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Abstract
Although it is widely agreed that world knowl-
edge plays a significant role in quantifier scope
disambiguation (QSD), there has been only
very limited work on how to integrate this
knowledge into a QSD model. This paper
contributes to this scarce line of research by
incorporating into a machine learning model
our knowledge about relations, as conveyed
by a manageable closed class of function
words: prepositions. For data, we use a scope-
disambiguated corpus created by AnderBois,
Brasoveanu and Henderson, which is addition-
ally annotated with prepositional senses using
Schneider et al’s Semantic Network of Adpo-
sition and Case Supersenses (SNACS) scheme.
By applying Manshadi and Allen’s method to
the corpus, we were able to inspect the informa-
tion gain provided by prepositions for the QSD
task. Statistical analysis of the performance
of the classifiers, trained in scenarios with and
without preposition information, supports the
claim that prepositional senses have a strong
positive impact on the learnability of automatic
QSD systems.

1 Introduction

QSD is a problem in natural language processing
that arises in connection with sentences that contain
multiple quantified NPs:

(1) Every kid climbed a tree.

Sentence (1) can be understood to mean that ev-
ery kid climbed a possibly different tree. This is
the so-called surface scope reading where the first
quantified NP has wider scope than the second,

corresponding to the surface ordering of the two
NPs in the sentence: every kid > a tree. The other,
and usually less preferred, reading is the one in
which there is a single tree that all the kids climbed.
This is the inverse scope reading where the second
quantified NP has wider scope than the first, re-
versing the order of the two NPs in the sentence:
a tree > every kid. Many studies on quantifier
scope have dealt with the issue of generating the
set of possible scope readings for a sentence like
(1), both from a theoretical perspective (May, 1978;
Cooper, 1983; May, 1985; Hendriks, 1993; Steed-
man, 2012; Barker and Shan, 2014) and computa-
tionally (Woods, 1987; Hobbs and Shieber, 1987;
Bos, 1996; Copestake et al., 2001; Egg et al., 2001;
Bos et al., 2004; Koller et al., 2008; Evang and
Bos, 2013; Sayeed, 2016). A much smaller num-
ber of studies have focused on statistical and au-
tomatic QSD and the problem of identifying the
set of factors relevant to scope preferences (Hig-
gins and Sadock, 2003; AnderBois et al., 2012;
Manshadi and Allen, 2011; Manshadi et al., 2013).
These studies have shown, mostly in line with what
was proposed in the semantics literature and borne
out in psycholinguist work (Ioup, 1975; Micham
et al., 1980; Gillen, 1991; Kurtzman and MacDon-
ald, 1993; Tunstall, 1998; Anderson, 2004; Radó
and Bott, 2011; Dotlačil and Brasoveanu, 2015;
Capelier-Mourguy et al., 2015), that the grammati-
cal role (i.e., subject and object) and lexical realiza-
tion of a quantifier have an effect on scope-taking;
linear precedence in a sentence has an effect as
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The above factors are certainly not sufficient to
predict quantifier scope. It has been repeatedly
stressed in previous work that world knowledge
also plays a significant part in real world QSD,
and any successful model for the QSD task should
make use of it (Saba and Corriveau, 2001; Srini-
vasan and Yates, 2009; Manshadi and Allen, 2011;
AnderBois et al., 2012; Tsiolis, 2020). To the best
of our knowledge, however, Srinivasan and Yates
(2009) have been unique in using a model explic-
itly geared towards world knowledge (in particular,
numerical typicality) in the QSD task. Drawing on
Saba and Corriveau (2001), they decided on the pre-
ferred scoping by comparing the size of two classes,
e.g., Person and City, standing in a relation such
as the living-in relation. For example, the surface
scope reading is dispreferred in a sentence such as
A person lives in every city because it would require
a person to live in an atypically large number of
cities. The present study seeks to contribute to this
scarce line of research through incorporating into
a QSD model our knowledge about relations, as
conveyed by a manageable closed class of function
words: prepositions.

Relations between objects (but also times,
events) are often signaled with prepositions (Puste-
jovsky, 1991; Srikumar and Roth, 2013; Abzian-
idze and Bos, 2017; Schneider et al., 2018). Prepo-
sitions serve, among other things, to convey place
and time (There is a restaurant at every cor-
ner, John taught on each Monday), to express
configurational relationships like possession or
part/whole (someone with every key, a day of every
month), and to indicate semantic roles in predi-
cate–argument structure like agent or instrument (a
study sponsored by a consumer group, a store filled
with lots of food). Recent work argues that certain
prepositional senses are special in that they encode
dependencies that have an effect on scope-taking
(Grudzińska and Zawadowski, 2019, 2020). For
example, the preposition of expressing ‘part-whole
sense’ — as in a day of every month — introduces
a dependency between each whole (month) and
its respective parts (days). By quantifying over
this dependency, we obtain the inverse scope read-

1The effect of linear precedence has been debated in previ-
ous works, with some authors arguing against it (Ioup, 1975;
Micham et al., 1980; Kurtzman and MacDonald, 1993), and
it needs to be further explored, especially in freer word order
languages with case marking (as is the case, e.g., in Sayeed
et al. (2019)).

ing for the example in question: for every month,
there is a different day that belongs to it (every
month > a day). The surface scope reading (a
day > every month) is excluded because of what
we know about parts and wholes, namely that we
can have many parts (days) belonging to the same
whole (month), but a single part (day) cannot be-
long to more than one whole (month). Conversely,
the ‘whole-containing-part sense’ of the preposi-
tion of — as in a group of four homeowners —
encodes a dependency between a group and its re-
spective members, thus only allowing surface scope
(a group > four homeowners). Furthermore, uni-
versal quantification in locative and temporal prepo-
sitional phrases tends to support inverse scope. For
example, the locative preposition at — as in a
restaurant at every corner — implies ‘disjointness’
(objects do not occupy more than one place at a
time), and hence can be interpreted as a dependency
between each corner and the respective restaurants
located at that corner. Quantifying over this depen-
dency yields the inverse scope reading: for every
corner, there is a different restaurant located at it.
The surface scope reading is excluded because one
restaurant cannot occupy more than one place (ev-
ery corner) simultaneously.

Our study takes its theoretical inspiration from
the above work and contributes to research on au-
tomatic QSD by examining the previously unex-
plored predictors of quantifier scope: prepositions
and their senses. For the experiments undertaken
in this study, we use a scope-disambiguated cor-
pus created by AnderBois et al. (2012), addition-
ally annotated with prepositional senses using the
Semantic Network of Adposition and Case Super-
senses (SNACS) scheme proposed in Schneider
et al. (2018). Our results indicate that preposi-
tional senses have a strong role in the QSD task
and encourage further research and deeper analy-
sis in this area. The structure of the paper is as
follows. Section (2) introduces our corpus and dis-
cusses its annotation process. Section (3) explains
the methodology of our study. In (4), we introduce
our experimental setup and discuss the features we
have used in our models. Section (5) presents our
results and (6) concludes with a summary and some
directions for future work.

2 Corpus

The present study uses a scope-disambiguated cor-
pus which was created for the purposes of the 2012
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study by AnderBois, Brasoveanu and Henderson
(2012). It consists of 680 sentences with multiple
quantified NPs from the reasoning section of the
Law School Admission Test — the so-called logic
puzzles. Logic puzzles provide a good corpus for
QSD for they use quantifiers frequently, provid-
ing a fair number of sentences containing scopally
interacting quantifiers.

Every sentence of AnderBois et al.’s corpus is la-
beled with the relative scope of the quantified NPs
involved. Scope is coded numerically, with 1 cor-
responding to widest scope and smaller numbers
indicating narrower scope; cases with no relative
scope like logical equivalence (e.g., two universals
or two existentials) are co-tagged with the same
number. The scope predictors incorporated into
the annotation in the corpus include sentence order
(it is not explicitly tagged, since it can be recov-
ered from the linear order of the tags themselves),
grammatical function (Subject, Object, Adjunct,
etc.) and lexical realization of quantifiers. The be-
ginning of the tag is marked by & and the end is
marked by ♯:

(2) Hannah visits at least one&3_O_
at.least.one♯ city in each&2_in_each♯ of
the three&1_of_the.three♯ countries.

Since the sentences in the corpus were chosen
for quantified NPs, they would be expected to pro-
vide no bias with respect to prepositions. The
most common prepositions in English identified
by Litkowski and Hargraves (2007) do indeed over-
lap in eight cases with those in the corpus, although
in some cases the frequency distribution is differ-
ent: of, in, on, at, to, for, with, and from. While
individual prepositions in prepositional phrases are
tagged separately in the corpus (as illustrated by
example (2)), the prepositional senses are not. It is,
however, prepositional senses (rather than preposi-
tions) that induce or block inverse scope. For ex-
ample, as discussed above, the ‘part-whole sense’
of the preposition of induces inverse scope, while
its inverse ‘whole-containing-part sense’ blocks
it. For our study, we additionally annotated the
corpus with prepositional senses, using the Se-
mantic Network of Adposition and Case Super-
senses (SNACS) scheme proposed in Schneider et
al. (2018; 2020).

2.1 Preposition-sense annotation

The SNACS scheme provides a hierarchy of 50
supersenses, divided into three main subhierarchies
that loosely correspond to adverbial adjuncts, event
arguments, and adnominal complements:

• CIRCUMSTANCE: TIME, LOCUS, MEANS,
MANNER, PATH, . . .

• PARTICIPANT: AGENT, THEME, RECIPIENT,
BENEFICIARY, INSTRUMENT . . .

• CONFIGURATION: WHOLE, ORG, QUANTI-
TYITEM, POSSESSION, STUFF . . .

Furthermore, the scheme deploys the construal
analysis proposed in Hwang et al. (2017), i.e., it
introduces a distinction between a SCENE ROLE

(marked by SS), which expresses the preposition’s
meaning in context, and a FUNCTION (marked by
SS2), which denotes the preposition’s lexical mean-
ing. Both SCENE ROLE and FUNCTION are drawn
from the supersense hierarchy and are often iden-
tical. The SNACS scheme was applied to prepo-
sitions in the STREUSLE corpus, a collection of
online consumer reviews taken from the English
Web Treebank (Bies et al., 2012). Each preposition
token in the STREUSLE corpus is annotated with
SS and SS2 (SS;SS2):

(3) Dan arrived at 10 am. TIME;TIME

(4) The team at Max’s is great. ORG;LOCUS

In example (3), the preposition at is unambiguously
temporal — SS and SS2 are congruent. In example
(4), there is an overlap between organizational be-
longing meaning (marked by ORG) and locational
meaning (marked by LOCUS) — SS and SS2 dif-
fer. The construal analysis helps with cases where
multiple supersenses seem to fit and contributes to
reducing disagreement among annotators, who are
not forced to pick a single label in cases of meaning
overlap.

Our scope-disambiguated corpus has been anno-
tated with prepositional senses by three annotators,
all non-native speakers with linguistic training. The
annotators were familiar with the annotation man-
ual — guidelines for English including description
of the 50 supersenses, with examples and crite-
ria for borderline cases (Schneider et al., 2020).
Across all targets, there was good agreement on SS

between the three annotators, k = .68, p = .000,
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and there was very good agreement on SS2 be-
tween the three annotators, k = .79, p = .000.
Agreement was higher on the function slot than on
the scene role slot. This is expected considering
the fact that the function of a preposition reflects
its prototypical and more stable meaning, whereas
the scene role depends on context and can vary
more from person to person. Our results are only
slightly lower than the SNACS IAA numbers found
in Schneider et al. (2018) (k = .73 and k = .80).
Our agreement is so strong most likely due to the
simple literal language of the logic puzzles. The re-
maining differences were adjudicated in meetings
involving all of the three annotators.

2.2 Scope annotation

The number of tagged quantified NPs in a sentence
ranges from two to eight in AnderBois et al.’s cor-
pus. Manshadi and Allen (2011, 2013) developed
a method that can deal with an arbitrary number
of quantifiers per sentence in the QSD task. They
define the task as learning to build a partial or-
der over the set of quantifiers in the sentence. In
adapting the scope coding in AnderBois et al.’s
corpus to Manshadi and Allen’s method, we thus
consider three relations between each pair of quan-
tifiers {q1, q2}, with q1 occurring before q2 in a
given sentence: wide scope (q1 > q2), narrow
scope (q2 > q1) and incomparability (q1, q2). The
three relations are used in order to determine the
quantifier scoping of each sentence from the cor-
pus, based on the relative scopings provided. De-
termining the scopes of the tagged quantifiers in
example (2) is straightforward. The third quantifier
outscopes the second (q3 > q2); the second one
outscopes the first one (q2 > q1). Moreover, since
outscoping is a transitive relation, the third one
also outscopes the first one (q3 > q1). Hence, the
formula describing the sentence’s scoping looks as
follows: q3 > q2 > q1. Each of the 680 sentences
in the corpus is annotated following that method.
According to the formula

∑
i ni∗(ni−1)/2, where

ni denotes the number of quantified NPs in a sen-
tence, there are 1451 relations between quantifiers
in the corpus.

3 Method

As mentioned above, Manshadi and Allen build
their method on the fact that quantifier scopings
(QS) form partial orders. Hence, they define QSD
as a task of creating partial orders and show that

q1

q4

q2 q3

Figure 1: TDAG representing quantifier scopings in
example (5): q1 > q4 > q2, q3.

it is equivalent to a pairwise comparison problem
(see Manshadi (2014) for definitions and proofs).

3.1 Manshadi and Allen’s approach

Partial orders can be represented as Directed
Acyclic Graphs (DAGs). In fact, since outscoping
is a transitive relation, Transitive Directed Acyclic
Graphs (TDAGs) have a one-to-one correspon-
dence with quantifier scopings — each has exactly
one TDAG representing it. Hence, every sentence’s
QS is analysed in its transitive closure form and
TDAGs are used for visualisation purposes.

Figure 1 depicts a TDAG which is a represen-
tation of a typical, for the examples in the corpus,
quantifier scoping: q1 > q4 > q2, q3.2 A sentence
from the corpus which is defined by this order is
provided in example (5).

(5) Each&1_S_each♯ member of the Kim
family sits in a&3_in_a_Locus_Locus♯
seat adjacent to, and in the same
row&3_in_the.same_Locus_Locus♯ as, at
least one other&2_as_at.least.one.other_
ComparisonRef_ComparisonRef♯ mem-
ber of the family.

Since the QSD task is reduced to a problem
of pairwise comparisons, a sentence containing n
quantifiers results in n ∗ (n− 1)/2 samples. There
are four quantified NPs in example (5) which re-
sults in six different observations for the classifier.
For each pair of quantifiers (an observation), a clas-
sifier has to predict one of three relations: wide
scope, narrow scope or incomparability. From the
perspective of a TDAG (G), those relations are de-
fined as follows for every pair {q1, q2}, where q1
precedes q2 in a given sentence:

2This notation is equivalent to q1 > q4 > q2 and q1 >
q4 > q3.
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Figure 2: Example of a preference graph (Manshadi,
2014, p. 136).

1. wide scope (+) if (q1, q2) ∈ G

2. narrow scope (−) if (q2, q1) ∈ G

3. incomparability (ϵ) otherwise

That is, if two quantifiers q1 and q2 are char-
acterised by wide scope, there is a directed edge
from q1 to q2. In the case of narrow scope, a di-
rected edge goes from q2 to q1. Incomparability
is represented by the lack of an edge between two
nodes.

A ternary soft classifier 3 predicts probabilities
for each observation, for each of the three possible
classes. Once those probabilities are predicted, a
preference graph for each sentence’s scoping can
be built, as in Figure 2.

The goal at this point is to find a subgraph of
that preference graph which satisfies the following
condition: that it maximizes the sum of weights
with the constraint that the resulting subgraph is a
TDAG. The algorithm that performs this task is pre-
sented in the following section, and it is based on
finding an approximately optimal ordering (Cohen
et al. 1999).

3.2 Approximation algorithm
Let (u, v)+, (u, v)− and (u, v)ϵ be the probabili-
ties that the nodes u and v are in a wide scope,
narrow scope, and incomparability relation, respec-
tively. The algorithm takes a preference graph Γp

and stores its vertices in a set V . The difference
between outgoing and incoming edges for each
vertice is computed (lines 3 and 4) and the high-
est value is selected (i.e., the node with the widest
scope) to store it as t (line 5). From lines 6 to 8, a

3Note that a hard classifier cannot be used here as then
there is no guarantee that the resulting predicted graph will be
either acyclic or transitive.

Algorithm 1 Creates a TDAG
Input: a preference graph Γp

Output: a transitive directed acyclic graph G

1: V ← get_vertices(Γp), r ← 0, G← ∅
2: while V is non-empty do
3: for each u ∈ V do
4: π(u)←

∑
v∈V

(u, v)+ −
∑

v∈V
(u, v)−

5: t← argmaxu∈V π(u)

6: if ∃v ∈ G : ρ(v) = r and (v, t)+ > (v, t)ϵ then
7: r ← r + 1
8: ρ(t)← r
9: for each v ∈ G do

10: if ρ(v) < r and (v, t)+ > (v, t)ϵ then
11: G← G ∪ {(v, t)}
12: V ← V − {t}
13: G← G ∪ {t}
14: end while

rank (starting from 0) is assigned to t, the algorithm
checks before if there is a node with the current
rank that outscopes t, in which case the rank is in-
cremented by one. From lines 9 to 11, edges (v, t)
are added to the final graph G by checking all v
nodes from previous ranks that have a wide scope
relation with t. Finally, t is removed from V and
added to G. The process repeats until V is empty.

4 Experimental setup

A Support Vector Machines (SVM) classifier,
Python’s scikit-learn implementation (Pedregosa
et al., 2011), was fitted to the data (n = 1451) in
order to predict probabilities of three different rela-
tions between each pair of quantifiers: wide scope,
narrow scope or incomparability. Once the prob-
abilities were predicted by the classifier, in order
to restore a full sentence’s quantifier scoping, a
predicted TDAG was built.4

4.1 Features
A small set of features was selected for the purpose
of the experiment: only those that were manually
annotated in the corpus or could be computed in
a simple manner. Listed below are the extracted
features, each with a brief explanation:

• Quantifier lexicalization — quantifier lexical-
izations are combined into groups in order to
limit the dimensionality of this feature. For
instance, all bare numerals are grouped to-
gether, all exactly-modified numerals (e.g., ex-
actly one) are combined together, superlative

4Therefore, the breakdown of data was made at the sen-
tence level and not at the observation level. Otherwise, this
could result in observations from the same sentence being
placed in both the training and test set, which would not allow
restoring sentence’s quantifier scoping.
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and comparative modified numerals (e.g., at
least/most three and more/less than three) are
assigned to one group, and so on.

• Complex — a binary feature that denotes
whether a quantifier lexicalization consists of
one token (e.g., one) or more than one token
(e.g., more than one).

• Grammatical function — whether a tagged
NP plays the role of, for instance, a subject or
an object.

• Appositive — a binary feature which denotes
whether a tagged NP is followed by an appos-
itive (e.g., four people - Grace, Heather, Josh,
and Maria).

• Prepositions — preposition lexicalizations or
preposition supersenses depending on the sys-
tem (see Section 4.4 for an explanation). We
focus on SUPER SS2 and SUPER SS;SS2
combinations only, i.e., we drop the less stable
and more idiomatic SUPER SS.

→ Distance — a gap between a pair of quanti-
fiers in a given observation. For instance, if
a sentence has three tagged quantificational
expressions q1, q2 and q3, occurring in that or-
der in the sentence, then the distance between
q1 and q2 equals 1 and the distance between
q1 and q3 equals 2.

Since an observation is a pair of quantifiers, each
feature5 was defined twice for a given observation.

Linear precedence, a much-discussed predictor
of quantifier scope, is not provided here as a sep-
arate feature. It is inherently encoded due to the
manner in which the task is formulated, as each
observation is a pair of quantifiers {q1, q2}, where
q1 occurs before q2 in a given sentence.

Feature selection was performed using the Mu-
tual Information (MI) measure. First, all of the
features with MI equal to zero were deleted. In
fact, this led only to the removal of features that
were duplicated as a result of defining an obser-
vation as a pair. For instance, supersense (SS2)
ENDTIME occurs only once in the data and only as
a property of the first quantifier in an observation
— denoted as ENDTIME_1; hence, feature END-
TIME_2 was deleted. Second, features occurring

5Except for the feature distance which is a property of
the relation between quantifiers, not a property of a quantifier
itself.

only once in the corpus were deleted as well; as a
result, ENDTIME_1 was also removed.

There are 27 different prepositions, 26 different
SS2 supersenses and 67 different SS;SS2 combi-
nations in the corpus. Since each observation is
a combination of two quantifiers, these numbers
correspond to 54, 52 and 134 different columns in
the feature vector. After the feature selection, we
get 39, 41 and 82, respectively.

4.2 Training and optimization

Training and optimisation were performed using
nested cross–validation. Hyperparameter selection
was executed in the inner loop using the 5-fold
technique. Kernel, among other SVM’s hyperpa-
rameters, was considered in the optimization pro-
cess and selected from linear, polynomial, rbf and
sigmoid. The outer loop was repeated 30 times
with different random data splits — Monte Carlo
cross-validation. This way a standard 20 percent of
the data was used in both inner and outer loops for
the purpose of the validation of the models and the
final results are an average of 30 independent runs.

4.3 Evaluation

Three different evaluation metrics, adapted to the
QSD task by Manshadi and Allen (2011), were
used in order to assess the performance of the mod-
els and all three of them, similarity, precision and
recall, are based on the notion of the similarity of
two graphs which represent gold Gg = (V,Eg) and
predicted Gp = (V,Ep) sentence’s quantifier scop-
ings. Let G+ = (V,E+) be the transitive closure
of the graph and G = (V,E) be the complement of
the undirected version of G, where V denotes the
set of nodes and E corresponds to the set of edges.
The most general one of the three, the similarity
metric (Equation 1), was used for hyperparameter
selection during the optimization process as well
as for the purpose of statistical testing.

σ+ =
|E+

p ∩ E+
g | ∪ |E+

p ∩ E
+
g |

|V |(|V | − 1)/2
(1)

The similarity measure treats outscoping and in-
comparability relations equally. In practice, it is the
outscoping relation that should be most important
in classification. That is because if the outscop-
ing relation is mislabeled, it leads to a different
interpretation of the sentence. Hence, Manshadi
and Allen also adapt to the task a form of preci-
sion (Equation 2) and recall (Equation 3) which
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are based on the number of outscoping relations
identified correctly.

P+ =
|E+

p ∩ E+
g |

|E+
p |

(2)

R+ =
|E+

p ∩ E+
g |

|E+
g |

(3)

One might point out that precision or recall
should be the metric selected to assess the model’s
performance during optimisation and to report final
results. Note, however, that there are a number of
sentences in our corpus where the incomparability
relation is the dominant or only relation present.
Sentences defined by QS that only consist of in-
comparability relations are not considered in the
computation of precision and recall. Hence, even
though informative, those metrics do not result in a
comprehensive evaluation.

4.4 Models
Four different training scenarios are conducted
in order to assess the impact of prepositions and
preposition supersenses on the learnability of the
QSD system:

• BASELINE — models trained using all of the
features defined, except information about
prepositions.

• PREP — models trained using all of the fea-
tures defined, including preposition lexicaliza-
tions, but not preposition supersenses.

• SUPER SS2 — models trained using all of
the features defined, including preposition su-
persenses (SS2 only), but except preposition
lexicalizations.

• SUPER SS;SS2 — models trained using all
of the features defined, including preposition
supersenses (SS;SS2 combinations), but ex-
cept preposition lexicalizations.

The performance of these four systems allows us,
first, to study the effect of preposition information
on the ability of a system to learn a QSD task and,
second, to assess whether this impact is better cap-
tured when provided with the SNACS supersense
hierarchy.

An additional baseline pseudo-model — WIDE

— is presented as a reference. It always predicts the
most frequent label in the training set.6

6In total, out of 1451 observations, 307 represent narrow
scope, 828 wide scope and 316 incomparability.

Figure 3: Most significant features according to the
Mutual Information analysis.

5 Results 7

5.1 Feature Importance

Figure 3 presents the 18 most informative features.
Both the grammatical roles of subject and object
and certain lexical realizations of quantifiers (each,
a, bare numerals and exactly-modified numerals)
rank high in the results, in line with previous find-
ings. One other feature related to lexical realization,
complex, also ranks high. The feature appositive
signals the referential function of the NP to which
it is related. Its high ranking is in line with the
well-known fact that referentially used NPs tend to
take the widest scope possible. Notably, the prepo-
sition of (when present in the second tagged NP in
a given observation) ranks third. As expected, the
‘part-whole sense’ of the preposition of, marked
by WHOLE and the corresponding role-function
combination QUANTITYITEM;WHOLE, appears
to be even more informative, ranking the highest.

Based on previous findings, one might expect
the features of subject and object to rank higher
in the analysis. However, previous studies (e.g.,
AnderBois et al. (2012)) that reported grammatical
function to have a strong impact on scope-taking
only focused on sentences with two quantified NPs
and did not consider the incomparability relation
between quantifiers. Thus, experimental setups
previously employed might have inflated the role

7The information and code necessary to replicate the re-
sults reported in this section are available at the GitHub
link: https://github.com/ALeczkowski/prep_
matter_in_qsd

https://github.com/ALeczkowski/prep_matter_in_qsd
https://github.com/ALeczkowski/prep_matter_in_qsd
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of subject and object in the QSD task.

5.2 Experiments

The results of the experiments are presented in
Table 1. The first observation is that standard devi-
ation is substantial in the case of each model and
each metric. This is a result of the diverse data set
(e.g., sentences with 2 vs. 8 quantified NPs) and
shows the importance of reporting final results as a
mean over a significant number of runs (in this case,
30). Second, the WIDE pseudo-model that classifies
each observation as wide scope8 achieves signif-
icant results, e.g., the similarity measure equals
64.82, which is a result of the domination of that
relation in the data. Third, in the case of each
model, precision and recall are higher than the sim-
ilarity metric. This contradicts expectations and is
also different than in Manshadi and Allen’s exper-
iments, where the opposite is the case. It appears
that models perform classification better with re-
spect to outscoping relations than when it comes
to incomparability.9 Last but not least, by look-
ing at raw numbers, it may be noticed that adding
prepositions to the feature vector which is fed to the
classifier improves the performance of that classi-
fier on all metrics. Adding preposition supersenses,
instead of preposition lexicalizations, results in fur-
ther improvement, both in the case of SS2 and SS

; SS2 combinations. However, tests need to be
performed in order to determine whether those dif-
ferences are statistically significant. Since SUPER

SS2 is characterised by both better performance and
lower standard deviation than SUPER SS;SS2,10

only the former is selected for statistical testing.
Since, when it comes to the similarity metric,

homogeneity of variance is present in the three
compared groups (Bartlett test; p = 0.31) and each
group’s results are normally distributed (Shapiro-
Wilk test; p = 0.82, 0.29 and 0.32 for BASE-
LINE, PREP and SUPER SS2, respectively), one-way
ANOVA is performed to determine whether there
are any statistically significant differences between
compared systems. The test is statistically signif-

8In each of 30 different data splits, wide scope was the
most frequent relation in the training set.

9One possible explanation of that fact might be that no
dependency parser was used in the experiment. Hence, no
information was extracted about, for instance, conjuncts oc-
curring between quantifiers, which is a strong predictor of the
incomparability relation.

10One possible explanation for the lower performance of
SUPER SS;SS2 is that the SS;SS2 combinations are too
fine-grained for the size of the data.

Model Similarity Precision Recall
Mean SD Mean SD Mean SD

WIDE 64.82 3.46 73.73 3.29 69.00 3.39
BASE 80.53 3.13 84.96 2.91 86.24 2.78
PREP 81.99 2.45 86.42 2.43 88.05 2.14
SS2 83.57 2.45 88.50 1.88 89.88 1.76
SS;SS2 83.45 2.69 88.23 2.15 89.48 1.92

Table 1: Mean results and standard deviation of each of
the four systems — BASELINE, PREP, SUPER SS2 and
SUPER SS;ss2 — and the WIDE measure.

icant with F (2, 87) = 9.21 and p = 0.000. Table
2 presents the p-values of the post hoc t-tests per-
formed in order to inspect particular differences.

Model BASELINE PREP

PREP 0.056 -
SUPER SS2 0.000 0.056

Table 2: P-values for pairwise t-tests with Holm correc-
tion for multiple comparisons; similarity metric.

It is not the case that providing information about
prepositions to the models significantly improves
the performance of those models — the p-value for
the comparison between BASELINE and PREP is
bigger than 0.05. However, as predicted, provid-
ing the model with information about preposition
supersenses, only the SS2 part, significantly im-
proves the performance with respect to BASELINE

— p-value < 0.05 but not with respect to PREP —
p-value > 0.05.11

6 Summary and Future Work

This study dealt with the QSD task following the
methodology established by Manshadi and Allen
(Manshadi and Allen, 2011; Manshadi et al., 2013;
Manshadi, 2014) which allows to consider any sen-
tence, with no restriction on the number of quanti-
fiers involved, in a ternary classification task. Ap-
plying this method to the scope-disambiguated cor-
pus (AnderBois et al., 2012), additionally tagged

11We also experimented with a model that includes both
preposition lexicalizations and preposition supersenses (just
the SS2 part). Performance of this system is as follows (mean,
SD): (83.01, 2.29), (87.52, 2.17), (89.12, 1.88) for similarity,
precision and recall, respectively. Statistical analysis of this
system’s results led to exactly the same conclusions as when
the model including only supersenses was used. That is, it
performed significantly better with respect to the BASELINE
but not with respect to the system involving only preposi-
tion lexicalizations. Thus, there is no theoretical reason to
believe that preposition lexicalizations would encode any rele-
vant information that is not already captured by preposition
supersenses.
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with the SNACS scheme (Schneider et al., 2020),
allowed us to investigate the question of whether
information encoded by prepositions, or preposi-
tion senses to be exact, proves useful in the QSD
task, as inspected with SVM.

Our results confirm the formulated hypothesis
— preposition senses, but not preposition lexical-
izations, positively impact the learnability of the
models and, hence, it may be inferred that they do
convey world knowledge in a manner beneficial for
the algorithm. Note that, out of 1679 tagged quanti-
fied NPs in the corpus, only around a third (581 to
be exact) are nested in prepositional phrases; this
fact further strengthens our conclusions.

The fact that the methodology followed in this
paper reduces the QSD problem to a pairwise com-
parisons task has its benefits. For instance, it signif-
icantly expands our sample from 680 sentences into
1451 pairwise comparisons. However, it comes at
the price of a simplification, which might lead to in-
formation loss since each pair of quantified NPs in
a sentence is treated independently of other NPs in
that sentence, which in reality is not the case. An-
other way to approach the QSD problem would be
to treat it on a sentence level, making use of mod-
ern deep learning techniques such as pre-trained
transformer neural networks. However, that might
require larger quantifier scope-disambiguated cor-
pora which do not yet exist.12
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