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Abstract

Being able to infer possible events related to
a specific target is critical to natural language
processing. One challenging task in this line
is event sequence prediction, which aims at
predicting a sequence of events given a goal.
Currently existing approach models this task
as a statistical induction problem, to predict
a sequence of events by exploring the simi-
larity between the given goal and the known
sequences of events. However, this statisti-
cal based approach is complex and predicts a
limited variety of events. At the same time
this approach ignores the rich knowledge of
external events that is important for predict-
ing event sequences. In this paper, in order
to predict more diverse events, we first refor-
mulate the event sequence prediction problem
as a sequence generation problem. Then to
leverage external event knowledge, we pro-
pose a three-stage model including augmen-
tation, retrieval and generation. Experimen-
tal results on the event sequence prediction
dataset show that our model outperforms exist-
ing methods, demonstrating the effectiveness
of the proposed model.

1 Introduction

Inferring events related to a specific target is one of
the capabilities pursued by natural language under-
standing, and it is also very helpful for other natural
language processing (NLP) tasks, such as event ex-
traction (Li et al., 2021), text summarization (Li
and Zhang, 2021) and discourse understanding (Nie
et al., 2019). A challenging task in this direction
is event sequence prediction. Specifically, given a
goal, the task aims to predict a sequence of events
that fits the goal. Figure 1 shows an example of
the event sequence prediction task. Given the goal
Buy a mobile phone, it is expected to predict an
event sequence, including four events Determine
the brand, Determine the price range, Select the
brand series and Pay the bill.

Buy a mobile
phone

Determine the
brand

Determine the
price range

Select the brand
series

Pay the bill

Event Sequence

Goal

Figure 1: An example of an event sequence prediction
task. Given the goal Buy a mobile phone, the predicted
event sequence contains four events.

Although event sequence prediction is useful for
many NLP tasks, it is currently understudied. Cur-
rently existing approach (Zhang et al., 2020) to this
task is based on statistical model that infers new
sequence of events by exploiting the similarity of
the given goal to known sequences of events. Al-
though experiments have shown that this approach
is effective, it still has two shortcomings.

First, a limited variety of events are predicted.
For example, when predicting the event sequence
with the goal Buying a mobile phone, the method
first collects the known event sequences with the
goal Buying a house, Buying a book, Repairing a
mobile phone, Selling a mobile phone, etc., and
then predicts a new event sequence based on these
event sequences. The events in the predicted se-
quence of events are similar to the events in the
known sequence of events, or roughly, different
combinations between these known events. There-
fore, the types of events predicted by this method
are limited.

Second, rich knowledge of external events is
ignored. This method predicts a new event se-
quence based on known event sequences. If the
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to-be-predicted event sequence differs greatly from
the existing ones, it is difficult to predict a satis-
factory event sequence. For example, if known
sequences of events have neither Create-related nor
Novel-related sequences of events, it is difficult to
generate a satisfactory sequence of events given
the goal Create a novel. At the same time, existing
work (Guan et al., 2020; Li et al., 2022) shows the
external event knowledge is helpful for natural lan-
guage understanding and text generation, because
these event knowledge bases contain rich common-
sense knowledge that indicates the relationship be-
tween events. Therefore, leveraging these external
event knowledge is important for event sequence
prediction tasks.

In this paper, we first reformulate event sequence
prediction as event sequence generation for the
problem of limited types of generated events. Sec-
ond, we propose a three-stage generation model
for the problem of ignoring external event knowl-
edge. As shown in Figure 2, our model consists of
three steps, 1) Augmentation: First we design two
pre-training tasks using the external event knowl-
edge base, and then train the generation model with
these two tasks. 2) Retrieval: Secondly, we match
several similar event sequences from the existing
event sequences through a given goal, and then
train a scoring model to select the most similar
event sequence. 3) Generation: Finally, we input
the given goal and the retrieved most similar event
sequences into the generation model to generate
event sequence that meet the given goal. The exper-
imental results show that our method outperforms
previous methods, and the ablation study also ver-
ify the effectiveness of each module. In summary,
our contributions in this paper are as follows:

• We reformulate the event sequence prediction
task as a sequence generation task, which can
generate more diverse events than method that
infers new sequence of events from known
events.

• We propose a three-stage augmentation, re-
trieval, generation model to tackle the event
sequence prediction task, which can leverage
external event knowledge to better generate
sequence of events.

• Experiments and detailed analysis show that
our model outperforms previous methods,
proving its effectiveness.

2 Our Framework

Given a goal G, the event sequence predic-
tion task needs to predict an event sequence
(e1, e2, ..., ei, ..., en) that fits the goal, where ei is
the predicted i-th event. Here both the goal G and
the event ei are mainly composed of a verb and
an object. Figure 2 shows the framework of our
model which consists of three modules, namely
augmentation, retrieval and generation. Below we
introduce these modules separately.

2.1 Augmentation

In the augmentation module, we utilize the external
event knowledge base ATOMIC 1 and design two
tasks to pretrain our generation model.

To benefit the event sequence prediction task
as much as possible, we expect the data of the
external event knowledge base to be as similar as
possible to the data of event sequence prediction,
and we choose ATOMIC as a result. ATOMIC
is a commonsense knowledge base with everyday
knowledge tuples about entities and events in the
form of (head, relation, tail) (Hwang et al., 2021).
For example, the knowledge tuple (move towards
the door, isBefore, run out of the room) indicates
that the head event move towards the door occurs
before the tail event run out of the room.

Using ATOMIC, we propose two pre-training
tasks that match the event sequence prediction ob-
jective as closely as possible, one is Tail Event
Generation (TG) and the other is Order Recovery
(OR). Specifically, given a head event eh, the TG
task aims to generate a tail event et corresponding
to eh. The TG task empowers the generation model
to generate events related to a given event, just as
the model generates events related to a given goal
in event sequence prediction task. Because the TG
task generates only one event, it fails to capture the
relationship between different generated events. So
we propose the OR task, hoping to give the model
the ability to distinguish the order between events.
Specifically, given a head event eh and its corre-
sponding tail event et (Here we assume that eh
happens before et.), regardless of whether the input
is ordered pair (eh, et) or reversed pair (et, eh), we
want the model to output ordered pair (eh, et).

Then we mix the data pairs of TG task with the
data pairs of OR task for training. Specifically, for
the OR task, given (eh, et), we take (et, eh) as in-

1https://mosaickg-graph-viz.apps.
allenai.org/kg_atomic2020

https://mosaickg-graph-viz.apps.allenai.org/kg_atomic2020
https://mosaickg-graph-viz.apps.allenai.org/kg_atomic2020
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Figure 2: The framework of our model which consists of three modules, namely augmentation, retrieval and
generation. Here eh and et represent the head and tail events in the external event knowledge base, si and ei
denote the i-th event sequence and the generated i-th event, respectively.

put with probability p and (eh, et) with probability
1 − p. We adopt the pre-trained encoder-decoder
model T5-base (Raffel et al., 2021) as our base
model and these mixed data pairs are used to train
it with the following generation loss:

La = −
|y|∑
t=1

log p (yt | x, y<t) (1)

where (x, y) is the input-output pair, which may be
(eh, et), [(et, eh), (eh, et)] or [(eh, et), (eh, et)].

Because not all relations in ATOMIC are suit-
able for training our two tasks, we only use some
relations in ATOMIC. Specifically, for the TG task,
we use the HasSubEvent relation (The tail event is
a step within the larger head event.) and the xNeed
relation (The tail event is the condition of the head
event.). For the OR task, we use the isBefore rela-
tion (The head event happens before the tail event.)
and the isAfter relation (The head event happens af-
ter the tail event.). Table 1 shows the relations used
by the two tasks and the corresponding examples.

At the same time, we point out that it is also
possible to choose other event knowledge bases and
design other pre-training tasks for event sequence
prediction, which we leave as future work.

2.2 Retrieval

When predicting an event sequence that fits a given
goal, it is helpful to refer to known event sequences
related to the given goal. Therefore, in the retrieval
module, we first use the lexical retriever to roughly
retrievem event sequences related to the given goal
from the known event sequences, and then use the

scoring retriever to further retrieve k most relevant
event sequences from the m event sequences.

2.2.1 Lexical Retriever
Given a goal G = (v, o), where v is the verb of
the goal and o is the object of the goal. The lexical
retriever returns event sequences whose goals con-
tain either v or o. We denote these returned event
sequences as {s1, s2, · · · , sm} , and the scoring
retriever will then further select from these event
sequences the ones most similar to the given goal.

2.2.2 Scoring Retriever
The scoring retriever scores each event sequence
returned by the lexical retriever, and the top-k with
the highest scores are used as the final retrieved
event sequences. We train a BERT (Devlin et al.,
2019) model as our scorer. Specifically, for each
goal G, we take it and its corresponding event se-
quence as a positive pair. At the same time, we
randomly sample an event sequence under another
goal from the training set to form a negative sample
pair with G.

Given a goal G and an event process si, we first
concatenate the two as input to BERT:

X = [CLS] G [SEP ] si [SEP ] (2)

here [CLS] and [SEP ] are BERT’s classification
token and separation token, respectively.

We feed X into BERT and then feed the hid-
den layer vector h corresponding to CLS into a
feedforward network:

s = σ(Wh+ b) (3)
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Pretraining Task Relation Head Tail

Tail Event Generation
HasSubEvent play joker shuffle cards
xNeed maintain good health avoid cigarettes

Order Recovery
isBefore go bike riding take some photos of the scenery
isAfter move towards the door get up from the table

Table 1: The relations used by the two pretraining tasks and the corresponding examples.

here the σ is the sigmoid function. We train the
scorer by the cross entropy loss for binary clas-
sification. The s is taken as the score for each
event sequence returned by the lexical retrieval.
We obtain the top-k event sequences with the high-
est scores as the final retrieval result, denoted as
{s1, s2, · · · , sk}.

2.3 Generation
In the generation module, we utilize the given goal
and the event sequences retrieved by the retrieval
module to generate the event sequence that matches
the given goal.

Our generation model is also based on the T5-
base model, sharing parameters with the T5 model
in the augmentation module. Given the target G,
we concatenate it with the retrieved sequence of
events {s1, s2, · · · , sk} as the input to the genera-
tion model and the sequence of events correspond-
ing to G as the output y, and then optimize the
following generation loss:

Lg = −
|y|∑
t=1

log p (yt | G, {s1, s2, · · · , sk}, y<t)

(4)

3 Experiments

3.1 Settings
3.1.1 Dataset and Metrics
For the event sequence prediction task, we use the
dataset released in Zhang et al. (2020). This dataset
is based on WikiHow 2, an online wiki-style pub-
lication containing many sequences of events that
accomplish specific goals. Following Zhang et al.
(2020), the numbers of training, validation and test
sets are 12,185, 1,316 and 1,316, respectively.

For the two pre-training tasks of tail event gener-
ation and order recovery, as mentioned earlier, we
use the data corresponding to the four relations Has-
SubEvent, xNeed, isBefore and isAfter in ATOMIC.
Because pre-training does not require test data, we

2https://www.wikihow.com/Main-Page

end up with 152,673 and 16,964 data for training
and validation sets, respectively.

We use the same metrics as the work (Zhang
et al., 2020): E-ROUGE1 and E-ROUGE2. Similar
to the commonly used ROUGE1 and ROUGE2, E-
ROUGE1 and E-ROUGE2 calculate the percentage
of the events or ordered event pairs in the predicted
event sequence which are covered by the reference
event sequences. Two covering standards String
Match and Hypernym Allowed are used to evaluate
the results. The former indicates that the words
in the predicted event or event pair should be the
same as in the references. The latter means that the
hypernyms of the words in the predicted event or
event pair should be the same as the hypernyms of
the words in the references. Finally, two kinds of
settings are included in the evaluation. One is basic
setting: evaluate events based on verbs. The other
is advanced setting: evaluate events based on all
words.

3.1.2 Baselines
We compare with the following baseline models,
which are used in Zhang et al. (2020):

• Random. Given a goal, the event sequence
is randomly generated. This can be regarded
as a lower bound on the performance of event
sequence prediction.

• GRU (Sutskever et al., 2014). This is based
on the GRU model, but the generation unit
is changed from words to events. Events are
represented by the pre-trained word embed-
ding GloVe (Pennington et al., 2014) or the
language model RoBERTa-base (Liu et al.,
2019), denoted as GRU (GloVe) and GRU
(RoBERTa) respectively.

• Top one process. Given a goal, such methods
take the most similar sequence of events as the
predicted sequence of events. Three methods
for measuring similarity are used here, namely
token-level Jaccard coefficient, cosine similar-
ity based on GloVe representations and cosine

https://www.wikihow.com/Main-Page
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(a) Basic Setting (evaluate events based on verbs)

Model
String Match Hypernym Allowed

E-ROUGE1 E-ROUGE2 E-ROUGE1 E-ROUGE2
Random 2.9165 0.4664 23.5873 8.1089
GRU (GloVe) 5.0323 1.4965 27.8710 13.0946
GRU (RoBERTa) 4.5455 0.4831 28.0032 12.8502
Top one process (Jaccard) 8.8589 5.1000 28.6548 14.6231
Top one process (GloVe) 9.8797 5.1452 29.4203 13.6001
Top one process (RoBERTa) 9.2599 4.7390 30.6599 15.8417
APSI 14.8013 6.6045 36.1648 19.2418
Ours 24.9551 11.2535 46.1999 23.5655
Human 29.0189 15.2542 50.4647 29.4423

(b) Advanced Setting (evaluate events based on all words)

Model
String Match Hypernym Allowed

E-ROUGE1 E-ROUGE2 E-ROUGE1 E-ROUGE2
Random 0.0000 0.0000 0.5104 0.0903
GRU (GloVe) 0.1935 0.0534 0.9677 0.1069
GRU (RoBERTa) 0.4870 0.0000 1.7857 0.2899
Top one process (Jaccard) 0.6562 0.2257 2.4797 0.5867
Top one process (GloVe) 0.8750 0.2106 2.8801 0.7372
Top one process (RoBERTa) 0.9479 0.3009 3.2811 0.9929
APSI 3.4988 0.4513 6.1611 1.1885
Ours 6.0443 1.1142 10.7720 2.4513
Human 11.6351 5.5905 18.0034 8.2695

Table 2: Comparison of our method with the best previous methods. The best performance is shown in bold.

similarity based on RoBERTa representations,
which are denoted as Top one process (Jac-
card), Top one process (GloVe) and Top one
process (RoBERTa) respectively.

• APSI (Zhang et al., 2020). This is a statistical
model that exploits the similarity of the given
goal to known sequences of events to infer
new sequence of events.

• Human. Given a goal, the event sequence is
generated by human, which can be regarded as
an upper bound on the performance of event
sequence prediction.

3.1.3 Implementation Details
We use T5-base as the base model for the augmenta-
tion module and the generation module. The batch
size used in both modules is 32. The optimizer
used by both modules is AdamW (Loshchilov and
Hutter, 2018), and the learning rate is set to 1e-5.
In the augmentation module, the model is trained
for 15 epochs, and the number is 30 in the genera-
tion module. We use BERT-base as the base model

for the scoring retriever, AdamW is chosen as the
optimizer and the learning rate is set to 5e-5. We
set the batch size to 64 and train the BERT-base
model for 3 epochs. We experimentally choose the
number k of event sequences retrieved by the scor-
ing retriever to be 2. Both T5-base and BERT-base
models are implemented through the Huggingface
Transformer library (Wolf et al., 2020).

3.2 Overall Results

The overall results are shown in Table 2, from
which we can see:

(1) Our model outperforms previous methods in
both basic and advanced settings, both for String
Match or Hypernym Allowed. This demonstrates
that our method can generate event sequences that
are more in line with the given goal.

(2) The performance of all methods is inferior
to human performance, but the performance of our
proposed method is close to human performance.
The likely reason is that our method somewhat
mimics the human process of generating event se-
quences. Humans first learn knowledge related to
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(a) Basic Setting (evaluate events based on verbs)

Model
String Match Hypernym Allowed

E-ROUGE1 E-ROUGE2 E-ROUGE1 E-ROUGE2
T5 21.4396 8.6654 44.1595 22.3597
T5+augmentation 21.6580 9.3587 44.9007 23.0440
T5+retrieval 23.0099 9.8411 45.0442 22.4762
Ours (T5+augmentation+retrieval) 24.9551 11.2535 46.1999 23.5655

(b) Advanced Setting (evaluate events based on all words)

Model
String Match Hypernym Allowed

E-ROUGE1 E-ROUGE2 E-ROUGE1 E-ROUGE2
T5 5.4869 0.8742 9.8168 2.0505
T5+augmentation 5.6759 0.9442 10.3454 2.1537
T5+retrieval 5.8754 1.0814 10.6658 2.2291
Ours (T5+augmentation+retrieval) 6.0443 1.1142 10.7720 2.4513

Table 3: Ablation results on the test set of event sequence prediction. We use T5 as our base model.

event sequences. When given a goal, humans first
search for similar event sequences, and then use
these event sequences to generate event sequence
that matches the goal.

(3) When using Hypernym Allowed instead of
String Match, performance is greatly improved in
both settings. The reason is that it is easier to pre-
dict similar words than to predict the same words
to the answer. The better performance of our model
over the previous methods on both String Match
and Hypernym Allowed shows that our method is
more able to generate accurate events, or at least,
our model is more able to generate events simi-
lar to the answer than the previous methods. We
also observe that the performance of the model in
the advanced setting is inferior to that in the basic
setting, suggesting that it is easier for the model
to correctly predict the verb in an event than to
correctly predict the entire event.

3.3 Ablation Study

Here we conduct ablation experiments to investi-
gate the effect of various modules of our method.
The results are shown in Table 3, from which we
can observe:

(1) Our model (T5+augmentation+retrieval) out-
performs the base T5 model on all metrics in both
basic and advanced settings, indicating that the
introduction of augmentation and retrieval mod-
ules can help improve the performance of event
sequence prediction.

(2) When the basic model T5 is added with
the augmentation module, the performance of the

model in various metrics is also improved. This
shows that the introduction of external event knowl-
edge is helpful for event sequence prediction. By
endowing the model the ability to generate relevant
events and capture the relationship between events
by the two pre-training tasks, we successfully inject
external knowledge into the model.

(3) After adding the retrieval module, the per-
formance of the base model T5 is improved on all
metrics. This illustrates the importance of referring
to known similar event sequences when generating
event sequence that meets a given goal. Although
large-scale pre-trained language models have been
shown to possess some general world knowledge,
it is necessary to introduce specific event knowl-
edge by referring to known event sequences when
generating new event sequence.

3.4 Effect of Pretraining Tasks

Here we study the effect of the two pre-training
tasks Tail Event Generation (TG) and Order Recov-
ery (OR). The results are shown in Table 4, from
which we can see:

(1) Whether adding only Tail Event Generation
or only Oder Recovery pre-training tasks, the per-
formance of the model improves over models that
do not utilize pre-training tasks. This suggests that
both tasks can endow the model with the ability to
facilitate event sequence prediction by implicitly
injecting external event knowledge into the model.

(2) When two pre-training tasks are added at the
same time, the performance of the model is further
improved. This shows that the two pre-training
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(a) Basic Setting (evaluate events based on verbs)

Model
String Match Hypernym Allowed

E-ROUGE1 E-ROUGE2 E-ROUGE1 E-ROUGE2
No pretraining 23.0099 9.8411 45.0442 22.4762
Only Tail Event Generation 24.2118 10.8155 46.0440 23.5396
Only Order Recovery 24.9415 9.9171 45.0969 22.7561
Both 24.9551 11.2535 46.1999 23.5655

(b) Advanced Setting (evaluate events based on all words)

Model
String Match Hypernym Allowed

E-ROUGE1 E-ROUGE2 E-ROUGE1 E-ROUGE2
No pretraining 5.8754 1.0814 10.6658 2.2291
Only Tail Event Generation 5.9299 1.1011 10.6725 2.3762
Only Order Recovery 6.0424 1.0905 10.6745 2.4341
Both 6.0443 1.1142 10.7720 2.4513

Table 4: The effect of the two pre-training tasks Tail Event Generation (TG) and Order Recovery (OR). No pre-
training means only the base model with the retrieval module is used.
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Figure 3: The effect of the lexical retriever and scor-
ing retriever. The E1_Str_Bas represents E-ROUGE1
of String Match in the basic setting, and E2_Hyp_Adv
represents E-ROUGE2 of Hypernym Allowed in the ad-
vanced setting. Other abbreviations have similar mean-
ings.

tasks can coexist harmoniously, and at the same
time endow the model with the ability to generate
related events and capture the relationship between
events, thereby jointly helping the event sequence
generation.

3.5 Impact of Retrievers

Here we study the effect of the lexical retriever and
scoring retriever in the retrieval module. When only
the lexical retriever is used, we randomly select k
event sequences from the results returned by the
lexical retriever as the final retrieval result. The
experimental results are shown in Figure 3, from

which we can observe:

(1) When only the lexical retriever is used, the
performance is improved compared to without the
retrieval module. This shows that when generating
event sequences, it is helpful to introduce specific
event knowledge, i.e., existing event sequences,
even if these event sequences are only related to a
certain extent.

(2) When a scoring retriever is added, the per-
formance of the model is further improved com-
pared to using only the lexical retriever. This illus-
trates the necessity of using a scorer to select the
sequences of events most similar to a given goal
from the related sequences of events. So how to
design a better scorer is an important issue, which
we leave as future work.

3.6 Case Study

Figure 4 lists three examples of event sequences
generated by our model and their corresponding
answer event sequences. For the first example,
two events Open App and Delete Contact in the
sequence generated by our model are the same as
the corresponding events in the answer sequence.
Another event Tap Icon, although not the same as
event Select Contact in the answer, expresses a
similar meaning. This shows that our model can
generate new event types. A similar situation exists
for the other two examples.
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Delete Contact
Open App, Select Contact, Delete Contact. 

Open App, Tap Icon, Delete Contact.

Make Oven Chicken
Combine Ingredient, Leave to Simmer, Set Sauce.

Prepare Chicken, Cook Chicken, Grill Chicken.

Find IP Address
Open Terminal, Use Command, Copy Address.

Open Terminal, Enter Command.

Goal Answer generatedand event sequence.

Figure 4: A comparison of the answer event sequence with the event sequence generated by our model.

4 Related Work

4.1 Script Event Prediction

Script event prediction aims to predict a correct
subsequent event from a candidate list, given an
ordered event sequence. The task is first proposed
by Chambers and Jurafsky (2008), with a statistical
model to predict the subsequent event by learn-
ing the cooccurrence between events. Neural net-
works are used in recent studies for script event
prediction. In Pichotta and Mooney (2016), they
shows that LSTM-based model outperforms previ-
ous cooccurrence-based models for script event pre-
diction. A neural network is proposed in Granroth-
Wilding and Clark (2016) which can learn word
embedding and composition function simultane-
ously. To better model relatedness between events,
Li et al. (2018) treats event chain as a sub-graph
and leverage recurrent networks to capture the re-
latedness for predicting the event. The model in Lv
et al. (2020) integrates external event knowledge
and designs three methods to predict the subse-
quent event. A Transformer-based model is pro-
posed in Bai et al. (2021) which integrates deep
event-level and script-level information for script
event prediction. To deal with the data insufficiency
problem, Zhou et al. (2021) proposes a multi-task
self-supervised model for script event prediction.
Compared to script event prediction, the event se-
quence prediction considered in this paper is more
challenging because multiple events need to be pre-
dicted instead of one, and there is no candidate list
of events like script event prediction.

4.2 Commonsense Knowledge

Commonsense knowledge is an important resource
for artificial intelligence, and it is also helpful for

many natural language processing tasks, such as
reading comprehension, question answering, and
text generation. For reading comprehension, Mi-
haylov and Frank (2018) introduces a neural read-
ing comprehension model, which leverages a key-
value memory to integrate external commonsense
knowledge. In Yang et al. (2019), attention mech-
anism is employed to select knowledge from ex-
ternal knowledge bases, which is then fused with
BERT to do knowledge-aware predictions. For
question answering, Ma et al. (2021) proposes a
neuro-symbolic framework for zero-shot question
answering, to transform knowledge resources into
an effective form for pretraining models. A model
containing relevance scoring and joint reasoning is
proposed in Yasunaga et al. (2021) to form a joint
graph connecting the QA context and KG, whose
representations are updated through a graph neural
network. For text generation, Guan et al. (2020)
proposes a knowledge-enhanced model based on
multi-task learning for commonsense story genera-
tion. Li et al. (2022) proposes a two-stage method
to explicitly arrange the ensuing events in open-
ended text generation. In this paper, we design
two pre-training tasks to implicitly inject external
knowledge into the model to help the model gener-
ate event sequence that meets a given goal.

5 Conclusion

In this paper, we first reformulate the event se-
quence prediction task as an event sequence gen-
eration task, which can generate a wider variety
of events. We then propose a three-stage model
including augmentation, retrieval, and generation
in order to leverage an external event knowledge
base to generate event sequences. Finally, exper-
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imental results show that our model outperforms
existing methods, demonstrating the effectiveness
of the proposed method.
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