.

2.3 Knowledge Injection

Injecting knowledge into original models is vital to
the whole paradigm. The injection strategy varies
depending on when knowledge is fused into origi-
nal models. We divide them into three categories:
knowledge-enriched input, knowledge-aware archi-
tecture and knowledge-assistant training.

Knowledge-enriched Input. A typical case of
knowledge injection is to combine the input text
with the extracted knowledge. Entity descriptions,
concepts, brief interpretations and synonyms of
the words can all be concatenated together with
original texts to form input samples of the model.
However, too much knowledge may be noisy. Thus
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some attention masks are constructed for the self-
attention process in the model. Besides, pretrained
knowledge embeddings can be fused to the text
representations by direct arithmetic operations.

Knowledge-aware Architecture. In some cases,
a certain architecture is designed to encode the
extracted knowledge. Graph neural network (GNN)
is often used to encode the structured knowledge
(Yu et al., 2022). Transformer-like architectures
is usually used to deal with textual descriptions
(Zhang et al., 2019). Memory network is used to
restore learned knowledge embeddings and can be
applied to any sequence output (Févry et al., 2020).

Knowledge-assisted Training. Knowledge can
also be used to design knowledge-driven training
objectives. Entity-level masking masks the enti-
ties in a sentence to guide the text representation
learning (Sun et al., 2019). Relation prediction re-
quires models to identify the relation between two
given entities in order to inject world knowledge
(Wang et al., 2021b). Supersense prediction trains
the model to classify the masked word’s sense into
45 supersense categories (Levine et al., 2020).

2.4 Knowledge Application
Various downstream NLU tasks can benefit from
the knowledge-enhanced models. This subsection
presents the definition, application and necessity of
the existence of external knowledge of each down-
stream NLU task.

Text Classification. It is a task to assign labels
to language entries like sentences or documents.
Sentiment analysis, fact verification, and fake news
detection all fall into this category. Fake news
detection needs additional knowledge to serve as
evidence for better detection (Hu et al., 2021).

Text Matching. It is a task determining whether
one sentence is related to another based on seman-
tic meanings and plays a significant role in text
entailment and entity disambiguation. For text en-
tailment, knowledge in the two statements can help
information flow between them (Jo et al., 2021).

Sequence Labeling. This task is to label each
token of the given sentence. Named entity recog-
nition (NER), part-of-speech tagging and semantic
role labeling can be viewed as a sequence label-
ing problem. For example, a preconstructed en-
tity dictionary contributes to recognizing the entity
boundary in NER tasks (Zhang and Yang, 2018).

Machine Reading Comprehension. This task is
to comprehend a given passage and then answer
questions based on it. It can be approximately
divided into four different kinds of forms: cloze-
style, multi-choice, span extraction and free-form.
In open domain QA, knowledge can be beneficial
in identifying answers which are not likely lying
inside the given context (Yamada et al., 2020b).

3 System Design and Architecture

According to the paradigm mentioned above, we
divide CogKTR architecture into four modules.
For knowledge acquisition and representation,
CogKTR modularizes them as the Enhancer mod-
ule. To implement knowledge injection and ap-
plication, we build the Model module to integrate
knowledge into models. Considering that the devel-
opment process is time-consuming, we also design
two basic modules, namely Data module and Core
module, to accelerate the data processing procedure
and improve training efficiency. An overview of
CogKTR architecture is shown in Figure 2. In the
following, we will introduce these four modules.

3.1 Enhancer

This module is designed for knowledge acquisi-
tion and representation to leverage relevant knowl-
edge to enhance raw texts. It can be divided
into four steps. Firstly, parse sentences and de-
tect candidate mentions by Tagger. Then, link
these mentions to KGs by Linker. Next, search
the relevant information in KGs and textual cor-
pus by Searcher. Finally, convert discrete knowl-
edge to dense embeddings in continuous space
by Embedder. The specific classes of Enhancer,
Tagger, Linker, Searcher and Embedder are rep-
resented in Table 1.

Tagger. It is a text annotator to convert unstruc-
tured texts into structured knowledge. It can be
categorized into two streams according to the exis-
tence of external KGs. If corresponding KGs exist,
we focus on identifying the locations of knowledge-
related text mentions, including words, entities,
phrases, etc. They can be linked to KGs, enriching
raw sentences with external information. Other-
wise, we parse the given sentences to obtain in-
ternal syntactic and semantic knowledge, such as
part-of-speech tags, dependency trees and seman-
tic role labels. CogKTR contains three external
knowledge taggers and three internal knowledge
taggers.
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Figure 2: The system architecture of CogKTR.

Linker. It aims to link the candidate mentions
detected by the Tagger modules to external KGs.
It is an essential bridge between unstructured texts
and structured knowledge, where linking methods
include entity linking and string matching. Entity
linking is based on measuring the similarity be-
tween mentions in the texts and entities in KGs and
string matching is to find the corresponding nodes
in KGs through strict comparison or fuzzy query.
We implement three linkers in CogKTR.

Searcher. It is to retrieve detailed information
about target mentions in KGs (such as Wikipedia,
ConceptNet and WordNet), and textual corpus. In
this paper, we divide KG-related knowledge into
unstructured textual information and structured in-
formation. Unstructured textual information in-
cludes entity titles, entity descriptions and example
sentences, while structured information includes
triples, subgraphs and relation paths. As for textual
corpus, we use retrieval methods to obtain related
texts of the queries. We implement four searchers.

Embedder. It is used to embed discrete knowl-
edge into continuous space. We encode KGs as
low-dimensional and dense vectors by TransE,
Wikipedia2Vec and PLMs, which can be directly
injected into deep learning models.

3.2 Model

To implement knowledge injection and applica-
tion, we design the Model module to fuse texts and
knowledge acquired from the Enhancer module.
For extensibility, we decouple the Model module
into T-Model and K-Model. T-Model denotes task-

specific models, designed for various downstream
tasks. K-Model denotes knowledge-enhanced mod-
els, aiming to inject knowledge into PLMs to repre-
sent texts. K-Model and T-Model can be combined
to realize the application of different knowledge-
enhanced models on different downstream tasks.

T-Model. This module is used to achieve down-
stream tasks. It can be classified into seven types:
ReadingComprehension, TextClassification,
MLM, QuestionAnswering, SequenceLabeling,
TextMatching, Disambiguation class.

K-Model. This module is responsible for knowl-
edge injection and built on huggingface transform-
ers library (Poerner et al., 2020). It can be divided
into two categories: (1) Input-enhanced models
aim to enrich input texts and constrain attention
masks. In terms of input texts, we divide injec-
tion into two types, discrete injection and continu-
ous injection. Discrete injection means concatenat-
ing raw texts and additional knowledge texts like
ESR (Song et al., 2021), K-BERT (Liu et al., 2020),
and then feeding into PLMs. Continuous injection
refers to converting texts or entities into vectors,
such as KT-Emb and KG-Emb (Xu et al., 2021). For
attention masks, symbolic knowledge like depen-
dency trees with directed graphs is used to con-
strain attention masks based on SG-Net (Zhang
et al., 2020b). (2) Architecture-enhanced mod-
els use additional network architecture to encode
knowledge and incorporate knowledge represen-
tation into language models. In CogKTR, SAFE
(Jiang et al., 2022) is used to encode relation paths
by MLP, while RNN is used to capture semantic
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role labeling knowledge like SemBERT (Zhang et al.,
2020a). For graph structure knowledge, we imple-
ment QAGNN (Yasunaga et al., 2021) and HLG (Li
et al., 2022) models with GNN to encode common-
sense knowledge and linguistic knowledge.

3.3 Data

This module is responsible for data loading and
processing procedures. It is composed of Reader
and Processor classes. To unify input, we design
Reader class to load raw datasets, which inherits
from BaseReader class. The Processor class is a
data processing component in CogKTR. It is used
to build the bridge among models, raw data and
enhanced data, which can process raw data and
enhanced data into the form required by the models.

3.4 Core

It focuses on accelerating the efficiency of model
training and evaluation. It contains Trainer,
Evaluator, Predictor and Analyzer classes.
Trainer class is designed for model training, sup-
porting multi-GPU distributed parallel training
and experimental results recording. Evaluator
class contains classification metric, regression met-
ric, reading comprehension metric and so on.
Predictor class supports various downstream in-
ference tasks with additional knowledge.

4 System Usage

In this section, we will give detailed guidelines on
how to use CogKTR toolkit and online demo.

4.1 Code Usage

We separate the source code to three main parts: en-
hancing the given texts with knowledge, construct-
ing a knowledge-aware model and training the
model. In Appendix A, Figure 3 shows an example
for the usage of our code. We formalize a pipeline
for these three steps so users can achieve our Uni-
fied Knowledge-Enhanced Paradigm easily. Be-
fore processing the input text, users should prepare
the corresponding knowledge sources, which will
be downloaded automatically. Then, the Reader,
Enhancer and Processor class should be initial-
ized to generate the knowledge-enhanced input of
the models. Moreover, the T-Model, Metric, Loss
and Optimizer class should be initialized before
added to Trainer class. Users should initialize the
K-Model class as the knowledge-enhanced encoder
of the T-Model class.

4.2 Demo Usage

Besides this toolkit, we also release an online demo
as shown in Figure 4, 5 and 6. The online demo
consists of two parts: knowledge-enhanced text
and knowledge-enhanced task. The knowledge-
enhanced text part will acquire different types of
knowledge in the given sentence, including world,
linguistic, and commonsense knowledge. And the
knowledge-enhanced task part performs different
downstream tasks, including sentiment analysis,
text entailment and commonsense reasoning.

5 Evaluation

CogKTR aims to support various NLU tasks un-
der a unified paradigm. To demonstrate the ef-
fectiveness of knowledge-enhanced methods, we
implement several baselines and evaluate them on
the corresponding tasks. The evaluation tasks in-
clude CommonsenseQA (Talmor et al., 2018) and
OpenBookQA (Mihaylov et al., 2018) for com-
monsense reasoning; LAMA (Petroni et al., 2019)
for knowledge probing; SQuAD2.0 (Rajpurkar
et al., 2018) for reading comprehension; QNLI
and SST-B (Wang et al., 2018b) for text entailment;
CoNLL2003 (Sang and De Meulder, 2003) for se-
quence labeling; SST-2 and SST-5 (Socher et al.,
2013) for sentiment analysis; SemCor (Miller et al.,
1994) and SemEval (Pradhan et al., 2007) for word
sense disambiguation. Reader and Processor
classes of these datasets have already been inte-
grated into CogKTR. The experimental results are
available at our GitHub 4.

6 Conclusion and Future Work

In this paper, we propose CogKTR, a knowledge-
enhanced text representation toolkit for natural lan-
guage understanding. CogKTR is built on our
Unified Knowledge-Enhanced Paradigm, which
is composed of four stages: knowledge acquisi-
tion, knowledge representation, knowledge injec-
tion, and knowledge application. In CogKTR, we
provide easy-to-use knowledge acquisition inter-
face, off-the-shelf knowledge embeddings, built-
in knowledge-enhanced models, and knowledge-
intensive NLU tasks. Besides the toolkit, we also
release an online demo system. In the future, more
knowledge sources, benchmark datasets, and mod-
els will be incorporated into CogKTR.

4https://github.com/CogNLP/CogKTR/
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Limitations

In this paper, we propose Unified Knowledge-
Enhanced Paradigm to formalize the knowledge-
enhanced process. However, there are still some
limitations in the existing knowledge-enhanced pro-
cess. We discuss these in detail below.

First, in the knowledge acquisition stage, we
should discover knowledge from raw texts via
name entity recognition, entity linking, semantic
role labeling and other methods. These methods are
usually provided by off-the-shelf toolkits, causing
inevitable errors. Such noise will affect the perfor-
mance on downstream tasks. In the future work, we
should further study how to eliminate the influence
of noise caused by knowledge acquisition.

Second, a vast number of knowledge embedding
methods are designed to address knowledge graph
completion (KGC), which aims to predict miss-
ing links for KGs. These methods only consider
the structured information and ignore the valuable
textual and logic knowledge in KGs. How to pro-
vide more informative knowledge embeddings for
knowledge-enhanced methods is worth studying.

Finally, we utilize a broad set of downstream
tasks to evaluate the knowledge-enhanced mod-
els. But better performance does not mean that
the model has really learned the knowledge. We
should find a better way to probe the knowledge in
models and improve the interpretability.
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Components Classes Functions Tools

Tagger

NerTagger identify entity mention spans CogIE (Jin et al., 2021)
ConceptNetTagger identify concept mention spans spaCy (Honnibal et al., 2020)
WordNetTagger identify candidate texts spans NLTK (Bird et al., 2009)

SrlTagger tag sentences and get semantics labeling Stanza (Qi et al., 2020)
SyntaxTagger parse sentences and get dependency trees AllenNLP (Gardner et al., 2017)

WordSegmentationTagger chinese word segmentation jieba

Linker
WikipediaLinker link entities to Wikipedia CogIE (Jin et al., 2021)
ConceptNetLinker link concepts to ConceptNet spaCy (Honnibal et al., 2020)
WordNetLinker link candidate texts to WordNet CogIE (Jin et al., 2021)

Searcher

WikipediaSearcher query entity titles and text descriptions in Wikipedia KILT (Bird et al., 2009)
WikidataSearcher look up triples and subgraphs in Wikidata qwikidata
ConceptNetSearcher search subgraphs and relation paths in ConceptNet spaCy (Honnibal et al., 2020)
WordNetSearcher synonyms, example sentences, definitions and hypernyms NLTK (Bird et al., 2009)

Embedder
WikidataEmbedder convert Wikidata into continuous knowledge CogKGE (Jin et al., 2022)
ConceptNetEmbedder convert ConceptNet into continuous knowledge MHGRN (Feng et al., 2020)
WordNetEmbedder convert WordNet into continuous knowledge CogKGE (Jin et al., 2022)

Table 1: Specific classes of Enhancer module, contains Tagger, Linker, Searcher and Embedder components.

import cogktr
import torch
# Load the dataset and construct the vocabulary
reader = cogktr.Reader(data_path)
train_data, dev_data, test_data = reader.read_all()
vocab = reader.read_vocab()

# Enhance the data
enhancer = cogktr.Enhancer(knowledge_graph_path, cache_path, cache_file)
enhanced_train_dict = enhancer.enhance_train(datable=train_data, return_entity_desc=True)
enhanced_dev_dict = enhancer.enhance_dev(datable=dev_data, return_entity_desc=True)
enhanced_test_dict = enhancer.enhance_test(datable=test_data, return_entity_desc=True)

# Process the data with external knowledge
processor = cogktr.Processor(max_token_len=128, vocab=vocab)
train_dataset = processor.process_train(data=train_data, enhanced_dict=enhanced_train_dict)
dev_dataset = processor.process_dev(data=dev_data, enhanced_dict=enhanced_dev_dict)
test_dataset = processor.process_test(data=test_data, enhanced_dict=enhanced_test_dict)

# Construct the knowledge-aware model
k_model = cogktr.KModel(pretrained_model="bert-base-cased")
t_model = cogktr.TModel(k_model, vocab)
metrics = cogktr.Metrics(mode="multi")
loss = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(t_model.parameters())

# Train the knowledge-aware model
trainer = cogktr.Trainer(t_model, train_dataset, dev_dataset, n_epochs=1000,

batch_size=128, loss=loss, optimizer=optimizer, metrics=metrics)
trainer.train()

Figure 3: A code example of model training.
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Figure 4: A demo example of world knowledge acquisition.

Figure 5: A demo example of linguistic knowledge acquisition.

Figure 6: A demo example of commonsense reasoning task.
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