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Abstract

Complex Question Understanding (CQU)
parses complex questions to Question De-
composition Meaning Representation (QDMR)
which is a sequence of atomic operators. Ex-
isting works are based on end-to-end neural
models which do not explicitly model the inter-
mediate states and lack interpretability for the
parsing process. Besides, they predict QDMR
in a mismatched granularity and do not model
the step-wise information which is an essential
characteristic of QDMR. To alleviate the issues,
we treat QDMR as a computational graph and
propose a transition-based method where a de-
cider predicts a sequence of actions to build the
graph node-by-node. In this way, the partial
graph at each step enables better representa-
tion of the intermediate states and better inter-
pretability. At each step, the decider encodes
the intermediate state with specially designed
encoders and predicts several candidates of the
next action and its confidence. For inference, a
searcher seeks the optimal graph based on the
predictions of the decider to alleviate the error
propagation. Experimental results demonstrate
the parsing accuracy of our method against sev-
eral strong baselines. Moreover, our method
has transparent and human-readable intermedi-
ate results, showing improved interpretability.

1 Introduction

The task of complex question understanding (CQU)
aims at converting complex questions which re-
quire multi-hop reasoning into consecutive trivial
sub-questions. An example of CQU is shown in
Figure 1. To answer the question "return me the
author in the University of Michigan whose papers
have more than 5000 total citations", CQU models
decompose it into several trivial sub-questions (e.g.
"return authors"), and the final answer is obtained
by consecutively answering the sub-questions. To
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Question: Return me the author in the University of Michigan
whose papers have more than 5000 total citations

Figure 1: An example of CQU consists of a complex
question and different modeling of QDMR.

capture the meaning of questions over unstruc-
tured sources such as text and images, Question
Decomposition Meaning Representation (QDMR)
(Wolfson et al., 2020) is proposed where questions
are represented through a sequence of atomic ex-
ecutable operators, and the final answer can be
obtained by answering the operator sequences in or-
der. QDMR has been shown to improve the perfor-
mance and interpretability for multi-hop question
answering (Hasson and Berant, 2021; Subramanian
et al., 2020; Talmor et al., 2021).

Existing works for CQU can be roughly di-
vided into two categories: the seq2seq-based au-
toregressive parser (Wolfson et al., 2020) and the
dependency-based non-autoregressive parser (Has-
son and Berant, 2021). However, these approaches
are based on end-to-end models which do not ex-
plicitly model the intermediate states and lack in-
terpretability for the parsing process. Besides, they
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Figure 2: An overview of our transition-based framework.

predict QDMR in a mismatched granularity. The
former category generates QDMR as a sentence (as
shown in Figure 1 ➊) and adopts the seq2seq model
to decode the QDMR token-by-token. This token-
level modeling is sub-optimal since it ignores the in-
herent operator-level structure of QDMR and thus
performs worse when the QDMR has longer oper-
ators and when the question is informative. The
latter category maps QDMR to a dependency graph
over the question tokens (as shown in Figure 1 ➋)
and adopts a non-autoregressive parser to decode
the entire dependency graph in a single step. It
predicts all operators in the QDMR simultaneously
and ignores the interaction between operators, trad-
ing off performance for computational efficiency.
(Hasson and Berant, 2021) also tries combining the
two approaches by exploiting the graph supervision
to train the encoder in the seq2seq model. To sum
up, these methods have drawbacks in modeling the
intermediate states and the step-wise information
which is a distinct characteristic of QDMR.

To alleviate the shortcomings of the above meth-
ods while preserving their advantages, we treat
QDMR as a computational graph and propose a
transition-based method where a decider predicts
a sequence of actions to build the graph node-by-
node. At each transition step, one new node and its
referencing edges are decided given the question
and the previously generated partial graph. In this
way, the partial graph at each step enables better
representation of the intermediate states and better
interpretability. We illustrate the proposed method
in Fig. 2. The generated graph starts from empty
and expands incrementally in a node-by-node man-
ner. At each step, given the question and the current

state, the step-wise decider encodes them with spe-
cially designed encoders and predicts several candi-
dates for the next action which includes a node, its
connecting edges, and its confidence. After each
step, the partial graph is either expanded according
to the action or finalized as a QDMR. For infer-
ence, a searcher seeks the optimal graph based on
the predictions of the decider to alleviate the error
propagation.

To verify the effectiveness of our proposed
method, abundant experiments are conducted on
the BREAK dataset, which contains 83,978 exam-
ples from ten QA datasets across three modalities.
Experimental results show that our method outper-
forms strong baselines and achieves the state-of-
the-art on the BREAK dataset. We further analyze
the interpretability of our method. Overall, our
work makes the following major contributions:

1. To the best of our knowledge, we are the
first to investigate the transition-based method
for CQU by modeling the intermediate states
which facilitate better encoding and better in-
terpretability.

2. Experiments on BREAK demonstrate the pars-
ing accuracy of our method against strong
baselines. Moreover, further analysis and vi-
sualization verify the interpretability.

2 Method

2.1 Problem Definition
Given a question with n tokens, q =
(q1, q2, . . . , qn), the goal of CQU is to parse
it to its QDMR. In this work, we treat QDMR
as a computational graph G = ⟨V,E⟩ where V
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and E are the node set and edge set. A node
vi ∈ V is a sequence of |vi| tokens vi = vi1...v

i
|vi|,

where token vij is either a question token ∈ Vq
(or some inflection of it), a word from a constant
predefined lexicon ∈ Vconst, or a reference token
∈ V iref = {#1, ...,#(i − 1)} referring to a
previous step. A directed edge eij ∈ E pointing
from vi to vj is the reference token #j in vi.

2.2 Overview
To address the aforementioned challenges in this
task, we propose a neural transition-based model
for CQU which decides a new node along with
its connections to existing nodes at each step to
incrementally build a computational graph. The
construction process is briefly illustrated in Fig. 2.
At each step i, given the question q and the cur-
rent state si = {Gi} where Gi =

〈
V i, Ei

〉
de-

notes the generated partial graph, the stepwise de-
cider predicts several candidates of the next ac-
tion ai+1 =

〈
vi+1,∆Ei, pi+1

〉
, where vi+1 de-

notes the next node, ∆Ei denotes the edges start
from vi+1 and pi+1 denotes the confidence of the
action. Then, we expand the graph from Gi to
Gi+1 =

〈
V i + vi+1, Ei +∆Ei

〉
and update the

current state according to the predicted action. We
repeat the above iteration until the end action is
predicted. In inference, we adopt a searcher to
maintain and seek the optimal graphs based on the
node confidence at each step.

2.3 State Representation
At each step i, given the question q and the cur-
rent state si = {Gi} where q denotes the question
and Gi =

〈
V i, Ei

〉
denotes the partial graph, we

firstly use two encoders to obtain their representa-
tion respectively. Then, we feed them into a dual
interaction layer to update them dynamically.

2.3.1 Question Encoder
We feed the input question q = (q1, q2, . . . , qn)
into the Transformer encoder of a pretrained
seq2seq model (e.g. BART) to get the contextual
representation matrix Hq ∈ Rn×dh , where dh is
the dimension of the hidden states in BART and
n is the length of question. In this way, question
q can be represented as Hq = {hq

1,hq
2, . . . ,hq

n},
where hq

i is the contextual representation of the
i-th token of q. We call Hq static question rep-
resentation to distinguish it with the dynamically
updated question representation Hqi introduced in
section 2.3.3.

2.3.2 Graph Encoder
We treat the incrementally expanding graph as a
sequence of actions in the chronological order of
when they are added in. We adopt the order given
in the dataset. We utilize the Transformer decoder
to serve as the graph encoder . Concretely, we use
the masked self-attention mechanism to ensure that
the representation of the node and edges at step
i takes all previous nodes and edges in Gi−1 into
consideration.

Formally, given the graph Gi, we get the input
tokens of the linearized graph by seperating actions
with special tokens to indicate their boundaries:
([A1], v

1
1, . . . , v

1
|v1|, [A2], . . . , [Ai], v

i
1, . . . , v

i
|vi|).

If vi is the last action in the graph, we append a
special token [END] to indicate the termination
of the parsing process. We feed the input tokens
into the graph encoder to get the contextual
representation matrix Hg ∈ Rp×dh , where p is the
length of the input tokens. In this way, Gi can
be represented as HGi

= {hGi

1 ,hGi

2 , . . . ,hGi

p },
where hGi

i is the contextual representation of the
i-th token of the input tokens. We repeat the above
encoding every time a new token in the next action
i.e. vi+1

j is generated to integrate the partial action
semantic.

2.3.3 Interaction Layer
We observe that different nodes tend to use differ-
ent parts of the question, and that question tokens
already present in the partial graph are less likely to
be chosen in the later nodes. To model this obser-
vation, we apply the scaled dot-product attention
proposed in (Vaswani et al., 2017) to dynamically
update the question representation according to the
generated partial graph.

αi
1 = softmax(

WK
1 Hq(WQ

1 HGi
)T√

dk
),

Hqi = αi
1W

V
1 Hq

(1)

where {WQ
1 ,WK

1 } ∈ Rdh×dh denote learnable ma-
trices that transform the graph and question repre-
sentation into the query and key subspace respec-
tively. The attention weights over all question to-
kens αi ∈ R|q| softly indicate whether a token is
already present in the partial graph. W V

1 ∈ Rdh×dh

denotes the learnable matrix that projects the ques-
tion representation into the value subspace, and the
projected value vectors are averaged according to
αi to get the updated question tokens representa-
tion H i. Similarly, to make the representation of
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Gi attends to all question tokens in q, we apply the
source-attention mechanism which takes the output
of the question encoder as the key:

αi
2 = softmax(

WK
2 HGi

(WQ
2 Hq)T√

dk
),

ĤGi
= αi

2W
V
2 HGi

(2)

Finally, we apply MaxPooling over all question
tokens representation and node tokens representa-
tion to obtain the final representation for action
prediction:

hfinal = MaxPooling(Hqi , ĤGi
) (3)

where the MaxPooling is performed on the first
dimension and hfinal ∈ Rdh .

2.4 Action Prediction

At each step i, given the representation of the
current state hfinal, we use the action predictor
to predict several candidates of the next action
ai+1 =

〈
vi+1,∆Ei, pi+1

〉
, where vi+1 denotes

the next node, ∆Ei denotes the edges start from
vi+1 and pi+1 denotes the confidence of the action.

2.4.1 Node Prediction
Note that as mentioned in 2.1 , a node vi+1 is a se-
quence of |vi+1| tokens vi+1 = (vi+1

1 , . . . , vi+1
|vi+1|),

where token vi+1
j is either a question token ∈ Vq

(or some inflection of it), a word from a constant
predefined lexicon ∈ Vconst, or a reference token
∈ V i+1

ref = {#1, . . . ,#i} referring to a previous
step. Among them, the reference token #j also
belongs to the edge tokens eij . Therefore, we de-
compose the prediction of the reference tokens into
two stages. In the node prediction stage, we pre-
dict #R indicating a placeholder for the edge to-
ken. Then, in the edge prediction stage, we predict
the exact number of the reference token to replace
R and get #j. The probability over vocabulary
V = Vq

⋃
Vconst

⋃
{#R} can be obtained by:

P (vi+1
z |vi+1

<z , q, Gi, θ) = softmax(WPhfinal+bP )
(4)

where WP ∈ Rdk×|V|, bP ∈ R|V| are learnable
parameters that transform the final representation
into the probability over V . The model is pa-
rameterized by θ. vi+1

<z denotes the partial action
{vi+1

0 , . . . , vi+1
j−1}.

2.4.2 Edge Prediction
Instead of treating the reference tokens as static
tokens in the vocabulary as the previous works,
which shares the embeddings among different ex-
amples and thus ignores their semantics. We obtain
their representation dynamically according to the
constructed partial graph. Specifically, we average
the representation of vi1 . . . v

i
|vi| to obtain the rep-

resentation of #i which is denoted as h#i. Then,
we adopt a bilinear function to compute the simi-
larity between each reference representation h#i

and the final representation hfinal. The probability
over V i+1

ref can be obtained by:

P (vi+1
z |vi+1

<z , q, Gi, θ) = softmax(ErefW refhfinal)

j = argmaxj∈Vi+1
ref

P (j|vi+1
<z , q, Gi, θ)

(5)
where Eref ∈ Ri×dh denotes the embedding ma-
trix of the reference tokens. W ref ∈ Rdh×dh is a
learnable matrix. We use the predicted reference
number j to replace R for vi+1

z if it is a #R.

2.4.3 Action Confidence
We apply beam search with beam size K1 sampling
on P (vi+1

z |vi+1
<z , q, Gi, θ) to get top K1 candidate

actions. The confidence of each candidate action
ai+1 is defined as the probability of the predicted
sequence i.e. the product of the probabilities of the
predicted tokens vi+1

1 . . . vi+1
|vi+1|:

P (ai+1|q,Gi, θ) =

|vi+1|∏
z=1

P (vi+1
z |vi+1

<z , q, Gi, θ)

(6)

2.5 Training

We train our transition-based model with the stan-
dard maximum likelihood estimate using teacher
forcing. In other words, we maximize the sum of
the stepwise action confidence. The loss w.r.t an
example is defined as follows:

P (G|q, θ) =
|G|∏
i=1

P (ai+1|q,Gi, θ)

L(G|q, θ) = − 1

m

m∑
i=1

logP (ai+1|q,Gi, θ)

(7)

where G = (a1, . . . , am) =
([A1], v

1
1, . . . , v

1
|v1|, [A2], . . . , [Am], . . . , vm|vm|, [END])

and m denotes the number of the action in G.
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2.6 Inference

The whole inference procedure is shown in Algo-
rithm 1. At line 1 ∼ 3, we first obtain the ques-
tion representation and initialize the output with an
empty graph. In the loop from line 5, we predict
an action at each transition step until the [END] is
generated. At each transition step, we first initialize
the predicted action vi+1

0 with [Ai]. Then, in the
loop from line 9, we generate a token at each step
until the [Ai+1] or [END] indicating the termina-
tion of an action is predicted. At line 10 ∼ 15, we
obtain the partial graph representation and the final
representation. At line 18 ∼ 21, we first predict
vi+1
z by sampling on Eq. 4. Then, we decide the ex-

act number by Eq. 5 if vi+1
z is a #R token. At line

24, we obtain topK2 ai+1 by sampling on Eq. 7.
Finally, we add the action predictions to Gi and get
the new graph Gi+1.

Note that in the above inference procedure, we
adopt a searcher which seeks for high-probability
output graphs to relieve the error propagation and
guide the direction of the graph expansion. Inspired
by the traditional beam search which decodes a
single token at each search step, we replace the
original generation probability with the action con-
fidence defined in Eq. 6. At step i, we maintain
K2 candidate actions sampling on the probability
P (ai+1|q,Gi, θ) where K2 denotes the beam size.

3 Experiment

3.1 Experimental Setup

Datasets and Metrics Our evaluation is con-
ducted on the dataset BREAK. The question-
QDMR pairs are crowd-sourced based on ques-
tions sampled from ten widely-used QA datasets.
It consists of 83,978 examples including 60,150
examples with QDMR and 23,828 examples with
high-level QDMR. We do not include examples
with high-level QDMR for the sake of a fair com-
parison with the previous work.The QA datasets
included in BREAK and the statistics are listed in
Table 1. The train/dev/test sets are partitioned fol-
lowing the original datasets. The distribution over
QDMR sequence length is listed in Table 4. Note
that the gold answers of the test set are not pub-
licly available, so we report performance on the
development set.

Metrics Following the previous work (Hasson
and Berant, 2021), we use Normalized Exact Match
(NormEM) and Logical Form Exact Match (LF-

Algorithm 1 Inference procedure of our framework

Require: a question with n tokens q =
(q1, q2, ..., qn).

Ensure: topK2 computational graphs.
1: Hq ←Question-Encoder(q);
2: G0 ← (V 0, E0), V 0 ← ∅, E0 ← ∅;
3: i← 1;
4: // Generating topK2 Action Sequence
5: while the last action ai+1 is not [END] do
6: vi+1

0 ← [Ai];
7: z ← 1;
8: // Generating topK1 Action Candidates
9: while the last token vi+1

z−1 is not in
{[Ai+1], [END]} do

10: Gi ← Gi + {vi+1};
11: // Partial Graph Encoding
12: HGi ←Graph-Encoder(Gi, q);
13: // Interaction
14: Hqi ←Attention(Hq, HGi

)Hq;
15: ĤGi ←Attention(HGi

, Hq)HGi;
16: hfinal ← MaxPooling(Hqi , ĤGi

);
17: // Node & Edge Prediction
18: get topK1 vi+1

z by a search step on
Eq. 4;

19: if vi+1
z =#R then

20: get the number of #R by Eq. 5.
21: end if
22: z ← z + 1;
23: end while
24: get topK2 a

i+1 by a search step on Eq. 7;
25: Gi+1 ← Gi + {ai+1};
26: i← i+ 1;
27: end while

EM) as the evaluation metrics. Normalized Ex-
act Match (NormEM): The predicted and gold
QDMRs are first normalized by a rule-based pro-
cedure, and then exact string match is computed
between the two normalized QDMRs. The value
for each sample is either 0 or 1. Logical Form
Exact Match (LF-EM): The predicted and gold
QDMRs are first converted to the logical form by a
rule-based procedure, and then exact string match
is computed between the two logical form QDMRs.
The value for each sample is either 0 or 1.

Implementation Details We follow the previous
work (Hasson and Berant, 2021) for implementa-
tion. We use BART-base (Lewis et al., 2019) as our
backbone. The models are implemented in Pytorch
(Paszke et al., 2019) and are trained on a single
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BREAK

ACADEMIC ATIS CLEVR COMQA GEO CWQ DROP NLVR2 SPIDER Total

Train 195 4042 9453 3546 547 1985 7683 9915 6955 44321
Dev - 457 2215 988 50 475 1268 1805 502 7760
Test - 407 2267 986 280 528 1279 1797 525 8069

Table 1: The question distribution of each QD dataset in BREAK.

Figure 3: The average LF-EM of our method and baselines for different lengths of QDMR on the dev set.

Model NormEM LF-EM

CopyNet+BERT 37.3 47.4
BiaffineGP - 45.3
Latent-RAT 35.6 46.9

BART 38.1 47.7
Ours w/o Beam Search 38.9 48.1
Ours w/ Beam Search 41.2 49.7

Table 2: NormEM and LF-EM on the dev set.

GeForce RTX 3090 GPU. We set the batch size
as 32, and the max training epoch number as 20
with early stopping (patience=5). We utilize Adam
optimizer (Kingma and Ba, 2014) with a dynamic
learning rate according to the slanted triangular
schema. The beam size of both inner and outer
beam search is set to 5.

Baselines We compare our framework with var-
ious previous works in terms of parsing accuracy
and interpretability.
CopyNet+BERT is a seq2seq model consisting
of a BERT encoder and an LSTM decoder with
a copy mechanism. BiaffineGP is based on the
biaffine dependency parser of (Dozat and Manning,

2018) except that it predicts a DAG and not a tree.
Besides, it applies an Integer Linear Programming
layer on top of it to eliminate constraint violations
in the output graph. Latent-RAT is based on RAT
transformer layers (Shaw et al., 2018; Wang et al.,
2019) to predict the graph structure using the en-
coder and predict the QDMR sequence using the
decoder. BART is based on the pretrained seq2seq
model BART.

3.2 Results

3.2.1 Main Results

Table 2 shows the overall performance of our
method and all the baselines on the development
set of BREAK. Our method achieves the best results
among the recently available methods. Specifically,
our method without beam search achieves compa-
rable performance to BART with advantages of 0.8
NormEM and 0.4 LF-EM and outperforms Copy-
Net+BERT by 1.6 NormEM and 0.7 LF-EM. We
attribute the performance gain to the better model-
ing of the question and the current state. Enhanced
by beam search, our method exceeds BART by 3.1
NormEM and 2.0 LF-EM which demonstrates the
potential of increasing the search space.
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Question Wrong Prediction Ours

How many was the differ-
ence between Sobieski’s
force and the Turks and
Tatars?

Latent-RAT:
1.select(sub=Sobieski)
2.project(projection=force of #REF;sub=#1)
3.select(sub=Turks)
4.select(sub=the Tatars)
5.arithmetic[difference](left=#2;right=#3)
6.arithmetic[difference](left=#4;right=#5)

1.select(sub=Sobieski)
2.project(projection=force of #REF;sub=#1)
3.project(projection=size of #REF; sub=#2)
4.select(sub=the Turks and Tatars)
5.project(projection=the force of #REF; sub=#4)
6.project(projection=size of #REF;sub=#5)
5.arithmetic[difference](left=#6; right=#3)

How many year after
Knopf was founded was
it officially incorporated?

BiaffineGP:
1.project(projection=Knopf was founded years;
sub=#1)
2.select(sub=was it officially incorporated)
3.project(projection=years;sub=#2);
4.arithmetic[difference](left=#3;right=#1)

1.select(sub=Knopf was founded)
2.select(sub=Knopf was officially incorporated)
3.project(projection=year of #REF; sub=#1)
4.project(projection=year of #REF; sub=#2)
5.arithmetic[difference](left=#4; right=#3)

Table 3: Two cases from the dev set. The outputs are converted to Logical Form for comparison with BiaffineGP.
One can refer to (Hasson and Berant, 2021) for the conversion details.

Length 1-2 3-4 5-6 7-8 9+

Percentage(%) 10.7 44.9 27.0 10.1 7.4

Table 4: The distribution over the length of QDMR
actions.

Token Action

Train 11.59 4.75
Dev 11.35 4.90

Table 5: The average length of token sequences and
action sequences in QDMR.

3.2.2 Length Analysis

In order to explore how much does our transition-
based framework contribute to examples with
longer steps, we plot and compare the average LF-
EM of different methods for each possible num-
ber of steps in QDMR. From Figure 3 we can see
that, as the number of steps increases, our method
exceeds the baselines greater. It verifies that our
method handles complex decompositions better.

Table 5 shows the average length of token se-
quences used in seq2seq models and of action se-
quences used in our method. As shown in the table,
the action sequence is much shorter than the to-
ken sequence i.e. reduced from 11 to 5 in length.
In other words, representing QDMR as an action
sequence has the advantage of more compact en-
coding which makes the modeling of long-distance
dependency easier. Therefore, it is more appropri-
ate for QDMR generation.

3.2.3 Interpretability Analysis
In order to verify the interpretability of our method,
we print the beam search process together with
the log probabilities of different action sequences.
From Figure 4 we can see that, the sequence with
the highest log probability (-2.44) matches the gold
decomposition. We note that although the last three
sequences do not match with the gold decomposi-
tion, they are logically equivalent to the provided
gold one which can also get the correct answer to
the question.

3.2.4 Case Study
We show two examples from the development set
to illustrate the effectiveness of our model by com-
paring the results of different models in Table 3.
The first example shows that beam search helps
for searching the optimal graph. Latent-RAT fails
to predict the correct structure and starts to devi-
ate from step 3. In contrast, our method seeks
the optimal graph in a larger search space and pre-
dicts the correct structure. The second example
shows that our modeling of the question and the
current state helps the model decide a step more
accurately. In the example, BiaffineGP predicts the
whole graph in an end-to-end manner. Our method
predicts more accurately with the help of the better
representation.

4 Related Work

Complex Question Understanding Complex
question understanding is proposed by (Wolfson
et al., 2020) as a standalone language understand-
ing task. They introduce a formalism named
QDMR to represent the meaning of questions that
relies on question decomposition and is agnostic to
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Figure 4: The beam search process of our method corresponds to the question "What color is the smallest, shiny
object?". For simplicity, we do not draw the unselected nodes. The log probability of the final graph is listed at the
end of the sequence.

the information modality. Existing approaches can
be divided into two categories: the seq2seq-based
method and the dependency-based method. The
seq2seq-based method (Hasson and Berant, 2021)
treats QDMR as a sentence and adopts a seq2seq
model to decode the textual QDMR one token at
each step. This token-wise modeling seems sub-
optimal for generating QDMR which ignores its
inherent structure. The dependency-based method
(Hasson and Berant, 2021) maps QDMR to a de-
pendency graph over question tokens and adopts
a non-autoregressive graph parser to predict the
entire graph in a single step. It predicts all steps
of QDMR simultaneously which does not model
the interaction between different predictions, trad-
ing off performance for efficiency. There is also
work combining the two categories by exploiting
the graph supervision to train a seq2seq model.
It adds an auxiliary loss term where the graph is
decoded from the encoder representations. How-
ever, the above methods do not explicitly model
the step-wise information which is an essential and
distinct characteristic of QDMR. Before CQU was
proposed, some work has explored decomposing
questions to facilitate answering complex questions
that require discrete reasoning (Talmor and Be-
rant, 2018). IBM Watson (Ferrucci et al., 2010)
decomposes questions into sub-questions in mul-
tiple ways or not at all. DECOMPRC (Min et al.,
2019) recasts sub-question generation as a span
prediction problem which requires only 400 de-
composition examples to train a competitive model.
(Iyyer et al., 2017; Talmor and Berant, 2018) have
also decomposed questions to create a sequential
question answering task. Despite the initial success,
their decomposition methods remain preliminary

and they conduct experiments on a much more lim-
ited set of questions than in BREAK.

Semantic Parsing Semantic parsing is a larger
area of work that aims at parsing natural language
utterances into logical forms(Zelle and Mooney,
1996; Zettlemoyer and Collins, 2012; Liang et al.,
2013). They are usually executed over structured
knowledge bases such as relational databases(Yu
et al., 2018) and graph KBs(Yih et al., 2016). Our
work is inspired by the idea of transition-based
systems from semantic parsing(Chen et al., 2018).
CQU differs from semantic parsing in that it pro-
duces meaning representation expressed in natural
language which is easy to annotate at scale and can
be potentially converted to other meaning represen-
tations based on the task at hand. Besides, CQU
focuses on representing the semantics of complex
questions which is important for QA systems and
for probing models for reasoning.

5 Conclusion

In this paper, to model the intermediate states and
the step/operator-wise semantic, we view QDMR
as a computational graph and propose a transition-
based method where a decider wrapped with a
searcher incrementally constructs the graph. Ex-
perimental results show that our framework out-
performs the state-of-the-art CQU model by 3.1
NormEM and 2.0 LF-EM. Further visualization
also demonstrates the interpretability of our method
by giving transparent and human-readable interme-
diate results.
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