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Abstract

Conditional computation algorithms, such as
the early exiting (EE) algorithm, can be ap-
plied to accelerate the inference of pretrained
language models while maintaining competi-
tive performance on resource-constrained de-
vices. However, this approach is only applied
to the vertical architecture to decide which
layers should be used for inference. Con-
versely, the operation of the horizontal per-
spective is ignored, and the determination of
which tokens in each layer should participate
in the computation fails, leading to a high re-
dundancy for adaptive inference. To address
this limitation, a unified horizontal and ver-
tical multi-perspective early exiting (MPEE)
framework is proposed in this study to acceler-
ate the inference of transformer-based models.
Specifically, the vertical architecture uses recy-
cling EE classifier memory and weighted self-
distillation to enhance the performance of the
EE classifiers. Then, the horizontal perspec-
tive uses recycling class attention memory to
emphasize the informative tokens. Conversely,
the tokens with less information are truncated
by weighted fusion and isolated from the fol-
lowing computation. Based on this, both hor-
izontal and vertical EE are unified to obtain a
better tradeoff between performance and effi-
ciency. Extensive experimental results show
that MPEE can achieve higher acceleration in-
ference with competent performance than ex-
isting competitive methods. The code for this
paper is available at: https://github.
com/JunKong5/MPEE.

1 Introduction

Pretrained language models (PLMs) (Devlin et al.,
2019; Lan et al., 2019; Liu et al., 2019) have shown
promising performance in many natural language
processing tasks. The success of PLMs incurs com-
putational consumption and long inference latency,
which prevents these models from being deployed
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Figure 1: Tokens (cosine similarity) of different layers.

on resource-constrained devices, such as edge de-
vices, or in time-sensitive scenarios.

To address these issues, model compression tech-
niques (Lin et al., 2020), including knowledge dis-
tillation (Hinton et al., 2015; Jiao et al., 2020), prun-
ing (Sanh et al., 2020; Michel et al., 2019) and
quantization (Zafrir et al., 2019), have been applied
to PLMs to accelerate inference. However, these
methods permanently remove some components
of the model, leading to an inevitable decline in
performance. Additionally, the complexity of these
models cannot be adjusted based on the require-
ments of different hardware since the compression
is implemented before the deployment. Conversely,
several studies have suggested the use of condi-
tional computation algorithms, such as the early
exiting (EE) algorithm (Schwartz et al., 2020; Xin
et al., 2020), in which each input sample uses a dif-
ferent part of the model so that the computation or
latency is reduced on average. Based on this, an EE
classifier is added between transformer layers. The
shallow layer allows the easy samples to exit earlier
without the need to perform computations up to the
final layer. Computations related to deeper layers
should only be reserved for hard samples.

There are two main limitations of existing EE
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methods. For existing EE methods, there has been
a focus on the exploration of accelerated inference
for easy samples. However, for hard samples, ac-
celeration inference is not achieved and still needs
to be performed through the last layer. Furthermore,
the computation consumption is quadratically pro-
portional to the input sequence length. As a result,
the average acceleration inference is limited.

In addition, the existing early exiting approach is
only performed on the vertical perspective, and the
operations of the horizon perspective are ignored.
That is, each transformer encoder layer is regarded
as a basic unit. The model determines how many
transformer encoder layers are needed for inference
but ignores which tokens in each layer are required
to participate in the computation. Recent studies
(Ethayarajh, 2019; Klafka and Ettinger, 2020) have
shown that sequence tokens from the horizontal
perspective have high redundancy. To further ver-
ify the redundant information from the horizontal
perspective, we use the cosine distance to calcu-
late the similarity between tokens in each layer, as
shown in Figure 1. The token similarity in the shal-
low layer is low, indicating that the shallow layer is
not fully encoded. The horizontal perspectives of
deeper layers, especially the last layer, show high
redundancy. This suggests that the previous EE
approaches ignored the possibility of reducing the
horizontal perspective redundancy to accelerate in-
ference. Therefore, these EE approaches yield a
suboptimal accelerated inference. To address this
issue, an intuitive idea is to reduce the length of
the sequence token as the layers grow. TR-BERT
(Ye et al., 2021) uses a reinforcement learning (RL)
method to select the tokens that need to be dy-
namically reduced. However, additional training
is needed, which increases the cost of training. In
addition, changes to the device platform require
retraining of these components, which may greatly
limit the application scenarios.

In this paper, we propose a unified horizontal and
vertical multi-perspective early exiting framework
to reduce the computation and latency for fast infer-
ence of transformer-based models. This framework
contains layer-wise EE for the vertical perspective
and sequential token-wise EE for the horizontal
perspective. In sequential token-wise EE, different
tokens are forced to exit at different layers to re-
duce computation by emphasizing the informative
tokens to the downstream task. Conversely, the
tokens with less information are truncated, which

isolates them from the following computation. To
measure the importance of tokens, we use class
attention to learn the amount of prediction informa-
tion. Due to the instability of the class attention in
the shallow layer, recycling class attention memory
is used to enhance the reuse of information across
layers and to better identify informative tokens.
The tokens with less information do not completely
exit. Instead, they take a weighted fusion into an
EE fusion token for subsequent calculations so that
additional parameters and computations are not
introduced.

For the vertical perspective EE, we introduce EE
classifiers in the middle of two transformer layers.
Samples exit early at the shallow layer when the
confidence level is higher than the threshold and
skip computation in other layers. This allows the
input samples to be predicted with a shallow EE
classifier rather than a deep EE classifier. Since
the shallow EE classifier is weakly expressive, we
introduce weighted ensemble self-distillation and
recycling EE classifier memory to enhance the per-
formance of the shallow EE classifier. Thus, a
performance guarantee is provided at high accel-
eration inferences. The unified multi-perspective
early exiting framework has horizontal sparsity and
vertical sparsity. Based on extensive experiments,
it is shown that the proposed model reduces com-
putation and improves acceleration inference while
maintaining high performance.

The rest of the paper is organized as follows. In
Section 2, the preliminaries of PLMs are intro-
duced. In Section 3, a detailed description of the
proposed methods is provided. The empirical ex-
periments are reported and analyzed in Section 4.
Section 5 briefly introduces the previous studies
on acceleration inference for PLMs. Conclusions
are finally drawn in Section 6.

2 Preliminaries

Pretrained Language Model. A PLM consists of
L transformer encoders (Vaswani et al., 2017). The
sequence token X = [x[CLS], x1, x2, ..., xN ] of the
text processed by the tokenizer is input into the
PLM. N is the number of sequence tokens (without
the [CLS] token), and the [CLS] token denote
the global text information and final classification.
The transformer contains multi-head self-attention
(MHSA) and feed-forward network (FFN) modules.
The transformer coding process of each layer is
defined as
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Figure 2: Overall architecture of the unified multi-perspective early exiting framework for accelerating.

Z l = Transformerl(hl−1[CLS], h
l−1
1 , ..., hl−1N ) (1)

where Zl ∈ Rn×d denotes the output feature of
the l-th transformer, and N denotes the number of
tokens in the l-th layer of MHSA and d denotes the
model hidden size. The MHSA module is defined
as

MHSA(Zl−1)
= Concat[HA1(Zl−1); ...; HAH(Zl−1)]W

o (2)

where W o ∈ R(H·dh)×d is the output projection, H
is the number of multi-head and dh = d/H . The
single-head self-attention is denoted as

HAh(Zl−1) = Attention(Qh,Kh, Vh)

= softmax(
QhK

T
h√

dh
)Vh

(3)

where Qh = Zl−1W
Q
h ,Kh = Zl−1W

K
h , Vh =

Zl−1W
V
h are the matrices that package the query,

key and value, and W {Q,K,V }h ∈ Rd×dh is the lin-
ear transformation. Two fully connected layers are
applied on the output of the MHSA, and the FFN
module is defined as

FFN(Z̃l) = σ(Z̃lW1 + b1)W2 + b2 (4)

where σ denotes the GELU activation function,
Z̃l is the MHSA output,W1 ∈ Rd×4d and W2 ∈
R4d×d are the projection matrix.
Computational Complexity. Given an input se-
quence N × D , N is the number of input to-
kens and D is the embedding dimension of each
token. From the above, the computational complex-
ity of MHSA is O(4ND2 + 2N2D) and FNN is
O(8ND2). The total computational complexity of
PLMs is O(12ND2 + 2N2D). The complexity of
MHSA and FFN is quadratically and linearly for
the length N of the input sequence. Furthermore,
existing studies (Ethayarajh, 2019) have shown that
sequence tokens have high redundancy. An intu-
itive idea is to reduce redundant tokens to reduce
computation and improve acceleration inference.

3 Multi-Perspective Early Exiting

Figure 2 shows an overview of the proposed
unified multi-perspective early exiting framework,
which consists of layer-wise and sequential token-
wise early exiting. Layer-wise and sequential
token-wise early exiting are orthogonal methods
that exit unnecessary computations early by the
layer-wise and token-wise of the model, respec-
tively, to achieve faster inference. Therefore, we
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combine these two different perspectives to achieve
accelerated inference and minimize computational
cost.

3.1 Sequential Token-wise Early Exiting

The inference is accelerated by early exiting of the
sequential token according to class attention, as
shown in Figure 2. In PLMs, the [CLS] token is
used for classification. According to Eq.(3), MHSA
outputs of the [CLS] token, i.e., hl[CLS], can be
regarded as a weighted summation of value vectors
with attention scores, which is defined as

Alclass = MeanPooling(
H∑
h
HAh(Z

0
l ))

hl[CLS] = V l ·Alclass
(5)

where HAh(Z
0
l ) is the h-th attention head and

Alclass denotes the mean values of all attention
heads corresponding to the [CLS] token. Here,
Alclass represents the interaction of the [CLS] to-
ken for all other tokens and determines how much
information from the i-th token is contributed to
the [CLS] token. It is intuitive to denote Alclass as
the information that the [CLS] token transferred
for downstream tasks. Therefore, each token is
assigned to be informative or less informative ac-
cording to the class attention score Alclass. Due to
the instability and weak representation of the shal-
low layer class attention, recycling class attention
memory is used to enhance the reuse of informa-
tion across layers and to better identify informative
tokens and is defined as

Alm = (1− β)Al−1m + βAlclass (6)

where Alm is a class attention memory used to
record the historical values of Alclass. β denotes
the weight that balance the class attention with dif-
ferent layers. We keep m informative tokens hlin
for m-highest score in Alm, which is formulated as

m = N(1−Ree) (7)

where Ree denotes the sequence EE ratio. For
p early exiting tokens that are less informative,
p = N −m. Less informative tokens do not com-
pletely exit early from the sequence. To reduce the
missing information due to early exiting, the less
informative tokens are fused into an EE fusion to-
ken according to the corresponding class attention
weights. The EE fusion token and the informative

tokens are spliced in the subsequent computation,
which is denoted as

hleef = αih
l
i

Z̃l = Concat[hlCLS ;h
l
in;h

l
eef ]

(8)

where hli represents tokens with less informative
and αi denotes the corresponding class attention
weight. [;] indicates a connection operation.

3.2 Layer-wise Early Exiting
In addition to sequential token-wise EE, layer-wise
EE is used to further reduce the layers and compu-
tation of PLMs from another perspective, as shown
in Figure 2. The EE classifier is added between
every two transformer layers. The logit distribution
C lz of the EE classifier is defined as

C lz=tanh(W l
zh
l
[CLS] + blz) (9)

where W l
z ∈ RC×d and blz ∈ RJ represent the

weight and bias of the l-th EE classifier, respec-
tively, and J denotes the number of classes.

Each EE classifier in the existing EE approaches
makes its decision independently, ignoring infor-
mation from previous EE classifiers and discarding
potentially valuable information. Recycling EE
classifier memory is used to fuse useful informa-
tion from previous EE classifiers into the current
EE classifier and obtain useful information from
different layers of EE classifiers to help make accu-
rate and reliable predictions and is defined as

C lzm= (1−λ)Cl−1zm + λC lz
ŷlz = softmax(C lzm)

(10)

where ŷlz denotes the probability distribution of
the EE classifier and C lzm denotes EE classifier
memory. The cross-entropy training objectives of
these EE classifiers are defined as follows:

LCE = −
L∑
l=1

I(y) ◦ log(ŷlz) (11)

where y denotes the corresponding ground-truth
label, I(y) denotes a one-hot label with the y-th
element being one, and ◦ represents an element-
wise multiplication operation.

The weak expressiveness of the shallow EE clas-
sifier and the lack of higher-level semantic infor-
mation lead to poor performance of the shallow EE
classifier. Thus, weighted ensemble self-distillation
is applied to further improve the representation abil-
ities and obtain rich semantic information from the
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EE classifiers. Based on the importance of students,
i.e., EE classifiers, to the final prediction, an atten-
tion mechanism is used to combine all students into
a teacher model and is defined as

ηl =
exp(V T tanh(WηClzm+bη))
L∑
l=1

exp(V T tanh(WηClzm+bη))

t =
L∑
l=1

ηlC lzm

(12)

where V is the context vector, Wα and bα are the
weight and bias, respectively, and t is the teacher
for self-distillation, which is accomplished by min-
imizing the distribution between the teacher model
and the student models and is defined as

LKD =
L∑
l=1

τ2KL(softmax(C lzm/τ)||softmax(t/τ))
(13)

where KL(·||·) is the Kullback-Leibler divergence
function and τ is the temperature parameter that
measures the smoothness of the distribution. τ2

compensates for the size of the gradient scaled by
the soft target, ensuring that there is no negative
impact on the gradient size. The overall loss of the
proposed MPEE is denoted as

L = LCE + LKD (14)

In MPEE, the informative token is first selected
and the less informative token exits. Furthermore,
less informative tokens are fused into EE fusion
tokens to continue the computation in the following
layer. Then, the decision of whether to exit the
whole computation at the current layer is based
on whether the entropy value of the current EE
classifier is greater than the preset threshold F.

4 Experiments

4.1 Datasets

To evaluate the acceleration effect of the proposed
method on the inference of PLMs, we conducted
experiments on the General Language Understand-
ing Evaluation (GLUE) benchmark (Wang et al.,
2019), which includes SST-2 (Socher et al., 2013)
for sentiment analysis containing sentences from
movie reviews. QQP and MRPC (Dolan and Brock-
ett, 2005) for similarity and paraphrase. QNLI (Ra-
jpurkar et al., 2016) and MNLI (Williams et al.,
2018) for natural language inference, and the RTE
for textual entailment.

4.2 Performance and Acceleration Metrics
For performance metrics, accuracy (Acc) and F1-
score (F1) were used as evaluation metrics for
MRPC. For all other tasks, accuracy was used as
the evaluation metric.

For acceleration metrics, following Ye et al.
(2021), we used the number of floating operations
(FLOPs) as the acceleration inference ratio. Be-
cause FLOPs evaluate acceleration inference inde-
pendently of the runtime environment and hard-
ware, it is easy to compare the acceleration infer-
ence of the models. The acceleration ratio ρ is
defined as the rate of the total FLOPs by the origi-
nal model to the FLOPs actually executed by the
model and is defined as

ρ=
FLOPsexec
FLOPstotal

(15)

where FLOPs are the sum of floating operations of
all inference sample. The individual sample FLOPs
are calculated during inference. The performance
with different acceleration ratios is obtained by
adjusting the threshold F and sequence EE ratio
Ree.

4.3 Baselines
To demonstrate the effectiveness of the proposed
method, several previous methods are implemented
for comparison for PLMs accelerated inference.
The baselines include the BERT backbone model,
model compression methods, early exiting meth-
ods, and sequence reduction methods. Other model
compression methods, such as BERT-6L, Distil-
BERT (Sanh et al., 2019), BERT-PKD (Sun et al.,
2019) and LayerDrop (Fan et al., 2019) are also
applied. In addition, early exiting methods, in-
cluding DeeBERT (Xin et al., 2020), FastBERT
(Liu et al., 2020) and PABEE (Zhou et al., 2020)
and sequence length reduction methods, including
PoWER-BERT (Goyal et al., 2020) and TR-BERT
(Ye et al., 2021) are introduced for comparison.
The implementation and the optimal hyperparam-
eters are fine-tune by using a grid search strategy
to train the baseline. To make a fair comparison,
we use the same parameters for the baseline and
calculated PoWER-BERT in a single sample of
FLOPs.

4.4 Implementation Details
The implementation of the proposed model is based
on HuggingFace’s transformers (Wolf et al., 2020).
BERT-base-uncased is used as the backbone
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Model
MNLI-m SST-2 MRPC QQP MNLI-mm QNLI RTE

Acc ρ Acc ρ F1/Acc ρ Acc ρ Acc ρ Acc ρ Acc ρ

BERT-Base 83.9 1.00× 92.1 1.00× 90.3/86.3 1.00× 91.1 1.00× 83.8 1.00× 91.2 1.00× 71.1 1.00×
BERT-6L 80.3 2.00× 90.1 2.00× 86.6/80.3 2.00× 88.0 2.00× 80.6 2.00× 86.9 2.00× 64.5 2.00×
DistilBERT 79.0 2.00× 90.7 2.00× 87.5/- 2.00× 88.5 2.00× 81.5 2.00× 85.3 2.00× 59.9 2.00×
BERT-PKD 81.3 2.00× 91.3 2.00× 85.7/- 2.00× 88.4 2.00× - 2.00× 88.4 2.00× 66.5 2.00×
LayerDrop 80.7 2.00× 90.7 2.00× 85.9/- 2.00× 88.3 2.00× - 2.00× 88.4 2.00× 65.2 2.00×
DeeBERT 74.3 1.92× 90.4 1.97× 86.5/79.9 1.95× 88.2 1.96× 74.5 1.91× 86.4 1.95× 63.8 1.96×
FastBERT 74.5 1.93× 90.8 1.98× 86.6/80.3 1.96× 88.4 1.96× 74.8 1.92× 86.7 1.92× 65.0 1.98×
PABEE 79.0 1.95× 90.1 1.98× 86.8/80.4 1.80× 89.1 1.98× 79.5 1.93× 87.6 1.85× 63.9 1.96×
PoWER-BERT 81.9 2.47× 91.1 2.33× 88.4/82.8 3.11× 89.7 3.27× 81.6 2.52× 89.3 2.21× 68.2 2.56×
TR-BERT 82.1 2.96× 90.3 1.63× 84.9/75.9 1.23× 89.4 3.15× 81.9 3.02× 88.2 1.57× 67.8 2.63×
MPEE 82.6 3.38× 91.7 4.4× 88.7/83.3 3.47× 90.0 4.33× 82.3 3.41× 90.2 2.45× 69.0 3.55×

Table 1: Compare experimental results in the baseline methods with BERT backbone on GLUE.

of our model, where the transformer layer is 12
layers, the attention head is 12, and the hidden
dimension is 768. The training batch sizes are 64
and 128. The inference batch size for the proposed
model and baseline is 1. We use the grid search
to find 0.7 for Ree and 0.5 and 0.9 for β and λ,
respectively. The model is optimized using Adam,
and the learning rate is 2e-5.

4.5 Comparative Results

Table 1 shows the performance and acceleration in-
ference of the proposed method and baseline meth-
ods. The proposed MPEE method outperforms all
baseline methods in improving acceleration infer-
ence while maintaining better performance, verify-
ing the effectiveness of the proposed model. The
accuracy degradation is within a relatively small
range compared to BERT, while the acceleration in-
ference is significantly improved on most datasets.
Especially, the acceleration ratio ρ is 4.4× on SST-
2.

Further, the proposed MPEE method has 4.4×
acceleration ratio ρ on SST-2, but still maintains a
91.6% accuracy. The proposed MPEE outperforms
the existing EE methods due to the shallow layer
learns higher layer semantic information, allow-
ing it to improve its expressiveness, which leads
to decreased model performance. Ignoring hori-
zontal perspective redundancy limits accelerated
inference. On SST-2, MPEE has a 1.4% higher
performance than TR-BERT with respect to accu-
racy, but still has a 2.86× faster acceleration ratio
ρ on inference. TR-BERT discards some token in-
formation and reduces the sequence length in only
two layers to ease the convergence of the model
with RL and reduce the search space. Therefore, its

acceleration effect is relatively insignificant, thus
its performance is degraded. PoWER-BERT com-
pletely removes the token, leading to partial in-
formation loss and decreasing model performance.
This sequence reduction approach requires the com-
putation to be executed through the last layer and
ignores vertical perspective redundancy, resulting
in limited acceleration. The proposed approach sig-
nificantly reduces computation and accelerates in-
ference by simultaneous early exits from both hori-
zontal and vertical perspectives, and the EEs of the
two perspectives are orthogonal. The EE token in-
formation is preserved, and the performance of the
model is maintained by weighted self-distillation.

4.6 Ablation Study

We conducted several ablation studies to better
demonstrate the effectiveness of the proposed mod-
ules, including recycling class attention mem-
ory (Att-memory), EE fusion token (EE-fusion),
recycling EE classifier memory (EE-memory),
weighted self-distillation (WSD), layer-wise EE
(Layer-EE) and sequential token-wise EE (Token-
EE). To demonstrate their effectiveness, we have
removed each module individually to show that the
performance is degraded, as observed in Table 2.

The removal of EE fusion leads to performance
degradation because most of the semantic informa-
tion is lost in this setup. Similarly, the absence
of Att-memory leads to performance degradation,
proving the ability of proposed model to effectively
enhance the selected informative tokens by combin-
ing class attention at different layers. The removal
of Token-EE and Layer-EE leads to a significant
reduction in acceleration. The rational reason for
these results is that vertical and horizontal perspec-



4683

Model
SST-2 MRPC RTE QQP QNLI

Acc ρ F1/Acc ρ Acc ρ Acc ρ Acc ρ

BERT 92.1 1.00× 90.3/86.3 1.00× 71.1 1.00× 91.1 1.00× 91.2 1.00×
MPEE 91.7 4.40× 88.7/83.3 3.47× 69.0 3.55× 90.0 4.33× 90.2 2.45×
w/o Att-memory 91.4 4.22× 88.3/82.9 3.26× 68.1 3.26× 89.5 4.12× 89.7 2.26×
w/o EE-memory 91.3 4.27× 88.2/83.1 3.18× 68.3 3.19× 89.3 4.26× 89.8 2.32×
w/o WSD 91.2 3.92× 87.8/83.0 2.96× 67.9 3.08× 89.1 4.02× 89.5 2.06×
w/o EE-fusion 91.0 4.18× 88.0/82.5 3.23× 68.4 3.28× 89.2 4.08× 89.6 2.37×
w/o Layer-EE 91.3 2.43× 86.8/81.1 2.62× 68.2 2.43× 87.3 2.43× 90.0 1.74×
w/o Token-EE 91.5 2.47× 87.2/81.5 2.83× 68.6 1.72× 89.9 2.88× 89.9 1.71×

Table 2: Results of the ablation study of the proposed MPEE model.

Method
SST-2 QNLI

Acc ρ Acc ρ

Class Attention 91.6 4.40× 90.1 2.45×
All-token Attention 91.3 4.27× 89.7 2.36×

Table 3: Different methods of selecting the informative
token.

tive EE simultaneously lead to significant accelera-
tion inference.

The informative tokens were selected based on
class attention, which is convenient and does not
introduce additional parameters and calculations.
To show the validity of class attention, we compare
it with another choice of informative token. An-
other way to select informative tokens is to sum
the attention weights of all tokens, which is noted
as the all token attention, as shown in Table 3.
Using class attention has better performance, es-
pecially for similarity acceleration inference. The
results show that class attention is a better guide for
selecting informative tokens because the model pre-
diction is based on the [CLS] token and averaging
all token attention when there is too much redun-
dant information will dilute the important token
weights down to the selection informative token
confusion.

4.7 Analysis
Performance-Acceleration Tradeoff. To further
demonstrate the performance and efficiency trade-
off between the proposed method and baseline
methods, Figure 3 shows the performance and ac-
celeration tradeoff curves. Different accelerations
can be obtained by changing the threshold F and se-
quence EE ratio Ree. In addition, in TR-BERT, the
parameters need to be changed to retrain to obtain

Figure 3: Performance-acceleration tradeoff for MPEE,
DeeBERT, TR-BERT and PABEE.

different accelerations, which increases the com-
putational resources. This limits the application of
TR-BERT on different mobile devices. As shown
in Figure 3, the performance of the existing EE
methods decreases sharply with increasing accel-
eration ratios, which is also due to the poor perfor-
mance of shallow EE classifiers caused by the weak
representation. MPEE outperforms TR-BERT in
terms of acceleration and performance. The pro-
posed method simultaneously accelerates inference
in multiple perspectives. Preserving EE token in-
formation and weighted self-distillation maintains
the performance of the model. Another reason is
that TR-BERT reduces the sequence length in two
layers, which requires discarding more tokens to
reach similar acceleration, while we early exit to-
kens in more layers. MPEE can achieve a better
tradeoff between performance and efficiency.

Sample Distribution of Early Exiting. To better
demonstrate the superiority of the proposed method
over other methods in accelerating the inference
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of PLMs, Figure 4 shows the statistical informa-
tion of the number of samples exiting early in dif-
ferent layers. The proposed MPEE tends to exit
the model inference at an earlier classifier than
DeeBERT with a higher model performance. This
indicates that the proposed model can exit early
while maintaining high performance. Another ob-
servation is that nearly half of the samples of the
proposed model exit the model immediately at the
first layer, but the acceleration ratio ρ is 4×. This
is because the horizontal perspective EE further
reduces the computation and improves the acceler-
ation inference and because the multi-perspective
early exiting is orthogonal.
Performance of Different Class Attention
Scores. To verify whether the class attention has
the ability to discriminate the information token.
We exit the tokens of the top 70% and the bottom
70% class attention score tokens separately to ob-
tain the model performance, as shown in Figure
5. The performance of tokens with high scores
is better than the performance of tokens with low
scores. The selection of the bottom 70% class atten-
tion score tokens leads to increasingly low perfor-
mance, which is due to the model selecting tokens
with less information layer by layer. This indicates
that class attention can be used to obtain the more
informative tokens.

5 Related Work

Model Compression. Knowledge distillation (Sun
et al., 2020) refers to the training of smaller student
models using the knowledge supervision of pre-
trained larger teacher models. The student model
uses fewer layers to learn knowledge from the
teacher’s hidden units and logits, e.g., DistilBERT
(Sanh et al., 2019) and BERT-PKD (Sun et al.,
2019). Pruning (Wang et al., 2020) refers to the
removal of less important weights or computational
units. Voita et al. (2019) analyzed multi-head self-
attention importance and removed it. Sajjad et al.
(2020) discarded unimportant layers in the fine-
tuning process. PoWER-BERT (Goyal et al., 2020)
progressively reduces the sequence length and ac-
celerates the BERT model. However, ignoring the
deleted token leads to information loss and thus
reduces the performance of the model. Ye et al.
(2021) proposed using reinforcement learning to
select unimportant tokens to reduce the sequence
length. This approach requires additional strate-
gies to converge the model. Quantification (Shen

Figure 4: Distribution of different performances of
early exiting classifiers on SST-2.

Figure 5: The performance of the top 70% and bottom
70% class attention score on SST-2.

et al., 2020) is the process of reducing the number
of bits needed to represent the model weights. Gao
et al. (2021) proposed to quantize the activation
function and the weight parameters simultaneously
to reduce quantization errors.
Early Exiting. The early exiting approach refers
to allowing different samples to exit early in differ-
ent layers depending on the properties of the input
samples. DeeBERT (Xin et al., 2020) performs
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early prediction by introducing multiple EE clas-
sifiers and exits early if the confidence is greater
than the threshold, and conversely passes to the
next layer to continue the computation. FastBERT
(Liu et al., 2020) uses self-distillation to train EE
classifiers. PABEE (Zhou et al., 2020) achieves
early exit inference when EE classifier predictions
are held continuously constant.

6 Conclusions

In this paper, we propose a unified multi-
perspective early exiting framework that signifi-
cantly reduces the computation cost and improves
acceleration inference within a small performance
loss. The multi-perspective early exit framework in-
cludes horizontal and vertical perspectives early ex-
iting. It has horizontal sparsity and vertical sparsity
for faster inference. Extensive experimental results
show that compared to previous approaches, the
proposed model provides a better tradeoff between
model performance and inference efficiency. Fu-
ture work attempt to extend the proposed approach
to vision and language pretrained models, taking
into account the properties of different modalities.
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