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Abstract

The widespread of fake news has detrimental
societal effects. Recent works model informa-
tion propagation as graph structure and aggre-
gate structural features from user interactions
for fake news detection. However, they usually
neglect a broader propagation uncertainty issue,
caused by some missing and unreliable interac-
tions during actual spreading, and suffer from
learning accurate and diverse structural prop-
erties. In this paper, we propose a novel dual
graph-based model, Uncertainty-aware Prop-
agation Structure Reconstruction (UPSR) for
improving fake news detection. Specifically,
after the original propagation modeling, we in-
troduce propagation structure reconstruction
to fully explore latent interactions in the ac-
tual propagation. We design a novel Gaussian
Propagation Estimation to refine the original
deterministic node representation by multiple
Gaussian distributions and arise latent interac-
tions with KL divergence between distributions
in a multi-facet manner. Extensive experiments
on two real-world datasets demonstrate the ef-
fectiveness and superiority of our model.

1 Introduction

Nowadays, fake news1 has posed detrimental ef-
fects on individuals and society. For example,
telecommunication towers were burned due to a
conspiracy theory linking COVID-19 with 5G tech-
nology (Ahmed et al., 2020). To help mitigate the
negative effects caused by fake news, it’s critical to
develop automatic methods to detect fake news.

Existing works generally leverage the user inter-
actions (e.g., retweet) and shared content in a so-
cial media conversation thread to detect fake news.
The key principle behind such work is that users
on social media share opinions, conjectures and
evidence for checking fake news. Some studies

* Corresponding author.
1We adopts a broad definition, i.e., fake news is false news

where news broadly includes claims, statements, posts, among
other types of information (Zhou and Zafarani, 2020).

(Ruchansky et al., 2017; Ma et al., 2016) flatten the
conversation in a chronological order to catch lin-
guistic and temporal features from the propagation
sequence, which does not make better use of the
network properties. Some works (Ma et al., 2018;
Kumar and Carley, 2019; Khoo et al., 2020; Ma
and Gao, 2020) build the conversation thread with
a tree structure to capture the structural patterns
from the interactions of information propagation.
Driven by the success of graph neural networks
(Kipf and Welling, 2017), recent methods (Bian
et al., 2020; Hu et al., 2021; Lin et al., 2021) regard
the conversation thread as a graph structure and
aggregate informative neighbors to learn a good
representation for detection.

However, most methods usually assume that the
propagation structure is deterministic and complete
at some point. In the real world, it is often the case
that each sample describes a partial propagation
structure that includes some missing and unreli-
able interactions due to various reasons such as
personal privacy protection and profit-driven so-
cial bots (Shao et al., 2018). This fact contributes
to the propagation uncertainty issue and makes it
challenging to discover effective structural patterns
for fake news detection. Wei et al. (2021) learned
relational bias to alleviate the negative effect of
unreliable interactions. But they only focus on ex-
plicit interactions between a tweet and its direct
retweets. Thus, they still ignore some latent inter-
actions that are not connected but may share similar
stances that are useful to debunk false information.
These vital but missing latent interactions in the
social media conversation thread are also key to
driving the propagation uncertainty issue. Thus,
how to model the propagation uncertainty issue
and learn effective structure-property is a practical
research topic to enhance fake news detection.

An intuitive way is to reconstruct the original
propagation structure to capture all possible inter-
actions between posting nodes. We argue that, in
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the propagation, many retweets that subconsciously
promote each other (such as similar stances or emo-
tions). Hu et al. (2021); Lin et al. (2021) have
shown the positive gains of implicit interactions
between sibling retweets from the same tweet. Be-
yond their assumptions, we make the attempt to
investigate more potential interactions of all post-
ings in the propagation structure, not limited to
sibling retweets. Besides, previous works (Wei
et al., 2021; Hu et al., 2021; Lin et al., 2021) usu-
ally measure interactions by learning deterministic
embedding of each tweet, which may be insuffi-
cient to depict potential interactions accurately and
comprehensively for uncertain propagation. There-
fore, it is desirable to study potential interactions
from multiple underlying facets, which can reflect
their fuzzy stances, emotions, and other factors.

In this paper, we investigate a broader propa-
gation uncertainty issue caused by missing and
unreliable interactions. Towards this issue, we
develop a novel dual graph-based model, named
Uncertainty-aware Propagation Structure Recon-
struction (UPSR), to adaptively learn accurate and
diverse structural properties. Specifically, inspired
by Chen et al. (2020), we first utilize deep graph
convolutional networks to fully model long-range
interactions in the original propagation. Then, in-
stead of directly using deterministic node repre-
sentations for reconstruction, we design a novel
Gaussian Propagation Estimation to sample node
representations from multiple Gaussian distribu-
tions where the covariance enables the model to re-
duce noisy interactions. We measure the Kullback-
Leibler (KL) divergence between distributions in a
multi-facet manner to update the propagation struc-
ture. Based on the reconstructed graph, we apply
root-aware graph convolutional networks to aggre-
gate features based on the learned latent interac-
tions. UPSR’s dual graph structure can not only
learn accurate structural information in the origi-
nal propagation but also capture diverse structural
patterns in the reconstructed propagation. Finally,
we exploit the dual-graph representation to identify
fake news.

We conduct extensive experiments on two real-
world public datasets. The experimental results
show that UPSR significantly outperforms the state-
of-the-art models, indicating the effectiveness for
fake news detection. The core contributions of this
paper are summarized as follows:

• To handle a broader propagation uncertainty

issue caused by missing and unreliable rela-
tions, we propose a novel Uncertainty-aware
Propagation Structure Reconstruction (UPSR)
to learn accurate and diverse structural prop-
erties for fake news detection.

• We design a Gaussian Propagation Estimation
(GPE) to reconstruct latent propagation struc-
ture by measuring KL divergence between
different Gaussian distributions of retweets.

• We evaluate the model on two real-world
benchmark datasets. Experimental results
demonstrate the effectiveness and superiority
of the proposed model.

2 Related Work

In the literature, some works (Jiang et al., 2019;
Shu et al., 2019b; Mishra, 2020; Nguyen et al.,
2020) leverage user characteristics to assist detec-
tion. As user information is not allowed recorded
in many cases, we mainly focus on detecting fake
news based on text and propagation.

Text-based fake news detection approaches (Mi-
halcea and Strapparava, 2009) emphasize inves-
tigating the truthfulness of news content by ex-
tracting its textual features. Early works relied
on feature engineering to capture textual charac-
teristics, e.g., topic features (Castillo et al., 2011),
writing styles and consistency (Popat, 2017; Pot-
thast et al., 2018). After the emergence of deep
learning, many works (Ma et al., 2016; Ruchansky
et al., 2017; Karimi and Tang, 2019) apply various
neural networks to automatically learn rich seman-
tic or syntactic features from the source news and
its retweets to detect fake news.

Propagation-based fake news detection ap-
proaches take advantage of the information related
to the dissemination of a news article. Many empir-
ical studies (Vosoughi et al., 2018; Jang et al., 2018)
have shown that compared to real news, fake news
has deeper propagation structures, and reaches a
wider audience. Shu et al. (2019a) jointly learned
the sequential effect of comments and correlation
between source news and the corresponding com-
ments. To capture structural propagation patterns,
Ma et al. (2016) constructed a tree-structured neu-
ral network to model the propagation structure.
Khoo et al. (2020) adopted Transformer (Vaswani
et al., 2017) to learn long-distance interactions. Re-
cently, Bian et al. (2020) regarded the propaga-
tion as a graph and applied two graph convolu-
tional networks (GCNs) (Kipf and Welling, 2017)
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to learn structural patterns from two distinct di-
rected graphs. Hu et al. (2021); Lin et al. (2021)
further explored multi-relational interactions in the
propagation graph. Wei et al. (2021, 2022) focused
on the propagation uncertainty and learned robust
structural features.

Differences with Existing Models. 1) The
aforementioned graph-based models (Bian et al.,
2020; Hu et al., 2021) are shallow structure, limit-
ing to explore latent interactions in a deeper prop-
agation. Inspired by Chen et al. (2020), we stack
more graph layers to explore long-range interac-
tions in propagation. 2) Most approaches learn
latent structural features on statics propagation
trees/graphs. They may be disturbed by missing
and unreliable behaviors easily, leading to a broader
propagation uncertainty issue. This paper designs
modules to reconstruct original propagation and ex-
plore more latent interactions from multiple facets.

3 Problem Statement

Formally, let G = (V, E) be a propagation struc-
ture, where V = {r, c1, ..., cN} is a set of nodes
representing the source news r and its retweets
c1, ..., cN . E refers to a set of explicit interactive
behaviors, e.g., retweet. Define the embedding of
the source news r as r ∈ Rd0 , and that of a retweet
ci ∈ Rd0 , where d0 is the dimensionality of tex-
tual features. Each propagation is annotated with a
ground-truth label yi ∈ {0, 1}.

We formulate the fake news detection problem
as a binary classification problem, i.e., each sample
can be real (yi = 0) or fake (yi = 1). Fake news
detection task can be seen as to learn a classifier f
from the labeled set, i.e., f : G → y.

4 The Proposed Model

In this section, we propose a novel dual graph-
based model, UPSR, to fully model long-range
dependencies in the original propagation and ex-
plore rich latent dependencies in the corresponding
reconstructed propagation.

4.1 Overview

The overview architecture of UPSR is presented
in Figure 1. Firstly, given the input text and prop-
agation structure, we apply deep graph convolu-
tions to learn long-range interactions in the original
propagation. To better alleviate the propagation
uncertainty issue, we design a Gaussian Propaga-
tion Estimation to reconstruct the propagation to

Figure 1: The overall architecture of UPSR.

discover more potential interactions. Then, based
on the reconstructed propagation, we further ag-
gregate node features with the guidance of latent
connections. Finally, both node representations
encoded in the original and latent propagation are
concatenated for fake news classification.

4.2 Original Propagation Modeling
Vosoughi et al. (2018) have verified that fake news
diffused significantly farther, deeper, and more
broadly than the truth. Thus, modeling long-range
interactions in the propagation are critical to dif-
ferentiate fake news and true news. Inspired by
(Chen et al., 2020), we develop a deep graph convo-
lutional network to capture long-range interactions
in the original propagation.

4.2.1 Graph Construction
First, we construct an undirected graph for each
propagation structure to aggregate bi-directional
interactions comprehensively. Formally, a propaga-
tion structure can be represented as an undirected
graph G = (V, E), where V denotes a set of tweet
nodes including source news r and its retweets
c1, ..., cn. E is a set of propagation behaviors. The
edge weights are set to 1 if there is an edge between
two nodes, i.e., Aij = 1.

4.2.2 Learning Long-Range Interactions in
the Original Propagation Graph

Chen et al. (2020) improved traditional graph con-
volutional networks by introducing the initial resid-
ual connection and an identity mapping to en-
able stack multiple graph layers, which has shown
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promising performance on recent downstream ap-
plications (Hu et al., 2022). For information prop-
agation, Vosoughi et al. (2018); Jang et al. (2018)
have shown that compared to real news, fake news
has deeper propagation structures, and reaches a
wider audience. Therefore, we apply deep graph
convolutional networks (Chen et al., 2020) on an
undirected graph to fully capture this kind of long-
range dependencies between two nodes in the orig-
inal propagation.

Given the undirected graph G = (V, E), the
graph convolution at the k-th layer is defined as
Eq. (1). A residual connection to the first layer
V(0) is added to the representation P̃V(k) and an
identity mapping I is added to the weight matrix
W

(k)
t . V(0) is initialized with the input embedding,

i.e., V(0) = [r, c1, ..., cN ].

V(k+1) = σ
(
((1− αk)P̃V(k) + αkV

(0))((1− βk)In + βkW
(k)
t )

)
,

(1)
where P̃ = (D+ I)−1/2(A + I)(D+ I)−1/2 is
the renormalized graph Laplacian matrix (Kipf and
Welling, 2017). A is the original adjacency ma-
trix of G. D is the diagonal degree matrix, and
I is the identity matrix. αk, βk are two hyperpa-
rameters. In experiments, αk = 0.1 to make node
representations consist of at least a fraction of the
input features even if we stack many layers. Let
βk = log(ηk + 1) to ensure the decay of the weight
matrix adaptively increases when stacking more
layers. η is also a hyperparameter. W(k)

t is the k-
th weight matrix. σ denotes the activation function.

Based on the above modifications, we can stack
many graph layers to capture long distant connec-
tions in the original propagation and provide more
accurate node representations for the subsequent
reconstructed propagation modeling. We denote
the number of graph layers as K and final node rep-
resentations as V(K) = {v(K)

r ,v
(K)
1 , ...,v

(K)
N }.

4.3 Reconstructed Propagation Modeling

To explore diverse structural patterns, we recon-
struct the original propagation for finding more la-
tent interactions and then encode the reconstructed
propagation graph for improving detection.

4.3.1 Gaussian Propagation Estimation

We design a Gaussian Propagation Estimation
(GPE) to reconstruct the original propagation from
multiple facets. Instead of directly measuring the
original deterministic embedding of each tweet, the

GPE module generate samples stochastic node rep-
resentations from multiple Gaussian distributions.
It can depict potential interactions accurately and
comprehensively for uncertain propagation.

Formally, given the deterministic embedding
v
(K)
i of each node vi, the uncertainty-aware node

representations is defined as distributional estima-
tion parameterised with estimated mean µm

i and
estimated variance σm

i ,

{µ1
i ,µ

2
i , ...,µ

M
i } = gθ(v

(K)
i )

{σ1
i ,σ

2
i , ...,σ

M
i } = ϕ(g′θ(v

(K)
i )),

(2)

where M is a parameter representing the number
of facets to estimate uncertain effects of nodes. gθ
and g′θ are two trainable neural networks such as
a multilayer perception (MLP). ϕ is a non-linear
activation function. {σ1,σ2, ...,σM} indicate the
uncertainty of tweets which impacts others in a
multi-facet manner. Then, the node representations
Qm = {qm

r ,qm
1 , ...,qm

N} at the m-th view latent
propagation can be sampled from Nm

i (µm
i ,σm

i
2),

qm
i = µm

i + ϵσm
i , ϵ ∈ N (0, I). (3)

Then, GPE measures the latent interactions be-
tween nodes with KL divergence between distribu-
tions from multiple underlying facets. The edge
weight between node vi and node vj on the m-th
view reconstructed graph is computed as,

Sm
ij = DKL(Nm

i (µm
i ,σm

i
2)||Nm

j (µm
j ,σm

j
2)).

(4)
According to the above computations, we can
obtain multi-view refined node representations
{Q1,Q2, ...,QM} and the corresponding adjacent
matrices {S1,S2, ...,SM}. They enable the model
to learn uncertain effects of nodes in multiple re-
constructed directed graphs.

4.3.2 Re-Learning Potential Interactions in
the Reconstructed Propagation Graph

Based on these reconstructed graphs, we further
apply two-layer graph convolutions to capture dif-
ferent potential interactions between two tweets.
The message-passing is defined as,

Um = σ
(
Ŝm(σ

(
ŜmQmW(0)

g

)
)W(1)

g

)
, (5)

where Ŝ represents the normalization of adjacency
matrix S. W

(0)
g and W

(1)
g are learnable param-

eter matrices in the first and second graph layer.
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Inspired by Bian et al. (2020), we concatenate hid-
den feature vectors of each node with that of the
root node after each graph convolution operation to
emphasize the vital role of source news in the prop-
agation. Then, the final representation of nodes in
the reconstructed graph is computed as,

Z = Wz[U
1;U2; ...;UM ] + bz, (6)

where Wz and bz are trainable parameters.
Through the above dual graph structure, we can

not only learn long-range interactions in the origi-
nal propagation but also capture potential interac-
tions between uncertain tweets.

We aggregate node representations in the graph
to form the graph representations. Given node rep-
resentations V in the original propagation and node
representations Z in the reconstructed graph, the
graph representation is computed as,

O = meanpooling([V;Z]), (7)

where meanpooling(·) refers to the mean-pooling
aggregating function.

4.4 Fake News Detection and Training
Based on the concatenation of two distinct graph
representations, label probabilities of all classes
can be defined by a full connection layer and a
softmax function, i.e.,

ŷ = softmax (WoO+ bo) , (8)

where Wo and bo are learnable parameter matri-
ces.

We optimize the fake news classification loss
function calculated by the cross-entropy criterion,
i.e.,

L = −y log(ŷ)− (1− y) log(1− ŷ), (9)

where y is the ground-truth label and ŷ is the pre-
diction distribution.

5 Experiments

In this section, we experimentally evaluate the per-
formance of our proposed model for fake news
detection.

5.1 Datasets
The dataset statistics are shown in Table 1. Politi-
Fact and GossipCop datasets are released by Fake-
NewsNet (Shu et al., 2020). Samples are collected

Dataset PolitiFact GossipCop
# News 314 5,464

# True News 157 2,732
# Fake News 157 2,732
# Retweets 40,740 308,798

# Avg. Nodes per Graph 131 58
# Avg. Breadth per Graph 73.62 44.35
# Avg. Depth per Graph 3.75 2.51

Table 1: The statistics of two benchmark datasets.

from PolitiFact2 and GossipCop3, which are two
websites for fact-checking political and celebrity
news, respectively. We follow the same procedure
as Shu et al. (2019a) to split each dataset, i.e., ran-
domly choose 75% of the news as the training data
while keeping the rest as the test data.

5.2 Experimental Setups

Since the fake news detection is a classification
task, we choose accuracy (Acc), prevision (P), re-
call (R), and macro-average F1 scores (F1) to mea-
sure the performance of each model.

All experiments are conducted on a single
GeForce RTX 3080Ti. For the input features of
text contents, we follow (Dou et al., 2021) and con-
sider 300-dimensional word2vec vectors (Mikolov
et al., 2013), which are pretrained on a large corpus
with 680k words by spaCy (Honnibal and Mon-
tani, 2017), i.e., d0 = 300. The dimension of
hidden vectors is set to 64. We train all models
via backpropagation and a wildly used stochastic
gradient descent named Adam (Kingma and Ba,
2015). The learning rate is set to 0.001 and 0.0005
for PolitiFact and GossipCop, respectively. The
training process is iterated upon 200 epochs and
early stopping (Yuan et al., 2007) is applied when
the validation loss stops decreasing by 10 epochs.
The final result is the average performance over 5
repeats.

5.3 Comparison Methods

Text-based fake news detection methods include:
mGRU (Ma et al., 2016) uses an RNN to capture
temporal-linguistic patterns recognized from se-
quences of retweets. CSI (Ruchansky et al., 2017)
learns the sequential retweet features by employ-
ing an LSTM. Propagation-based fake news de-
tection methods include: GCNFN (Monti et al.,
2019) models the propagation structure as a graph

2https://www.politifact.com/
3https://www.gossipcop.com/

https://www.politifact.com/
https://www.gossipcop.com/
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Method PolitiFact GossipCop
Acc P R F1 Acc P R F1

mGRU (Ma et al., 2016) 0.754 0.800 0.666 0.744 0.859 0.845 0.881 0.859
CSI (Ruchansky et al., 2017) 0.734 0.672 0.550 0.688 0.866 0.892 0.840 0.866
GAT (Velickovic et al., 2018) 0.861 0.848 0.883 0.853 0.958 0.957 0.959 0.957
GCNFN (Monti et al., 2019) 0.856 0.862 0.851 0.849 0.886 0.892 0.881 0.883
PLAN (Khoo et al., 2020) 0.868 0.861 0.879 0.858 0.962 0.960 0.945 0.953
BiGCN (Bian et al., 2020) 0.861 0.865 0.877 0.853 0.959 0.959 0.959 0.958
RumorGCN (Hu et al., 2021) 0.891 0.901 0.875 0.888 0.968 0.965 0.971 0.968
EBGCN (Wei et al., 2021) 0.896 0.898 0.909 0.891 0.964 0.966 0.962 0.963
UPSR 0.914 0.911 0.917 0.910 0.977 0.980 0.974 0.976

Table 2: Model performance for fake news detection on PolitiFact and GossipCop. The best result is in bold-face.

and uses GCN to encode the propagation graph.
We implemented the model by removing profile
information for fair comparison. GAT (Velickovic
et al., 2018) applies graph attention networks to en-
code the propagation structure. PLAN (Khoo et al.,
2020) uses the multi-head attention mechanism to
model long-distance interaction in the propagation
structure. BiGCN (Bian et al., 2020) employs two
GCNs to model the propagation graph and disper-
sion graph. RumorGCN (Hu et al., 2021) learns
multi-relational dependencies from the propagation
by using Relational GCNs. EBGCN (Wei et al.,
2021), a graph-based model, focuses on the un-
certainty issue in the propagation structure from a
probability perspective.

5.4 Fake News Detection Results

The overall performance for fake news detection is
reported in Table 2. From them, we we have the
following key observations:

1) Text-based methods achieve inferior perfor-
mance than propagation-based methods. It indi-
cates that propagation patterns are more beneficial
to detect fake news since fake news publishers al-
ways deliberately distort the text content of news.
2) PLAN captures long-range interactions in the
propagation sequence with attention modules and
obtains moderate results, even outperforming some
shallow graph-based models. However, they still
could not effectively distill latent interactions hid-
den in the propagation sequence and thus obtain
limited performance. 3) EBGCN and RumorGCN
achieve sub-optimal performance on PolitiFact and
GossipCop, respectively. It makes sense as Ru-
morGCN considers potential interactions from sib-
ling nodes; while EBGCN explores robust interac-
tions in an adjusted propagation tree, which can

Methods
PolitiFact GossipCop

Acc F1 Acc F1
UPSR 0.914 0.910 0.977 0.976

- w/o Root 0.891 0.886 0.974 0.973
- w/o GPE 0.904 0.894 0.972 0.961
- w/o OPM 0.828 0.817 0.975 0.974
- w/o RPM 0.873 0.867 0.962 0.961

UPSRGCN 0.891 0.886 0.972 0.971
UPSRGAT 0.899 0.894 0.973 0.973
UPSRBiGCN 0.886 0.880 0.974 0.973

Table 3: Results of ablation study and component analy-
sis. The best result is in bold-face.

provide more effective structural information for
detection. Nevertheless, their shallow networks
make it hard to model long-distance interactions in
the propagation, and thus they cannot be adaptive
for news that has a deeper propagation structure. 4)
Our UPSR yields consistently better performance
than all the baselines on both datasets. The benefit
mainly comes in two-fold. First, deep graph con-
volutions enable the model to focus on long-range
interactions in the original propagation modeling.
Second, UPSR further encodes the reconstructed
propagation based on uncertainty-aware node rep-
resentations, which can effectively capture more
potential interactions between retweets and learn
diverse structural patterns for detection.

6 Discussion

In this section, we conduct more experiemtns to
further understand the performance of UPSR.

6.1 Ablation Study

We conduct an ablation study to evaluate key com-
ponents in UPSR. 1) w/o Root indicates that encod-
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ing the reconstructed propagation graph does not
explicitly consider the influence of source news.
2) w/o GPE removes Gaussian Propagation Es-
timation module and measures cosine-similarity
between two node embedding. 3) w/o OPM refers
to removing the original propagation modeling and
directly reconstructing the propagation according
to input textual features. 4) w/o RPM is removing
the whole reconstructed propagation modeling.

The results of the ablation study are shown in the
first block of Table 3. The full model yields the best
performance in terms of accuracy and F1 score. 1)
Without the consideration of source news influence
in the reconstructed propagation modeling, the per-
formance of w/o Root slightly reduces on both
datasets, showing the vital role of source news in
the propagation. 2) w/o GPE is obviously inferior
to the full model, verifying that estimating propaga-
tion structure with multiple facets can successfully
adapt to the uncertain effect of retweets and enable
to derive accurate potential interactions. 3) When
removing the complete reconstructed propagation
modeling, w/o RPM obtains the inferior perfor-
mance in terms of two evaluation metrics, which
proves the effectiveness of the propagation recon-
struction. 4) After removing the original propaga-
tion modeling, the performance of w/o OPM also
drops significantly. This is intuitive since learning
from explicit interactions between retweets in the
original propagation could lead to relatively com-
prehensive representations, which enables GPE to
explore more effective interactions.

6.2 Comparison with Different Original
Propagation Modeling Modules

We further replace the deep graph convolutional
network in the original propagation modeling with
the following alternatives. 1) UPSRGCN adopts
vanilla two-layer GCNs (Kipf and Welling, 2017)
to model the original propagation. 2) UPSRGAT
replaces with vanilla two-layer GATs (Velickovic
et al., 2018). 3) UPSRBiGCN follows (Bian et al.,
2020) to apply bi-directional GCNs .

The results are reported in the second block of
Table 3. The degradation performance of these
variants indicates the superiority of our model,
which can capture long-range interactions in the
propagation by stacking multiple graph convolu-
tions. Besides, UPSR and its variants UPSRGCN
, UPSRGAT, UPSRBiGCN consistently outperform
the corresponding single graph models on both

Figure 2: F1 scores against different hyperparameters.

datasets. The reason is that the dual graph frame-
work can not only learn interactions in the original
propagation but also capture potential interactions
between uncertain tweets.

6.3 Parameter Analysis

Figure 2 explores the performance of UPSR against
two vital parameters, i.e., different numbers of lay-
ers in the original propagation modeling (OPM),
and different numbers of facets in the reconstructed
propagation modeling (RPM).

Effect of Graph Layers in Original Propaga-
tion Modeling. To investigate whether our model
can benefit from the multi-layer propagation in the
original propagation modeling, we vary the number
of graph convolutional layers in the range of {2, 4,
8, 16, 32, 64, 128, 256}. The best setting is 64 and
2 on PolitiFact and GossipCop, respectively. Prop-
agation structures are deeper on PolitiFact and thus
more graph layers are needed to capture long-range
interactions between nodes. The continual increase
of the layer number even harms the performance.
This might be caused by the overfitting issue.

Effect of Number of Facets in Reconstructed
Propagation Modeling. To investigate whether
our model can benefit from the multi-facet estima-
tion for uncertainty, we vary the number of facets
in the range of {1, 2, 3, 4, 5}. The optimal setting
is 1 and 4 on PolitiFact and GossipCop datasets,
respectively. These results indicate that estimating
nodes from multiple facets is more profitable for
detecting celebrity-related fake news, which can
boost to capture latent interactions between two
nodes sufficiently. Besides, dependencies between
retweets under celebrity news may be more com-
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(a) Original Propagation (b) Adjusted by EBGCN (c) Reconstructed by UPSR

Figure 3: A case study of fake news on PolitiFact, which is missed by BiGCN and EBGCN but detected by UPSR.
Node 0 refers to the source news and other nodes are its retweets. The breadth of the propagation is 15 and the
depth of the propagation is 5. The edge width represents the weight of interactions.

Figure 4: Performance on propagation structures with
different depths. Y-axis refers to the accuracy score.

plex and more facets need to be considered.

6.4 Propagation Depth Analysis

Figure 4 shows performance on propagation struc-
tures with different depths. From the figure, the
performance of BiGCN for detecting deeper propa-
gation clearly decreases on both datasets. This re-
veals that fake news detection is more challenging
with the deeper propagation which usually reflects
vital potential interactions between users. Com-
pared with BiGCN, UPSR and its variant obtain
better performance in recognizing deeper propaga-
tion. This indicates that the original propagation
modeling can effectively capture longer-range inter-
actions in the original propagation for fake news de-
tection. Moreover, UPSR achieves a considerable
improvement over almost any range of propagation
depth. We speculate, through estimating uncertain
effects of retweets to reconstructing the original
propagation, UPSR can further capture more poten-
tial interactions between two nodes and learn better
representations for detection. Thus, UPSR is not
sensitive to propagation depth and can be adaptive
for both shallow and deep propagation.

6.5 Case Study

Figure 3 visualizes a propagation structure of a
piece of fake news from PolitiFact. The news is
misclassified by BiGCN and EBGCN but is de-
tected by our model successfully.

Previous shallow graph networks (e.g., BiGCN,
EBGCN) would ignore the distant connections
such as the interaction between node 3 and 28 and
can only capture local structural propagation in-
formation. Through reconstructing the original
propagation, UPSR alleviates this issue to some
extent and aggregates more effective information
in the graph via reconstructed edges between two
distant nodes. Besides, compared with Figure 3(b)
and 3(c), EBGCN dealt with noisy edges by adap-
tively adjusting weights of explicit edges. How-
ever, they solely focus on explicit edges and limit
the message-passing in the graph. Different from
their model, UPSR not only is robust to these noisy
edges but also captures more valuable potential
interactions between nodes to improve detection.

7 Conclusion

This paper has studied a broader propagation uncer-
tainty issue in fake news detection. We propose a
novel Uncertainty-aware Propagation Structure Re-
construction (UPSR) to jointly model long-range
and potential interactions in the uncertain propa-
gation. Gaussian Propagation Estimation (GPE)
is developed to reconstruct latent propagation by
adapting the inherent uncertain effect of retweets
in the propagation. Experiments conducted on two
real-world benchmarks have shown that UPSR out-
performs recent detection methods.



2767

In the future, we will focus on improving the
detection performance of our model in scenarios
where training propagation data is limited.

Acknowledgments

We thank our anonymous reviewers for their help-
ful comments. This work was supported by the
National Natural Science Foundation of China un-
der Grant No.6210071416.

References
Wasim Ahmed, Josep Vidal-Alaball, Joseph Downing,

Francesc López Seguí, et al. 2020. Covid-19 and
the 5g conspiracy theory: social network analysis of
twitter data. Journal of medical internet research,
22(5):e19458.

Tian Bian, Xi Xiao, Tingyang Xu, Peilin Zhao, Wenbing
Huang, Yu Rong, and Junzhou Huang. 2020. Rumor
detection on social media with bi-directional graph
convolutional networks. In AAAI, pages 549–556.

Carlos Castillo, Marcelo Mendoza, and Barbara Poblete.
2011. Information credibility on twitter. In WWW,
pages 675–684. ACM.

Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding,
and Yaliang Li. 2020. Simple and deep graph con-
volutional networks. In ICML, volume 119 of Pro-
ceedings of Machine Learning Research, pages 1725–
1735. PMLR.

Yingtong Dou, Kai Shu, Congying Xia, Philip S. Yu,
and Lichao Sun. 2021. User preference-aware fake
news detection. In SIGIR, pages 2051–2055. ACM.

Matthew Honnibal and Ines Montani. 2017. spacy 2:
Natural language understanding with bloom embed-
dings, convolutional neural networks and incremental
parsing. To appear, 7(1).

Dou Hu, Xiaolong Hou, Lingwei Wei, Lian-Xin Jiang,
and Yang Mo. 2022. MM-DFN: multimodal dynamic
fusion network for emotion recognition in conversa-
tions. In ICASSP, pages 7037–7041. IEEE.

Dou Hu, Lingwei Wei, Wei Zhou, Xiaoyong Huai,
Jizhong Han, and Songlin Hu. 2021. A rumor detec-
tion approach based on multi-relational propagation
tree. Journal of Computer Research and Develop-
ment, 58(7):1395–1411.

S. Mo Jang, Tieming Geng, Jo-Yun Queenie Li, Ruofan
Xia, Chin-Tser Huang, Hwalbin Kim, and Jijun Tang.
2018. A computational approach for examining the
roots and spreading patterns of fake news: Evolution
tree analysis. Comput. Hum. Behav., 84:103–113.

Shengyi Jiang, Xiaoting Chen, Liming Zhang, Sutong
Chen, and Haonan Liu. 2019. User-characteristic
enhanced model for fake news detection in social

media. In NLPCC (1), volume 11838 of Lecture
Notes in Computer Science, pages 634–646. Springer.

Hamid Karimi and Jiliang Tang. 2019. Learning hier-
archical discourse-level structure for fake news de-
tection. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
3432–3442. Association for Computational Linguis-
tics.

Ling Min Serena Khoo, Hai Leong Chieu, Zhong Qian,
and Jing Jiang. 2020. Interpretable rumor detection
in microblogs by attending to user interactions. In
AAAI, pages 8783–8790. AAAI Press.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In ICLR.

Thomas N. Kipf and Max Welling. 2017. Semi-
supervised classification with graph convolutional
networks. In ICLR (Poster). OpenReview.net.

Sumeet Kumar and Kathleen M. Carley. 2019. Tree
lstms with convolution units to predict stance and
rumor veracity in social media conversations. In
ACL (1), pages 5047–5058.

Hongzhan Lin, Jing Ma, Mingfei Cheng, Zhiwei Yang,
Liangliang Chen, and Guang Chen. 2021. Rumor
detection on twitter with claim-guided hierarchical
graph attention networks. In EMNLP (1), pages
10035–10047. Association for Computational Lin-
guistics.

Jing Ma and Wei Gao. 2020. Debunking rumors on
twitter with tree transformer. In COLING, pages
5455–5466. International Committee on Computa-
tional Linguistics.

Jing Ma, Wei Gao, Prasenjit Mitra, Sejeong Kwon,
Bernard J. Jansen, Kam-Fai Wong, and Meeyoung
Cha. 2016. Detecting rumors from microblogs with
recurrent neural networks. In IJCAI, pages 3818–
3824. IJCAI/AAAI Press.

Jing Ma, Wei Gao, and Kam-Fai Wong. 2018. Rumor
detection on twitter with tree-structured recursive
neural networks. In ACL (1), pages 1980–1989. As-
sociation for Computational Linguistics.

Rada Mihalcea and Carlo Strapparava. 2009. The lie
detector: Explorations in the automatic recognition
of deceptive language. In ACL/IJCNLP (2), pages
309–312. The Association for Computer Linguistics.

Tomás Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word representa-
tions in vector space. In ICLR (Workshop Poster).

Rahul Mishra. 2020. Fake news detection using higher-
order user to user mutual-attention progression in
propagation paths. In CVPR Workshops, pages 2775–
2783. Computer Vision Foundation / IEEE.



2768

Federico Monti, Fabrizio Frasca, Davide Eynard, Da-
mon Mannion, and Michael M. Bronstein. 2019.
Fake news detection on social media using geometric
deep learning. In ICLR (Workshop).

Van-Hoang Nguyen, Kazunari Sugiyama, Preslav
Nakov, and Min-Yen Kan. 2020. FANG: leveraging
social context for fake news detection using graph
representation. In CIKM, pages 1165–1174. ACM.

Kashyap Popat. 2017. Assessing the credibility of
claims on the web. In WWW (Companion Volume),
pages 735–739. ACM.

Martin Potthast, Johannes Kiesel, Kevin Reinartz, Janek
Bevendorff, and Benno Stein. 2018. A stylometric
inquiry into hyperpartisan and fake news. In ACL
(1), pages 231–240. Association for Computational
Linguistics.

Natali Ruchansky, Sungyong Seo, and Yan Liu. 2017.
CSI: A hybrid deep model for fake news detection.
In CIKM, pages 797–806. ACM.

Chengcheng Shao, Giovanni Luca Ciampaglia, Onur
Varol, Kai-Cheng Yang, Alessandro Flammini, and
Filippo Menczer. 2018. The spread of low-credibility
content by social bots. Nature communications,
9(1):1–9.

Kai Shu, Limeng Cui, Suhang Wang, Dongwon Lee,
and Huan Liu. 2019a. defend: Explainable fake news
detection. In KDD, pages 395–405. ACM.

Kai Shu, Deepak Mahudeswaran, Suhang Wang, Dong-
won Lee, and Huan Liu. 2020. Fakenewsnet: A data
repository with news content, social context, and spa-
tiotemporal information for studying fake news on
social media. Big Data, 8(3):171–188.

Kai Shu, Xinyi Zhou, Suhang Wang, Reza Zafarani, and
Huan Liu. 2019b. The role of user profiles for fake
news detection. In ASONAM, pages 436–439. ACM.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In NIPS, pages 5998–6008.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Liò, and Yoshua Bengio.
2018. Graph attention networks. In ICLR (Poster).
OpenReview.net.

Soroush Vosoughi, Deb Roy, and Sinan Aral. 2018.
The spread of true and false news online. Science,
359(6380):1146–1151.

Lingwei Wei, Dou Hu, Wei Zhou, Xin Wang, and
Songlin Hu. 2022. Modeling the uncertainty of in-
formation propagation for rumor detection: A neuro-
fuzzy approach. IEEE Transactions on Neural Net-
works and Learning Systems.

Lingwei Wei, Dou Hu, Wei Zhou, Zhaojuan Yue, and
Songlin Hu. 2021. Towards propagation uncertainty:
Edge-enhanced bayesian graph convolutional net-
works for rumor detection. In ACL/IJCNLP (1),
pages 3845–3854. Association for Computational
Linguistics.

Yao Yuan, Lorenzo Rosasco, and Andrea Caponnetto.
2007. On early stopping in gradient descent learning.
Constructive Approximation, 26(2):289 – 315.

Xinyi Zhou and Reza Zafarani. 2020. A survey of
fake news: Fundamental theories, detection methods,
and opportunities. ACM Comput. Surv., 53(5):109:1–
109:40.


