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Abstract

The term lot in e-commerce is defined to mean
an offering that contains a collection of mul-
tiple identical items for sale. In a large on-
line marketplace, lot offerings play an impor-
tant role, allowing buyers and sellers to set
price levels to optimally balance supply and
demand needs. In spite of their central role,
e-commerce platforms often struggle to iden-
tify lot offerings, since explicit lot status iden-
tification is frequently not provided by sellers.
The ability to identify lot offerings plays a key
role in many fundamental e-commerce tasks,
from matching offerings to catalog products,
through ranking e-commerce search results, to
providing effective pricing guidance. In this
work, we seek to determine the lot status (and
lot size) of each offering, in order to facilitate
an improved buyer experience, while reducing
the friction for sellers posting new offerings.
We demonstrate experimentally the ability to
accurately classify offerings as lots and pre-
dict their lot size using only the offer title, by
adapting state-of-the-art natural language tech-
niques to the lot identification problem.

1 Introduction

The term lot has its origins in the world of live
auctions, where it describes the atomic unit for sale.
Each such lot usually has an associated multiplicity
(or lot size). In global e-commerce marketplaces,
the variety of products for sale is several orders of
magnitude larger than that of live auctions. In this
latter setting, the atomic unit for sale is referred to
as an offering or listing , and does not usually have
an associated multiplicity (i.e., only one object is
for sale). Thus, in the e-commerce setting, the term
lot (or lot offering) is redefined to describe those
offerings that contain a collection of multiple iden-
tical items. That is, not every offering is a lot. We
further define the term lot size as the multiplicity
of identical items in the collection for sale.

We adopt the definition for a lot offering given
by eBay in its guidelines1 to sellers:

A "lot" is a group of similar or identical
items that are sold together to one buyer

Amazon uses a similar definition for the related
term multi-packs.2

Lots, or multi-packs, are distinguished from
bundle offerings, which contain multiple distinct
(rather than identical) items (Tzaban et al., 2020).

The ability to list lot offerings provides great
flexibility to sellers. One reason for this is that
many products come from the manufacturer as lots
(e.g., a box of pencils). Another reason is that lot
offerings provide the seller an additional degree
of freedom (the lot size), in addition to price, to
maximize marketplace value by adapting to the
demand of the market for their particular product.

Online marketplaces strive to distinguish be-
tween lot and non-lot offerings for several reasons.
The first reason is to enable discovery of lot offer-
ings as first class citizens in the electronic market-
place. That is, a local retail entrepreneur may be
looking for lots of products independent of what
the actual product happens to be, seeking to gain
profit by buying lots and reselling the component
items individually.

Another important scenario is allowing price-per-
unit comparison in aggregate. E-Commerce buyers,
seeking the best value, may be willing to consider
purchasing a larger quantity of a product in return
for a per-unit discount. Consider the offerings for
protective masks depicted in Figure 1. Without
detecting and considering the lot size of these com-
parable offerings, it is difficult for a customer to
recognize that some offers cost much more on a
per unit basis.

1https://www.ebay.com/pages/cn/help/
sell/contextual/lots.html

2https://tinyurl.com/y6kej274
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Figure 1: A comparison of lot offerings for protec-
tive masks across 3 e-commerce sites: ebay.com,
amazon.com, and walmart.com The price per unit
varies across these offerings from $0.40 to $5.00.

This work is motivated to automatically detect
lot offerings, but a critical reader may ask, why
not ask the sellers to explicitly designate their lot
offerings (and provide an explicit lot size)? In fact,
such an option does exist on many e-commerce
platforms. eBay3 , for example, has a standalone
interface for sellers to input lot entries. Unfortu-
nately, the adoption of this feature among the seller
population is quite low. While sellers often have
an incentive to clearly designate their offering as a
lot, in practice interfaces to specify structured lot
metadata are difficult to navigate. These interfaces
are often unfamiliar to sellers and not standardized
across marketplaces. This issue becomes more
acute when sellers upload their offerings in (of-
ten large) batches, using a non-visual interface, to
multiple marketplaces.

Rather than mark the offering as a lot explicitly,
a common practice of many e-commerce sellers is
to declare the lot status (and lot size) in the offering
title using natural language. Since the title field ex-
ists across all e-commerce platforms and is promi-
nently displayed to potential buyers, sellers can
apply this technique to convey important offering
information (such as lot status and size), without
needing to understand the nuance of any particular
marketplace interface, as well as its own terminol-
ogy and attribute definitions. Table 1 illustrates
example titles of lot offerings, which were not ex-
plicitly designated as lot offerings by the sellers.
The examples in the table demonstrate the diversity
of offerings that contain lots and the unique and
colorful language of jargon and abbreviations to
specify the lot status (and lot size) of the offering.

In this work, we seek to determine the lot status
(and lot size) of each offering, in order to facil-

3https://pages.ebay.com/sell/lots/

itate the scenarios enumerated above for buyers,
while reducing the friction for sellers. Although
e-commerce offerings contain multiple sources of
information (e.g. images, descriptions, etc.) our
methods focus exclusively on the offering title.
The first reason for this is the presence of pow-
erful natural language cues for lot status and size.
This is anecdotally demonstrated in Table 1. An-
other reason is broad applicability: while many
offerings are incomplete to some degree, with lack-
ing or altogether-missing attributes (Ghani et al.,
2006), descriptions (Novgorodov et al., 2019) and
images (Goswami et al., 2012), the vast majority
of offerings contain a valid title. We show exper-
imentally that methods based on recent advances
in natural language processing, but adapted to the
problem of lot identification, are able to achieve
high-performance on our tasks of interest.

Our main contributions can be summarized as
follows:

• We introduce the first comprehensive study of
lot identification in e-commerce.

• We release a dataset with nearly 20,000 offering
titles across multiple categories, each labeled
with lot status and lot size.

• We propose an adaptation of the naive regres-
sion approach to lot-size prediction, based on
binary sequence models, which achieves high
accuracy on this task.

• We empirically evaluate the performance of our
proposed approach across several e-commerce
domains and compare performance of several
state-of-the-art methods.

2 Related Work

In this work, we apply a variety of natural language
processing methods to offering titles to address the
lot identification task. Accordingly, we review re-
lated work in two areas: research related to lots or
multipacks in electronic commerce, and text repre-
sentation and classification approaches relevant to
our task.

2.1 Lots in E-Commerce
Despite their central role in online marketplaces,
the current literature on lots or multipacks is very
sparse. In a study from 1996, Lindskog and Lund-
gren (Lindskog and Lundgren, 1996) examined the
use of multipacks in 41 physical stores in the UK
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Table 1: Examples of lot offering titles. The lot size (highlighted for emphasis) is often included somewhere in the
title in sometimes colorful shorthand.

Lot Size Title Category

3 Lot of 3 Vtg. 1974 ENESCO IMPORT Rustic Metal Sculptures Wagon Telephone MailBox Collectibles
5 5 PACKETS EPIL-STOP PERFECT FINISH NEUTRALIZING AFTER WASH FREE SHIPPING USA NEW Health & Beauty
20,000 Antique German Doubled Baked Ceramic Bricks 20000 pcs Antiques
1000 (1000) CD Disc Jewel Case Bin Divider Cards - 5-5/8"x6" - White HEAVY DUTY 30mil Music
2 Genuine OEM 2 Pack Canon PG-220 Black PGI-220BK Ink Tank NEW Computers/Tablets & Networking
22 ALL BRAND NEW...LOT OF 22 KIDS GIFT ITEMS Toys & Hobbies
50 Varian 1210-2046 Analytichem Bond Elut box of 50 SEALED BOX Business & Industrial
28 LOT 28x 459512-002 375863-010 HP 146GB 3G SAS 10K SFF 2.5" HDD HARD DRIVE NR Computers/Tablets & Networking
2 Pier 1 Curtain Panels (set of 2) gold, burgundy, green with geo design 84" long Home & Garden

and Sweden. They discussed the different bene-
fits, mostly related to production costs, packaging,
storage, distribution, and increased sales due to
the discounted prices. In their work on matching
offerings to catalog products, Shah et al. (Shah
et al., 2018) note that lots make data ambiguous,
since, for example, “a number in a product de-
scription could refer to a lot quantity or variation
of product edition”. They state that such product
offerings exhibit another level of complexity and
require special treatment or a separate model to
identify, but do not further explore this task. Zentes
et al. (Zentes et al., 2017) mention multipacks as
one of the main strategies for price reductions, but
do not further characterize it compared to other
promotion approaches, such as coupons or price
packs.

A key research challenge in the e-commerce do-
main is the extraction of structured key-value at-
tributes, such as brand, model, size, or color, from
the titles of products or offerings.Techniques to
approach this general problem vary from using
attribute-specific gazetteers to applying sequence
labeling for named entity recognition, as well as
applying ideas from search and question answer-
ing (Ghani et al., 2006; More, 2016; Putthividhya
and Hu, 2011; Xu et al., 2019; Wang et al., 2020).
The lot identification task could be modeled as the
extraction of a binary attribute. One of the main
studies in the area mentions “package quantity” as
an example attribute (More, 2016), but does not
further explore its extraction.

Related areas of study in the commerce litera-
ture are “bundling” (Adams and Yellen, 1976; Han-
son and Martin, 1990; Yadav, 1994; Tzaban et al.,
2020), tying together multiple distinct products,
and “price packs” (Kwok and Uncles, 2005; Tellis,
1998), which are monetary promotions that offer
savings by combining multiple items.

2.2 Text Representation and Classification

The literature on representation and classification
of text data spans many disciplines and several
decades. For a recent general survey on text clas-
sification the reader is referred to (Kowsari et al.,
2019). Specific applications of these methods in-
clude document retrieval (Schütze et al., 2008), doc-
ument categorization (Sebastiani, 2002) , question
answering (Rajpurkar et al., 2018), and sentiment
analysis (et al., 2002). The research area of text
representation is devoted to methods for encoding
a passage of text data in a machine-interpretable
way. Most methods involve tokenization (Manning
et al., 2014), breaking up a document into a col-
lection of substrings, often corresponding to the
words or word combinations in the document.

Word embedding has been an area of study
that produces models, such as word2vec (Le and
Mikolov, 2014; Mikolov et al., 2013), which in-
clude a distributed representation of words as part
of their learned output. Other popular embed-
ding models include dependency-based embed-
ding (Levy and Goldberg, 2014) and GloVe (Pen-
nington et al., 2014).

Language Modeling considers the problem of
predicting unseen texts from context. Early lan-
guage models were based on word and n-gram
frequency (Jelinek and Mercer, 1980; Katz, 1987).
Neural language modeling (Bengio et al., 2000)
uses fully connected neural nets to predict the next
word in a sentence. Other works propose models
that use word-embedding resemblance in a similar
setup (Le and Mikolov, 2014; Mikolov et al., 2013).
Language models applying recurrent neural archi-
tectures are proposed in (Graves, 2013) (RNN) and
(Merity et al., 2018a) (LSTM). These approaches
also learn word embeddings as a component of
their network architecture. A more recent architec-
ture for language modeling that has gained much
popularity is the transformer (Vaswani et al., 2017),
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which uses neural attention mechanism instead of
recurrence to encode the relevant context. BERT
(Bidirectional Encoder Representations from Trans-
formers) (Devlin et al., 2019) is a variant of a
transformer, which allows bi-directional training
by masking random words in the training set, rather
than trying to predict the next word in a sequence.

The upper layer output of language models, such
as transformers and recurrent networks, can be used
as a sentence embedding. This leads to the idea
of fine-tuning (Howard and Ruder, 2018). The
idea is to train large models in domains where a
large volume of text data exists (e.g. Wikipedia).
The parameters in the lower layers of the resulting
models are then frozen and the upper layers are
trained in a specialized domain where only a small
amount of data is available (e.g., travel tips). The
resulting model yields a useful representation of
text in the specialized domain, without having to
collect vast amounts of data.

3 Datasets

Recall from our discussion in the introduction,
many lot offerings are not explicitly designated
as lots by the seller, and thus this explicit signal
cannot be relied upon. As such, we employed hu-
man agents to manually label offerings sampled at
random.

We collected a number of examples of lot and
non-lot offering titles from across several cate-
gories on eBay, one of the world’s largest online
marketplaces. The label was acquired by allowing
a human evaluator to look at the entire offering
page, which includes the title, but also additional
structured information on the offering attributes
and possibly an image and description. The evalua-
tor then provided the lot-size label for each offering
under consideration.

3.1 Lot Dataset

Table 2 describes the datasets used in our experi-
ments. Each dataset is named for the category of
e-commerce from which the offering title examples
are taken. The Heterogeneous dataset is the largest
dataset and contains examples from a number of
different e-commerce categories. For the categories
we considered, the lot class was severely underrep-
resented in the labeled data. Thus, we create a
balanced evaluation set, containing roughly equal
numbers of lot and non-lot offerings.

Table 2: Datasets

Category Training Size

Health & Beauty 4,370 ( 40.7% Lots)
Business & Industrial 1,754 ( 38.8% Lots)
Heterogeneous 18,742 ( 14.5% Lots)

Figure 2: Distribution of lot size across categories.
The distribution displays a classic power-law behavior
across all categories (note the log scale in the axes.)

3.2 Lot Characteristics

We present additional empirical analysis of lot of-
ferings in e-commerce with the hope of providing
additional insight into their properties. To this end,
we used the offerings explicitly designated as lots
by the seller. While this is a noisier signal, it allows
us to analyze many millions of offerings.

Figure 2 displays the the lot-size distribution of
these same offerings, across several categories. The
figure shows that the majority of lot offerings have
a small lot size. In fact, the distribution displays a
classic power-law behavior (note the log scale in
the axes.)

To provide a sense of how titles of lot offerings
differ from title of non-lot offerings, we set out
to explore the most characterizing terms of lot ti-
tles versus non-lot titles. To this end, we used
Kullback-Leibler (KL) divergence, which is a non-
symmetric distance measure between two given
distributions (Berger and Lafferty, 1999). Specifi-
cally, we calculated the unigrams and bigrams that
contribute the most to the KL divergence between
the language model of the lot titles versus the lan-
guage model of the non-lot titles in our dataset.
Table 3 presents the results. It can be seen that the
top unigrams and bigrams represent diverse lan-
guage, with very substantial differences between
their occurrence in lot versus non-lot titles. As we
will later show, due to this diverse language, a rule-
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Table 3: Most distinctive unigrams and bigrams accord-
ing to KL divergence over a sample of 4 million lot ver-
sus 4 Million non-lot titles. xxnum is a special token
added by the tokenizer ahead of any numeric quantity.
In addition, the portion of lot titles containing the un-
igram/bigram and the non-lot titles containing the uni-
gram/bigram are presented.

Unigram %lot %non-lot Bigram %lot %non-lot

lot 35.30% 2.73% of xxnum 25.39% 2.18%
of 31.62% 7.32% lot of 21.23% 1.27%
xxnum 90.04% 66.30% lot xxnum 4.21% 0.38%
pcs 8.51% 1.21% " lot 3.09% 0.16%
x 15.00% 5.48% pack of 2.64% 0.16%
pack 5.80% 0.98% - pcs 1.38% 0.01%
) 14.86% 8.93% ( pack 1.97% 0.05%
& 11.25% 6.14% ( xxnum 7.67% 3.20%
( 14.79% 9.37% - xxnum 15.54% 10.48%
set 7.19% 3.44% set of 3.13% 0.71%

based approach using regular expressions is not
effective enough, and more advanced supervised
approaches are required.

4 Methods

In this section, we formalize our research problem,
and propose an approach for identifying lot offer-
ings and lot size. In order to conserve space and
focus the discussion, we defer the details of our
novel tokenization (Section A.1) , training proce-
dure (Section A.2), and model architectures (Sec-
tion A.3) to the appendix.

4.1 Problem Definition
We formalize two variants of the lot classification
task. Both accept only the offering title as input
and are distinguished by their output.

1. Binary Classification – the decision function
determines whether the title represents a lot
offering or not. That is, are multiple identical
items for sale in this offering?

2. Lot Size Prediction - in this, more challenging,
formulation, the decision function outputs the
lot size, the number of identical products for
sale in the offering described by the title. This
is a generalization of the first formulation, as
non-lot offerings will have a lot-size of one.

4.2 Identifying Lot Offerings
The problem definition above suggests using natu-
ral language processing techniques that given offer-
ing titles would output either the classification or
the lot size prediction. However, in this work we

Table 4: Binary Accuracy across datasets. * indicates
statistical significance at 0.05 level.

Health&Beauty Business&Industrial Heterogeneous

RegExp_FC 0.600 0.696 0.544
NGram_FC 0.843 0.845 0.815
FastText_FC 0.845 0.861 0.785
LSTM_Basic_SZ 0.889 0.881 0.872
ENC_LSTM_BIN 0.889 0.928 0.917
ENC_LSTM_SZ 0.915 0.897 0.898
TRANS_ENC_SZ 0.944* 0.933 0.945*

propose several innovations specifically tailored to
the problem of identifying lot offerings.

4.2.1 Lot size prediction as sequence labeling
While the lot size prediction problem is ostensibly
a regression problem in that its output is a quan-
tity, lot sizes are positive (more accurately ≥ 2),
integer-valued, and distributed across a wide range
of possible values (see Figure 2). Further, our de-
fined business objective is exact lot-size accuracy.
That is, an error in predicted lot-size of magnitude
1 should have equal cost to an error of magnitude
100 (which is very different from common regres-
sion objectives like squared error). We also note
that, the lot-size information is very often present
in the offer title exactly, and can (often) be made
to be contained in a single token with sufficiently
clever tokenization (see above).

For these reasons, rather than formalize the lot-
size prediction problem as a naïve regression, with
continuous output, we propose formalizing the ap-
proach as a sequence labeling problem. That is, the
model output is a sequence of binary predictions.
Each decision in the output sequence corresponds
to a token in the input sequence, and encodes the
probability that the corresponding token describes
the lot size of the offering. Note that this objective
is different from the eventual goal we measure in
our experiments of predicting the lot size. We de-
scribe how to convert a per-token binary prediction
to a lot-size prediction in Section A.3.2.

5 Experiments and Results

In our empirical evaluation, we examine the perfor-
mance of the various model architectures described
in Section A.3 on the lot classification problem vari-
ants defined in Section 4.1: Binary Classification
and Lot Size Prediction.

To this end, we consider the following metrics:

1. Binary Accuracy (BAcc) - The number of times
a title was classified Lot/ Not Lot correctly as a
fraction of the evaluation set.
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Table 5: Lot Size Accuracy across datasets. * indicates
statistical significance at 0.05 level.

Health
& Beauty

Business
& Industrial

Heterogeneous

LSTM_Basic_SZ 0.870 0.820 0.845
ENC_LSTM_SZ 0.905 0.840 0.874
TRANS_ENC_SZ 0.932* 0.892* 0.922*

2. Lot Size Accuracy (LAcc) - The number of
times the lot size was predicted (exactly) cor-
rectly as a fraction of the evaluation set.

When considering Binary Accuracy, we evalu-
ate the Binary Classification Model architectures
as well as the Binary Sequence Model architec-
tures, which, as previously described, can be post-
processed in a straightforward manner to yield a
binary classification decision. We further evaluate
the accuracy of the binary sequence model archi-
tectures in the Lot Size Prediction Problem. Recall
that we approach this problem as a token classifi-
cation problem. The token with the highest score
is parsed for a numeric quantity, and this quantity
is considered the predicted lot size. In this formu-
lation, small errors in the lot size prediction are
weighted equally to large errors. We computed
statistical significance using a two-proportion z-
test (Sprinthall and Fisk, 1990), with a significance
level of 0.05.

Table 4 examines binary accuracy of the various
models across the datasets, while Table 5 examines
the lot size accuracy of the relevant models.

Examining Tables 4 and 5, we observe that the
TRANS_ENC_SZ model achieves the best perfor-
mance across all datasets. This may be because
for this family of tasks, the transformer encoder
architecture, which only considers word ordering
indirectly, is more appropriate than the recurrent
encoder architecture (ENC_LSTM_SZ), which ex-
plicitly models the word ordering. In other words,
local word structure is more important than global
word structure for this class of problem.

Furthermore, the results indicate that the
pre-trained class of models (TRANS_ENC_SZ,
ENC_LSTM_BIN, ENC_LSTM_SZ) leverage
their indirect access to much larger general-
purpose datasets to achieve better performance
than models that were trained “from scratch” with
random weight initialization. We can also observe
that modeling the binary task directly does not
improve binary performance and in fact, 3 of the

top 4 performers on the Lot Classification task are
sequence models, whose output is post-processed
to reach a binary decision. This indicates that the
value of the additional information (the lot size)
and structure used during training the sequence
model outweighs the cost of additional complexity
incurred by expanding the decision space.

Another, somewhat surprising, result is that lot
size prediction accuracy for all sequence models is
quite close in magnitude to the binary classification
accuracy (e.g., 0.932 compared to 0.944 for the
Health and Beauty dataset and TRANS_ENC_SZ
model). Thus, the models are able to predict the
precise lot size correctly almost exactly as well as
they are able to classify the offer as Lot or Not.

Generalizing from the results a bit, we ob-
serve that a large improvement is gained by
modeling all n-grams (NGram_FC) and/or sub-
words (FastText_FC) over a simple collection
of heuristic features (RegExp_FC). A smaller
additional gain is made by using a recurrent ar-
chitecture to explicitly model the temporal dy-
namics of the offer title (LSTM_Basic_SZ). Fi-
nally, an additional gain is achieved by introduc-
ing pre-trained high-capacity encoder architectures
(ENC_LSTM_SZ, TRANS_ENC_SZ).

5.1 Complexity vs Accuracy

An additional analysis we carried out considers
the complexity–accuracy tradeoff that exists in the
models we considered. The reader of Section A.3
will no doubt observe that some of the architec-
tures are significantly more complex than others.
The more complex models generally achieve better
quantitative performance in our empirical evalua-
tion. However, how much of this complexity is
needed is an important practical question, as of-
ten very complicated models are difficult to deploy
and maintain in a production environment. In such
cases, if a simpler model only slightly underper-
forms the more complicated model, in many cases
it is preferred. To quantify this question of “bang
for the buck” we plot the BAcc metric of experi-
ments with different architectures against the “com-
plexity” of the method as measured by the number
of learnable parameters in the architecture.4 Fig-
ure 3 shows a plot of this tradeoff across several

4This method is not without faults, e.g., fastText uses a
hashmap of 1M vectors to represent all possible sub-words,
so technically has 300 (embedding size) times 1M learnable
parameters, even though much fewer are updated in practice
during training.
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Figure 3: Comparing model complexity and binary ac-
curacy on the Health and Beauty dataset.

different training runs of different architectures on
the Health & Beauty dataset (similar relative per-
formance is observed on other datasets.)

The plot accentuates the benefit of the relatively
simple LSTM architecture, LSTM_Basic_SZ.
This architecture, while among those with the least
learnable parameters, achieves performance (on
both the binary and size prediction tasks) within
10% of the leading approach, while performing
better than several other approaches with more pa-
rameters. Further, this architecture is much more
flexible to augmentation as it does not rely on
any pre-training. Thus, for a practical produc-
tion scenario, which emphasizes “bang for buck”,
LSTM_Basic_SZ may be preferable to the other
more complex alternatives.

5.2 Error Analysis

To gain additional insights into the performance,
we present examples where the model disagrees
with the ground truth labels in Figure 4. We fo-
cus on three types of such disagreements. “false
positive” disagreements occur when an offering
title is labeled as a lot incorrectly by the model.
Examining the top rows of the figure, we observe
that these types of mistakes often occur on titles
that include phrases and language often associated
with lot offerings. In many cases, using only the
title information, a human evaluator may tend to
agree with the model. Thus, we conjecture that
these kinds of mistakes are largely due to the gap
between the information available to the model and
information available to the human labelers (which
includes multiple modalities such as offering im-
age, description, and more).

“False negative” mistakes occur when the model
incorrectly labels an offering title as “not a lot”.

True Class Title
False Positives

Not Lot
ODORLESS GARLIC 500MG BLOOD CIRCULATION CARDIO

HEART CARE 120 TABLETS 4
︸︷︷︸
0.99

BOTTLES

Not Lot
APRIL CORNELL Set of 4

︸︷︷︸
0.76

Quilted Placemats Cottage Floral 15 in Square NWOT

False Negatives

Lot Vintage Crystal Candleholders 2
︸︷︷︸
0.45

Pc Set Votive Tapers Holiday Gift Housewarming

Lot 40
︸︷︷︸
0.31

Count: 20
︸︷︷︸
0.24

Dram Green Medicine, Craft, RX, Pill Bottles: Reversible Lids

Size Prediction Errors

Lot Lot of Binaca Breath Strips 5
︸︷︷︸
0.88

Packs of 24
︸︷︷︸
0.90

Strips Cool Peppermint

Lot 12
︸︷︷︸
0.55

Tek Soft Toothbrushes with 12
︸︷︷︸
0.24

Toothbrush Covers ( 4
︸︷︷︸
0.91

Pack x 3
︸︷︷︸
0.93

) NEW

Figure 4: Error Analysis. indicates the lot-size token
for each Lot title. indicates the most likely lot-size
tokens according to the model. The model score as-
sociated with each token is indicated below the token
(when non-negligible).

As Figure 4 demonstrates, the model often detects
the “lot-size token” with non-negligible probability.
However, this probability does not rise above the
threshold needed to classify the offer as a lot. We
used a threshold of 0.5 for this purpose, but this
hyper-parameter can be tuned lower in order to
correctly classify the examples in the figure. This
type of tuning represents an opportunity to trade
off false positive errors for false negative errors, as
appropriate for the particular business scenario.

The third type of mistake we consider is “size
prediction error”. This type of error occurs when
the model correctly identified an offering as a lot,
but gets the lot size wrong. Examining the figure
we can observe that this type of error occurs when
the offer title is very complex, and specifically con-
tains many numbers. It may be possible to detect
this situation by considering the relative scores of
different tokens.

We present the different types of errors for anal-
ysis, however, one should note that the different
types do not occur with the same frequency. In our
evaluation, false negative errors were more com-
mon then the other error types. Specifically, in the
Heterogeneous test set, the top performing model
had 36 false positive, 71 false negatives, and 7 size
prediction errors (out of 2,082 test examples).

5.3 Impact of Tokenization

Tables 4 and 5 show that TRANS_ENC_SZ outper-
forms all baseline architectures over all datasets.
In additional experiments (not described), we ob-
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Table 6: Lot size prediction accuracy over the heteroge-
neous dataset across different architecture depths and
tokenization methods. Boldfaced results are statisti-
cally tied best models at significance level of 0.05.

Number of layers Simple Tokenization BPE tokenization

6 0.937 0.901
12 0.930 0.918
24 0.928 0.909

served that this architecture also outperforms the
original BERT model (Devlin et al., 2019) pre-
trained on orders of magnitude more documents.
One reason for this performance gap is the dif-
ference in tokenization. TRANS_ENC_SZ uses
the custom tokenization described in Section A.1,
while the original BERT tokenization is based on a
trainable WordPiece tokenizer (Al., 2016), which
uses sub-word level tokens. However, a confound-
ing factor could be that the corpus used to train
our model, a collection of 10 Million English lan-
guage e-commerce titles (about 150M words), is
more appropriate for our task than BERT’s corpus
of general natural language (∼ 3B words).

To isolate the impact of the choice of tokenizer,
we pre-trained language models with different tok-
enization variants: 1) the "Simple" tokenization is
a plain rule-based tokenization that splits on punc-
tuation and white spaces (see Section A.1); 2) the
"BPE" tokenization is a "BERT-style" byte-pair-
encoding scheme that tokenizes text into sub-word
tokens based on the frequency statistics of bytes
in a corpus. We also hypothesized that the depth
(number of layers) of the language model is related
to the performance of a tokenization approach. To
evaluate this hypothesis we varied the number of
layers along with the tokenizer.

Table 6 shows the result of this comparison for
lot size prediction accuracy on the Heterogeneous
dataset. Simple tokenization outperforms BPE tok-
enization by statistically significant margins. No-
tably, the depth of the transformer language model
does not play a role, with all network depths achiev-
ing similar performance.

We conjecture that the reason for this perfor-
mance increase is that sub-word tokenization is
inappropriate for the lot classification task (at least
for English text), as the important tokens are usu-
ally discovered by simple rules, and complex tok-
enization schemes, such as BPE, without this fore-
knowledge of the application, can potentially break
an important “lot-size token” into multiple tokens,

making a successful lot-size prediction impossible.
The table also shows that a “shallow” 6-layer

transformer with Simple tokenization can perform
just as well as much deeper models for this task.
This combination is also more efficient computa-
tionally, due to the fewer tokens and layers.

6 Conclusions and Future Work

In this work, we consider the task of identifying
lots, e-commerce offerings that contain multiple
identical items. This application has the potential
to improve the online e-commerce experience for
millions of users. In our experiments, we apply
a number of state-of-the-art natural language pro-
cessing approaches to analyze the offering titles.
We show that binary sequence models, which are
aimed at identifying the lot-size token within the
title, are especially effective for achieving high ac-
curacy on both Lot Classification and Prediction
tasks across multiple e-commerce domains.

Our models reach high performance based on
title only, which is an advantage since almost all
offers contain a valid title (as opposed to image,
description, or key-value attributes). That said, the
ability to detect lot offerings can potentially be fur-
ther improved by using additional signals available
for each offering beyond its title. The offer’s price
may also help achieve a further performance gain.

The methods developed herein rely on the avail-
ability of data to perform effectively. A large
amount of unlabeled domain title data is necessary
to build the language model, and a smaller amount
of labeled data is required to fine-tune the model
to the lot identification task. In other areas, where
such data is available, specifically e-commerce data
in languages other than English, we conjecture that
this approach can generalize well.

Finally, the methods developed for analyzing ti-
tles in the pursuit of lot identification are useful in
other problems that arise in the curation of a large
and heterogeneous e-commerce catalog, including
matching offerings to products and enabling prod-
uct search.
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A Appendix

A.1 Tokenization

An important preprocessing step in many natural
language processing approaches is tokenization,
transforming the raw text input into an ordered
sequence of discrete tokens (often mapped to a
finite-size dictionary). The choice of tokenization
method can have significant impact on results in
the downstream task (Jimenez et al., 2018). Specif-
ically, applying tokenization that is catered to the
downstream task may improve the overall perfor-
mance. We therefore devise a unique tokenization
scheme tailored to our scenario, processing offer-
ing titles in a general e-commerce marketplace.
These titles (see Table 1) contain their own set of
rules and idiosyncrasies, and can be quite different
than English natural language text. As such, us-
ing general-purpose English language tokenization
may be less desirable.

To understand our tokenization approach con-
sider the following example title corresponding to
a lot offering:

BOBBIN WINDER TIRE (2pk) Brother PC8895 ...

Clearly the numerical tokens are important to
separate, but as the example illustrates, many num-
bers appear in lot offering titles that have nothing
to do with the lot size, usually model numbers or
various specification quantities. Further, the lot
quantity often appears in important context, such
as adjacent to specific punctuation (e.g., within
parentheses) or close to one or more context tokens
(e.g. Lot of or pcs). These may or may not be
separated by a whitespace token.

To deal with these phenomena, we developed
several unique approaches to tokenization. First,
we separate all punctuation into its own token.
Then, we separate tokens with a numeric prefix
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into two separate tokens. Finally, we add a spe-
cial token to indicate a numeric quantity. Note that
this special token is added only when another to-
ken contains just digit characters. Thus, the token
pc8895, for example, would not trigger a special
token. This token does not replace the original nu-
meric quantity, but rather is added next to it. This
strategy is designed to allow generalizing from pat-
terns often seen in offering titles.

With the application of such principles, the title
above may be tokenized as follows:

bobbin | winder | tire | ( |
xxnum | 2 | pk | ) | brother | pc8895

where xxnum is the special token adding numer-
ical context. Note that, in the example, the token
pc8895 is not split, as it does not begin with a
digit character.

A.2 Techniques for Training Lot Models

Before describing specific neural architectures, we
discuss key techniques that we applied in training
our models that helped achieve the performance
reported in the experiments section. While not all
techniques are applicable to all model architectures,
they play a key role in allowing our models to be
trained to high performance.

A.2.1 Dynamic Learning Rates
We use a stochastic gradient descent variant (specif-
ically, Adam (Kingma and Ba, 2015)) to optimize
the parameters of the model architectures consid-
ered in this paper. Following (Bengio, 2012) , we
employ several techniques to determine good val-
ues for the learning-rate parameter. The first of
these is using differential learning rates, i.e. each
parameter layer has a different learning rate. An-
other innovation that yields improved results is
working with cyclical learning rates (Smith, 2017)
combined with "cycle restarts" (Loshchilov and
Hutter, 2017). That is, at the beginning of each
epoch the learning rate is relatively large and be-
gins to decay with each update. Another technique
we employ is an interactive approach to finding
the base learning rate called The Learning Rate
Finder (Smith, 2017), a technique in which several
batches of training are run with increasing learning
rate, until the training error begins to increase. The
process described above for training our models is
interactive, and based on the performance of the
network on such metrics as training and validation
error.

Table 7: Techniques used by our different models.

Model
Dynamic Pre- Fine

Tokenization
Learning Rate Training Tuning

RegExp_FC 3 7 7 7

NGram_FC 3 7 7 3

FastText_FC 3 7 7 3

ENC_LSTM_BIN 3 3 3 3

LSTM_Basic_SZ 3 7 7 3

ENC_LSTM_SZ 3 3 3 3

TRANS_ENC_SZ 3 3 7 3

A.2.2 Pre-Training and Fine Tuning
A well-accepted practice for improving the perfor-
mance of neural models for natural language is the
use of pre-trained language models (Howard and
Ruder, 2018). These models are often quite large
in terms of the number of parameters they contain,
as well as the amount of training data they were
trained on. Given a supervised text classification
task, especially one where the amount of labeled
training data is limited, we can use the language
model to generate a useful representation of the text.
This is often achieved by “chopping off” the top
layer of the language model and using the continu-
ous values of the activations in the second-to-last
layer as the representation of the text. Using this
representation, which is assumed to encode univer-
sal properties of word tokens, allows the primary
task to utilize significantly less data.

The technique known as Fine Tuning introduces
another step in this process. Essentially, the pre-
trained language model is used as a language model
on an additional corpus of text data, usually more
relevant to the task of interest than the original
corpus the model was pre-trained on (which is gen-
eral in nature). Once this step is complete, the
fine-tuned language model is used as before for the
primary supervised task. Fine-tuning is especially
useful when a large corpus of task-specific unla-
beled data is available alongside the (often small)
task-specific labeled data.

A.3 Model Architectures
We evaluated a number of different model architec-
tures for the two problems described in Section 4.1.
Each of the architectures, applied some subset of
the techniques described above. Table 7 specifies
the precise correspondence between models and
techniques applied.

The approaches can be divided into two logical
groups (1) binary classification models, and (2) bi-
nary sequence models. These groups are named
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according to their output type. The former group
outputs a single quantity corresponding to the prob-
ability that a title corresponds to a lot offering. The
latter group outputs multiple quantities, each cor-
responding to a token in the input sentence. An
important note is that binary classification models
can only be used for the binary Lot Classification
task and cannot address the Lot Size Prediction
task. On the other hand, binary sequence models
can be used for both the Lot Size Prediction task
and the binary Lot Classification task.

A.3.1 Binary Classification Models
1. RegExp_FC – this model corresponds to a

naïve baseline for the Lot Classification task.
We represented the text as a set of binary
features. Each such feature corresponded to
whether we were able to match with a regular
expression designed to fit important patterns
pertaining to lots in the offering titles. For
example, one such regular expression was the
following : pack of \d+ (where \d+ repre-
sents one or more digit characters). We made
use of 15 such regular expressions. We fed this
representation into a fully-connected neural net-
work with a single hidden layer (size 300).

2. NGram_FC – here we represented the text as
a bag of n-grams (using n=2 or n=3). Each
n-gram corresponds to a binary feature (does
the n-gram appear in the title). Although the
space of possible n-grams is very large, in prac-
tice only a small sub-set appears. However,
in order to enable unseen n-grams and keep
the model size consistent, we used a hashmap
of size 1M to map between each n-gram and
its corresponding feature. That is, potentially
multiple n-grams will map to the same binary
feature, although such collisions rarely occur in
practice. For each title, only a few n-grams of
the many possible will be active. Thus, a sparse
vector of size 1M represents each title. This rep-
resentation was fed into a fully-connected neu-
ral network with one hidden layer (of size 300).
We applied the lot-specific tokenization and dy-
namic learning rate techniques when learning
the parameters of this architecture.

3. FastText_FC – in this model, we repre-
sented each word token as a vector of size 300,
which is computed as a sum of its sub-word
embeddings, which are learned separately. A
sub-word is essentially a sub-string that can

be constructed by only considering a subset of
the characters composing the token. Sub-word
information can be useful for generalizing to-
kens with similar roots that appear in different
forms (e.g. the tokens lot and lots). Since
there are many possible sub-words, as above
in the n-grams model, we used a hashtable of
size 2M to keep the model size fixed and al-
low generalization to sub-words that are unseen
during the training phase. Each title is repre-
sented as a simple average of its word tokens.
This representation was then processed by a
fully connected linear layer. The architecture
is equivalent to the fastText approach described
in (Bojanowski et al., 2017) , although we used
our own tokenization and training procedure.

4. ENC_LSTM_BIN – in this approach, we em-
ployed an LSTM-based encoder (specifically
we employed the bi-directional multi-layered
architecture described in (Merity et al., 2018b)),
which yields a representation of the text using
the sequence information explicitly. This ap-
proach uses pre-training a language model on a
large corpus of text (specifically, the WikiText
103 (Merity et al., 2016) dataset of English text)
and then fine-tuning the learned representation
on available e-commerce offering title data (not
necessarily those offerings with known lot la-
bels). We then attached a linear layer to the final
layer of this architecture (which is a concate-
nation of the representation at each token), and
trained the model on the available supervised
data, to obtain the final binary classification
model. We applied our own tokenization of the
text before pre-training. During training, we
made use of dynamic learning rate techniques
described in Section A.2.1.

A.3.2 Binary Sequence Models
As discussed in Section 4.2.1, we address the lot
size prediction problem with models that output a
sequence of binary decisions (one for each token
in the input). To obtain the final prediction from
such output, we apply the heuristic of choosing the
maximum output value (assuming it passes some
threshold) in the sequence and parsing the corre-
sponding input token for a quantity. If no such
token exists then the title does not represent a lot
offering (and the predicted lot size is 1).

1. LSTM_Basic_SZ – in this approach, we used
a basic LSTM model (Hochreiter and Schmid-
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huber, 1997), which takes into account the to-
ken ordering. The LSTM learns its own embed-
ding for each word token. The final state vector
is processed by a linear layer that outputs a bi-
nary decision per token. This method makes
use of our custom tokenization (Section A.1)
and dynamic learning rate (Section A.2.1).

2. ENC_LSTM_SZ – in this approach, we used
the same encoder architecture as described for
ENC_LSTM_BIN above. That is, we applied
custom tokenization, pre-trained the encoder
component of the model on a large corpus of
general English text, and then fine-tuned us-
ing in-domain text data. However, instead of
a binary classification head, this architecture
attaches a binary sequence head on top of the
encoder, which provides a binary decision for
each of the tokens in the sequence.

3. TRANS_ENC_SZ – in this approach, we used
the well-known BERT (Devlin et al., 2019)
transformer architecture, and specifically its
RoBERTa variant(Liu et al., 2019). The innova-
tion of BERT over classical transformers is the
combination of multiple self-supervision tasks,
Masked Language Model and Next Sentence
Prediction when training the encoder. The ver-
sion we made use of is consistent with the com-
mon "base" architecture of BERT (et al., 2019),
which is composed of a 12-layer encoder with
768 hidden nodes and 12 attention heads per
layer, for a total of approx 132 million parame-
ters. The model uses our custom tokenization
scheme, which we believe is more appropri-
ate for our research problem. Our model is
pre-trained on 10 million English language e-
commerce offering titles. As the pre-training
is done on in-domain data, no additional fine-
tuning step was performed.
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