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Abstract

We deal with the scenario of conversational
search, where user queries are under-specified
or ambiguous. This calls for a mixed-initiative
setup. User-asks (queries) and system-answers,
as well as system-asks (clarification questions)
and user response, in order to clarify her infor-
mation needs. We focus on the task of select-
ing the next clarification question, given the
conversation context. Our method leverages
passage retrieval from a background content to
fine-tune two deep-learning models for ranking
candidate clarification questions. We evaluated
our method on two different use-cases. The
first is an open domain conversational search
in a large web collection. The second is a task-
oriented customer-support setup. We show that
our method performs well on both use-cases.

1 Introduction

A key task in information and knowledge discovery
is the retrieval of relevant information given the
user’s information need (usually expressed by a
query). With the abundance of textual knowledge
sources and their diversity, it becomes more and
more difficult for users, even expert ones, to query
such sources and obtain valuable insights.

Thus, users need to go beyond the traditional
ad-hoc (one-shot) retrieval paradigm. This requires
to support the new paradigm of conversational
search – a sophisticated combination of various
mechanisms for exploratory search, interactive IR,
and response generation. In particular, the con-
versational paradigm can support mixed-initiative:
namely, the traditional user asks - system answers
interaction in addition to system-asks (clarification
questions) and user-answers, to better guide the
system and reach the information needed (Krasakis
et al., 2020).

Existing approaches for asking clarification ques-
tions include selection or generation. In the se-
lection approach, the system selects clarification

questions from a pool of pre-determined ques-
tions (Aliannejadi et al., 2019). In the generation
approach, the system generates clarification ques-
tions using rules or using neural generative mod-
els (Zamani et al., 2020).

In this work we focus on the selection task.
While the latter (i.e., generation) may represent
a more realistic use-case, still there is an interest in
the former (i.e., selection) as evident by the Clari-
fying Questions for Open-Domain Dialogue Sys-
tems (ClariQ) challenge (Aliannejadi et al., 2020).
Moreover, the selection task represents a controlled
and less noisy scenario, where the pool of clarifica-
tions can be mined from e.g., query logs.

In this paper we deal with content-grounded con-
versations. Thus, a conversation starts with an ini-
tial user query, continues with several rounds of
conversation utterances (0 or more), and finally
ends with one or more documents being returned to
the user. Some of the agent utterances are marked
as clarification questions.

The task at hand is defined as follows. Given
a conversation context up to (and not including)
a clarification-question utterance, predict the next
clarification question. A more formal definition is
given in Section 3.2 below.

Intuitively, clarification questions should be used
to distinguish between several possible intents of
the user. We approximate those possible intents
through passages that are retrieved from a given
corpus of documents. A motivating example from
the (Aliannejadi et al., 2020) challenge is given in
Figure 1. The user wants to get information about
the topic all men are created equal. Through the
retrieved passage, the system can ask the mentioned
clarification questions.

We use two deep-learning models. The first one
learns an association between conversation context
and clarification questions. The second learns an
association between conversation context, candi-
date passages and clarification questions.
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Evaluation was done on two different use-cases.
The first one is an open domain search in a large
web corpus (Aliannejadi et al., 2020). The second
is an internal task-oriented customer-support setup,
where users ask technical questions. We show that
our method performs well on both use-cases.

all men are created equal

would you like to learn more about the 
declaration of independence?

would you like to learn more about Thomas 
Jefferson?

bot

“All men are created equal" is arguably the best-
known phrase in any of America's political
documents, …. Thomas Jefferson first used the
phrase in the Declaration of Independence.

Corpus

Figure 1: A motivating example

2 Related work

We focus on works that deal with clarification-
questions selection. Aliannejadi et al. (2019) de-
scribes a setup very similar to ours for the afore-
mentioned task. They apply a two-step process. In
the first step, they use BERT (Devlin et al., 2019)
to retrieve candidate clarification questions and, in
the second step, they re-rank the candidates using
multiple sources of information. Among them are
the scores of retrieved documents using the clari-
fication questions. However, they do not look at
passage content as we do.

The ClariQ1 challenge organized a competition
for selecting the best clarification questions in an
open-domain conversational search. The system by
NTES ALONG (Ou and Lin, 2020) was ranked
first. They first retrieve candidate clarification ques-
tions and then re-rank them using a ROBERTA (Liu
et al., 2019) model, that is fine-tuned on the rela-
tion between a query and a clarification question.
Unlike our method, they do not exploit passage
content.

In Rao and Daumé III (2018), they select clarifi-
cation questions using the expected value of perfect
information, namely a good question is one whose
expected answer will be useful. They do not as-
sume a background corpus of documents.

3 Clarification-questions Selection

3.1 Problem definition

A conversation C is a list of utterances, C =
{c0, ..., cn} where c0 is the initial user query. Each

1http://convai.io

utterance has a speaker which is either a user or an
agent.2 Since we deal with content-grounded con-
versations, the last utterance is an agent utterance,
that points to a document.

We further assume that agent utterances are
tagged with a clarification flag where a value of 1
indicates that the utterance is a clarification ques-
tion. This flag is either given as part of the dataset
(e.g., in the open domain dataset, ClariQ) or is de-
rived automatically by using a rule-based model or
a classifier. We discuss such rules for the second
task-oriented customer-support dataset (see Sec-
tion 4.1 below).

The Clarification-questions Selection task is
defined as follows. Given a conversation context
Cj = {c0, ..., cj−1}, predict a clarification ques-
tion at the next utterance of the conversation.3

3.2 Method
The proposed run-time architecture is depicted in
Figure 2. It contains two indices and two fine-tuned
BERT models. The Documents index contains the
corpus of documents (recall that we deal with con-
versations that end with a document(s) being re-
trieved). This index supports passage retrieval. The
Clarification-questions index contains the pool of
clarification questions. The two BERT models are
used for re-ranking of candidate clarification ques-
tions as described below.

Given a conversation context Cj , we first re-
trieve top-k passages from the Document index
(See Section 3.3 below). We then use those pas-
sages, to retrieve candidate clarification questions
from the Clarification-questions index (See Sec-
tion 3.4 below). We thus have, for each passage, a
list of candidate clarification questions.

The next step re-ranks those candidate clarifica-
tion questions. Re-ranking is done by the fusion of
ranking obtain through two BERT models. Each
model re-ranks the clarification questions by their
relevance to the given conversation context and the
retrieved passages (see Section 3.5 below). The
components of the architecture are described next
in more details.

3.3 Conversation-based passage retrieval
Documents in the document index are represented
using two fields. The first field contains the actual
document content. The second field augments the

2An agent can be either a human agent or a bot.
3We always return clarification questions. We leave it for

future work to decide whether a clarification is required.
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Figure 2: Clarification-questions selection run-time architecture

document’s representation with the text of all di-
alogs that link to it in the train-set (Amitay et al.,
2005). We refer to these two fields as text and
anchor respectively. We also keep a third field
anchor and text that contain the concatena-
tion of the above two fields.

Given a conversation context Cj , Passage re-
trieval is performed in two steps. First, top-k docu-
ments are retrieved from the anchor and text
field. using a disjunctive query over all words in the
conversation Cj . Following (Ganhotra et al., 2020),
we treat the dialog query as a verbose query and
apply the Fixed-Point (FP) method (Paik and Oard,
2014) for weighting its words. Yet, compared to
“traditional” verbose queries, dialogs are further
segmented into distinct utterances. Using this ob-
servation, we implement an utterance-biased ex-
tension for enhanced word-weighting. To this end,
we first score the various utterances based on the
initial FP weights of words they contain. We then
propagate utterance scores back to their associated
words.

In the second step, candidate passages are ex-
tracted from those top-k documents using a sliding
window of fixed size with some overlap. Each can-
didate passage p is assigned an initial score based
on the coverage of terms in Cj by p. The coverage
is defined as the sum over all terms in each utter-
ance, using terms’ global idf (inverse document
frequency) and their (scaled) tf (term frequency).
The final passage score is a linear combinations of
its initial score and the score of the document it is
extracted from. Details are given in appendix A.1

3.4 Clarification-questions retrieval

The pool of clarification questions is indexed into
a Clarification index. We use the passages returned
for a given conversation context Cj , to extract an
initial set of candidate clarification questions as
follows. For each passage P , we concatenate its
content to the text of all utterances in Cj , and use
it as a query to the Clarification index.

We thus have, for each passage, a list of candi-
date clarification questions.

3.5 Clarification-questions re-ranking

The input to this step is a conversation context Cj ,
a list of candidate passages, and a list of candi-
date clarification questions for each passage. We
use two BERT (Devlin et al., 2019) models to re-
rank the candidate clarification questions. The first
model, BERT-C-cq learns an association between
conversation contexts and clarification questions.
The second model, BERT-C-P-cq learns an associ-
ation between conversation contexts, passages and
clarification questions. Training and using the two
models is described below.
Fine-tuning of the models. The first model, BERT-
C-cq, is fine-tuned through a triplet network (Hof-
fer and Ailon, 2015) that is adopted for BERT
fine-tuning (Mass et al., 2019). It uses triplets
(Cj , cq+, cq−), where cq+ is the clarification ques-
tion of conversation C at utterance cj (as given in
the conversations of the training set). Negative ex-
amples (cq−) are randomly selected from the pool
of clarification questions (not associated with C).

For fine-tuning the second model, BERT-C-P-cq,
we need to retrieve relevant passages. We use a
weak-supervision assumption that all passages in
a relevant document (i.e., a document returned for
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C), are relevant as well. A triplet for the sec-
ond BERT model is thus (Cj [SEP ]P, cq+, cq−),
where P is a passage retrieved for Cj , [SEP ] is
BERT’s separator token, cq+ and cq− are positive
and negative clarification questions selected as de-
scribed above for the first model.

Due to the BERT limitation on max number of
tokens (512), we represent a conversation context
Cj using the last m utterances whose total length is
less than 512 characters. We also take the passage
window size to be 512 characters.4

Re-ranking with the models. Each candidate clar-
ification question cqi is fed to the first model with
the conversation context as (Cj , cqi), and to the
second model as (Cj [SEP ]P, cqi), where P is
the passage that was used to retrieve cqi. Final
scores of the candidates is set by simple Comb-
SUM (Wu, 2012) fusion of their scores from the
two BERT models.

4 Experiments

4.1 Datasets

We evaluated our method on two datasets. The
first, ClariQ (Aliannejadi et al., 2020) represents
an information-seeking use-case. The second, Sup-
port contains conversations and technical docu-
ments of an internal customer support site. Statis-
tics on the two datasets are given in Table 1.

The ClariQ dataset was built by crowd sourcing
for the task of clarification-questions selection, thus
it has high quality clarification questions. Each
conversation has exactly three turns. Initial user
query, an agent clarification question and the user
response to the clarification question. The agent
utterance is always a clarification question.

The Support dataset contains noisy logs of
human-to-human conversations, that contain a lot
of chit-chat utterances such as Thanks for your help
or Are you still there? We thus applied the follow-
ing rules to identify agent clarification questions. i)
We consider only sentences in agent utterances that
contain a question mark. ii) We look for question
words in the text (e.g., what, how, where, did, etc.)
and consider only the text between such a word and
the question mark. iii) If no question words were
found, we run the sentences with the question mark
through Allennlp’s constituency parser (Joshi et al.,
2018), and keep sentences with a Penn-Treebank

4note that BERT uses tokens while for the passages and
representation of conversation we use characters

clause type of SQ or SBARQ5.
The above rules can be used to detect question-

type sentences. However, we are interested in clari-
fication questions that are related to the background
collection of documents and not in chit-chat ques-
tions (such as e.g., how are you today?). To filter
out such chit-chat question types, we apply a 4th
rule as follows. iv) Recall that each conversation
ends with a document answer. We send the detected
question and its answer (the next user’s utterance),
as a passage retrieval query (see Section 3.1 above)
to the Documents index and keep only those ques-
tions that returned in their top-3 results, a passage
from the document of the conversation.

Table 1: Datasets statistics

ClariQ Support
#docs 2.7M 520
#conversations (train/dev/test) 187/50/60 500/39/43
#total clarifications 3940 704
#avg/max turns per C 3/3 8.2/80.5
#avg/max clarifications per C 14/18 1.27/5

4.2 Setup of the experiments

We use Apache Lucene6 for indexing the docu-
ments. We use English language analyzer and de-
fault BM25 similarity (Robertson and Zaragoza,
2009).

For the customer support dataset (Support) we
used the anchor and text field for initial docu-
ment retrieval, since most documents in the dataset
do have training conversations.

The open-domain dataset (ClariQ) contains a
large number of documents (2.7M), but only a
small portion of them do have training conversa-
tions. Using the anchor and text field for re-
trieval will prefer that small subset of documents
(since only they have anchor text). Thus for this
dataset, we used the text field for retrieval.

For passage retrieval, we used a sliding window
of 512 characters on retrieved documents’ content.
We used common values for the hyper parameters,
with λ = 0.5 to combine document and passage
scores, and µ = 2000 for the dirichlet smoothing
of the documents LM used in the FixedPoint re-
ranking. Details of the passage retrieval are given
in Apendix A.1.

The full conversations were used to retrieve pas-
sages. For feeding to the BERT models, we con-
catenated the last m utterances whose total length

5https://gist.github.com/nlothian/9240750
6https://lucene.apache.org/
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was less than 512 characters (we take full utter-
ances that fit the above size. We do not cut utter-
ances).

We used the pytorch huggingface implemen-
tation of BERT7. For the two BERT models we
used bert-base-uncased (12-layers, 768-hidden,
12-heads, 110M parameters). Fine-tuning was
done with the following default hyper parameters.
max seq len of 256 tokens8 for the BERT-C-cq
model and 384 for the BERT-C-P-cq model, learn-
ing rate of 2e-5 and 3 training epochs.

We retrieved at most 1000 initial candidate clar-
ifications for each passage. All experiments were
run on a 32GB V100 GPUs. The re-ranking times
of 1000 clarification questions for each conversa-
tion took about 1− 2 sec. For evaluation metrics
we followed the ClariQ leaderboard 9 and used the
Recall@30 as the main metrics.

4.3 Results

Table 2 reports the results on the dev sets of the
two datasets.10 On both datasets, each of the BERT
re-rankers showed a significant improvement over
the initial retrieval from the Clarification-questions
index (denoted by IR-Base). For example on Sup-
port, BERT-C-cq achieved R@30=0.538 com-
pared to R@30=0.294 of IR-Base (an improve-
ment of 82%).

We can further see that the two BERT models
(BERT-C-cq and BERT-C-P-cq), yield quite simi-
lar results on both datasets, but, when fusing their
scores (BERT-fusion), there is another improve-
ment of about 2.5% over each of the rankers sep-
arately. For example on ClariQ, BERT-fusion
achieved R@30=0.791, compared to R@30=0.77
of BERT-C-cq.

This improvement can be attributed to comple-
mentary matching that each of the two BERT mod-
els learns. The second model learns latent features
that are revealed only through the retrieved pas-
sages, while the first model works better for cases
where the retrieved passages are noisy. For exam-
ple for query 133 in Clariq, all men are created
equal (see Figure 1 above), BERT-C-P-cq could
find nine correct clarification questions out of 14

7https://bit.ly/2Me0Gk1
8note that here we use tokens while for the passages and

representation of conversation we use characters
9https://convai.io

10We compare our methods on the dev sets since in Clariq
we had access only to the dev set. We note that in both datasets,
the dev sets wer not used during the training, thus they can be
regarded as an held-out test set

in its top-30 (including those two in the Figure),
while BERT-C-cq found only three of them.

Table 3 shows the official Clariq leaderboard re-
sult on the test set. We can see that our method
BERT-fusion11 was ranked forth but was the sec-
ond best as a team. We note that the top performing
system (NTES ALONG) gave preferences to clar-
ification questions from the test data, capitalizing
the specific Clariq properties that test topics came
from different domain than the train topics. This is
not a valid assumption in general. In contrast, we
treat all clarification questions equally in the given
pool of clarification questions.

Table 2: Retrieval quality on the dev set of the two
datasets

ClariQ R@5 R@10 R@20 R@30
IR-Base .327 .575 .669 .706
BERT-C-cq .352 .631 .743 .770
BERT-C-P-cq .344 .615 .750 .774
BERT-fusion .353 .639 .758 .791
Support
IR-Base .102 .153 .269 .294
BERT-C-cq .358 .410 .487 .538
BERT-C-P-cq .217 .294 .487 .538
BERT-fusion .294 .410 .500 .551

Table 3: Retrieval quality on the test set of the ClariQ
dataset

ClariQ R@5 R@10 R@20 R@30
NTES ALONG .340 .632 .833 .874
NTES ALONG .341 .635 .831 .872
NTES ALONG .338 .624 .817 .868
BERT-fusion .338 .631 .807 .857
TAL-ML .339 .625 .817 .856
Karl .335 .623 .799 .849
Soda .327 .606 .801 .843

5 Conclusions

We presented a method for clarification-questions
selection in conversational-search scenarios that
end with documents as answers.

We showed that using passages, combined with
deep-learning models, improves the quality of
the selected clarification questions. We evaluated
our method on two diversified dataset. On both
datasets, the usage of passages for clarification-
questions re-ranking achieved improvement of
12%− 87% over base IR retrieval.

11Our run was labeled CogIR in the official leaderboard
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A Appendix

A.1 Passage Retrieval details
We use Apache Lucene for indexing the documents,
configured with English language analyzer and de-
fault BM25 similarity (Robertson and Zaragoza,
2009).

After retrieving top-k documents, candidate pas-
sages are extracted from those documents using
a sliding window of fixed size with some overlap.
Each retrieved passage p is assigned an initial score
based on the coverage of terms in Cj by p. The
coverage is defined as the sum over all terms in
each utterance, using terms’ global idf (inverse
document frequency) and their (scaled) tf (term
frequency). Let c be a conversation with n utter-
ances c = u1, ...un. Passage score is computed as a
linear combination of its initial score scoreinit(p, c)

and the score of its enclosing document. Both
scores are normalized.

score(p, c) = λ ∗ score(d) + (1− λ) ∗ scoreinit(p, c)
(1)
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We used lambda=0.5, i.e., fixed equal weights for
the document and the passage scores.

The initial passage score scoreinit(p, c) is com-
puted as a weighted sum over its utterances scores
scoreut(p, ui). Utterance scores are discounted such
that later utterances have greater effect on the pas-
sage score.

scoreinit(p, c) =
n∑

i=1

weightut(i) ∗ scoreut(p, ui)

weightut(i) = discount factor(n−i)

discount factor = 0.85
(2)

Utterance score scoreut(p, u) reflects utterance’s
terms coverage by the passage, considering terms’
global idf (inverse document frequency) and their
(scaled) tf (term frequency). Multiple coverage
scorers are applied, which differ by their term
frequency scaling schemes. Finally, the utter-
ance score is a product of these coverage scores
scorecov(p, u).

scoreut(p, u) = Πm
j=1 scorecovj (p, u)

m = 2 (two scaling schemes are employed)

scorecovj (p, u) =
∑

t∈tpu

idf(t) ∗ scalej(t, p)

tpu = tu
⋂

tp (terms appearing in both)

tp, tu = (passage terms, utterance terms)
(3)

Different scaling schemes provide different in-
terpretations of terms’ importance. We combine
two tf scaling methods, one that scales by a BM25
term score, and another that scales by the minimum
of tf(t) in the utterance and passage.

scale1 = BM25(t, p)

scale2 = min(tf(t, p), tf(t, c))
(4)

The final passage score is a linear combinations
of its initial score and the score of the document
it is extracted from. Candidate passage ranking
exploits a cascade of scorers.
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