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Abstract

We propose a novel unconstrained bottom-
up approach for rhetorical discourse parsing
based on sequence labelling of adjacent pairs
of discourse units (DUs), based on the frame-
work of Koto et al. (2021). We describe
the unique training requirements of an uncon-
strained parser, and explore two different train-
ing procedures: (1) fixed left-to-right; and (2)
random order in tree construction. Addition-
ally, we introduce a novel dynamic oracle for
unconstrained bottom-up parsing. Our pro-
posed parser achieves competitive results for
bottom-up rhetorical discourse parsing.

1 Introduction

Discourse analysis aims to explain the relation-
ship of texts beyond sentence boundaries, and has
been modelled based on Rhetorical Structure The-
ory (RST: Mann and Thompson (1988)). In the
RST framework, texts are modelled as a labelled
hierarchy of discourse units (DU), with elementary
discourse units (EDU) being the smallest unit (see
Figure 1).

Although there has been a move from bottom-
up (Hernault et al., 2010; Ji and Eisenstein, 2014;
Joty et al., 2015; Li et al., 2016; Yu et al., 2018;
Mabona et al., 2019) to top-down approaches (Lin
et al., 2019; Zhang et al., 2020; Nguyen et al., 2021;
Koto et al., 2021), we argue that the bottom-up
paradigm is conceptually intuitive as humans anal-
yse the structure of documents incrementally based
on elementary structures. Furthermore, in con-
temporaneous work, Yu et al. (2022) have shown
that bottom-up parsers built on a language model
pre-trained at the EDU level outperform top-down
parsers trained comparably.

In this paper, we revisit the bottom-up approach
and introduce a novel unconstrained bottom-up
discourse parsingO(n2) by adopting the sequence-
labelling framework of Koto et al. (2021). Uncon-
strained means that we relax the fixed left-to-right

Figure 1: An example discourse tree (elab = elabora-
tion, “←” means Nucleus–Satellite relation). For this
tree, we show the parsing states of the bottom-up (left)
and top-down (right) approaches.

direction of discourse tree construction, allowing
us to make the easiest decisions first. Intuitively
speaking, when it comes to making the harder deci-
sions, the history of existing structures can be used
to make more reliable predictions.

Goldberg and Elhadad (2010) introduced the
non-directional easy-first algorithm to dependency
parsing, which is a greedy, best-first parser, which
relaxes the left-to-right order constraint of other
bottom-up transition-based algorithms (Yu et al.,
2018). Because the model is conditioned on exist-
ing parsed structures, we need to sample parsing
trajectories to train the model, and compare two
simple sampling methods: (1) left-to-right, and (2)
random. To the best of our knowledge, we are the
first to propose a bottom-up model for discourse
parsing using the easy-first algorithm in a sequence
labelling framework.

To summarize our contributions: (1) we propose
a novel bottom-up context-sensitive parser; (2) we
explore sampling methods for training a context-
sensitive parser; and (3) we devise a novel dynamic
oracle for our unconstrained bottom-up discourse
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Figure 2: Architecture of the model

parser. We make the source code available online.1

2 Bottom-Up RST Parsing

We construct RST trees in a bottom-up fashion,
starting with a sequence of EDUs and sequentially
merging adjacent discourse units. At each stage,
there are multiple merge points in the partially-
parsed document that make up the gold discourse
tree, and we define all such points to be gold
merges. We impose no constraint on which gold
merge needs to be executed first.

Following Koto et al. (2021), we frame the merg-
ing task as a sequence labeling problem. We train a
merging model to assign a binary label y ∈ {0, 1}
to each discourse unit, where 1 indicates the unit
and its right neighbour are subject to a gold merge.
For each parse state, we train the model to label
all gold merge points. At test time, we select the
highest-probability merge point to construct the
next parse state. We assign the discourse label and
nuclearity relation separately with a second classi-
fier after a merge is decided.

2.1 Model
Following Koto et al. (2021), our merging module
consists of two blocks, as depicted in Figure 2. The
first block is an EDU encoder. We use the hierarchi-
cal LSTM architecture of Yu et al. (2018), gener-
ating encodings with implicit syntax features. We
obtain a suitable representation for each EDU text
span {w1, w2, . . . , wm} by using two Bi-LSTMs
(Bi-LSTM1 and Bi-LSTM2). Bi-LSTM1 is given
the neural embedding of wi concatenated with the
part of speech embedding as input. Bi-LSTM2 is
given the syntax embedding si of each work as
input. The syntax embedding comes from the syn-
tax dependency parser from Dozat and Manning
(2017). We also use an EDU type embedding tEj

to distinguish EDUs at the end of a paragraph from
other EDUs. The final EDU encoding gEj is the
concatenation of the average output states for both
Bi-LSTMs over the EDU and the EDU type em-
bedding tEj :

xi = wi ⊕ pi
{aw1 , .., awp } = Bi-LSTM1({x1, .., xp})
{as1, ..., asp} = Bi-LSTM2({s1, .., sp})

gEj = Avg-Pool({aw1 , .., awp })⊕
Avg-Pool({as1, .., asp})⊕ tEj

Given a sequence of independent EDU encod-
ings, we use a third Bi-LSTM (Bi-LSTM3) to cap-
ture relationships between EDUs and produce a
contextualized encoding hEj :

{hE1 , . . . , hEq} = Bi-LSTM3(gE1 , . . . , gEq)

The second block (the top half of Figure 2) is
the merger, and deviates from Koto et al. (2021).
The parse state consists of a sequence of discourse
units, each of which is represented by averaging
the encodings of the component EDUs:

dDk
= Avg(hEa , . . . , hEb

)

where Dk is a discourse unit with EDU span Ea:b.
We use a fourth Bi-LSTM (Bi-LSTM4) to en-

code relationships between complex discourse
units and assign a binary label to each merge.

{d′D1
, . . . , d′Dn

} = Bi-LSTM4(dD1 , . . . , dDn)

ŷDk
= σ(MLP(d′Dk

))

1https://github.com/Redrew/
NeuralRST-Bottom-Up

https://github.com/Redrew/NeuralRST-Bottom-Up
https://github.com/Redrew/NeuralRST-Bottom-Up
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Algorithm 1 Bottom-up Dynamic Oracle
1: function DYNORACLE(E,O,R)
2: # For training only
3: # E is list of EDUs
4: # O is gold order for merger
5: # R is list of gold discourse labels based on O
6: q = length(E); state = {E1, . . . , Eq}
7: while ‖state‖ > 1 do
8: idgold = oracleMerge(state,O,R)
9: idpred = predictMerge(state)

10: rpred1 = predictLabel(state, idgold)
11: rpred2 = predictLabel(state, idpred)
12: if random() > α then
13: state = merge(state, idgold)
14: rgold = oracleLabel(state, idgold)
15: L = Loss(idgold, rgold, idpred2, rpred1)
16: else
17: state = merge(state, idpred)
18: roracle = oracleLabel(state, idpred)
19: L = Loss(idgold, roracle, idpred1, rpred1)
20: end if
21: end while
22: end function

We predict the joint probability distribution of
the nuclearity and discourse labels after a merge
is chosen by feeding the encodings d′ind, d

′
ind+1

of the selected discourse units into an MLP layer,
where ind is the index of the left discourse unit
chosen to be merged:

znuc+dis = softmax(MLP(d′ind, d
′
ind+1))

The final training loss of our model is the com-
bination of the merging and nuclearity-discourse
prediction loss: L = Lmerge + Lnuc+dis.

2.2 Merge Order in Training
Because the model evaluates each merge candidate
in the context of all previously parsed structures
in the document, different permutations of parse
states with discourse units not part of the merge
candidate can lead to different predictions for that
merge candidate. We propose to sample parse se-
quences for training. We evaluate two different
sampling schemes: (1) merging gold pairs left to
right; and (2) merging gold pairs at random.

2.3 Dynamic Oracle
In the standard training regimen, the model is only
trained on parse states constructed by a sequence
of correct merges. However, at test time, the model
will often see error parse states, created by an in-
correct merge in its history. Because the model
is never trained on error states, it will struggle to
recover after it has made a mistake.

We address this problem by training our model
with a dynamic oracle, first introduced by Goldberg

and Nivre (2012) and adopted for discourse parsers
(Yu et al., 2018; Koto et al., 2021). Given an er-
ror state, a dynamic oracle provides the next set
of merge actions that will minimize deviation be-
tween the gold tree and the final tree. The dynamic
oracle is described in Algorithm 1. At each merg-
ing step in training, with probability α we execute
the predicted merge instead of the sampled gold
merge. In this manner, we introduce error states to
the training set and teach the model to predict the
next set of oracle actions, so the parser chooses the
best actions even after a mistake.

In a document with n EDUs, the oracle assigns
a merge order to each n− 1 cut separating adjacent
EDUs. The merge order is defined as the earliest
step discourse units to the left and right of the cut
are merged in all possible gold merge sequences. If
the merge order of a cut is lower than adjacent cuts,
it is an oracle action to merge the two discourse
units around the cut, because in such cases, other
gold merges that involve the two discourse units
must come after the oracle action.

3 Experiments

3.1 Data
Following previous studies (Koto et al., 2021; Yu
et al., 2018), we focus on the English language
and use the RST Discourse Treebank for our ex-
periments, binarizing all discourse trees in a right-
heavy manner. It contains 347 annotated docu-
ments for training and 38 documents for testing.
Our development set consists of the same 35 doc-
uments as Koto et al. (2021) and Yu et al. (2018),
taken from the training set. Consistent to previ-
ous works, we use the same 18 coarse-grained dis-
course relationships and use the gold EDU seg-
ments for discourse tree construction.

3.2 Set-Up
We use the standard Parseval metrics for RST
parsing of Marcu (2000). Based on the recom-
mendations of a recent replication study (Morey
et al., 2017), we report micro-averaged F-1 scores
on labeled attachment decisions (original Parse-
val) instead of macro-averaged F-1 scores (RST-
Parseval). The Parseval metrics consist of: Span,
Nuclearity, Relation, and Full.2

2Span evaluates the correctness of the predicted tree struc-
ture. Nuclearity evaluates the tree skeleton together with
nuclearity indications. Relation evaluates the tree skeleton
with the discourse relations. Full evaluates the tree skeleton
along with nuclearity indications and discourse relations.
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Merge Order Full Bias

Left Merge 47.3 12.6
Random Merge 51.8 0.8

Table 1: Sampling strategy results over the dev set,
based on the Full metric (micro-averaged F-score on
labeled attachment decisions) and Bias (depth differ-
ence between the left and right end of the tree).

We adopt the hyperparameter settings used in
Koto et al. (2021). GloVe embeddings (Penning-
ton et al., 2014) are used to encode the words in
each EDU. We use CoreNLP (Manning et al., 2014)
to obtain POS tag, and initialize each POS encod-
ing as a random vector. The embedding dimension
of words, POS tags, EDU type and syntax features
are 200, 200, 100 and 1200, respectively. The di-
mensionality of the Bi-LSTMs in the encoder is
256 and Bi-LSTM4 in the merge classifier has a
dimension of 128. We use batch size = 4, gradient
accumulation = 2, learning rate = 0.001, dropout
probability = 0.5, and optimizer = Adam (with ep-
silon of 1e-6). When training with a dynamic ora-
cle, we activate the dynamic oracle after 50 epochs.

We tune the α value used in the dynamic oracle
on the development set. We performed grid search
on α values, each averaging the Full Parseval
metric over three random seeds. For training with
a dynamic oracle, we found that α = 0.8 resulted
in the best Full Parseval score.

We use a single Tesla V100 SXM2 32 GB with
4 CPU cores to run our experiments. A run with
static oracle takes around 14 hours in run time.

3.3 Results

We present analysis of the sampling strategy in
Table 1. All results are averaged over three runs
with different random seeds on the development
set, with a static oracle. We compare training with
left-first state sequences and randomly-sampled
state sequences, and find that the latter result in
an absolute +4.5 improvement over training with
left-first state sequences. As such, we use random
sampling for the remainder of the paper.

We benchmark our parser against previous state-
of-the-art RST parsers over the test set. The results
are presented in Table 2 (original Parseval).

Training with a dynamic oracle improved results
over a static oracle, with a Full score increase of
+0.2. Even with a static oracle, our parser surpasses
previous bottom-up parsers with a simple greedy al-

Method S N R F

Bottom-Up:
Feng and Hirst (2014)† 68.6 55.9 45.8 44.6
Ji and Eisenstein (2014)† 64.1 54.2 46.8 46.3
Surdeanu et al. (2015)† 65.3 54.2 45.1 44.2
Joty et al. (2015) 65.1 55.5 45.1 44.3
Hayashi et al. (2016) 65.1 54.6 44.7 44.1
Li et al. (2016) 64.5 54.0 38.1 36.6
Braud et al. (2017) 62.7 54.5 45.5 45.1
Yu et al. (2018) (static)‡ 71.1 59.7 48.4 47.4
Yu et al. (2018) (dynamic)‡ 71.4 60.3 49.2 48.1
Mabona et al. (2019) 67.1 57.4 45.5 45.0
Yu et al. (2022) (XLNet) 76.4 66.1 54.5 53.5

Top-Down:
Zhang et al. (2020) 67.2 55.5 45.3 44.3
Nguyen et al. (2021) 67.1 57.4 45.5 45.0
Koto et al. (2021) (static)‡ 72.7 61.7 50.5 49.4
Koto et al. (2021) (dynamic)‡ 73.1 62.3 51.5 50.3

Our proposed Bottom-Up Method:
Static‡ 73.3 62.0 50.1 49.1
Dynamic‡ 73.6 62.3 50.3 49.3

Table 2: Results over the test set calculated us-
ing micro-averaged F-1 on labeled attachment deci-
sions (original Parseval). All metrics (S: Span, N:
Nuclearity, R: Relation, F: Full) are averaged
over three runs. “†” and “‡” denote that the model
uses sentence and paragraph boundary features, respec-
tively.

gorithm, without the need for complex post-editing
or a chart-parsing algorithm. The sequence labeling
framework has the benefit of being conceptually
simpler than transition parsers. Training with a
dynamic oracle adds algorithmic complexity dur-
ing training, but our inference procedure remains
the same. Our parser is most comparable with
the transition-based parser proposed by Yu et al.
(2018), which shares the same LSTM-architecture
as our work and also utilises implicit syntax fea-
tures. Our results demonstrate that a parser with
the context of the document structure outperforms
parsers without structure context.

Compared to the top-down parser proposed by
Koto et al. (2021) with the dynamic oracle, our
results for Span and Nuclearity are superior or
equivalent, but the relation classification results
are slightly inferior, resulting in slightly lower re-
sults overall. It is important to note that, while
noticeably superior to our approach, the methods
of Yu et al. (2022) and Zhang et al. (2021) are heav-
ily based on pre-trained LMs, where our method
makes no use of pre-training, which we leave to
future work.
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3.4 Analysis
We perform bias analysis on discourse trees pro-
duced by models trained with left-first states
against random states. We introduce a simple
metric for detecting heaviness bias, by calculating
the depth difference between the left-most and the
right-most leaf nodes and subtracting the expected
difference from the gold tree. A higher value indi-
cates the predicted trees are more right-heavy than
the gold trees.

di = Depthpred(EDUi)− Depthgold(EDUi)

b = dn − d1
When the parser is trained with left-first examples,
b = 12.6 (Table 1), indicating a bias towards right-
heavy trees. This is expected due to right merges
being merged last in the training examples, thus
creating an imbalance in the number of correct
merges in the left and right sides of the tree in the
training examples. On the other hand, when trained
with random sampling, there is no such imbalance
in the training dataset. And we see that there is no
significant bias, with b = 0.8.

4 Conclusion

In this work, we adapted the sequence labeling
framework to bottom-up RST parsing, introducing
an easy-first parser conditioned on past decisions.
We investigated methods to sample training exam-
ples for a non-directional parser, and proposed a
dynamic oracle for our bottom-up parsing. We
demonstrated that our parser achieves competitive
results for bottom-up RST parsing.
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A Additional Results

We also report the results in Table 3 with the RST-
Parseval Procedure. We include the reported results
from Guz and Carenini (2020) as a reference. Their
reported RST-Parseval scores beat other works, but
uses the pre-trained language model SpanBERT.

A.1 Evaluation with RST-Parseval Procedure

Method S N R F

Bottom-Up
Feng and Hirst (2014)*† 84.3 69.4 56.9 56.2
Ji and Eisenstein (2014)*† 82.0 68.2 57.8 57.6
Surdeanu et al. (2015)*† 82.6 67.1 55.4 54.9
Joty et al. (2015)* 82.6 68.3 55.8 54.4
Hayashi et al. (2016)* 82.6 66.6 54.6 54.3
Li et al. (2016)* 82.2 66.5 51.4 50.6
Braud et al. (2017)* 81.3 68.1 56.3 56.0
Yu et al. (2018) (1 run)*‡ 85.5 73.1 60.2 59.9
Yu et al. (2018) (static)‡ 85.8 72.6 59.5 59.0
Yu et al. (2018) (dynamic)‡ 85.6 72.9 59.8 59.3

Our Work:
Static ‡ 86.7 73.2 60.5 60.0
Dynamic‡ 86.8 73.6 60.6 60.1

Top-Down
Kobayashi et al. (2020)*†‡ 87.0 74.6 60.0 -
Koto et al. (2021) LSTM (static)‡ 86.4 73.4 60.8 60.3
Koto et al. (2021) LSTM (dynamic)‡ 86.6 73.7 61.5 60.9

Using Pretrained LM:
Guz and Carenini (2020) (SpanBERT-CorefFeats)*†‡ 88.1 76.1 63.6 -

Human 88.3 77.3 65.4 64.7

Table 3: Results over the test set calculated using
micro-averaged F-1 on RST-Parseval. All metrics (S:
Span, N: Nuclearity, R: Relation, F: Full)
are averaged over three runs. “*” denotes reported per-
formance. “†” and “‡” denote that the model uses sen-
tence and paragraph boundary features, respectively.

A.2 Evaluation over Development Set

Method S N R F

Static 71.8 62.2 52.6 51.8
Dynamic 71.6 62.0 53.0 52.2

Table 4: Results over the development set calculated
using micro-averaged F-1 on labeled attachment deci-
sions (original Parseval). All metrics are averaged over
three runs.
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