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Abstract

Mathematical reasoning task is a subset of the
natural language question answering task. Ex-
isting work suggested solving this task with
a two-phase approach, where the model first
predicts formulas from questions and then cal-
culates answers from such formulas. This ap-
proach achieved desirable performance in ex-
isting work. However, its reliance on anno-
tated formulas as intermediate labels through-
out its training limited its application. In
this work, we put forward the idea to en-
able models to learn optimal formulas au-
tonomously. We proposed Weakly Supervised
Formula Learner, a learning framework that
drives the formula exploration with weak su-
pervision from the final answers to mathemat-
ical problems. Our experiments are conducted
on two representative mathematical reasoning
datasets MathQA and Math23K. On MathQA,
our method outperformed baselines trained on
complete yet imperfect formula annotations.
On Math23K, our method outperformed other
weakly supervised learning methods. 1

1 Introduction

Mathematical reasoning is a task where mathemat-
ical problems are described in natural language
or mathematical symbols. Such problems require
values, expressions, or other mathematical repre-
sentations as answers. A naive approach to solving
this task is to treat it as an end-to-end token-by-
token predicting problem from questions to an-
swers. However, this approach showed a rela-
tively poor generalization capacity on unseen num-
bers (Saxton et al., 2019). Another approach to
solving mathematical reasoning task is to adopt a
two-phase methodology. In the first phase, specific
formulas are predicted for each question. In the
second phase, such formulas are calculated under
predefined rules to produce the final answers. This

1The software is available at https://github.com/
evan-ak/wsfl.

approach has been widely applied in recent work
and has achieved desirable results in many repre-
sentative mathematical reasoning datasets (Wang
et al., 2017; Amini et al., 2019). However, this
two-phase solution leads to a reliance on annotated
formulas as indispensable labels for training the
formula predictor in the first phase. This reliance
further results in two major weaknesses. Firstly,
ground-truth formula annotations are not necessar-
ily prepared for every mathematical problem and
dataset. This makes it impossible to extend this
solution to datasets without these annotations. Sec-
ondly, the learning process can be misled when
there is noise in the formula annotations. In con-
sideration of this, we are motivated to propose a
new learning framework for solving mathematical
problems that is not dependent on formula anno-
tations. On the whole, we followed the principle
of the two-phase methodology and implemented
the two phases with what we call PolicyNet
and ActTaker. Figure 1 is an overview of our
learning framework. Our main contributions in this
work can be summarized as follows:

• We established a new mechanism to learn for-
mulas with weak supervision from final answers,
which outperforms existing weakly supervised
learning methods.

• We enabled models to explore reasonable for-
mulas autonomously through a heuristic search
in the space of possible formulas.

• We verified that the formulas learned with weak
supervision can be more beneficial to the ques-
tion answering than complete yet imperfect for-
mula annotations.

2 Related Work

2.1 Mathematical Reasoning
In recent years, various datasets have been pub-
lished to study the capacity of machine learning

https://github.com/evan-ak/wsfl
https://github.com/evan-ak/wsfl
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Figure 1: To get rid of the dependence on annotated formulas, our learning framework conducts a search process
to explore optimal formulas. Such formulas are then fed back to the formula predictor for its training.

models in solving mathematical problems and per-
forming quantitative reasoning. Math23K (Wang
et al., 2017) is a dataset crawled from a cou-
ple of online education websites consisting
of 23,162 problems with formula annotations.
MathQA (Amini et al., 2019) is a dataset collected
from another former dataset named AQuA (Ling
et al., 2017) consisting of 37,200 problems with
formula annotations. Mathematics (Saxton et al.,
2019) is a complex large-scale dataset in which
questions are generated in a broad range of areas
including algebra, arithmetic, and calculus.

2.2 Mathematical Problem Solvers

End-to-end and formula-based methods are the two
common methodologies for solving mathematical
problems. The essential difference between them
is that they either produce final answers directly or
adopt formulas as intermediate labels.

Concretely, end-to-end methods simply regard
both questions and answers as sequences of alpha-
bets, digits, and symbols, and conduct a sequence-
to-sequence prediction (Saxton et al., 2019). The
application of these methods is not restricted by the
absence of formulas. However, the lack of the con-
cept of complete numbers forces them to receive
and predict rational numbers digit by digit, which
leads to a relatively weak generalization capacity.

On the other hand, formula-based methods em-
ploy what are called formulas or equations as inter-
mediate labels for solving mathematical problems.
Most elementary applied numerical mathematical
problems can be solved by building equations with
unknowns and solving the equations to acquire the
answers. This generated the idea of first letting
the model predict such equations and then solving
the equations in a rule-based manner. This idea
was first implemented by Wang et al. (2017) and

then improved in later work (Wang et al., 2018;
Xie and Sun, 2019; Zhang et al., 2020; Chen et al.,
2020a). Faced with the problem of the reliance on
formula annotations, Hong et al. (2021) proposed
a fixing mechanism to learn formulas through error
propagation and formula correction.

2.3 Semantic Parsing

Semantic parsing is the task of translating natural
language utterances into machine-understandable
logical form (Kamath and Das, 2019). Recent stud-
ies on solving mathematical problems have also
benefited from semantic parsing by automatically
synthesizing formulas from questions (Koncel-
Kedziorski et al., 2015; Shi et al., 2015; Hopkins
et al., 2017). However, considering that there is
no guarantee that semantic parsing necessarily pro-
vide valid formulas for every question, the invalid
formulas become noise if they are fed to following
learning processes without correction. As a result,
weakly supervised formula learning remains mean-
ingful and valuable as long as perfect formula anno-
tations are not prepared. In view of this, semantic
parsing is considered an approach that works in
parallel with weakly supervised formula learning
methods for solving mathematical problems.

2.4 Neural Module Networks

Neural Module Networks (NMNs) are another rel-
evant existing approach with a similar two-phase
methodology (Andreas et al., 2016b). For solv-
ing visual question answering tasks, NMNs first
predict programs from the questions and then com-
pute with modules to acquire the final answers.
Later work also succeeded in applying NMNs to
solve discrete reasoning problems (Yi et al., 2018).
Faced with the similar difficulty in training a two-
phase model, existing work either utilized rein-
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Figure 2: The preprocessing and the symbols applied
in our work.

forcement learning (Andreas et al., 2016a; Johnson
et al., 2017) or developed specific heuristic learning
algorithms (Wu and Nakayama, 2020).

3 Weakly Supervised Formula Learner

3.1 Problem Definition

To achieve a formal representation of the mathemat-
ical problems in given datasets, we first performed
some preprocessing on the question–answer pair
of each problem. As shown in Figure 2, given the
raw text of a question, the numbers that appear in
the text are extracted as num. On the other hand,
the numbers in the original text are replaced with
special tokens 〈Nx〉, where x is the index of each
number. We refer to the questions with these re-
placed tokens as “templates”, which can also be
simply denoted by q. Note that multiple questions
can share the same template if they only differ in
numbers. In this case, they are combined into a
single template q. We let {num} denote the set of
numbers num extracted from the questions corre-
sponding to the same template, and {a} denote the
set of answers a to these questions. Note that num
in {num} and a in {a} should be kept paired. Af-
ter preprocessing, the data visible to the following
procedures should be triplets of (q, {num}, {a}).

Although the ground-truth equations for solv-
ing corresponding problems are annotated in some
datasets and considered part of the training data in
supervised learning methods, they are not visible
to our learning framework, which performs weakly

supervised learning. Instead, we let f denote the
formula we used. Each formula is made up of a
sequence of tokens where each of the tokens is the
name of a module or an 〈End〉 sign. This sequence
provides a preorder traversal of the tree of desired
modules where 〈End〉 marks the leaf nodes. De-
tails of the modules are presented in Section 3.5.

3.2 General Learning Process
Generally, our proposed learning framework is

made up of PolicyNet and ActTaker. As
shown by Equations 1 and 2, PolicyNet takes
the question template q as the input and predicts
the formula f . ActTaker takes the formula f and
the set of numbers {num} as inputs and calculates
a set of answers {â} corresponding to each num.

f = PolicyNet(q) (1)

{â} = ActTaker(f, {num}) (2)

With these two models, Algorithm 1 shows the
general learning process of our Weakly Supervised
Formula Learner. Here, D denotes the original
dataset holding triplets of training data (q, {num},
{a}). L denotes a dictionary initialized to be empty
for storing the optimal formulas found through the
learning process. After PolicyNet, ActTaker,
and L get initialized, the learning process is com-
posed of numerous basic loops. Within each loop,
at first, a triplet of training data is sampled from the
dataset D. Then, a search process is conducted to
try to find the optimal formula for solving the given
question template q. The behavior of this Search
function is presented in detail in Section 3.3. After
the optimal formula f and its accuracy accuf on
q are obtained, they are used to update the dictio-
nary L. Concretely, if f is not None, and then if
no f has been recorded for q or accuf exceeded
the previously recorded accuracy, f and accuf will
be recorded for q in L. Finally, PolicyNet is

Algorithm 1 General Learning Process
1: PolicyNet, ActTaker← Init()
2: L← {}
3: for loop in range(max_loop) do
4: (q, {num}, {a})← Sample(D)
5: f , accuf ← Search(PolicyNet, Act
Taker, q, {num}, {a})

6: L.update(q: (f , accuf ))
7: PolicyNet.train(L)
8: end for



1746

trained with the q and f sampled from L. These
procedures are repeated until max_loop is reached.
By the time of inference, this process is no longer
required, and the answer can be acquired directly
through Equations 1 and 2.

3.3 Formula Search
As shown by line 5 of Algorithm 1, we conduct
a Search procedure in each loop to explore op-
timal formulas. For this procedure, we basically
followed the Graph-based Heuristic Search algo-
rithm proposed by Wu and Nakayama (2020) and
adapted it to meet the needs of solving mathemat-
ical problems. The process of this procedure is
presented by Algorithm 2.

Graph In this algorithm, G denotes a graph used
to store the formulas under exploration with each
of its nodes representing a unique formula. This
graph is maintained under the following two rules:

- Each of its nodes nf represents a unique formula
f .

- There is an edge between two nodes if and only
if the edit distance between the formulas they
represent is one.

Moreover, each node nf maintains a score
nf .score. Intuitively, this score indicates how de-
sirable a formula is for solving the current given
question. Wu and Nakayama (2020) suggested
binding this score to the question answering ac-
curacy. However, in mathematical problems, un-
reasonable formulas are highly likely to lead to
scattered answers and thus result in zero accuracies.
These scores can no longer provide enough guid-
ance in a heuristic search if most of them degener-
ate to zero. In view of this, we modified this score
to the average of two factors. Among them, the

Algorithm 2 Formula Search
1: func Search(PolicyNet, ActTaker, q,

{num}, {a})
2: G ← Init()
3: for iter in range(max_iter) do
4: fexp← Sample(G)
5: fexp.accu←Accuracy(ActTaker (fexp,

{num}), {a})
6: G.update(Mutate(fexp))
7: end for
8: fbest← argmaxf∈G f.accu
9: return fbest, fbest.accu

one is the standardized likelihood of the formula
given by PolicyNet, and the other is an index
related to the actual question answering effective-
ness of the formula. In this section, we employ a
concise implementation for the latter factor, which
is simply the question answering accuracy. We will
present another delicately designed way to scale
this factor in Section 3.4. In general, nf .score is
defined by Equations 3 to 6.

nf .score =
1

2
[ p(f |q, θP ) + f.accu ] (3)

p(f |q, θP ) =
1

L

L∑
i=1

p(fi|f1:i−1, q, θP ) (4)

f.accu =
1

N

N∑
i=1

1|{â}i−{a}i|<10−3 (5)

{â} = ActTaker(f, {num}) (6)

Here, θP denotes the parameters of
PolicyNet. L denotes the length of the
current formula. p(fi|f1:i−1, q, θP ) denotes the
likelihood of producing the ith token in the formula
given PolicyNet, the question template q, and
the previous tokens f1:i−1. N denotes the length
of sets {num} and {a} corresponding to template
q. 1|{â}i−{a}i|<10−3 returns one if the difference
between the ith result in {â} and the ith answer in
{a} is less than an acceptable floating-point error
bound 10−3.

Graph Initialization As for the initialization of
the graph as shown in Line 2 of Algorithm 2, G is
initialized with at most three nodes. The formulas
of these nodes are as follows:

- (N_0,〈End〉), which is the shortest legal for-
mula;

- the formula predicted by PolicyNet given q
with maximum likelihood;

- the formula recorded for qc, where qc is the pre-
viously solved template recorded in L that the
current q is semantically closest to.

For the last clause, we determine the semantic
distance between two templates by calculating the
Euclidean distance between their sentence vectors
embedded by the encoder of PolicyNet. With
EP (·) denoting the encoder of PolicyNet, the
decision of qc can be expressed by Equation 7.

qc =argmin
q∗∈L

‖EP (q
∗)− EP (q)‖2 (7)
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Formula Sampling As shown in Line 4 of Algo-
rithm 2, in every iteration of the search, we first
select a formula fexp from G as the formula to ex-
plore. For the Sample function, we also followed
the mechanism proposed by Wu and Nakayama
(2020). Concretely, there is an Expectation value
defined on every node n of G as presented by Equa-
tion 8. In every iteration of the search, the node
with the greatest Expectation value among unex-
plored nodes is selected as the node to be explored.

n.Exp =

3∑
d=0

wd ∗max{n∗.score | n∗ ∈ G,

distance(n∗, n) 6 d} (8)

w = [0.5, 0.25, 0.15, 0.1] (9)

Formula Examination As shown in Line 5 of
Algorithm 2, the selected formula fexp is examined
by ActTaker to obtain its accuracy given {num}
and {a}. The calculation of the accuracy basically
follows Equations 5 and 6. In addition, the exami-
nation by ActTaker may not necessarily succeed
because fexp is not guaranteed to be semantically
legal and illegal calculations like division by zero
may be encountered. In such cases, correspond-
ing {â}i is considered invalid and |{â}i − {a}i| is
considered infinite.

Formula Mutation As shown in Line 6 of Al-
gorithm 2, mutations are generated from fexp to
expand the graph G. Here, insertion, deletion, and
substitution are the three operations for generating
mutations. Respectively, they insert new modules
into a formula, delete existing modules from a for-
mula, and substitute existing modules with other
modules in a formula. The newly generated formu-
las are then added to G if they do not yet exist in
G. The relevant edges should also be added to G to
keep G conforming to its definition and features.

When all the search iterations are finished, the
formula that achieved the highest accuracy is re-
turned together with its accuracy as the result of this
formula search. If none of the formulas achieved
non-zero accuracy, this function returns None.

3.4 Difference-Based Formula Scoring

In Section 3.3, we have presented an elementary
practice for determining nf .score, the score of
each formula, with Equations 3 to 6. In this sec-
tion, we further discuss Difference-Based Scoring
(DBS), another advanced approach to determining

this score based on the difference between answers
acquired from formulas and ground-truth answers.
This difference-based scoring technique has also
been suggested and verified in recent work repre-
sented by Petersen et al. (2021).

nf .score = p(f |q, θP ) + β ∗f.diffscore (10)

f.diffscore =
1

N

N∑
i=1

1

1+10 ln (|{â}i−{a}i|+1)

(11)

With DBS, nf .score is calculated through Equa-
tions 10 and 11. In Equation 10, β is a hyperpa-
rameter that scales the contribution of f.diffscore
in nf .score with default value 1.0. In Equation
11, for each specific i, if {â}i is equal to {a}i, the
corresponding term returns one, the same value as
Equation 5. Otherwise, it returns a score negatively
correlated with the difference between {â}i and
{a}i. The 10 in the denominator is an empirical
coefficient that ensures the following logarithmic
difference would not contribute too much to the
whole score. With this score, formula search tends
to explore formula nodes surrounding the nodes
that lead to answers close to ground-truth answers.

3.5 Modules
Modules are the basic calculating units for solving
each mathematical problem. During computation,
the modules in the tree specified by a formula are
calculated recursively from the leaves to the root
to acquire the final answer. The three types of
modules we adopted are Number, Operation,
and Constant.

Number The Number modules, which are de-
noted by N_x, are employed to establish references
to the numbers extracted from questions. These
modules need no input and return a number. Here,
x is the index of the number that is referred to. This
index starts from 0. For example, N_1 returns the
second number in num. An error is raised if x
exceeds the number of numbers in num.

Operation The Operation modules, which are
denoted simply by their symbols, are employed to
conduct specific mathematical calculations. These
modules need a specific number of numeric inputs
(commonly two) and return the calculation result
as a number. For example, the + module takes two
rational numbers a and b as inputs and returns the
rational number (a+b). An error is raised if the
calculation is illegal such as division by zero.
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Accuracy
Seq2prog (Amini et al., 2019) 51.9%
Seq2prog+cat (Amini et al., 2019) 54.2%
LSTM2TP (Chen et al., 2020a) 54.6%
TP-N2F (Chen et al., 2020a) 55.9%
Ours w/o DBS 59.5%
Ours w/ DBS 60.1%

Table 1: The option selecting accuracy achieved by our
learning framework and baselines on MathQA.

Constant The Constant modules, which are
denoted by C_x, are employed to generate constant
numbers. These modules need no input and return
a number. Here, x is the specific rational number
that is referred to. For example, C_100 returns the
integer 100.

4 Experiments

Our experiments in this work are conducted on
two representative mathematical reasoning datasets,
MathQA (Amini et al., 2019) and Math23K (Wang
et al., 2017). We report and discuss our findings on
them in Section 4.1 and 4.2, respectively.

4.1 MathQA

Experimental setup To prepare the training data,
we followed the preprocessing procedure presented
in Section 3.1 to transform the original questions
and answers into triplets of (q, {num}, {a}). For
PolicyNet, the encoder is a two-layer Bidirec-
tional LSTM (Hochreiter and Schmidhuber, 1997;
Schuster and Paliwal, 1997) with hidden state size
256. The decoder is a two-layer LSTM with hid-
den state size 512. The input embedding size of
both of them is 300. For their training, we adopted
the Adam optimizer (Kingma and Ba, 2015) with
learning rate 0.001. As indicated by line 7 of Al-
gorithm 1, PolicyNet is trained continuously
in every learning loop. Here, the batch size for
sampling training data from L is 64. Within each
loop, PolicyNet is trained on 500 batches. For
the comparison with baselines trained in a fully-
supervised manner, we utilized part of the formula
annotations to pretrain PolicyNet. The pretrain-
ing data, which is organized as tuples of (q, f ), is
filtered from the training set to meet the following
two requirements. First, the formula should be able
to solve the question and achieve non-zero accu-
racy. Second, the formula should be made up of
only the four fundamental arithmetic calculations.

Accuracy
Ours / raw annotation 52.4%
Ours / REINFORCE 56.5%
Ours 60.1%

Table 2: The performance of our models trained with
raw formula annotations and formula exploration.

For ActTaker, we adopted twenty Numbermod-
ules, N_0 to N_19, four Operation modules, +,
-, ×, and ÷, and four Constant modules, C_1,
C_2, C_3, and C_100.

Evaluation metric For evaluation, MathQA pro-
vides five options for each question where the cor-
rect option is annotated. To select an option, we cal-
culate the differences between the answer acquired
by our models and each option, and select the op-
tion for which the difference is minimal. If an error
is raised through the computation of ActTaker,
we randomly select one of the options. The final ac-
curacy we report is the accuracy of option selection.
Note that this metric is different from the metric of
measuring the formula matching accuracy, which is
adopted by some existing work (Chen et al., 2020b)
and tolerates the inherent noise in formula annota-
tions. The results analyzed under these two metrics
are not directly comparable, while we choose the
former to study the influence on learning brought
by noisy annotations.

Results Table 1 shows the accuracy achieved by
our learning framework and baselines on MathQA.
It is shown that our proposed method outperforms
all the baselines on this dataset. We also con-
ducted an ablation study on whether to employ
the DBS discussed in Section 3.4 or not. The re-
sult confirmed the performance improvement made
by DBS. Compared with the baselines, we only
adopt a simple LSTM for the formula inference,
which appears to be naive in contrast to the deli-
cately crafted models adopted in existing work. We
attribute our success to the autonomous formula
exploring capacity of our learning framework.

In our investigation of the annotated formulas
provided by MathQA, some noise was found. This
means that part of the annotated formulas cannot
solve the corresponding questions correctly. In-
cluding this noise in the training labels results in
the degradation of performance in existing work.
However, our learning framework is capable of re-
moving this noise and finding valid formulas for the
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question index 14328 (train)
question text 12.5 % of 192 = 50 % of ? (Answer: 48)

annotated formula (((50 × 192) ÷ 100) × 12.5) ÷ 100 (wrong)
our formula (raw) (÷, ×, N_0, 〈End〉, N_1, 〈End〉, N_2, 〈End〉)

(flatten) (12.5 × 192) ÷ 50
question index 1752 (train)

question text how many multiples of 4 are there between 8 and 160 ? (Answer: 37)
annotated formula ((160 - 8) ÷ 4) + 1 (wrong)
our formula (raw) (-, ÷, -, N_2, 〈End〉, N_1, 〈End〉, N_0, 〈End〉, C_1, 〈End〉)

(flatten) ((160 - 8) ÷ 4) - 1
question index 3999 (train)

question text the average of first 25 natural numbers is ? (Answer: 13)
annotated formula 25 + 1 (wrong)
our formula (raw) (+, ÷, N_0, 〈End〉, C_2, 〈End〉, ÷, C_1, 〈End〉, C_2, 〈End〉)

(flatten) (25 ÷ 2) + (1 ÷ 2)
question index 23604 (train)

question text the telephone company wants to add an area code composed of 2
letters to every phone number . in order to do so , the company
chose a special sign language containing 324 different signs . if
the company used 322 of the signs fully and two remained unused ,
how many additional area codes can be created if the company uses
all 324 signs ? (Answer: 1292)

annotated formula 322 × (324 - 322) × (324 - 322) (wrong)
our formula (raw) (+, ×, N_0, 〈End〉, N_1, 〈End〉, ×, N_0, 〈End〉, N_2, 〈End〉)

(flatten) (2 × 322) + (2 × 324)
question index 285 (test)

question text today jim is twice as old as fred , and sam is 4 years younger than
fred . 4 years ago jim was 8 times as old as sam . how old is jim
now ? (Answer: 20)

annotated formula (((8 × 8) - 4) ÷ (8 - 2)) × 2
our formula (raw) (×, +, N_0, 〈End〉, ÷, +, ×, N_0, 〈End〉, C_2, 〈End〉, -, ×, N_1, 〈End〉,

N_2, 〈End〉, N_1, 〈End〉, -, N_0, 〈End〉, N_1, 〈End〉, C_2, 〈End〉) (wrong)
(flatten) (4 + ((4 × 2) + ((4 × 8) - 4)) ÷ (4 - 4)) × 2 (wrong)

Table 3: Examples of five questions together with annotated formulas and the formulas discovered by our learning
framework. The first four examples show the cases that the annotated formulas are invalid and lead to incorrect
answers. However, our learning framework discovered valid formulas for these questions instead. The last example
shows a case of failure in the test. In this case, an incorrect formula is predicted by our models and an error is
raised through the computations of the modules because of the occurrence of division by zero. In cases like this,
formulas cannot produce valid answers even though they are semantically acceptable.

corresponding questions afresh through the search
with weak supervision from the answers. This en-
ables our learning framework to achieve higher
accuracy in this task. Table 3 provides a case study
for this issue.

To strengthen this idea, we also compared the
performance of our models trained in different con-
ditions and report the results in Table 2. Here, “raw
annotation” refers to the models trained merely
on the raw formula annotations. “REINFORCE”
refers to the models trained with raw annotations
and have REINFORCE (Williams, 1992) imple-
mented to enable a preliminary formula exploration.
We restricted the maximum number of attempts on
formulas for both REINFORCE and our learning
framework to the same bound 108. Compared with
the learning on raw annotations, although REIN-
FORCE improved the performance to some extent,
our method showed a more powerful formula ex-

ploring capacity. This comparison verified the ad-
vantage of autonomous formula exploration and
the superiority of our learning framework over the
naive reinforcement learning method.

4.2 Math23K
Experimental setup For Math23K, the data pre-
processing and the configuration of PolicyNet
are the same as MathQA. Nevertheless, we pro-
vided no pretraining data to PolicyNet in this
experiment to make a fair comparison with weakly
supervised learning baselines. This means that the
formula search completely starts from scratch. In
addition, we also used the formulas discovered in
our formula search to train the GTS model (Xie and
Sun, 2019) with its default settings to compare with
existing work. For ActTaker, we adopted six
Numbermodules, N_0 to N_5, four Operation
modules +, -,×, and÷, and two Constant mod-
ules, C_1 and C_100.
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Accuracy
Supervised learning approaches

DNS (Wang et al., 2017) 58.1%
GTS (Xie and Sun, 2019) 74.3%
G2TL (Zhang et al., 2020) 75.5%

Weakly supervised learning approaches
Seq2seq + REINFORCE 12.1%
Seq2seq + MAPO (Hong et al., 2021) 10.7%
Seq2seq + LBF (Hong et al., 2021) 44.7%
Seq2seq + Ours w/o DBS 51.2%
Seq2seq + Ours w DBS 52.4%
GTS + REINFORCE 14.0%
GTS + MAPO (Hong et al., 2021) 20.8%
GTS + LBF (Hong et al., 2021) 59.4%
GTS + Ours w/o DBS 59.8%
GTS + Ours w DBS 59.9%

Table 4: The accuracy achieved on Math23K by fully
supervised and weakly supervised learning methods un-
der five-fold cross-validation.

Results Table 4 shows the accuracy achieved by
both supervised learning methods and weakly su-
pervised learning methods on Math23K. Although
supervised learning methods remain the state-of-
the-art approach on this task owing to the natural
strength of utilizing ground-truth formula supervi-
sion, our learning framework outperformed all the
existing weakly supervised approaches on both two
inference models LSTM and GTS. In weakly super-
vised learning environment, learning engines are
expected to acquire knowledge on formulas from
scratch. Naive reinforcement learning methods rep-
resented by REINFORCE and MAPO (Liang et al.,
2018) are inadequate in performing this job because
their exploring capacity is mainly powered by the
estimation made by the inference model, which
can hardly deal with some complicated formula
modification such as inserting an operator into a
formula while keeping the rest of the formula intact.
Compared with the learning-by-fixing (LBF) mech-
anism proposed by Hong et al. (2021), we attribute
the superiority of our method to the capacity of
managing formula exploration in a broader search
space. The fixing mechanism of LBF mainly fo-
cuses on the 1-step fix, which assumes that only one
symbol in the reasoning tree should be substituted.
However, our heuristic formula exploration based
on the formula graph and formula score can sample
candidate formulas according to the observation on
various formulas that are likely to be valid and thus

Figure 3: The learning processes of different weakly
supervised learning methods measured by two metrics:
a. the number of valid formulas found in the training
set, b. the accuracy achieved on the test set.

organize a broader heuristic formula exploration.
Moreover, we analyzed the learning processes

of different weakly supervised learning methods
together with our method with different hyperpa-
rameter β in DBS. The result is shown in Figure 3.
First of all, it can be noticed that REINFORCE only
managed to discover a small number of formulas
within the learning in the training set. This led to its
poor performance on the test set. Compared with
REINFORCE, our method showed a much more
powerful formula exploring capacity and higher
exploring efficiency. Furthermore, though the ab-
lation study on our method, it is shown that DBS
makes the learning process converge faster, dis-
cover more valid formulas in the training set, and
achieve slightly higher accuracy on the test set.
However, the difference brought by β is not quite
obvious. From this result, we concluded that the
existence of the difference-based score contributed
to the heuristic search, but the search process is not
very sensitive to its scale.

Further Discussion Although our proposed
method has shown remarkable formula exploring
capacity as a weakly supervised leaning approach,
we are still alert to the gap of performance between
our method and supervised learning methods. Gen-
erally, this gap can be ascribed to two causes. On
the one hand, the size of the space of possible for-
mulas, which is also the size of the search space,
can be approximately up to 1020. Such a search
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space is so huge that some complex ground-truth
formulas cannot be guaranteed to be found through
a heuristic search by nature. On the other hand,
through the search process, incorrect formulas may
result in correct answers by accident. For exam-
ple, for the question “Find the sum of 2 and 2.”,
a valid formula could be N_0+N_1, but formulas
such as N_0+N_0 and N_0×N_1 also result in
correct answers by accident. These errors can be
reduced by providing multiple pairs of num and
a to each q, which is also one of our motivations
for proposing the template combining process in
preprocessing. However, such errors still cannot be
entirely avoided for templates exclusively owned
by unique questions. Anyway, considering that
these are some common challenges faced by all
weakly supervised learning approaches, we leave
the solution to these problems to future work.

5 Conclusion

This work discussed the issue of formula annota-
tion dependence in existing work on solving math-
ematical problems. To deal with this issue, we
proposed a new learning framework, Weakly Super-
vised Formula Learner. This framework established
a mechanism to learn formulas with weak super-
vision from final answers and enabled a heuristic
formula search in the space of possible formulas.

In the experiments, our learning framework
showed remarkable formula exploring capacity on
both MathQA and Math23K datasets. Particularly,
on MathQA, we illustrated that our models trained
with formulas discovered in formula exploration
outperformed baselines trained with complete yet
imperfect formula annotations. On Math23K, our
learning framework showed more powerful for-
mula exploring capacity than existing weakly super-
vised learning methods. In view of this evidence,
we consider our proposed learning framework a
valid and advanced approach for solving mathe-
matical problems with weak supervision from their
answers.
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