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Abstract

We present a multilingual bag-of-entities model
that effectively boosts the performance of zero-
shot cross-lingual text classification by extend-
ing a multilingual pre-trained language model
(e.g., M-BERT). It leverages the multilingual
nature of Wikidata: entities in multiple lan-
guages representing the same concept are de-
fined with a unique identifier. This enables
entities described in multiple languages to be
represented using shared embeddings. A model
trained on entity features in a resource-rich
language can thus be directly applied to other
languages. Our experimental results on cross-
lingual topic classification (using the MLDoc
and TED-CLDC datasets) and entity typing (us-
ing the SHINRA2020-ML dataset) show that
the proposed model consistently outperforms
state-of-the-art models.

1 Introduction

In the zero-shot approach to cross-lingual transfer
learning, models are trained on annotated data in a
resource-rich language (the source language) and
then applied to another language (the target lan-
guage) without any training. Substantial progress
in cross-lingual transfer learning has been made
using multilingual pre-trained language models
(PLMs), such as multilingual BERT (M-BERT),
jointly trained on massive corpora in multiple lan-
guages (Devlin et al., 2019; Conneau and Lample,
2019; Conneau et al., 2020a). However, recent em-
pirical studies have found that cross-lingual trans-
fer learning with PLMs does not work well for
languages with insufficient pre-training data or be-
tween distant languages (Conneau et al., 2020b;
Lauscher et al., 2020), which suggests the difficulty
of cross-lingual transfer based solely on textual in-
formation.

We propose a multilingual bag-of-entities (M-
BoE) model that boosts the performance of zero-
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shot cross-lingual text classification by automati-
cally generating links to a language-agnostic knowl-
edge base (KB) and injecting features of these en-
tities into PLMs. KB entities, unlike words, can
capture unambiguous semantics in documents and
be effectively used to address text classification
tasks (Gabrilovich and Markovitch, 2006; Chang
et al., 2008; Negi and Rosner, 2013; Song et al.,
2016; Yamada and Shindo, 2019). In particular, our
model extends PLMs by using Wikidata entities as
input features (see Figure 1). A key idea behind
our model is to leverage the multilingual nature of
Wikidata: entities in multiple languages represent-
ing the same concept (e.g., Apple Inc.,애플,アッ
プル) are assigned a unique identifier across lan-
guages (e.g., Q312). Given a document to be classi-
fied, our model extracts Wikipedia entities from the
document, converts them into the corresponding
Wikidata entities, and computes the entity-based
document representation as the weighted average of
the embeddings of the extracted entities. Inspired
by previous work (Yamada and Shindo, 2019; Pe-
ters et al., 2019), we compute the weights using
an attention mechanism that selects the entities rel-
evant to the given document. We then compute
the sum of the entity-based document representa-
tion and the text-based document representation
computed using the PLM and feed it into a linear
classifier. Since the entity vocabulary and entity
embedding are shared across languages, a model
trained on entity features in the source language can
be directly transferred to multiple target languages.

We evaluate the performance of the M-BoE
model on three cross-lingual text classification
tasks: topic classification on the MLDoc (Schwenk
and Li, 2018) and TED-CLDC (Hermann and
Blunsom, 2014) datasets and entity typing on the
SHINRA2020-ML (Sekine et al., 2020) dataset.
We train the model using training data in the source
language (English) and then evaluate it on the tar-
get languages. It outperforms our base PLMs (i.e.,
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Figure 1: Architecture of M-BoE. Given a document, the model extracts Wikipedia entities, converts them into
corresponding Wikidata entities, and calculates the entity-based document representation by using the weighted
average of the embeddings of the entities selected by an attention mechanism. The sum of the entity-based
representation and the representation computed using a multilingual PLM is used to perform linear classification for
the task.

M-BERT (Devlin et al., 2019) and the XLM-R
model (Conneau et al., 2020a)) for all target lan-
guages on all three tasks, thereby demonstrating
the effectiveness of the entity-based representation.
Furthermore, our model performs better than state-
of-the-art models on the MLDoc dataset.

Our contributions are as follows:

• We present a method for boosting the per-
formance of cross-lingual text classification
by extending multilingual PLMs to leverage
the multilingual nature of Wikidata entities.
Our method successfully improves the per-
formance on multiple target languages simul-
taneously without expensive pre-training or
additional text data in the target languages.

• Inspired by previous work (Yamada and
Shindo, 2019; Peters et al., 2019), we in-
troduce an attention mechanism that enables
entity-based representations to be effectively
transferred from the source language to the tar-
get languages. The mechanism selects entities
that are relevant to address the task.

• We present experimental results for three
cross-lingual text classification tasks demon-
strating that our method outperforms our
base PLMs (i.e., M-BERT and XLM-R) for
all languages on the three tasks and outper-
forms state-of-the-art methods on the MLDoc

dataset.

2 Related Work

Cross-lingual PLMs Zero-shot cross-lingual
transfer learning approaches have relied on par-
allel corpora (Xu and Wan, 2017) or multilingual
word representation (Duong et al., 2017). Con-
siderable progress has been made on PLMs for
various cross-lingual transfer tasks. The representa-
tive models are M-BERT (Devlin et al., 2019) and
XLM-R (Conneau et al., 2020a), which are multi-
lingual extensions of BERT (Devlin et al., 2019)
and RoBERTa (Liu et al., 2019), respectively. Both
models are pre-trained on massive corpora of ap-
proximately 100 languages. LASER (Artetxe and
Schwenk, 2019) is a PLM trained on a parallel
corpus of 93 languages by using a sequence-to-
sequence architecture.

Improving cross-lingual transfer learning Sev-
eral studies have attempted to improve cross-
lingual transfer learning by using additional text
data in the target language. Lai et al. (2019) pro-
posed using an unlabeled corpus in the target lan-
guage to bridge the gap between the language
and the domain. Dong et al. (2020) and Keung
et al. (2019) incorporated adversarial training us-
ing unlabeled target language examples. Dong and
de Melo (2019) and Eisenschlos et al. (2019) pre-
sented methods for data augmentation in which
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pseudo-labels are assigned to an unlabeled corpus
in the target language. Conneau and Lample (2019)
additionally pre-trained BERT-based models using
a parallel corpus. However, these methods require
extra training on additional text data for each tar-
get language, and their resulting models work well
only on a single target language. Unlike these meth-
ods, our method does not require extra training and
improves performance simultaneously for all target
languages with only a single PLM. Furthermore,
our method can be easily applied to these models
since it is a simple extension of a PLM and does
not modify its internal architecture.

Enhancing monolingual PLMs using entities
Several methods have been proposed for improv-
ing the performance of PLMs through pre-training
using entities. ERNIE (Zhang et al., 2019) and
KnowBert (Peters et al., 2019) enrich PLMs by
using pre-trained entity embeddings. LUKE (Ya-
mada et al., 2020b) and EaE (Févry et al., 2020)
train entity embeddings from scratch during pre-
training. However, all of these methods are aimed
at improving the performance of monolingual tasks
and require pre-training with a large corpus, which
is computationally expensive. Our method dynami-
cally injects entity information into PLMs during
fine-tuning without expensive pre-training.

Several studies have attempted to incorporate
entity information into PLMs after pre-training to
enhance the performance of monolingual tasks. Os-
tendorff et al. (2019) concatenated contextualized
representations with knowledge graph embeddings
to represent author entities and used them as fea-
tures for the book classification task. E-BERT
(Poerner et al., 2020) inserts KB entities next to
the entity names in the input sequence to improve
BERT’s performance for entity-centric tasks. Ver-
linden et al. (2021) introduced a mechanism for
combining span representations and KB entity rep-
resentations within a BiLSTM-based end-to-end in-
formation extraction model. Unlike these methods,
our method aims to improve the cross-lingual text
classification by combining PLMs with language-
agnostic entity embeddings.

Text classification models using entities Sev-
eral methods have been commonly used to address
text classification using entities. Explicit seman-
tic analysis (ESA) is a representative example; it
represents a document as a bag of entities, which
is a sparse vector in which each dimension is a

score reflecting the relevance of the text to each
entity (Gabrilovich and Markovitch, 2006; Chang
et al., 2008; Negi and Rosner, 2013). More re-
cently, Song et al. (2016) proposed cross-lingual
explicit semantic analysis (CLESA), an extension
of ESA, to address cross-lingual text classification.
CLESA computes sparse vectors from the intersec-
tion of Wikipedia entities in the source and target
languages using Wikipedia language links. Unlike
CLESA’s approach, we address cross-lingual text
classification by extending state-of-the-art PLMs
with a language-agnostic entity-based document
representation based on Wikidata.

The most relevant to our proposed approach is
the neural attentive bag-of-entities (NABoE) model
proposed by Yamada and Shindo (2019). It ad-
dresses monolingual text classification using enti-
ties as inputs and uses an attention mechanism to
detect relevant entities in the input document. Our
model can be regarded as an extension of NABoE
by (1) representing documents using a shared entity
embedding across languages and (2) combining an
entity-based representation and attention mecha-
nism with state-of-the-art PLMs.

3 Proposed Method

Figure 1 shows the architecture of our model. The
model extracts Wikipedia entities, converts them
into Wikidata entities, and computes the entity-
based document representation using an attention
mechanism. The sum of the entity-based document
representation and the text-based document repre-
sentation computed using the PLM is fed into a
linear classifier to perform classification tasks.

3.1 Entity detection

To detect entities in the input document, we use two
dictionaries that can be easily constructed from the
KB: (1) a mention-entity dictionary, which binds an
entity name (e.g., “Apple”) to possible referent KB
entities (e.g., Apple Inc. and Apple (food)) by using
the internal anchor links in Wikipedia (Guo et al.,
2013), and (2) an inter-language entity dictionary,
which links multilingual Wikipedia entities (e.g.,
Tokyo, 도쿄, 東京) to a corresponding identifier
(e.g., Q7473516) of Wikidata.

All words and phrases are extracted from the
given document in accordance with the mention-
entity dictionary1, and all possible referent entities

1Following past work (Yamada and Shindo, 2019), name
overlap bounds are resolved by detecting only the earliest and
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Dataset Language Train Dev. Test
MLDoc 8 1,000 1,000 4,000

TED-CLDC 12 936 105 51–106
SHINRA 30 417,387 21,967 30k–920k

Table 1: Number of examples in MLDoc, TED-CLDC, and SHINRA2020-ML datasets.

are detected if they are included as entity names in
the dictionary. Note that all possible referent enti-
ties are detected for each entity name rather than
a single resolved entity. For example, we detect
both Apple Inc. and Apple (food) for entity name
“Apple”. Next, the detected entities are converted
into Wikidata entities if they are included in the
inter-language entity dictionary.

3.2 Model
Each Wikidata entity is assigned a representation
vei ∈ Rd. Since our method extracts all possible
referent entities rather than a single resolved entity,
it often extracts entities that are not related to the
document. Therefore, we introduce an attention
mechanism inspired by previous work (Yamada
and Shindo, 2019; Peters et al., 2019) to prioritize
entities related to the document. Given a document
with K detected entities, our method computes the
entity-based document representation z ∈ Rd as
the weighted average of the entity embeddings:

z =
K∑

i=1

aeivei , (1)

where aei ∈ R is the attention weight correspond-
ing to entity ei and calculated using

a = softmax(W⊤
a ϕ), (2)

ϕ(ei, d) =

[
cosine(h,vei)

pei

]
(3)

where a = [ae1 , ae2 , · · · , aeK ] are the attention
weights; W a ∈ R2 is a weight vector; ϕ =
[ϕ(e1, d), ϕ(e2, d), · · · , ϕ(eK , d)] ∈ R2×K repre-
sents the degree to which each entity ei is related to
document d; and ϕ(ei, d) is calculated by concate-
nating commonness2 pei with the cosine similarity
between the document representation computed us-
ing the PLM, h ∈ Rd (e.g., the final hidden state
of the [CLS] token), and entity embedding, vei .

The sum of this entity-based document represen-
tation z and text-based document representation h

longest ones.
2Commonness (Mihalcea and Csomai, 2007) is the proba-

bility that an entity name refers to an entity in Wikipedia.

is fed into a linear classifier3 to predict the proba-
bility of label c:

p(c | h, z) = Classifier(h+ z). (4)

4 Experimental Setup

In this section, we describe the experimental setup
we used for the three cross-lingual text classifica-
tion tasks.

4.1 Entity preprocessing

We constructed a mention-entity dictionary from
the January 2019 version of Wikipedia dump4 and
an inter-language entity dictionary from the March
2020 version in the Wikidata dump,5 which con-
tains 45,412,720 Wikidata entities (e.g., Q312). We
computed the commonness values from the same
versions of Wikipedia dumps in the correspond-
ing language, following the work of Yamada and
Shindo (2019).

We initialized Wikidata entity embeddings using
pre-trained English entity embeddings trained on
the KB. To train these embeddings, we used the
open-source Wikipedia2Vec tool (Yamada et al.,
2020a). We used the January 2019 English
Wikipedia dump mentioned above and set the di-
mension to 768 and the other parameters to the
default values. We initialized an entity embedding
using a random vector if the entity did not exist in
the Wikipedia2Vec embeddings. Note that we used
only English Wikipedia to train the entity embed-
dings.

4.2 Data

We evaluated our model using three datasets: ML-
Doc (Schwenk and Li, 2018), TED-CLDC (Her-
mann and Blunsom, 2014), and SHINRA2020-ML
(Sekine et al., 2020).

MLDoc is a dataset for multi-class text classi-
fication, i.e., classifying news articles into four

3In preliminary experiments, we also tested concatenation,
but observed worse overall results than with summation.

4https://dumps.wikimedia.org/
5https://dumps.wikimedia.org/

wikidatawiki/entities/
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Model en fr de ja zh it ru es target avg.
MultiCCA (Schwenk and Li, 2018) 92.2 72.4 81.2 67.6 74.7 69.4 60.8 72.5 71.2
LASER (Artetxe and Schwenk, 2019) 89.9 78.0 84.8 60.3 71.9 69.4 67.8 77.3 72.8
M-BERT 94.0 79.4 75.1 69.3 68.0 67.1 65.3 75.2 71.4 ± 1.4

+M-BoE 94.1 84.0 76.9 71.1 72.2 70.0 68.9 75.5 74.1 ± 0.7
XLM-R 94.4 84.9 86.7 78.5 85.2 73.4 71.3 81.5 80.2 ± 0.5

+M-BoE 94.6 86.4 88.9 80.0 87.4 75.6 73.7 83.2 82.2 ± 0.6

Table 2: Classification accuracy for topic classification on MLDoc dataset; “target avg.” indicates average scores for
target languages.

Model en fr de it ru es ar tr nl pt pl ro target avg.
M-BERT 51.6 47.7 43.9 50.6 47.9 53.1 41.3 44.2 49.4 46.2 45.1 45.4 47.1 ± 1.4

+M-BoE 52.9 49.5 46.2 53.3 49.2 54.7 44.7 49.1 51.0 47.6 47.7 48.2 49.6 ± 1.1
XLM-R 51.5 49.5 49.7 48.7 48.3 51.2 45.6 51.3 48.8 46.3 48.3 48.4 49.1 ± 1.8

+M-BoE 51.7 50.0 53.8 51.3 52.3 52.9 50.5 53.1 52.0 49.3 50.5 49.6 51.8 ± 0.9

Table 3: F1 score for topic classification on TED-CLDC dataset.

categories in eight languages. We used the en-
glish.train.1000 and english.dev datasets, which
contain 1000 documents for training and validation
data. As in the previous work (Schwenk and Li,
2018; Keung et al., 2020), we used accuracy as the
metric.

TED-CLDC is a multi-label classification
dataset covering 15 topics in 12 languages based
on the transcripts of TED talks. This topic classifi-
cation dataset is exactly like the MLDoc dataset
except that the classification task is more difficult
because of its colloquial nature and because the
amount of training data is small. Following the
previous work (Hermann and Blunsom, 2014), we
used micro-average F1 as the metric.

SHINRA2020-ML is an entity typing dataset
that assigns fine-grained entity labels (e.g., Per-
son, Country, Government) to a Wikipedia page.
We used this dataset for multi-label classification
tasks; we used all datasets in 30 languages except
English for the test data. Note that our model does
not use information in the test data during train-
ing because we only use the English Wikipedia to
train our entity embeddings. Following the original
work (Sekine et al., 2020), we used micro-average
F1 as the metric.

We created a validation set by randomly select-
ing 5% of the training data in TED-CLDC and
5% of the training data in SHINRA2020-ML. In
all experiments, we trained our model on English
training data, optimized hyper-parameters using
English development data, and evaluated it on the
remaining languages. A summary of the datasets is

shown in Table 1.

4.3 Models

We used M-BERT (Devlin et al., 2019) and XLM-
Rbase (Conneau et al., 2020a) as the baseline multi-
lingual PLMs to evaluate the proposed method. We
added a single fully-connected layer on top of the
PLMs and used the final hidden state h of the first
[CLS] token as the text-based document representa-
tion. For the MLDoc dataset, we trained the model
by minimizing the cross-entropy loss with softmax
activation. For the TED-CLDC and SHINRA2020-
ML datasets, we trained the model by minimizing
the binary cross-entropy loss with sigmoid activa-
tion. For these two tasks, we regarded each label as
positive if its corresponding predicted probability
was greater than 0.5 during inference.

For topic classification using MLDoc, we com-
pared the performance of the proposed model with
those of two state-of-the-art cross-lingual models:
LASER (Artetxe and Schwenk, 2019) (see Section
2), and MultiCCA (Schwenk and Li, 2018), which
is based on a convolutional neural network with
multilingual word embeddings. To ensure a fair
comparison, we did not include models that use
additional unlabeled text data or a parallel corpus
to train models for each target language.

For entity typing, we tested a model that uses or-
acle entity annotations (i.e., hyperlinks) contained
in the Wikipedia page to be classified instead of
entities detected using the entity detection method
described in Section 3.1. Note that this model also
uses attention mechanisms and pre-trained entity
embeddings.
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fr de ja zh it ru es ar tr nl pt pl ro hi no
M-BERT 68.5 84.2 81.3 80.7 85.2 81.4 85.6 57.4 50.7 55.6 80.4 77.7 76.9 81.8 83.6

+M-BoE 69.3 85.1 82.5 82.2 86.4 83.2 86.6 61.9 54.0 59.0 81.7 79.4 80.5 82.9 84.8
+Oracle M-BOE 75.4 85.2 81.9 81.8 86.5 83.0 86.5 61.9 53.7 61.7 81.8 79.7 79.9 83.0 84.8

XLM-R 73.0 82.6 77.4 75.1 84.2 81.0 85.3 58.9 69.1 63.7 79.8 80.0 76.9 83.3 82.4
+M-BoE 77.4 84.5 79.0 77.0 85.6 83.2 85.8 63.3 72.3 65.5 80.7 81.8 77.8 84.8 84.0
+Oracle M-BOE 76.5 84.8 79.6 77.2 85.5 83.4 86.2 63.0 71.8 67.6 80.4 81.5 78.8 84.8 83.2

th ca da fa id sv vi bg cs fi he hu ko uk target avg.
M-BERT 84.0 81.5 80.1 80.2 72.4 79.4 79.3 74.0 74.6 75.7 74.0 77.1 81.3 78.0 76.6 ± 0.7

+M-BoE 85.1 83.2 81.4 82.1 75.4 82.4 81.2 76.1 76.8 77.6 78.1 79.2 82.9 80.0 78.7 ± 0.5
+Oracle M-BOE 85.3 83.2 82.3 82.4 75.5 82.0 81.6 76.6 77.4 77.4 77.8 78.7 83.3 79.9 79.0 ± 0.5

XLM-R 81.4 79.0 81.0 82.4 75.5 75.5 80.7 76.0 77.9 74.7 70.5 73.1 82.6 74.3 77.1 ± 1.2
+M-BoE 82.1 80.9 83.3 84.1 78.2 78.7 81.9 79.1 79.6 76.9 71.9 75.5 84.0 77.0 79.2 ± 0.9
+Oracle M-BOE 81.8 81.2 82.9 83.9 78.3 78.2 82.5 79.1 79.9 77.1 71.8 75.8 83.92 76.9 79.2 ± 0.9

Table 4: F1 score for entity typing on SHINRA2020-ML dataset.

4.4 Detailed settings

We tuned the hyper-parameters on the basis of the
English validation set. The details on the hyperpa-
rameters of the models can be found in Appendix A.
We trained the models using the AdamW optimizer
with a gradient clipping of 1.0.

In all experiments, we trained the models until
the performance on the English validation set con-
verged. We conducted all experiments ten times
with different random seeds, and recorded the aver-
age scores and 95% confidence intervals.

5 Results

Tables 2, 3, and 4 show the results of our experi-
ments. Overall, the M-BoE models outperformed
their baselines (i.e., M-BERT and XLM-R) for
all target languages on all three datasets. Further-
more, there was a significant difference in the mean
scores for the target languages for those models in
a paired t-test (p < 0.05). In particular, the perfor-
mance of our model clearly exceeded that of the
M-BERT baseline by 2.7% in accuracy, 2.5% in
F1, and 2.1% in F1, on the MLDoc, TED-CLDC,
and SHINRA2020-ML datasets, respectively.

For entity typing, using the entities detected with
our simple dictionary-based approach achieved
comparable performance to using gold entity
annotations (Table 4: Oracle M-BoE) on the
SHINRA2020-ML dataset, which clearly demon-
strates the effectiveness of our attention-based en-
tity detection method.

6 Analysis

We conducted a series of experiments to analyze the
performance of our model on the MLDoc dataset
(Table 5). We first analyzed the impact on the per-
formance of each component in the M-BoE model,

Setting
M-BoE M-BoE

(M-BERT) (XLM-R)
target avg. target avg.

Full model 74.1 82.2
Attention mechanism:

without attention 70.5 81.1
commonness only 72.4 81.8
cosine only 72.8 81.8

Entity embeddings:
random vectors 73.0 80.9
KG embedding 73.2 81.4

Entity detection method:
entity linking 71.7 80.5
entity linking + att 73.0 81.9

Baseline 71.4 80.2

Table 5: Results of analysis of our model on MLDoc.

including the attention mechanism, pre-trained en-
tity embeddings, and entity detection methods. We
then evaluated the sensitivity of the model’s per-
formance to differences in the number of detected
entities for each language. Finally, we conducted
qualitative analysis by visualizing important enti-
ties.

6.1 Attention mechanism

We examined the effect of the attention mechanism
on performance. When the attention mechanism
was removed (Table 5: Attention mechanism), the
performance was substantially lower than with the
proposed model. This indicates that the attention
mechanism selects the entities that are effective in
solving the classification task. Next, we examined
the effectiveness of the two features (i.e., cosine
and commonness) in the attention mechanism by
excluding them one at a time from the M-BoE
model. Table 5 shows that there was a slight drop
in performance when either of them was not used,
indicating that both features are effective.
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Model en (train) fr de ja zh it ru es avg.
External entity linking 20.0 19.2 14.6 8.15 5.2 11.7 12.7 13.8 13.2
Dictionary-based method (ours) 105.8 97.8 78.9 47.9 34.5 53.2 64.6 72.3 64.2

Table 6: Comparison of the number of detected entities on MLDoc dataset. Numbers indicate average number of
entities detected for each example.

(a) M-BoE (M-BERT) (b) M-BoE (XLM-R)

Figure 2: Classification accuracy for each entity detection rate using MLDoc dataset.

6.2 Entity embeddings

To investigate the effect of entity embedding ini-
tialization, we replaced Wikipedia2Vec with (1)
random vectors and (2) knowledge graph (KG)
embeddings (Table 5: Entity embeddings). For
KG embedding, we used ComplEx (Trouillon
et al., 2016), a state-of-the-art KG embedding
method. We trained the ComplEx embeddings
on the wikidata5m dataset (Wang et al., 2021)
using the kge tool.6 We set the dimension to
768 and used the default hyper-parameters for
everything else in the wikidata5m-complex
configuration in the tool. The results show
that using Wikipedia2Vec was the most effective
although using KG embeddings was better than
using random vectors.

6.3 Entity detection method

To verify the effectiveness of our dictionary-based
entity detection method, we simply replaced it with
a commercial multilingual entity linking system,
Google Cloud Natural Language API7 (Table 5:
Entity detection method). All entities were de-
tected with the API and converted into Wikidata
entities, as explained in Section 3.1. Note that
unlike our dictionary-based method, the entity link-
ing system detects a single disambiguated entity

6https://github.com/uma-pi1/kge
7https://cloud.google.com/

natural-language

for each entity name.

The results show that our entity detection method
outperformed the API. We attribute this to the num-
ber of entities detected with our dictionary-based
detection method. As shown in Table 6, the number
of entities detected with the entity linking system
was substantially lower than with our entity detec-
tion method because, unlike our method, the sys-
tem detects only disambiguated entities and does
not detect non-named entities. Therefore, we at-
tribute the better performance of our method com-
pared with that of the API to (1) non-named entities
also being important features and (2) the inability
to use the correct entity if the disambiguation error
is caused by entity linking.

Furthermore, as described in Section 5, our
entity detection method performed competitively
with the human-labeled entity annotations on the
SHINRA2020-ML dataset.

Next, we examined the performance impact of
the number of detected Wikidata entities. For the
full model and no attention model, we observed a
change in performance when some percentage of
the entities were randomly removed during train-
ing and inference. Figure 2 shows that, the higher
the entity detection rate, the better the performance
of the full model. When the attention mechanism
was removed, however, there was no consistent
trend. The performance remained the same or even
dropped. These results suggest that the more enti-
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(a) MLDoc (b) TED-CLDC

Figure 3: Pearson correlation coefficient and scatter plot of average number of detected entities and rate of
improvement in performance (Rate) for each target language.
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Figure 4: Example results for MLDoc. “Top three entities” indicates the three most influential entities selected by
attention mechanism.

ties detected, the better the performance, and that
the attention mechanism is important for this con-
sistent improvement.

6.4 Performance sensitivity to language
differences

In our method, the number of detected Wikidata
entities during inference differs depending on the
target languages. We investigated how this affects
performance. For each of the datasets, we com-
puted the Pearson’s correlation coefficient between
the number of detected entities and the rate of im-
provement over the baseline performance for each
language (Figure 3). As a result, there was no clear
trend in the correlation coefficients, which ranged
from -0.3 to 0.2. These results indicate that the per-
formance was consistently improved for languages
with a small number of detected entities. We at-
tribute this to the ability of our method to detect
a sufficient number of entities, even for languages

with a relatively small number of entity detections.

6.5 Qualitative analysis

To further investigate how the M-BoE model im-
proved performance, we took the MLDoc docu-
ments that our model classified correctly while M-
BERT did not and examined the influential entities
that were assigned the largest attention weights by
the M-BoE model. Figure 4 shows three examples
in which the M-BoE model effectively improved
performance. Overall, it identified the entities that
were highly relevant to the document. For example,
the first document is a Japanese document about
the Taiwanese stock market, and the M-BoE model
correctly identified the relevant entities, including
Stock certificate, Share price, and Taiwan Capital-
ization Weighted Stock Index.
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7 Conclusions

Our proposed M-BoE model is a simple extension
of multilingual PLMs: language-independent Wiki-
data entities are used as input features for zero-
shot cross-lingual text classification. Since the
Wikidata entity embeddings are shared across lan-
guages, and the entities associated with a document
are further selected by the attention mechanism, a
model trained on these features in one language
can efficiently be applied to multiple target lan-
guages. We achieved state-of-the-art results on
three cross-lingual text classification tasks, which
clearly shows the effectiveness of our method.

As future work, we plan to evaluate our model
on low-resource languages and a variety of natural
language processing tasks, such as cross-lingual
document retrieval. We would also like to inves-
tigate whether our method can be combined with
other methods, such as using additional textual data
in the target language.
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Appendix for “A Multilingual Bag-of-Entities Model for
Zero-Shot Cross-Lingual Text Classification”

A Hyper-parameter Details

We conduct a grid-search for batch size ∈ {16, 32, 64, 128} and learning rate ∈ {1e−05, 2e−05, 5e−05}.
The chosen hyperparameters for each model are shown in Table 7.

Model MLDoc TED-CLDC SHINRA2020-ML
M-BERT 32 / 2e-05 16 / 2e-05 128 / 5e-05
XLM-R 32 / 2e-05 16 / 5e-05 64 / 2e-05
M-BoE (M-BERT) 32 / 2e-05 16 / 2e-05 128 / 5e-05
M-BoE (XLM-R) 32 / 2e-05 16 / 5e-05 64 / 2e-05

Table 7: Hyper-parameters used for experiments. In each cell, the left value indicates batch size, and the right value
indicates learning rate.
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