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Abstract

Controllable story generation is a challenging
task in the field of NLP, which has attracted in-
creasing research interest in recent years. How-
ever, most existing works generate a whole
story conditioned on the appointed keywords or
emotions, ignoring the psychological changes
of the protagonist*. Inspired by psychology
theories, we introduce global psychological
state chains, which include the needs and emo-
tions of the protagonists, to help a story gen-
eration system create more controllable and
well-planned stories. In this paper, we propose
a Psychology-gulded Controllable Story Gen-
eration System (PICS) to generate stories that
adhere to the given leading context and desired
psychological state chains for the protagonist.
Specifically, psychological state trackers are
employed to memorize the protagonist’s local
psychological states to capture their inner tem-
poral relationships. In addition, psychological
state planners are adopted to gain the protago-
nist’s global psychological states for story plan-
ning. Eventually, a psychology controller is de-
signed to integrate the local and global psycho-
logical states into the story context representa-
tion for composing psychology-guided stories.
Automatic and manual evaluations demonstrate
that PICS outperforms baselines, and each part
of P1CS shows effectiveness for writing stories
with more consistent psychological changes.

1 Introduction

Controllable Story Generation (CSG) is an impor-
tant task in natural language processing (NLP) (Por-
teous and Cavazza, 2009; Peng et al., 2018; Alab-
dulkarim et al., 2021). It has also become one of
the test methods for progress in artificial intelli-
gence (Al). Most existing state-of-the-art works
(Kong et al., 2021; Rashkin et al., 2020; Paul and

Corresponding author.
#In this work, we define the protagonist as the most fre-
quently occurring character in a story (Morrow, 1985).

Psychological State Chains Psychology-guided Story Events

Given Leading Context
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H [ﬁ l—l ! : Mike delightedly went on a date

:‘ Love 0 \ E> H with his girlfriend Tory. :
_______________________________ oo
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Mike was hungry and
they went to a restaurant.

_____________________ ;

g © The service was slow
and Mike began to feel uncomfortable.

L]

© Mike complained to the server,
then Tory comforted him.

]

E E> 5 The server apologized with a gift
' and Mike replied with a smile.

Figure 1: Example of psychology-guided controllable
story generation conditioned on dotted frames (global
psychological state chains, i.e., need/emotion, as well
as leading context). Each psychological state and its
corresponding tokens are highlighted in the same color.

Frank, 2021; Xu et al., 2020b) generate a story con-
ditioned by the appointed keywords or emotions,
with the help of remarkable pre-trained language
models (PLM), like GPT-2 (Radford et al., 2019)
and BART (Lewis et al., 2020). While most of
these systems have been able to generate fluent
stories, CSG still has many issues to be explored.
In daily life, humans tend to create events driven
by their needs (cause) and receive emotions (effect)
after the events. Similarly, needs (Ricoeur, 1984)
and emotions (Vonnegut, 1981) play the central
roles in creating reasonable stories in storytelling.
Recently, several works have begun developing
CSG systems based on people’s expected emo-
tional keywords or scores, such as (Brahman and
Chaturvedi, 2020) and (Xu et al., 2020a). Although
these approaches can generate stories appointing
the desired emotional signals, they are unable to
control the storytelling as the protagonist’s psy-
chological state changes. Another problem is that
these methods only consider the current/previous
emotions without global planning, which plays an
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important role in composing a story.

To address the aforementioned problems, we
focus on taking the protagonist’s global psycho-
logical state chains into account in controllable
story generation. Researches in cognitive psychol-
ogy have shown that readers closely monitor the
protagonist’s needs (Ricoeur, 1984) and emotions
(Vonnegut, 1981) while reading narratives. At any
point in a story, we represent the protagonist’s psy-
chological state using multiple needs and emotions
common in psychological theories. Hierarchy of
needs of Maslow has five categories (i.e., physiolog-
ical need, stability, love and belonging, esteem and
self-actualization) for describing human needs of
a person. Wheel of emotions of Plutchik proposes
eight basic emotions (includes joy, trust, anger, sur-
prise, sadness, disgust, fear and anticipation) to
adequately portray a person. Motivated by this, we
define the psychological state chains as a sequence
of five human needs and eight basic emotions that
describe psychological states of a protagonist.

Given the protagonist’s name and psychologi-
cal state chains as well as the leading context, our
goal is to generate a story about the leading context
that adheres to the protagonist’s psychological state
chains. As exemplified in Figure 1, the protagonist
(Mike) takes part in each story event controlled by
given psychological state chains. Note that, none
represents that Mike has no need or emotion. Each
psychological state and its corresponding tokens
are in the same color. For example, in the second
story event, Mike was hungry and went to a restau-
rant obviously embody the physiologic need of
Mike. Another example, as shown in the fourth
story event, complain action reflects Mike’s anger
emotion. From a global perspective, intuitively,
the anterior and hereafter psychological states sep-
arately provide the background and guidance for
composing stories. As illustrated in the third story
event, anterior physiologic need leads to Mike’s
feeling uncomfortable due to hungry, and hereafter
anger emotion guides the setting of slow service
plot suspense.

To generate stories that adhere to the given lead-
ing context and the desired protagonist’s global
psychological state chains, we propose PICS
(Psychology-gulded Controllable Story Genera-
tion System), a Transformer-based (Vaswani et al.,
2017) architecture. Specifically, psychological
state trackers are employed to memorize the local
psychological states for capturing temporal rela-

tionships among psychological states. And, psy-
chological state planners are adopted to gain the
protagonist’s global psychological states for plan-
ning the storytelling. In the end, a psychology con-
troller is designed to integrate the local and global
psychological states into the story context repre-
sentation for composing psychology-guided stories.
Based on the extracted data from publicly available
Story Commonsense (Rashkin et al., 2018) dataset,
experimental results demonstrate that PICS outper-
forms baselines, and the psychological state track-
ers, planners as well as the psychology controller
are important for generating stories with more con-
sistent psychological changes.

2 Related Work

Early story generation systems relied on symbolic
planning (Pérez and Sharples, 2001; Porteous and
Cavazza, 2009; Riedl and Young, 2010), which
had domain restriction and massive cost of feature
engineering. Recent seq2seq storytelling models
(Roemmele, 2016; Jain et al., 2017) had partially
alleviated these problems, most of which focused
on learning better representation for a story (Martin
etal., 2018; Xu et al., 2018; Fan et al., 2018b, 2019;
Yao et al., 2019).

To introduce semantic knowledge into story gen-
eration, many methods also employed large-scale
pre-trained language models (LM) based on Trans-
former (Vaswani et al., 2017), like GPT-2 (Radford
et al., 2019) and BART (Lewis et al., 2020). After
in-domain training, these models can generate flu-
ent and coherent text, which can be used in story
generation (Qin et al., 2019; Guan et al., 2020; Xie
et al., 2022b) and dialogue systems (Budzianowski
and Vulié, 2019; Wolf et al., 2019). However, they
lacked the ability of controllable generation, such
as expressing specific goals.

Further, aiming at controllable story generation,
works had been introduced to control different at-
tributes of the generated text, such as keyword (Fan
et al., 2018a), style (Wang et al., 2017) and length
(Kikuchi et al., 2016). For example, Tambwekar
et al. 2019 introduced reinforcement learning to
generate a goal-driven storyline, which is a se-
quence of event tuples. PPLM (Dathathri et al.,
2020) used attribute classifiers to guide text gen-
eration without further training of LM. PLOTMA-
CHINES (Rashkin et al., 2020) transformed an
outline into a coherent story by tracking the dy-
namic plot states. Kong et al. 2021 first planned
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the stylized keywords and then generated the whole
story with the guidance of the keywords. And many
works considered commonsense knowledge as an
attribute for CSG. Ammanabrolu et al. 2021 per-
formed story generation using soft causal relations,
which automatically extracted from existing natu-
ral language plot summaries. Paul and Frank 2021
used the contextualized commonsense inference
rules generated by COMET (Bosselut et al., 2019)
based model to produce a coherent story ending.
Most related to this work, many methods gen-
erated text with a specific sentiment or emotion
(Zhou et al., 2018; Huang et al., 2018; Zhou and
Wang, 2018; Song et al., 2019). Rashkin et al. 2018
present an annotation framework specifically de-
signed to examine the mental states of characters
in commonsense based stories. There are some
limitations to incorporating sentiment, emotion or
psychological state for story generation. Previous
work modeled characters but not sentiment (Clark
et al., 2018; Liu et al., 2020). Peng et al. 2018 and
Luo et al. 2019 controlled the overall sentiment
for story ending generation. Weber et al. 2020 in-
corporated sentiment trajectory by a new task that
“filling in” a story. Brahman and Chaturvedi 2020
modeled the emotional trajectory of the protagonist
for story generation. Xu et al. 2020a generated a
story with multiple emotional changes of protago-
nists based on the given characters and the corre-
sponding psychological state lines. These works
are limited to the guiding of emotion scores or to-
kens or/and target the ending sentence. Lately, Xie
et al. 2022a modeling the relationship among mo-
tivations, actions and emotions based on human
activities (i.e. story events), which lacks consid-
eration of the global changes in a story. Different
from the above methods, we respectively model the
local and global psychological state changes of the
protagonist as the story progresses, which is more
central to storytelling than the emotion trajectory.

3 Task Definition

We formulate our psychology-oriented controllable
story generation task in the following. Note that,
the length of the whole story is 5 in this paper, and
the output story event is in the m-th time point.
Table 1 shows an example of our task.

Input The context X = (X1, Xa, ..., Xpn—1)
to the current story event with m — 1 events,
where the i-th event X; = (z},22,...,2F) con-
sists of k words. The name of protagonist P =

Protagonist | Donald, He, Donald, He, He
Need Chain | esteem, esteem, esteem, esteem, esteem
Emotion Chain | joy, sadness, sadness, sadness, joy
Leading Context | Donald was a senator.

Event ),
Event );
Event ),
Event )5

He ran as an indie candidate.

Donald wanted better implementation of his policies.
He decided to run in the next term as a Republican.
He won again, and is now in a better position.

Table 1: An example of our task.

(p1,p2,--.,pm) to indicate the expected partici-
pant of the generated story event, the elements are
the same in P in our setting. The protagonist’s
global psychological state chains, including the
need chain Ay = (ng,n9,...,ns5) and the emo-
tion chain Ag = (e, ea,...,e5). The protago-
nist’s local psychological states from Ay and Ag,
including the need history N = (n1,n2,...,ny)
and the emotion history E = (e1, e2,...,ep). n;
and e; represent the protagonist’s need and emotion
for the i-th story event, where i € [1,m)].

Output YV, = (y1,92,...,¥yr) (also X,, in the
next time step) stands for the current story event
that consists of  words, based on the protagonist’s
name P, the need history N, the emotion history
EE, the need chain Ay and the emotion chain Ag,
where y; is the ¢-th word.

4 Methodology

The overall architecture of our proposed PICS sys-
tem is illustrated in Figure 3. In the following, we
will describe each component in more detail.

4.1 Contextual Encoder (Step 1)

In order to capture the contextual semantic informa-
tion for the story context and the protagonist’s his-
torical psychological states, we reconstruct the in-
put of the embedding layer in the backbone BART
(Lewis et al., 2020) model.

[® [0ed] na [emo] en [wev [ pa [©x® [ Xa | o |

Figure 2: Reconstructed input of the word embedding
layer in BART for m-th event.

As illustrated in Figure 2, we employ new spe-
cial {(ned), (emo), (pgt) } tokens to delimit each
protagonist’s need, emotion and name grounded in
the story context. In addition, we utilize a spe-
cial (cxt) token to delimit each story event of the
context:

bm - Emb(n17€17p17X17' . '7nmaem7pm) (1)
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Figure 3: Overview of PICS with time point m=3 (Step 1-4). In step 1, contextual encoder converts input into
contextual representation (§ 4.1). In step 2, we design psychological state trackers to capture temporal relations for
the protagonist’s character information, local need and emotion (§ 4.2). In step 3, two psychological state planners
output the global psychological state through modeling the completed need and emotion chains (§ 4.3). In step 4,
conditioned on the protagonist’s local and global psychological states, the decoder generates psychology-guided

stories with a psychology controller (A&B) (§ 4.4).
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Figure 4: Details of Memory Units in Psychological
State Trackers for need and emotion states.

Then, we acquire representations of i-th psycho-
logical states Ay, , he,, hp, by extracting the hidden
states of special {(ned), (emo), (pgt)} tokens on
the top of encoder.

Similarly, story context representation is corre-
sponding to the hidden state of (m — 1)-th special
(cxt) token.

4.2 Psychological State Trackers (Step 2)

For the purpose of remembering and updating the
protagonist’s psychological states that have been
mentioned, we design psychological state trackers
for the protagonist’s character information®, needs
and emotions.

¥In this paper, we regard the representation of the protago-
nist’s name as his/her character information.

Protagonist’s Character Information Based on
several story events, humans can easily guess the
protagonist’s character information. We argue that
the resulting representation can stand for the pro-
tagonist’s character information via pooling hidden
states of the protagonist’s name which is grounded
in story events.

B, = Pooling({hy, }) @)

In this work, Pooling is Mean-Pooling and is
used as a tracker for p; to conclude the moderate
representation of the protagonist’s character infor-
mation.

Protagonist’s Needs To remember and update
the mentioned protagonist’s needs and emotions,
we design trackers (memory block in Figure 3) as
follows:

h;, = Memory(N) 3)

As shown in Figure 4, for memorizing mentioned
needs, the memory unit M,,, is updated using h,,, ,
and M, ., the output contextual needs representa-
tion:

1—12

hn,_. = tanh(WiM,,_, + Wah, ) (4)

Futher, we use a gating mechanism, g, to allow the
model to learn to flexibly control how much each
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cell in memory is updated, as below:

Gn, = sigmoid(WsM,, , + Wihy, ;) (5)

o~

an’ = gnih”i—l + (1 - gni)Mni—l (6)

h/

m Mnm (7)

where M,,, is randomly initialized and all IV, are
trainable parameters.

Protagonist’s Emotions In the same way with
need, for historical emotions:
h/

€m

= Memory(E) = M,,, 8)

In summary, we can obtain sequential psycho-
logical state changes through the above operations.

4.3 Psychological State Planner (Step 3)

Different from psychological state trackers, we ob-
tain the global psychological states by encoding
the global needs chain and emotions chain for story
planning. As shown in Figure 3 (step 3), psycholog-
ical state trackers use a BiGRU (Cho et al., 2014)
architecture.

Global Need Planner In the global need planner,
the global need representations:
[l 2

nybpy e

, 1] = BiGRU(A) ©)

hy, =]

n

(10)

where j represents the j-th need for generate next
story event and j-th need in the global need chain.

Global Emotion Planner Similarly, computing

global emotion representations are as below:

hi, = BiGRU(Ag)[j] = ti an

note that, Ay and Ag are initialized by GloVe (Pen-
nington et al., 2014) embedding.

After obtaining global need and emotion repre-

sentations, we feed them into the following step as
a planning signal for guiding the story generation.

4.4 Psychology-guided Decoder (Step 4)

Conditioned on the protagonist’s local and global
psychological states, the decoder generates a
psychology-guided story event by the following
modules.

4.4.1 Psychology Controller

In order to control the story generation by protag-
onist’s psychological states, we respectively inte-
grate local and global psychological states (Peng
et al., 2022; Zhang et al., 2022) into the story con-
text representation.

Local Control With the goal to integrate local
psychological control information into the repre-
sentation of story context h., a psychology con-
troller is used to compute the interaction between
h. and local psychological states (including k., h!,,
ht). First, h;, guides the model with the protago-
nist’s character information for generating the next
story event, which uses a B1GRU (Cho et al., 2014)
architecture:

he = BiGRU(h, h!))[0]

Cyr'"p

12)

where we extract the hidden state l?c as the story
context representation considering character infor-
mation. Then, we employ an attention mecha-
nism to integrate local psychological states (need
and emotion) into the story context representation.
Firstly, need guided attention NGA is defined as
follows:

B = NGA(he, (o Y1) = Y aiha,  (13)
i=1

{ai} = softmax({hchY /\/dimi}) (14)
h = Fus.N(k,, h?) = MLP([K,, h?])  (15)

nrvc
where dim, equals to the dimension of A. Simi-
larly, EGA and Fus . E has the same operation as
the above equations:

he = Fus .E(EGA(RE, {he,}1y))  (16)

hl, = hE + he (17)

Global Control Aiming at further control com-
posing stories with the global planning signal, this
part is designed to dynamically integrate global
psychological states. In specific, a query vector g
is introduced to fuse psychology-blended context
representations and global psychological states by
attention mechanism as below:

Q[h/ca h:;i]T q[h/w h ]T

\/d’img \/dimg

Br, B2 = softmax(sn, se)

(18)

Sny Se =

(19)
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He = MLP(Bi[hl, i ] + Bolhl, hi])  (20)

where ¢ is the query and [hy,, k), |, [h.., h}.] are the
keys for attention. [-] denotes the concatenation op-
eration. dims equals to the dimension of [, hy, ].
So that the model can adaptively choose the most
important global psychological state for generating

well-planned stories.

4.4.2 Story Decoder

We employ a left-to-right BART decoder to gen-
erate a story conditioned upon all input elements.
Each layer of the decoder additionally performs
cross-attention over the concatenation of the final
hidden layer of the BART encoder and ..

P(yt|X7P7N7E7AN7A]E7 y<t) = SOffde(WsSt)
(21)

st = Dec(y<t, Enc(by), He) (22)

where Enc(by,) is the final hidden layer of the
BART encoder.

4.4.3 Training

The training objective is to minimize the negative
log-likelihood L of the ground truth story event:

.
L= —ZlogP(yt | X,P,N,E, Ay, Ag, y<t)

t=1
(23)
Aiming to obtain the completed story, we iteratively
generate the m-th story events ),,, with the forecast
generated V1, ..., Vm—1.

5 Experiment

5.1 Data

We choose a Story Commonsense (Rashkin et al.,
2018) that has been annotated with a similar set-
ting to us. Story Commonsense is a large-scale
dataset as a resource for training and evaluating the
mental state tracking of characters in short com-
monsense stories. This dataset contains over 300k
low-level annotations for character motivations and
emotional reactions. Story Commonsense was pro-
posed for studying need/emotion tracking. Each
sentence is annotated for all characters, and there
are 3 crowd-workers voting for each need/emotion.
If the characters have no need or emotion, the psy-
chological state will be labeled ‘none’.

Based on our task definition, we extract the
story with a protagonist (occurs in more than 4
sentences) and the corresponding need/emotion
chains from Story Commonsense. Note that, we

select the Top-1 need/emotion label, based on an-
notators’ voting scores to make up the psycho-
logical chains in our data set. If several labels
have the best score of all, we will choose a low-
level need label of Maslow’s needs or a random
emotion label. Following the 8:1:1 splitting ra-
tio, we obtain 2,570/321/321 five-sentence stories
for train/dev/test sets. In our psychology-guided
CSG task, we generate a story event based on the
story context, protagonist’s name, need chain, and
emotion chain. Therefore, each story will be re-
formed into 4 samples following our setting (i.e.
10,280/1283/1283 samples).

5.2 Implement Details

For a fair comparison, we train our proposed mod-
els and the baselines with the same input (leading
context and global need/emotion chains) that are
automatically extracted from Story Commonsense
(Rashkin et al., 2018). Our proposed models fol-
low the setting of BART large (Lewis et al., 2020)
model with 12 layers in each of the encoder and
decoder and a hidden size of 1024. The stories
are encoded using BPE with a vocabulary size of
50,257. We set the maximum sequence length to
100 tokens, as it is large enough to contain all in-
puts. We use Adam optimization with an initial
learning rate of 0.00001. All models were trained
until there was no improvement in the validation
set performance. During training, we use a label
smoothed cross-entropy loss, with the smoothing
parameter set to 0.1. At inference time, we set
beam size as 5, and remove duplicated trigrams
in beam search. We use the HuggingFace 1 (Wolf
et al., 2020) PyTorch (Paszke et al., 2019) imple-
mentation' on Tesla V100 GPU.

5.3 Evaluation Metrics

Automatic Metrics We use the following met-
rics for automatic evaluation: (1) Perplexity (PPL)
is an indicator of fluency. A smaller value is bet-
ter. (2) BLEU (Papineni et al., 2002) is used for
evaluating the overall quality of the generated story.
We use n=1, 2. (3) Rouge (Lin, 2004) with n=1,
2, L is used to measure the similarity between au-
tomatically generated and reference results. (4)
Need/Emotion Consistency (NC/EC) It is a learn-
able automatic metric. We fine-tune a ROBERTa

Ihttps://github.com/huggingface/transformers
'"We will make our dataset and code publicly available at
https://github.com/IndexFziQ/PICS.
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Models | PPL| BLEU-11 BLEU-27 Rouge-117 Rouge-21 Rouge-L{|NC{ EC?
Fusion 25.68 19.83 2.89 5.81 1.66 8.64 0.19 0.16
Plan&Write | 19.43 20.15 3.56 6.23 1.85 8.81 031 0.19
PPLM - 18.42 4.39 8.73 2.13 9.29 045 041
GPT-2FT | 18.21 22.67 6.42 9.97 2.25 9.98 034 0.37
BART FT 17.85 21.84 6.03 9.32 2.51 9.56 036 0.32
PICS 16.73 23.51 6.89 12.43 3.83 11.28 0.64 045

Table 2: The results of automatic evaluation on test set considering common-used metrics and the designed metric
(NC/EC) to test the psychological state consistency of stories. |/ indicates the lower/higher, the better.

NC
Accuracy F1-Score

64.6 64.8

EC
Accuracy F1-Score

56.8 59.2

Table 3: Accuracy and F1-Score of RoBERTa classifier
for need/emotion on dev set, respectively.

(Liu et al., 2019) large model on the Story Com-
monsense (Rashkin et al., 2018) train set as a clas-
sifier to distinguish whether a story event is corre-
sponding to a Top-1 need/emotion. Table 3 shows
results of NC/EC.

Manual Metrics We also conduct a manual eval-
uation of generated psychology-guided stories. Fol-
lowing Song et al. (2019), crowd-workers are re-
quired to evaluate actions on a 0-3 scale (3 being
very good) from two different perspectives:

(1) Content Quality to indicate whether the gen-
erated story is fluent. (2) Content Rationality to
assess whether it follows the given needs and emo-
tions which is reasonable and consistent.

During the manual evaluation, we display the in-
put (leading context and global need/emotion arc)
and two stories generated by the two models be-
ing compared. To avoid prejudice, we randomly
changed the order in which the stories in the two
models were displayed to the crowd-workers. We
provided crowd-workers with instructions to ex-
plain the annotations and provided examples. Fol-
lowing this process, each pair of stories is annotated
by three crowd-workers.

5.4 Experimental Results
5.4.1 Baselines

For a fair comparison, we train PICS and the base-
lines with the same input (leading context and
global need/emotion chains).

We compare our base storytelling model, PICS,
with following state-of-the-art models:

1. Fusion (Fan et al., 2018b), a storytelling
model that first pre-trains a convolutional
seq2seq model, then fixes the trained model
and passes it to the second clone model with
fusion mechanism.

2. Plan&Write (Yao et al., 2019), another sto-
rytelling model first generates a plot as a se-
quence of keywords with the given leading
context and then conditioned on the plot it
generates the text of the story.

3. PPLM (Dathathri et al., 2020), which can be
extended to accept psychological state chains
for controlling story generation. We use psy-
chological state chains as the skeleton.

4. GPT-2 FT (Radford et al., 2019) is a pre-
trained generative LM. We use a medium-size
version. We fine-tuned GPT-2 on our dataset
following (Guan et al., 2020) with leading
context and global need/emotion chains.

5. BART FT (Lewis et al., 2020) is a encoder-
decoder architecture. We fine-tuned BART
on our dataset following (Lewis et al., 2020)
with leading context and global need/emotion
chains.

All of these models are trained, validated and tested
on the same data splits described in §5.1. In spe-
cific, we add emotion/need labels as additional in-
put tokens to baseline models alongside the tokens
for each story sentence. And, global emotion/need
chains that concatenated with the story context are
given to baseline models at each time step.

5.4.2 Automatic Evaluation

The results of the automatic evaluation are shown
in Table 2. Our model outperforms the variants of
GPT-2 in terms of perplexity, and has higher BLEU
and Rouge scores than all the baselines, indicating
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Quality 1 Rationality 1
Model Fluency Coherence Need Emotion
PPLM 2.56 1.62 1.05 1.27
GPT-2 FT 2.87 1.58 1.73 1.82
BART FT 2.72 1.79 1.69 1.98
Pics 2.83 1.68 2.16 2.34

Table 4: Manual Evaluation in terms of content quality
and content rationality about the generated stories.

Model AVG-BT AVG-RT NC1 EC1?
PIcCs 15.89 8.65 0.64 045
w/o PST 15.41 8.45 0.53 046
w/o PSP 15.24 8.47 0.56 0.43
w/o PC 15.34 8.24 0.55 042
w/o Need 15.71 8.53 042 0.39
w/o Emotion 15.64 8.44 0.51  0.35

Table 5: Ablation study of PICS model and global
need/emotion chains on dev set. PST: psychological
state tracker. PSP: psychological state planner. PC: psy-
chology controller.

better fluency and more overlaps with the reference
stories. Besides, in the view of NC and EC scores,
the stories generated by PICS are more consistent
with the desired psychological state chains, either
need or emotion.

5.4.3 Manual Evaluation

We perform a manual evaluation between our
model and baselines. We randomly generate 100
stories from the test set. For each story, we hire
three annotators to give a score in terms of content
quality (fluency&coherence) and content rational-
ity (need&emotion). For each aspect, we use an
average of the three annotations. We adopt major-
ity voting to make the final decisions among the
annotators. As shown in Table 4, all the results
show that our model outperforms baselines signif-
icantly in fluency, coherence, and psychological
state consistency.

6 Discussion and Analysis

6.1 Ablation Study

An ablation study is conducted on the Story Com-
monsense dataset to examine the impact of each
module separately. We train the model each time
by excluding one of our model’s modules. And,
we summarize the results in Table 5. The results
illustrate the harms that the elimination of each
of the proposed modules from PICS architecture

PICS v.s. Win Loss Tie K

PPLM 54.6% 18.5% 269% 30.2
GPT-2FT 532% 195% 27.3% 304
BARTFT 523% 184% 293% 27.9

Table 6: Human A/B Test of PICS. Results show that
P1cs performs baseline models sufficiently. x denotes
Fleiss’ kappa (all are fair agreement or moderate agree-
ment). The p-value of scores < 0.05 in sign test.

could cause. This attests to the effectiveness of all
proposed approaches in the generation of higher
controllable stories and subsequently resulting in
more accurate evaluation metrics. As this table
demonstrates, the NC/EC accuracy drops the most
by ablating the psychological state planner and the
psychology controller, which shows that they have
the most significant role in composing high-quality
psychology-guided stories and consequently accu-
rate evaluation metrics. Besides, psychological
state chains (need/emotion chains) all contributed
to the high-quality psychology-guided stories.

6.2 Human A/B Test

We try to compare our model with other baselines
by conducting a Human A/B test. Particularly, we
randomly sample 100 examples each for our model
and baseline models. Three annotators are given
generated responses from either our model or base-
lines in random order and are required to choose
a better option. They can either choose one of the
responses or select “Tie” when the quality of pro-
vided options is hard to access. Results in Table
6 confirm that the responses from PICS are more
preferred by human judges.

6.3 Case Study

In this section, we present some generated exam-
ples in Table 7. We select need-related keywords
and emotion-related keywords (based on our obser-
vation), which are highlighted in corresponding col-
ors, respectively. From the third block, PICS can
generate more natural and reasonable psychology-
guided stories than baselines. Since the proposed
models can generate stories conditioned on the pro-
tagonist’s psychological state chains, they can be
used to unfold a story in diverse situations. We
demonstrate this capability in the last 4 blocks of
Table 7 which perform counterfactual transforma-
tions on need/emotion chains. It shows two exam-
ples where for the same leading context, our model
can generate stories that follow the counterfactual
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Pgt. Tory

Ned. Stab. — Love — Love — Love — Love

Emo. Fear —Fear — Joy — Joy —Joy

Cxt. Tory had doubts about getting married.

Golden She talked to her fiance about their decision. The groom

reassured her that he loved her. She remembered how
much she loved him too. The wedding went forward
without anymore problems.

GPT-2 She called her husband. She got the answer and laugh.
She go to shopping then. She bought so many clothes
she like.

She talked to her boyfriend about their relationship. Her
boyfriend loved her and gave her a kiss. She was very
happy then. They went on the date outside for fun.
Tory is afraid about their marriage. Her boyfriend gave
a gift as a blessing. Tory was happy about the gift, and
reply him with a kiss. Tory went home to prepare a
surprise for him.

BART

Pics

Ned.-CF
Pics

Stab. — Love — Love —Phys. — Phys.

She talked to her husband about their marriage. Her
husband loved her and take her to the romantic dinner.
It is time for them to have a dinner. She was happy with
the delicious dinner.

Emo.-CF
PICS

Fear —Fear —Anger —Anger —Anger

She and her husband talked about their marriage. Her
husband was angry at her doubts. She rushed and fought
with his husband. She gave him a slap and broke up
unhappy.

Table 7: Generated stories by different models with need
and emotion chains. Each psychological state and its
corresponding tokens are highlighted in the same color.
CF represents performing counterfactual transformation
on need chains or emotion chains.

psychological state chains of the protagonist.

6.4 Error Analysis

Although the proposed model outperforms the state-
of-the-art baselines, it needs to be noted that there
are still many unreasonable stories losing to other
models in human evaluation. Therefore, we an-
alyzed error types by manually checking all lost
stories in pairwise comparisons between our model
and two strong baselines including GPT-2 and
BART to reveal the factors that affect the perfor-
mance. The numbers of stories which lost to our
model are 56/64 of 100/100 in total for GPT-2 and
BART, respectively. And there are 61 stories of 200
generated by PICS losing to these two baselines.
We conclude three main types of error from the
lost stories: repetition (repeating the same actions
about the need/emotion), conflicting psychologi-
cal state (wrong causal relation about psychologi-
cal state), and ambiguous psychological state (dif-
ficult to understand the psychological state). The
distribution of different error types is shown in
Figure 5. We can observe that conflicting and am-

30%

GPT-2
BART
Ours 22.5%
23% 21.2% o
15% 14.4%
8% 6.4%
5.6% %
430, A%
1.2% 18%
0%
Repetition Conflicting Ambigious

Figure 5: Distribution of error types for PICS (ours) and
baseline models (GPT-2 and BART).

Error Type Cases

Repetition

I went to a friends house for a party last weekend.
I was so excited to go. We played a lot of games
that night. / was so excited to go. We also had a
lot of food to eat.

Zack wanted to vote in the election. Unfortunately
Zack was traveling during the election. Zack went
to the school for taking class. Zack then voted
again. Zack was happy to have voted.

Alice made a cake for her mother. The cake is so
sweet that her mother disliked it. But her mother
was very happy and encouraged Alice. Alice was
sad because of the failed cooking. They hugged
and smiled in the end.

Conflicting

Ambiguous

Table 8: Cases of different typical errors. Italic words
denote the error story events.

biguous psychological state make up most of the
errors for all the models. Compared with GPT-2
and BART, P1CS reduces chaotic scenes effectively
but still suffers from severe repetition, as shown in
Table 8. However, the analysis result illustrates that
generating a reasonable psychology-guided story
is a challenging task.

7 Conclusion and Future Work

In this paper, we propose a PICS system to gener-
ate controllable stories that adhere to the story con-
text and protagonist’s psychological state chains.
Specifically, we model and integrate local and
global psychological states of the protagonist as
the story progress. Experiments demonstrate that
P1cS significantly outperforms baselines and each
part shows effectiveness. In future work, it is im-
portant to build a large-scale dataset for developing
psychology-guided controllable story generation,
regarding aspects of multilingual and long text. Be-
sides, our methodology can be generalized to a
wide range of areas, such as automatic storytelling
systems and intelligent education agents.

6488



Acknowledgement

We thank all anonymous reviewers for their con-
structive comments and useful advice. Also thanks
for the discussion with Yajing Sun, Yongxiu Xu,
and Ping Guo. This work is supported by the
National Natural Science Foundation of China
(No0.62006222 and No.U21B2009). Thanks for
COLING organizers and the proposed pre-trained
language models, data, codes.
Contribution List Yuqiang Xie: Idea, Paper Writ-
ing, Coding; Yue Hu: Guiding, Discussion; Yun-
peng Li: Coding; Guanqun Bi: Paper Polish, Dis-
cussion; Luxi Xing: Review; Wei Peng: Review.
Thanks for the hard work and dedication of all
team members.

References

Amal Alabdulkarim, Siyan Li, and Xiangyu Peng. 2021.
Automatic story generation: Challenges and attempts.
In Proceedings of the Third Workshop on Narrative
Understanding, pages 72—83, Virtual. Association for
Computational Linguistics.

Prithviraj Ammanabrolu, W. Cheung, William Broniec,
and Mark O. Riedl. 2021. Automated storytelling via
causal, commonsense plot ordering. In AAAL

Antoine Bosselut, Hannah Rashkin, Maarten Sap, Chai-
tanya Malaviya, Asli Celikyilmaz, and Yejin Choi.
2019. COMET: Commonsense transformers for auto-
matic knowledge graph construction. In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 4762—4779, Flo-
rence, Italy. Association for Computational Linguis-
tics.

Faeze Brahman and Snigdha Chaturvedi. 2020. Mod-
eling protagonist emotions for emotion-aware story-
telling. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 5277-5294, Online. Association for
Computational Linguistics.

Pawet Budzianowski and Ivan Vuli¢. 2019. Hello, it’s
GPT-2 - how can I help you? towards the use of pre-
trained language models for task-oriented dialogue
systems. In Proceedings of the 3rd Workshop on Neu-
ral Generation and Translation, pages 15-22, Hong
Kong. Association for Computational Linguistics.

Kyunghyun Cho, Bart van Merriénboer, Dzmitry Bah-
danau, and Yoshua Bengio. 2014. On the properties
of neural machine translation: Encoder—decoder ap-
proaches. In Proceedings of SSST-8, Eighth Work-
shop on Syntax, Semantics and Structure in Statistical
Translation, pages 103—111, Doha, Qatar. Associa-
tion for Computational Linguistics.

Elizabeth Clark, Yangfeng Ji, and Noah A. Smith. 2018.
Neural text generation in stories using entity repre-
sentations as context. In Proceedings of the 2018
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long Papers),
pages 2250-2260, New Orleans, Louisiana. Associa-
tion for Computational Linguistics.

Sumanth Dathathri, Andrea Madotto, Janice Lan, Jane
Hung, Eric Frank, Piero Molino, Jason Yosinski, and
Rosanne Liu. 2020. Plug and play language models:
A simple approach to controlled text generation. In
8th International Conference on Learning Represen-
tations, ICLR 2020, Addis Ababa, Ethiopia, April
26-30, 2020. OpenReview.net.

Angela Fan, David Grangier, and Michael Auli. 2018a.
Controllable abstractive summarization. In Proceed-
ings of the 2nd Workshop on Neural Machine Transla-
tion and Generation, pages 45-54, Melbourne, Aus-
tralia. Association for Computational Linguistics.

Angela Fan, Mike Lewis, and Yann Dauphin. 2018b.
Hierarchical neural story generation. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 889—-898, Melbourne, Australia. Association
for Computational Linguistics.

Angela Fan, Mike Lewis, and Yann Dauphin. 2019.
Strategies for structuring story generation. In Pro-
ceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 2650—
2660, Florence, Italy. Association for Computational
Linguistics.

Jian Guan, Fei Huang, Zhihao Zhao, Xiaoyan Zhu, and
Minlie Huang. 2020. A knowledge-enhanced pre-
training model for commonsense story generation.
Transactions of the Association for Computational
Linguistics, 8:93—108.

Chenyang Huang, Osmar Zaiane, Amine Trabelsi, and
Nouha Dziri. 2018. Automatic dialogue generation
with expressed emotions. In Proceedings of the 2018
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 2 (Short Papers),
pages 49-54, New Orleans, Louisiana. Association
for Computational Linguistics.

Parag Jain, Priyanka Agrawal, Abhijit Mishra, Mo-
hak Sukhwani, Anirban Laha, and Karthik Sankara-
narayanan. 2017. Story generation from se-
quence of independent short descriptions. ArXiv,
abs/1707.05501.

Yuta Kikuchi, Graham Neubig, Ryohei Sasano, Hiroya
Takamura, and Manabu Okumura. 2016. Controlling
output length in neural encoder-decoders. In Pro-
ceedings of the 2016 Conference on Empirical Meth-
ods in Natural Language Processing, pages 1328—
1338, Austin, Texas. Association for Computational
Linguistics.

6489


https://doi.org/10.18653/v1/2021.nuse-1.8
https://doi.org/10.18653/v1/P19-1470
https://doi.org/10.18653/v1/P19-1470
https://doi.org/10.18653/v1/2020.emnlp-main.426
https://doi.org/10.18653/v1/2020.emnlp-main.426
https://doi.org/10.18653/v1/2020.emnlp-main.426
https://doi.org/10.18653/v1/D19-5602
https://doi.org/10.18653/v1/D19-5602
https://doi.org/10.18653/v1/D19-5602
https://doi.org/10.18653/v1/D19-5602
https://doi.org/10.3115/v1/W14-4012
https://doi.org/10.3115/v1/W14-4012
https://doi.org/10.3115/v1/W14-4012
https://doi.org/10.18653/v1/N18-1204
https://doi.org/10.18653/v1/N18-1204
https://openreview.net/forum?id=H1edEyBKDS
https://openreview.net/forum?id=H1edEyBKDS
https://doi.org/10.18653/v1/W18-2706
https://doi.org/10.18653/v1/P18-1082
https://doi.org/10.18653/v1/P19-1254
https://doi.org/10.1162/tacl_a_00302
https://doi.org/10.1162/tacl_a_00302
https://doi.org/10.18653/v1/N18-2008
https://doi.org/10.18653/v1/N18-2008
https://doi.org/10.18653/v1/D16-1140
https://doi.org/10.18653/v1/D16-1140

Xiangzhe Kong, Jialiang Huang, Ziquan Tung, Jian
Guan, and Minlie Huang. 2021. Stylized story gen-
eration with style-guided planning. In Findings of
the Association for Computational Linguistics: ACL-
IJCNLP 2021, pages 2430-2436, Online. Association
for Computational Linguistics.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7871-7880, Online. Association for Computa-
tional Linguistics.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74-81, Barcelona, Spain.
Association for Computational Linguistics.

Danyang Liu, Juntao Li, Meng-Hsuan Yu, Ziming
Huang, Gongshen Liu, Dongyan Zhao, and Rui Yan.
2020. A character-centric neural model for auto-
mated story generation. In The Thirty-Fourth AAAI
Conference on Artificial Intelligence, AAAI 2020,
pages 1725-1732. AAAI Press.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Dangi Chen, Omer Levy, M. Lewis, Luke
Zettlemoyer, and Veselin Stoyanov. 2019. Roberta:
A robustly optimized bert pretraining approach.
ArXiv, abs/1907.11692.

Fuli Luo, Damai Dai, Pengcheng Yang, Tianyu Liu,
Baobao Chang, Zhifang Sui, and Xu Sun. 2019.
Learning to control the fine-grained sentiment for
story ending generation. In Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics, pages 6020-6026, Florence, Italy. Asso-
ciation for Computational Linguistics.

Lara J. Martin, Prithviraj Ammanabrolu, Xinyu Wang,
William Hancock, Shruti Singh, Brent Harrison, and
Mark O. Riedl. 2018. Event representations for au-
tomated story generation with deep neural nets. In
Proceedings of the Thirty-Second AAAI Conference
on Artificial Intelligence, (AAAI-18), pages 868-875.
AAAI Press.

Abraham Harold Maslow. 1943. A theory of human
motivation. In Psychological review.

D. Morrow. 1985. Prominent characters and events
organize narrative understanding. Journal of Memory
and Language, 24:304-319.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311-318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. Pytorch: An
imperative style, high-performance deep learning li-
brary. In Advances in Neural Information Processing
Systems 32: Annual Conference on Neural Informa-
tion Processing Systems 2019, NeurIPS 2019, De-
cember 8-14, 2019, Vancouver, BC, Canada, pages
8024-8035.

Debjit Paul and Anette Frank. 2021. COINS: Dynami-
cally generating COntextualized inference rules for
narrative story completion. In Proceedings of the
59th Annual Meeting of the Association for Compu-
tational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 5086-5099, Online. As-
sociation for Computational Linguistics.

Nanyun Peng, Marjan Ghazvininejad, Jonathan May,
and Kevin Knight. 2018. Towards controllable story
generation. In Proceedings of the First Workshop on
Storytelling, pages 43—49, New Orleans, Louisiana.
Association for Computational Linguistics.

Wei Peng, Yue Hu, Luxi Xing, Yuqiang Xie, Yajing Sun,
and Yunpeng Li. 2022. Control globally, understand
locally: A global-to-local hierarchical graph network
for emotional support conversation. In Proceedings
of the Thirty-First International Joint Conference on
Artificial Intelligence, IJCAI 2022, Vienna, Austria,
23-29 July 2022, pages 4324-4330. ijcai.org.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. GloVe: Global vectors for word
representation. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing (EMNLP), pages 1532-1543, Doha, Qatar.
Association for Computational Linguistics.

R. Y. Pérez and M. Sharples. 2001. Mexica: A com-
puter model of a cognitive account of creative writing.
Journal of Experimental & Theoretical Artificial In-
telligence, 13:119 — 139.

Robert Plutchik. 1980. A general psychoevolutionary
theory of emotion. In Theories of emotion.

J. Porteous and M. Cavazza. 2009. Controlling narrative
generation with planning trajectories: The role of
constraints. In ICIDS.

Lianhui Qin, Antoine Bosselut, Ari Holtzman, Chandra
Bhagavatula, Elizabeth Clark, and Yejin Choi. 2019.
Counterfactual story reasoning and generation. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 5043—
5053, Hong Kong, China. Association for Computa-
tional Linguistics.

6490


https://doi.org/10.18653/v1/2021.findings-acl.215
https://doi.org/10.18653/v1/2021.findings-acl.215
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
https://aaai.org/ojs/index.php/AAAI/article/view/5536
https://aaai.org/ojs/index.php/AAAI/article/view/5536
https://doi.org/10.18653/v1/P19-1603
https://doi.org/10.18653/v1/P19-1603
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17046
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17046
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://doi.org/10.18653/v1/2021.acl-long.395
https://doi.org/10.18653/v1/2021.acl-long.395
https://doi.org/10.18653/v1/2021.acl-long.395
https://doi.org/10.18653/v1/W18-1505
https://doi.org/10.18653/v1/W18-1505
https://doi.org/10.24963/ijcai.2022/600
https://doi.org/10.24963/ijcai.2022/600
https://doi.org/10.24963/ijcai.2022/600
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.18653/v1/D19-1509

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. In Ope-
nAl Blog.

Hannah Rashkin, Antoine Bosselut, Maarten Sap, Kevin
Knight, and Yejin Choi. 2018. Modeling naive psy-
chology of characters in simple commonsense stories.
In Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 2289-2299, Melbourne, Aus-
tralia. Association for Computational Linguistics.

Hannah Rashkin, Asli Celikyilmaz, Yejin Choi, and
Jianfeng Gao. 2020.  PlotMachines: Outline-
conditioned generation with dynamic plot state track-
ing. In Proceedings of the 2020 Conference on Em-
pirical Methods in Natural Language Processing
(EMNLP), pages 42744295, Online. Association
for Computational Linguistics.

Paul Ricoeur. 1984. Time and narrative.

Mark O. Riedl and R. M. Young. 2010. Narrative
planning: Balancing plot and character. ArXiv,
abs/1401.3841.

Melissa Roemmele. 2016. Writing stories with help
from recurrent neural networks. In Proceedings of
the Thirtieth AAAI Conference on Artificial Intelli-
gence, February 12-17, 2016, Phoenix, Arizona, USA,
pages 4311-4342. AAAI Press.

Zhengiao Song, Xiaoqing Zheng, Lu Liu, Mu Xu, and
Xuanjing Huang. 2019. Generating responses with
a specific emotion in dialog. In Proceedings of the
57th Annual Meeting of the Association for Computa-
tional Linguistics, pages 3685-3695, Florence, Italy.
Association for Computational Linguistics.

Pradyumna Tambwekar, Murtaza Dhuliawala, Lara J.
Martin, Animesh Mehta, Brent Harrison, and Mark O.
Riedl. 2019. Controllable neural story plot gener-
ation via reward shaping. In Proceedings of the
Twenty-Eighth International Joint Conference on Ar-
tificial Intelligence, IJCAI 2019, Macao, China, Au-
gust 10-16, 2019, pages 5982-5988. ijcai.org.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-9,
2017, Long Beach, CA, USA, pages 5998—6008.

K. Vonnegut. 1981. Palm sunday: An autobiographical
collage. In RosetTaBooks, LLC New York.

Di Wang, Nebojsa Jojic, Chris Brockett, and Eric Ny-
berg. 2017. Steering output style and topic in neural
response generation. In Proceedings of the 2017
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 2140-2150, Copenhagen,
Denmark. Association for Computational Linguis-
tics.

Noah Weber, Leena Shekhar, Heeyoung Kwon, Ni-
ranjan Balasubramanian, and Nathanael Chambers.
2020. Generating narrative text in a switching dy-
namical system. In Proceedings of the 24th Confer-
ence on Computational Natural Language Learning,
pages 520-530, Online. Association for Computa-
tional Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38—45, Online. Association
for Computational Linguistics.

Thomas Wolf, Victor Sanh, Julien Chaumond, and
Clement Delangue. 2019. Transfertransfo: A transfer
learning approach for neural network based conver-
sational agents. ArXiv, abs/1901.08149.

Yugiang Xie, Yue Hu, Wei Peng, Guanqun Bi, and Luxi
Xing. 2022a. Comma: Modeling relationship among
motivations, emotions and actions in language-based
human activities.

Yugiang Xie, Yue Hu, Luxi Xing, Yunpeng Li, Wei
Peng, and Ping Guo. 2022b. Clseg: Contrastive
learning of story ending generation. In ICASSP 2022
- 2022 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 8057—
8061.

Feifei Xu, Xinpeng Wang, Yunpu Ma, Volker Tresp,
Yuyi Wang, Shanlin Zhou, and Haizhou Du. 2020a.
Controllable multi-character psychology-oriented
story generation. In CIKM °20: The 29th ACM Inter-
national Conference on Information and Knowledge
Management, Virtual Event, Ireland, October 19-23,
2020, pages 1675-1684. ACM.

Jingjing Xu, Xuancheng Ren, Yi Zhang, Qi Zeng, Xi-
aoyan Cai, and Xu Sun. 2018. A skeleton-based
model for promoting coherence among sentences in
narrative story generation. In Proceedings of the
2018 Conference on Empirical Methods in Natural
Language Processing, pages 43064315, Brussels,
Belgium. Association for Computational Linguistics.

Peng Xu, Mostofa Patwary, Mohammad Shoeybi, Raul
Puri, Pascale Fung, Anima Anandkumar, and Bryan
Catanzaro. 2020b. MEGATRON-CNTRL: Control-
lable story generation with external knowledge using
large-scale language models. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 2831-2845,
Online. Association for Computational Linguistics.

Lili Yao, Nanyun Peng, R. Weischedel, Kevin Knight,
Dongyan Zhao, and Rui Yan. 2019. Plan-and-write:
Towards better automatic storytelling. In AAAIL

6491


https://doi.org/10.18653/v1/P18-1213
https://doi.org/10.18653/v1/P18-1213
https://doi.org/10.18653/v1/2020.emnlp-main.349
https://doi.org/10.18653/v1/2020.emnlp-main.349
https://doi.org/10.18653/v1/2020.emnlp-main.349
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/11966
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/11966
https://doi.org/10.18653/v1/P19-1359
https://doi.org/10.18653/v1/P19-1359
https://doi.org/10.24963/ijcai.2019/829
https://doi.org/10.24963/ijcai.2019/829
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://doi.org/10.18653/v1/D17-1228
https://doi.org/10.18653/v1/D17-1228
https://doi.org/10.18653/v1/2020.conll-1.42
https://doi.org/10.18653/v1/2020.conll-1.42
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.48550/ARXIV.2209.06470
https://doi.org/10.48550/ARXIV.2209.06470
https://doi.org/10.48550/ARXIV.2209.06470
https://doi.org/10.1109/ICASSP43922.2022.9747435
https://doi.org/10.1109/ICASSP43922.2022.9747435
https://doi.org/10.1145/3340531.3411937
https://doi.org/10.1145/3340531.3411937
https://doi.org/10.18653/v1/D18-1462
https://doi.org/10.18653/v1/D18-1462
https://doi.org/10.18653/v1/D18-1462
https://doi.org/10.18653/v1/2020.emnlp-main.226
https://doi.org/10.18653/v1/2020.emnlp-main.226
https://doi.org/10.18653/v1/2020.emnlp-main.226

Duzhen Zhang, Zhen Yang, Fandong Meng, Xiuyi Chen,
and Jie Zhou. 2022. TSAM: A two-stream atten-
tion model for causal emotion entailment. CoRR,
abs/2203.00819.

Hao Zhou, Minlie Huang, Tianyang Zhang, Xiaoyan
Zhu, and Bing Liu. 2018. Emotional chatting ma-
chine: Emotional conversation generation with in-
ternal and external memory. In Proceedings of the
Thirty-Second AAAI Conference on Artificial Intelli-
gence, (AAAI-18), pages 730-739. AAAI Press.

Xianda Zhou and William Yang Wang. 2018. MojiTalk:
Generating emotional responses at scale. In Proceed-
ings of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 1128-1137, Melbourne, Australia. Association
for Computational Linguistics.

6492


https://doi.org/10.48550/arXiv.2203.00819
https://doi.org/10.48550/arXiv.2203.00819
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16455
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16455
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16455
https://doi.org/10.18653/v1/P18-1104
https://doi.org/10.18653/v1/P18-1104

