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Multilingual sentence encoders have seen much success in cross-lingual model transfer for
downstream NLP tasks. The success of this transfer is, however, dependent on the model’s ability
to encode the patterns of cross-lingual similarity and variation. Yet, we know relatively little
about the properties of individual languages or the general patterns of linguistic variation that
the models encode. In this article, we investigate these questions by leveraging knowledge from
the field of linguistic typology, which studies and documents structural and semantic variation
across languages. We propose methods for separating language-specific subspaces within state-
of-the-art multilingual sentence encoders (LASER, M-BERT, XLM, and XLM-R) with respect
to a range of typological properties pertaining to lexical, morphological, and syntactic structure.
Moreover, we investigate how typological information about languages is distributed across all
layers of the models. Our results show interesting differences in encoding linguistic variation
associated with different pretraining strategies. In addition, we propose a simple method to study
how shared typological properties of languages are encoded in two state-of-the-art multilingual
models—M-BERT and XLM-R. The results provide insight into their information-sharing
mechanisms and suggest that these linguistic properties are encoded jointly across typologically
similar languages in these models.

1. Introduction

Early work in multilingual NLP focused on creating task-specific models, and can be
divided into two main approaches: language transfer (Täckström, McDonald, and Nivre
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2013; Tiedemann, Agić, and Nivre 2014; Banea et al. 2008) and multilingual joint learn-
ing (Ammar et al. 2016a,b; Zhou et al. 2015). The former method enables the transfer of
models or data from high- to low-resource languages, hence porting information across
languages, while the latter aims to leverage language interdependencies through joint
learning from annotated examples in multiple languages. The inspiration for language
transfer was drawn from the fact that, despite having significantly different lexica and
syntactic structures, languages still tend to exhibit similarities that can be exploited
(Ponti et al. 2019). In multilingual joint learning, models acquire information about mul-
tiple languages simultaneously with the assumption that these languages can support
each other and enhance each other’s representation and processing quality (Ammar
et al. 2016a; Navigli and Ponzetto 2012), even in cases where both languages suffer from
data scarcity (Khapra et al. 2011).

Despite their differences, both methods rely on the fact that there are dependencies
between processing different languages from a typological perspective. For instance,
some syntactic properties are universal across languages (e.g., nouns take adjectives
and determiners as dependents, but not adverbs), but others are influenced by the
typological features of each language (e.g., the order of these dependents with re-
spect to the parent) (Naseem, Barzilay, and Globerson 2012). While the success of
such transfer and joint models was limited (and remained inherently bilingual rather
than multilingual), they paved the way for the idea that effective multilingual NLP
systems could be built by efficiently handling and exploiting language similarity
and variation.

In recent years, with the rise of deep learning in NLP, the development of large-
scale monolingual pretraining methods for word representations (Pennington, Socher,
and Manning 2014) and sentence encoders (Peters et al. 2018b; Devlin et al. 2019) has led
to substantial performance improvements in a wide variety of NLP tasks. These tech-
niques produce linguistically informed priors that allow for effective model fine-tuning
to obtain task-specific text representations. Pretraining such general-purpose models,
however, requires access to a vast amount of training data in a given language, and the
effectiveness of fine-tuning them to a specific task depends on the availability of large
datasets annotated for this task (Yogatama et al. 2019). As a result, these techniques,
along with the success they bring to NLP technology, were limited to a handful of high-
resource languages only, for which such datasets are available.

Aiming to extend the benefits of large-scale pretraining to low-resource languages,
many studies focused on the development of models with a wider cross-lingual appli-
cability, giving a new surge to the field of multilingual NLP. Research in this field has,
thus far, led to the development of multilingual word embeddings (Ammar et al. 2016b;
Chen and Cardie 2018) and sentence encoders, such as LASER (Artetxe and Schwenk
2019), Multilingual BERT (M-BERT) (Devlin et al. 2019), XLM (Lample and Conneau
2019), and XLM-R(oBERTa) (Conneau et al. 2020). These encoders are trained to project
words and sentences from multiple languages into a shared multilingual semantic
space, irrespective of their source language, such that their meaning can be captured
more universally. Moreover, these models rely on different types of neural architectures
(e.g., recurrent neural networks and Transformers) and pretraining strategies, namely,
using monolingual (M-BERT, XLM-R) or cross-lingual (LASER) training objectives, or
a combination thereof (XLM). Whereas models trained with cross-lingual objectives
exploit parallel data for supervision, the models that rely on monolingual data are
unsupervised. Having been trained on many languages, these encoders can be expected
to induce shared common underlying patterns of different languages in a data-driven
manner without any explicit typological guidance.
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Research Questions. While work on large-scale multilingual models has met with success,
enabling effective model transfer across many languages (Wu and Dredze 2019), little is
known about the linguistic properties of individual languages that such models encode.
Nor do we understand to what extent these models capture the patterns of cross-lingual
similarity and variation. Thus far, however, little research has paid attention to inves-
tigating the linguistic properties of individual languages that pretrained multilingual
representations encode. Based on our previous discussion, we derived the following
hypotheses:

H(1) The large-scale pretrained general-purpose multilingual models, like
the earlier tasks-specific NLP systems, (implicitly) rely on encoding
typological relationships of languages.

H(2) Some of their effectiveness stems from the fact that the data-driven
approach to uncovering underlying patterns enables them to more
efficiently encode and share language-specific properties compared
with the earlier models that had to rely on explicit typological
guidance.

H(3) The different pretraining strategies used for each large-scale
multilingual model (i.e., inherently monolingual vs. cross-lingual)
influence the way in which the model learns to uncover shared
language patterns. Hence, models might learn different typological
relationships based on their training objectives.

In this work we propose methods that stem from the long line of research on
interpretability of neutral models for studying language-specific properties in multilin-
gual sentence encoders. In addition, we examine cross-lingual interaction of linguistic
information within M-BERT and XLM-R, through the lens of linguistic typology. More
concretely, we study the following set of questions:

Q(1) What language-specific typological properties do pretrained
language models encode? (H(1))

Q(2) Where in the models (i.e., in which layers) is this information
encoded? And is this information localizable to specific layers or
rather spread across layers? (H(1))

Q(3) Are there systematic differences that can be ascribed to the type of
pretraining strategy used? (H(3))

Q(4) How do multilingual models share information across a large set of
typologically diverse languages? For instance, some shared
properties of languages may be encoded jointly in the model, while
others may be encoded separately in their individual subspaces.
(H(2))

Methodology. Libovickỳ, Rosa, and Fraser (2020) and Gonen et al. (2020) demonstrated
that representations produced by M-BERT are projected to separate language-specific
subspaces. Hence, they can be dissected into a language-neutral component, which
captures the underlying meaning, and a language-specific component, which captures
language identity and its linguistic properties. We use this language-specific component
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as the basis for our experiments, exploiting it as a means to locate the language-specific
properties of languages encoded within the models.

To this end, we propose a set of 25 language-level probing tasks, which draw
inspiration from the field of linguistic typology, to test for the language relationships
that are encoded by these components specifically. These tasks are designed to test
whether it is possible to successfully separate language-specific subspaces within multi-
lingual encoders by the linguistic typological properties of the languages. We rely on the
World Atlas of Language Structures database (Dryer and Haspelmath 2013) as a source
of typological information, and investigate variation along a wide range of linguistic
properties, pertaining to lexical, morphological, and syntactic structure. Using our 25
tasks, we test for which of the typological properties we are able to separate languages
and in which layers of the models this information is prevalent.

We include four state-of-the-art multilingual sentence encoders in our study,
namely, LASER, M-BERT, XLM, and XLM-R, that exemplify different architectures
and pretraining strategies. We analyze whether these design decisions influence the
linguistic organization within these encoders. To investigate how different types of
language-specific information interact, we develop a simple and yet novel method to
study joint encoding of linguistic information, which we refer to as cross-neutralizing.
Using this method we test for information sharing between the language-specific sub-
spaces, and hypothesize that these subspaces jointly encode shared properties across
typologically similar languages. We test this by investigating to what extent removing
language-specific information negatively affects the performance on the 25 language-
level probing tasks in typologically related languages.

Contributions. Our findings can be summarized as follows:

• We find that the language-specific components of all encoders
successfully capture typological properties related to word order,
negation, and pronouns; however, M-BERT and XLM-R outperform
LASER and XLM for a number of lexical and morphological
properties.

• We find that (1) typological properties are encoded within the
language-specific components across layers in M-BERT and XLM-R, but
are more localizable in lower layers of LASER and XLM, and (2) the
incorporation of a cross-lingual training objective contributes to the
model learning an interlingua, while the use of monolingual objectives
results in a partitioning to language-specific subspaces. These results
indicate that there is a negative correlation between the universality of a
model and its ability to retain language-specific information, regardless
of architecture.

• The results of our cross-neutralizing experiments show that by localizing
and removing information crucial for encoding the typological
properties of one language, we are able to remove this same information
from the representations of related languages (i.e., that share the same
typological feature value). This indicates that the models jointly encode
these typological properties across languages.
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Article Structure. The research in this article lies on the intersection of work in the fields
of multilingual NLP, the interpretation of neural networks, and linguistic typology.
Hence, in Section 2 we start off by giving a broad overview of the core methods in
each field and discuss some relevant research that has previously attempted to combine
methods from these fields. In Section 3 we then introduce the various models studied
in this article and explain our probing and neutralizing methods as well as outline
how these methods are utilized in our experiments. In Section 4 we first evaluate
the reliability of our probing tasks and then continue discussing our results for the
typological probing experiments. The results of the second set of experiments pertaining
to our information-sharing experiments using the cross-neutralizing methods are then
outlined in Section 5. Section 6 concludes.

2. Linguistic Typology and Multilingual NLP

2.1 Linguistic Typology

Linguistic typology is a discipline that aims to study, categorize, and document the
variation in the world’s languages through systematic cross-linguistic comparisons
(Croft 2002). These categories are not set in stone as they emerge inductively from the
comparison of languages and are prone to change with the discovery of new languages
(Ponti et al. 2019). For instance, one well-established sub-area in linguistic typology is
that of word order typology. This branch studies the order of syntactic constituents in a
language—for example, they categorize the grammatical structure in languages based
on their dominant relative ordering of the Subject, Verb and Object (SVO) in clauses
(Dryer 2013). From this it follows that there are 6 dominant orders that can be ascribed to
a language, from most to least common: SOV, SVO, VSO, VOS, OVS, and OSV. English,
like many other European languages, is grouped under the category SVO languages.
For clauses to be grammatically correct in English, the subject should precede the verb,
while the object follows:

SVO: the dog︸ ︷︷ ︸
Subject

chased︸ ︷︷ ︸
Verb

the cat︸ ︷︷ ︸
Object

(1)

Although in this particular case, the object and verb can be used interchangeably with-
out resulting in grammatical error, it is evident that this would change the meaning
of the clause. On the other hand, many Asian languages (e.g. Urdu, Bengali, Hindi,
Japanese, and Korean) dominantly deploy the SOV structure. In English this would
translate to:

SOV: the dog︸ ︷︷ ︸
Subject

the cat︸ ︷︷ ︸
Object

chased︸ ︷︷ ︸
Verb

(2)

Likewise, there are many structural language characteristics specified by typological
linguistics, at different levels of granularity, that help distinguish and group different
languages based on these varying features. Continuing in the line of word order typol-
ogy, for example, they study correlations between orders in syntactic sub-domains, for
example, the order of modifiers (adjectives, numerals, demonstratives, possessives, and
adjuncts) in noun phrases and the order of adverbials.
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Note, however, that this is an empirical science, as neatly trying to fit a multitude
of languages to well-defined categories is an impossible task. There are languages
(e.g., Russian) in which multiple relative orderings would technically be accepted
as correct; however, one order might be more dominantly used in the language. In
other languages, the correct relative order can depend on different parameters. For
instance, French is predominantly a SVO language, with the exception that the SOV
structure has to be used in the specific case of the object being a pronoun. Different
approaches can be taken to handling similar corner cases, such as defining a “No
dominant order” category, or simply ascribing the order most prevalent in the language
(O’Horan et al. 2016).

2.2 Language Transfer and Multilingual Joint Learning

Language transfer approaches aim to identify and leverage language similarities. This is
a complicated task, as these systems need to learn mappings between source and target
languages with vastly different structures (Ponti et al. 2018). To leverage useful infor-
mation from a source language, this information typically needs to be manipulated to
better suit the properties of the target language first (Ponti et al. 2019). Different methods
have been developed to enable such language transfer, including annotation projection,
(de)lexicalized model transfer, and machine translation (Agić et al. 2014; Tiedemann
2015). In annotation projection, for instance, cross-lingual studies have resorted to word-
alignment projection techniques to facilitate homogeneous use of treebanks (Hwa et al.
2005; Yarowsky, Ngai, and Wicentowski 2001; Ganchev, Gillenwater, and Taskar 2009;
Smith and Eisner 2005). In these studies, word alignments are extracted from parallel
corpora such that annotations for the source language can be transferred to the target
language accordingly. This automatically annotated data can then be used to train a
supervised model. In model transfer, on the other hand, studies attempt to train a model
on a source language, delexicalize it to solve for incompatible vocabularies, and then
directly apply this model to a target language instead (Zeman and Resnik 2008). This
delexicalization has, for instance, been realized by taking language-agnostic (Nivre et al.
2016) or harmonized (Zhang et al. 2012) features as input. In later studies, different
augmentation techniques, including multilingual representations, were integrated to
better bridge the vocabulary gap (Täckström, McDonald, and Nivre 2013). The last
approach is to automatically translate from source to target language, creating synthetic
parallel corpora first, and then following the annotation projection paradigm to train a
supervised model (Banea et al. 2008; Tiedemann, Agić, and Nivre 2014). These methods,
however, rely on the availability of high-quality resources for the source languages,
limiting their success to transfer from high resource languages only.

An alternative approach to leverage information from different languages is multi-
lingual joint learning. There are two main techniques through which this is realized,
parameter sharing and language vector integration. Parameter sharing is a method,
commonly used in multi-task and multimodal learning, used to share certain (otherwise
private) representations within a neural network framework—for example, word em-
beddings (Guo et al. 2016), hidden layers (Duong et al. 2015b), or attention mechanisms
(Pappas and Popescu-Belis 2017)—across languages. The sharing can be realized by
tying parameters of specific components of the network, for example, by enforcing
minimization constraints on the distance between parameters (Duong et al. 2015a) or
latent representations (Zhou et al. 2015). Another method is to induce language-specific
properties to help guide joint models toward certain languages by using input language
vectors (Guo et al. 2016). These are two methods in which the integration of typological
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information has proven useful in the past, both to guide in selecting which network
components to share between which languages and to help construct language vectors
(Ponti et al. 2019).

2.3 Applications of Linguistic Typology in Multilingual NLP

Several studies outline how typological information has successfully been integrated in
the earlier task-specific multilingual NLP systems (O’Horan et al. 2016; Ponti et al. 2019).
For instance, typological constraints have been shown effective in guiding multilingual
dependency parsing (Naseem, Barzilay, and Globerson 2012) and part-of-speech (POS)
tagging (Naseem, Barzilay, and Globerson 2012; Zhang et al. 2016). Naseem, Barzilay,
and Globerson (2012) successfully exploit word order information in multilingual de-
pendency parsing by enabling selective parameter sharing between source and target
languages in a multilingual joint learning setting. This sharing mechanism selects source
languages based on its aspects that are most relevant to the specific target language.
Therefore, in some cases, using this typological information to more carefully select
between languages that share similar properties for language transfer allows for more
effective applications. Thus, we expect that the state-of-the-art general-purpose mod-
els implicitly rely on mechanisms to efficiently share information across typologically
different languages as well.

Moreover, despite the success of multilingual encoders, much effort is still focused
on improving the language-agnosticism of these models—for example, through meth-
ods such as linear projections, adversarial fine-tuning, and re-centering representations
(Libovickỳ, Rosa, and Fraser 2020). The intuition behind this is that more universal
representations can further boost performance on tasks such as information retrieval,
where a search engine only needs to have good semantic understanding of the search
query and documents (Zuccon et al. 2015). Because we are only interested in encoding
general meaning without ever having to use the linguistic information in a natural
language setting, in such cases, signals of cross-lingual structural variation from the
source languages may hinder the task (Gerz et al. 2018). Pretrained representations are
in practice, however, often used in downstream NLP tasks, such as parsing, named
entity recognition (NER), and POS tagging, that require models to pick up on and re-
construct the underlying syntactic and semantic mechanisms of typologically different
languages. Thus, pretraining these representations such that other models can deduce
the linguistic properties of the source language is likely to improve performance in these
tasks. This raises interesting questions as to what extent such models encode language-
specific properties, and motivates the study of what typological information is captured
in the language-specific components of multilingual models.

2.4 Probing Multilingual Models

Multilingual encoders have been successfully applied to perform zero-shot cross-lingual
transfer in downstream NLP tasks, such as POS tagging and NER (van der Heijden,
Abnar, and Shutova 2020), dependency and constituency parsing (Tran and Bisazza
2019; Kim, Li, and Lee 2021), text categorization (Nozza, Bianchi, and Hovy 2020),
and cross-lingual natural language inference (XNLI) and question answering (XQA)
(Lauscher et al. 2020). Interestingly, models trained in unsupervised monolingual tasks
(M-BERT, XLM-R) exhibit competitive performance to those that rely on cross-lingual
objectives and parallel data (LASER, XLM). Yet, the incorporation of cross-lingual ob-
jectives remains a popular approach, with Pires, Schlinger, and Garrette (2019) hinting
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at their vital role for cross-lingual transfer over divergent languages. Moreover, Huang
et al. (2019) introduced Unicoder, which relies on four cross-lingual tasks. Improving
on M-BERT and XLM on XNLI and XQA, the authors claim that the tasks help learn
language relationships from more perspectives. This raises the question of whether
multilingual encoders capture linguistic and typological properties differently, depend-
ing on the type of pretraining tasks.

To investigate this, we use techniques from the rapidly growing line of research on
interpretation of neural models (Linzen, Dupoux, and Goldberg 2016; Conneau et al.
2018a; Peters et al. 2018a; Tenney et al. 2019), which has recently been extended to
the multilingual setting (Chi, Hewitt, and Manning 2020; Pires, Schlinger, and Garrette
2019; Şahin et al. 2020; Ravishankar et al. 2019; Ravishankar, Øvrelid, and Velldal 2019).
Ravishankar et al. (2019) and Ravishankar, Øvrelid, and Velldal (2019) study multi-
lingual sentence encoders using probing tasks of Conneau et al. (2018a), for example,
probing for universal properties such as sentence length and tree depth, but do not
directly test for typological information. In a similar vein, Pires, Schlinger, and Garrette
(2019) study how M-BERT generalizes across languages by testing zero-shot cross-
lingual transfer in traditional downstream tasks. They only briefly touch on typology
by testing generalization across typologically diverse languages in POS tagging and
NER, and find that cross-lingual transfer is more effective across similar languages.
They ascribe this effect to word-piece overlap, arguing that similar success on distant
languages might require a cross-lingual objective. On the contrary, Karthikeyan et al.
(2020) show that cross-lingual transfer can also be successful with zero lexical overlap,
arguing that M-BERT’s cross-lingual effectiveness stems from its ability to recognize
language structure and semantics instead. In this work, we take a closer look at these
emerging language structures by investigating the language-specific component across
sentence representations in the models for typological properties.

2.4.1 Probing for Linguistic Properties. Several papers have already studied language
relationships within multilingual models—for instance, by reconstructing phylogenetic
trees to analyze preserved relations (e.g., in terms of genetic and structural differences)
(Bjerva et al. 2019; Beinborn and Choenni 2020), by probing for typological properties
of languages (Qian, Qiu, and Huang 2016; Şahin et al. 2020), or by studying negative
interference within the models, that is, cases where competition for model capacity
among multiple languages degrades performance on a given language (Wang, Lipton,
and Tsvetkov 2020). To the best of our knowledge, our language-level probing tasks
come closest to the work of Şahin et al. (2020), who probed non-contextualized mul-
tilingual word representations for linguistic properties such as case marking, gender
system, and grammatical mood. We considerably expand on this work by proposing
methods to study the language-specific components learned by multilingual sentence
encoders and investigating a wider range of typological properties pertaining to lexical,
morphological, and syntactic structure. Moreover, because multilingual models are
inclined to learn a language identity (Wu and Dredze 2019), we also propose a paired
language evaluation set-up, evaluating on languages unseen during training to prevent
the model from picking up on this signal.

Working in a monolingual setting, Tenney, Das, and Pavlick (2019) studied how
much each layer in BERT contributes to the encoding of linguistic information. This re-
search is inspired by prior work showing that lower layers of a language model capture
local syntax, while higher layers tend to capture more complex semantics (Peters et al.
2018a; Blevins, Levy, and Zettlemoyer 2018). Tenney, Das, and Pavlick (2019) show that
the same ordering emerges in BERT, and that syntactic information is more localizable
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within the model, while information related to semantic tasks is scattered across many
layers. We take a similar approach to test where in the model typological information is
encoded and whether it is localized or is instead spread across layers.

2.4.2 Studying Shared Properties. Our work on joint information-sharing comes closest
to that of Chi, Hewitt, and Manning (2020), who study shared grammatical relations
in M-BERT. They use a structural probe (Hewitt and Manning 2019) to enable zero-
shot transfer across languages to successfully recover syntax. Their results suggest that
the probe is able to pick up on features that are jointly encoded in M-BERT across
languages. We expand on this work by linking these features to linguistic typology
and demonstrating that individual lexical, morphological, and syntactic properties of
languages are jointly encoded across all languages that share the property. Thus, we are
the first to explore how cross-lingual variation is encoded using typology and explicitly
test for the joint encoding of individual properties of languages. We draw inspira-
tion from Gonen et al. (2020) and Libovickỳ, Rosa, and Fraser (2020), who show that
M-BERT relies on a language-specific component that is similar across all representa-
tions in a language and can thus be approximated by its language centroid. They show
that removing the respective centroid drastically decreases performance on language
identification, while improving performance on parallel sentence retrieval, indicat-
ing stronger language-neutrality. Hence, this method successfully removes language-
specific features from model representations, while still encoding the underlying
meaning. These results demonstrate the existence of the language-neutral component.
In subsequent work, Gonen et al. (2020) successfully decompose the representations into
independent language-specific and language-neutral components through nullspace
projections, thereby further supporting the existence of identifiable language compo-
nents. Lastly, Wang, Lipton, and Tsvetkov (2020) investigate which shared model pa-
rameters within multilingual encoders are language-specific, using a pruning method
to compare parameter similarities across languages. They find that language-specific
parameters do exist, and that model parameters are better shared in the lower layers
than the higher ones.

3. Methodology

In this section, we detail the methodology applied for our experiments. We provide
information on the multilingual models, the data, and the methods for separating the
language subspaces and for localizing and removing language-specific information.

3.1 Multilingual Sentence Encoders

LASER is a BiLSTM encoder trained with an encoder-decoder architecture and a cross-
lingual objective—machine translation (MT). It has L = 5 layers with a hidden state
size of H = 512. The encoder performs max-pooling over the last hidden states to
produce sentence representations v ∈ R1024. The decoder LSTM is initialized with the
sentence representations and trained on the task of generating sentences in a target
language. Both the encoder and decoder are shared across all languages, and the input
sentences are tokenized based on a joint byte-pair encoding (BPE) vocabulary. We use
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the pretrained model available for 93 languages. This model leverages parallel data
from a combination of text corpora from the Opus Web site.1

M-BERT is a bidirectional Transformer with L = 12 and H = 768, trained on the
monolingual Masked Language Modeling (MLM) and Next Sentence Prediction (NSP)
tasks. Apart from being trained on the Wikipedia dumps of multiple languages and
using a shared WordPiece vocabulary for tokenization, M-BERT is identical to its
monolingual counterpart and does not contain a mechanism to explicitly encourage
language-agnostic representations. We use the pretrained Multilingual Cased version
that supports 104 languages. To obtain fixed-length sentence representations from the
transformers, we mean-pool over hidden states. Note that it is common practice to
use the hidden activation of the special [CLS] token as a sentence representation for
classification tasks after fine-tuning. However, in this work we study the typological
properties in the pretrained models, and consequently do not fine-tune the model on a
downstream task. Therefore, using the hidden states from the [CLS] tokens as sentence
representations is less suitable for this approach.

XLM is a bidirectional Transformer with L = 12 and H = 1,024. We use the pretrained
version that uses BPE vocabulary, BERT’s monolingual MLM objective, and introduces
a new cross-lingual variant on this task, translation language modeling (TLM), to
stimulate language-agnostic representations. In TLM two parallel sentences are con-
catenated and words in both target and source sentence are masked. This allows the
model to leverage information from the context in either language to predict the word,
thereby encouraging the alignment of representations in both languages. XLM is trained
on the 15 XNLI languages only (Conneau et al. 2018b) that do not cover all languages
used for probing in our work (see Appendix A). This allows us to test its ability
to generalize to languages unseen during pretraining, when probing for typological
features. For training on the MLM objective, XLM uses sentences from the Wikipedias
of each language; for TLM it leverages parallel sentences from MultiUN, IIT Bombay
corpus, the EUbookshop corpus, OpenSubtitles, Tanzil, and GlobalVoices.

XLM-R is another encoder with L = 12 and H = 768, based on a robustly optimized
version of BERT in terms of training regime (RoBERTa) (Liu et al. 2019). RoBERTa is
trained with vastly more compute power and data retrieved from CommonCrawl, omits
the NSP task, and introduces dynamic masking, that is, masked tokens change with
training epochs. The XLM-R variant is trained on 100 languages and introduces the use

1 http://opus.nlpl.eu/.
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of a Sentence Piece model (SPM) for tokenization. Unlike XLM, XLM-R does not use the
cross-lingual TLM objective, but is only trained on the monolingual MLM task.

3.2 Languages and Typological Features

Consisting of 192 linguistic features annotated by typologist experts for 2,679 languages,
the World Atlas of Language Structure (WALS) is the largest and most reliable publicly
available typological database. In WALS, linguistic features are listed with languages
and their corresponding feature values (see Example 1). However, despite its coverage,
WALS is relatively sparse as only 100 languages include annotations for all features.
This bears the challenge of carefully selecting which languages and features to focus on
to ensure enough coverage for each task. For our experiments we manually selected 7
pairs of closely related languages:

(1) (Russian, Ukrainian)

(2) (Danish, Swedish)

(3) (Czech, Polish)

(4) (Portuguese, Spanish)

(5) (Hindi, Marathi)

(6) (Macedonian, Bulgarian)

(7) (Italian, French)

These pairs are typologically diverse and cover four language families: Germanic,
Indic, Romance, and Slavic languages. They also include both high- and low-resource
languages from the NLP perspective. From each pair, the sentence representations
from the first languages (Russian, Danish, etc.) are used for training and the second
languages (Ukrainian, Swedish, etc.) for testing. This way, we prevent the classifier from
leveraging information by falling back to a language identification task. At the same
time, by choosing related languages, we can ensure that similar typological properties
are captured in both the training and test set. Note that, except for XLM, the encoders
support all languages used.

For the typological features, we selected WALS features containing annotations for
at least four of our languages and discarded features for which the chosen languages
did not show typological diversity, that is, there was zero variation in feature values
across languages. Moreover, we made sure that all feature values were covered by the 15
languages that XLM is trained on. As a result, we test for 25 features classified by WALS
under the categories: Word order (WO), Nominal (Nom) and Verbal (Verb) categories,
and Simple clauses (SC), each in a separate task (see Table 1; for detailed descriptions of
the features the reader is referred to https://wals.info/).

3.3 Language-Level Probing Tasks to Test for Typological Properties

We develop 25 tasks to test for the typological information captured by the language-
specific components of the models. By training a simple classifier to separate the
language-specific subspaces within encoders based on specific typological properties,
we can test whether the encoder (perhaps implicitly) relies on a similar type of linguistic
typology to structure language relationships within its shared multilingual space. Given
a set of input sentences per language, a dataset for each of the 25 tasks is created by
annotating all sentences from a language with their corresponding feature value in
WALS (see Table 2 for a task example). Hence, the annotations are at the language-level
as we aim to test properties of languages as opposed to properties of sentences.
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Table 1
The 25 WALS features used for probing along with their correpsonding WALS codes and
categories. The multilingual sentence representations for each of these features are probed for in
separate tasks. Unless indicated otherwise, all language pairs were covered. Excluded pairs:
*:(1), †:(1, 3, and 6), ‡:(6 and 7), §:( 2, 4, 5, and 7), |:(5 and 6), ¶:(1, 4, 6, 7), #:(1–3 and 6), ♦:(7), ↓:(3, 5
and 7), δ:(5 and 7).

Code CAT Feature name Example of feature value(s)

37A Nom Definite articles Definite article distinct from demonstrative
words (e.g., English: the vs. this/that)

38A* Nom Indefinite articles Indefinite word distinct from numeral for
“one”

45A† Nom Politeness distinctions in
pronouns

None (English: you) or binary distinction
(German du informal, Sie polite)

47A† Nom Intensifiers and reflexive
pronouns

Identical (Eng: “himself”) vs differentiated
(Deu: sich vs selbst)

51A‡ Nom Position of case affixes e.g., case suffixes or case prefixes
70A Verb The morphological imperative Special marking for 2nd singular and

plural
71A Verb The prohibitive 2nd singular imperative + negative

declarative
72A Verb Imperative-hortative systems Neither type of systems
79A§ Verb Suppletion according to tense

and aspect
Suppletion according to tense (e.g.,
English: go vs. went)

79B§ Verb Suppletion in imperatives
and hortatives

A regular and a suppletive form alternate

81A WO Order of Subject, Object and
Verb (SOV)

SOV, SVO, VSO, VOS, OVS or OSV

82A WO Order of Subject and Verb (SV) SV or VS
83A WO Order of Object and Verb (OV) OV or VO
85A WO Order of adposition and noun

phrase
Adp-NP or NP-Adp

86A† WO Order of genitive and noun Genitive-Noun or Noun-genetive
87A WO Order of adjective and noun Adj-Noun or Noun-Adj
92A| WO Position of polar question

particles
Question particle at the beginning or end of
sentence

93A¶ WO Position of interrogative phrases
in content questions

Interrogative phrases obligatorily at the
beginning of sentence

95A WO Relationship between the OV
order and the adposition and
noun phrase order

OV or VO + postpositional or prepositional

97A WO Relationship between OV and
adjective and noun order

OV or VO + Adj-Noun or Noun-Adj

115A# SC Negative indefinite pronouns
and predicate negation

Negative indefinite pronouns (e.g., “no-
body") co-occurs with marker of predicate
negation

116A♦ SC Polar questions Formed using question particle

143F WO Postverbal negative morphemes Postverbal negative word or negative suffix
144D↓ WO Position of negative morphemes

in SVO languages
NegSVO, SNegVO, SVONeg etc.

144Jδ WO Order of Subject, Verb, Negative
word, and Object (SVNegO)

Separate word, no double negation
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Table 2
Task example of feature 86A: Order of Genitive and Noun. Labels are Genitive-Noun (GN),
Noun-Genitive (NG), and No Dominant Order (NDO).

Following Pires, Schlinger, and Garrette (2019), Gonen et al. (2020), and Libovickỳ,
Rosa, and Fraser (2020), we hypothesize that sentence representations from our en-
coders contain a language-specific component that remains constant across all sentences
in a language. In the design of the language-level probing tasks we implicitly rely on this
assumption by testing whether the classifier, on average, is able to correctly predict the
typological feature from a large number of sentence representations in a language. The
intuition behind this is that if typological information is present in the language-specific
component, this information should be encoded irrespective of whether the property we
test for is present in the sentence or not.

This (1) eliminates the concern for unfair distributional skews of the linguistic
phenomena in our datasets, and (2) if the overall accuracy per language is close to
either 100% or 0%, indicating similar performance across sentences that do and do
not contain the property of interest, it demonstrates that the information indeed stems
from a component that is constant across sentence representations from a language. In
addition, to ensure that the classifier categorizes languages based on their typological
profile instead of overfitting on the sentence meaning (e.g., perhaps data from some
languages contain many similar sentences), we filtered out translations between all train
and test languages.

Per language, we extract 10,000 random sentences from the Tatoeba corpora (avail-
able at: https://tatoeba.org), and attempt to predict the typological features from
each of the 10,000 sentence representations. Table 3 provides an indication of the vari-
ation of feature values represented in our dataset. Note that paired languages do not
always have the same value for the same typological feature, thus the respective tasks
would not be possible to solve by falling back to a similar language identification task.

Classifier. We use an MLP with one hidden layer of 100 units, ReLU activation, and an
output layer that uses the softmax function to predict class labels. The simplicity of the
architecture was chosen to limit task-specific training, such that the classifier is forced
to rely on information contained in the encoder representations as much as possible.
We experimented with various similar architectures and hyperparameter values, but
no prominent differences were observed.2 We freeze the parameters of the sentence
encoder during training such that all learning can be ascribed to the classifier Pτ.
The classifier then predicts the feature values yτ from the representations of the input

2 Other works used more expressive models, e.g., 300 hidden units (Şahin et al. 2020) and two-layer MLPs
(Tenney et al. 2019). This did not yield substantial changes in our experiments, and results using a linear
classifier were slightly lower. We report results from the least expressive non-linear model tested, as high
performance of M-BERT indicates that this model is in principle capable of learning the task, given an
informed encoder.
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Table 3
Color coding of the typological diversity of the train and test languages with respect to different
features. Languages with the same color have the same feature value for that task (excluded
languages are left blank).

sentences. Note that the number of sentences in the datasets depend on the number of
language pairs n included in the task. For each language we have 10,000 sentences, thus,
given n language pairs we use n× 10, 000 sentences for training. We hold out 10% of our
test set for validation (n× 1, 000) to avoid overfitting on the train languages, and use the
remaining n× 9, 000 sentences for testing. For all tasks we train for 20 epochs with early
stopping (patience = 5), using the Adam optimizer (Kingma and Ba 2014). We set the
batch size to 32 and use dropout (rate = 0.5). As some features can take c > 2 values, we
encode the labels as one-hot vectors and obtain the non-binary predictions at test time
by returning the class with the highest probability. To keep results across different tasks
comparable, we perform no additional fine-tuning on the hyperparameters.

Evaluation. We report results from the language-level probing tasks using macro-
averaged-F1 scores as our tasks contain class imbalances, where often only a few lan-
guages are annotated with a rare class label. Instead of smoothing these class imbalances
out, we assign all classes with an equal weight as we are especially interested in these
minority class predictions. Thus, this is a stricter metric for our tasks than micro-
averaged-F1 scores, where majority class voting as a baseline could obtain a much
higher performance on most tasks. When reporting on the performance for individual
languages, we use accuracy (%) for evaluation.

3.4 Testing Across Layers

The methods described next are used to test for typological information at different
layers of the models.
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Individual Layers. In the first set of experiments, we will separate the language subspaces
using the sentence representations from the top layer H(L) of the model, as these are
commonly used in downstream tasks. However, each model produces a set of activa-
tions at each layer: H(0), H(1), .., H(L), where H(L) = [h(L)

t0
, . . . , h(L)

tk
] and k is the number

of tokens. To test where in the model these language-specific properties emerge and
whether they evolve throughout the layers, we test sentence representations from each
layer of the model. We compute per-layer sentence representations by mean-pooling
over the corresponding hidden states.

Full Models. As the layer-wise approach does not take into account the interactions
between different layers, we also adapt the method proposed by Tenney, Das, and
Pavlick (2019) that borrows the scalar mixing technique from ELMo (Peters et al.
2018b). For each task we introduce a set of scalar parameters: λτ and a(1)

τ , a(2)
τ , .., a(L)

τ . We
compute per-layer sentence representations by mean-pooling over hidden states t0, .., tk
as before:

h(l)
τ = pool([h(l)

t0
, h(l)

t1
, .., h(l)

tk
]), where h(l)

ti
=
−→
h(l)

ti
+
←−
h(l)

ti
for LASER (3)

To pool across layers we use the mixing weights:

hτ = λτ

L∑
l=1

s(l)
τ h(l)

τ (4)

where sτ = softmax(aτ). These weights aτ are jointly learned with each task to give the
probing classifier Pτ access to the full model. Note that we exclude layer 0, as token
embeddings in LASER have a different dimensionality from higher layers. After train-
ing, we extract the learned coefficients from the classifier to estimate the contribution of
different layers to the particular task. Higher weights are interpreted as evidence that
the corresponding layer contains more information about the typological property. We
report the Kullback-Leibler divergence K(sτ) = KL(sτ||Uniform):

KL(p||q) =
N∑

i=0

p(xi)log(
p(xi)
q(xi)

) (5)

for each task as an estimation of the non-uniformity of the statistics. We interpret a
higher KL divergence as an indication of a more localizable feature.

3.5 Locating and Removing Language-Specific Information

The following two methods are used to investigate whether the language-specific com-
ponents jointly encode the typological properties of related languages in Section 5.

Restructuring the Vector Space. To explicitly localize the language-specific components,
we use the neutralization method from Libovickỳ, Rosa, and Fraser (2020). We approxi-
mate the language centroid for each language in our test set x ∈ L, by obtaining a mean

649



Computational Linguistics Volume 48, Number 3

language vector ūx ∈ Rm from a set of S sentence representations {u1, u2.., uS} ∈ Rm from
that language (10,000 in our case):

ūx = mean(u1, u2.., uS) (6)

The idea is that by localizing language-specific information through averaging repre-
sentations, core linguistic properties remain prominent in the centroid. Simultaneously,
infrequent phenomena that vary depending on sentence meaning are averaged out.
We then obtain a set of language-neutral representations vi ∈ Rm for a language i by
subtracting the corresponding language centroid from the model representation uj for a
sentence j:

vij = uij − ūx, where i = x (7)

This means that we remove language-specific information by re-structuring the vector
space such that the average of the representations for each language is centered at the
origin of the vector space. From now on we refer to this method as self-neutralizing.
Note that we do not conduct these experiments on LASER and XLM as this method was
not created for these models.

Testing for Joint Encoding. To investigate how typological properties are shared, that is,
whether they are jointly encoded across languages in a localizable manner or rather in
independent ways for each language, we adapt the self-neutralizing method to a cross-
neutralizing scenario. Specifically, we approximate typological information from only
one language (x) by computing ūx, and subtract ūx from the representations of all other
languages in L \ {x}:

vij = uij − ūx, for i ∈ L \ {x} (8)

We refer to this method as cross-neutralizing. Each time we select a different language
x for cross-neutralizing. We then test the trained classifiers on the 25 language-level
probing tasks using the neutralized representations of each language l ∈ L. The intuition
behind this is that if the encoders were to represent languages and their properties in
independent ways, we expect the performance to deteriorate only for the language x
that we use for cross-neutralizing, that is, the language used to compute ūx. In case of
joint encoding of typological properties, however, we expect to see that performance
(1) also deteriorates for other languages that share the same typological feature value
with x (i.e., related languages) and (2) remains intact for languages that do not share the
same feature value with x. Note that, by training on the unmodified representations and
testing on the cross-neutralized representations, we can analyze whether our method
removes crucial information that the classifier relied on. If we were to both train and test
on the modified representations instead, this would only tell us whether the classifier is
able to correct for the missing information.

4. Testing for Typological Information

In this section we provide results for the first set of experiments with which we study
what typological information is captured in the language-specific components and
where in the respective encoders this information emerges (outlined in Sections 3.3 and
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Table 4
Macro-averaged-F1 scores on the test set per typological feature. Unless indicated otherwise, all
language pairs were used. Excluded pairs: *:(1), †:(1, 3, and 6), ‡:(6 and 7), §:( 2, 4, 5, and 7),
|:(5 and 6), ¶:(1, 4, 6, 7), #:(1–3 and 6), ♦:(7), ↓:(3, 5, and 7), δ:(5 and 7). Highest performance per
feature are bolded.

Code Type LASER M-BERT XLM XLM-R Baseline

37A Nom 0.864 0.957 0.83 0.997 0.199
38A* Nom 0.571 0.597 0.595 0.579 0.334
45A† Nom 0.997 1.0 0.989 1.0 0.428
47A† Nom 0.97 0.995 0.934 0.999 0.333
51A‡ Nom 0.682 0.763 0.752 0.762 0.375

70A Verb 0.64 0.69 0.603 0.695 0.243
71A Verb 0.347 0.522 0.452 0.576 0.243
72A Verb 0.422 0.763 0.557 0.769 0.417
79A§ Verb 0.456 0.94 0.646 0.978 0.4
79B§ Verb 0.212 0.528 0.382 0.544 0.25

81A WO 0.993 1.0 0.959 0.998 0.462
82A WO 0.429 0.352 0.449 0.368 0.363
83A WO 0.993 1.0 0.939 0.999 0.462
85A WO 0.993 1.0 0.873 0.995 0.462
86A† WO 0.763 0.811 0.757 0.82 0.166
87A WO 0.976 0.999 0.944 0.998 0.416
92A| WO 0.212 0.16 0.231 0.206 0.285
93A¶ WO 0.647 0.65 0.627 0.665 0.25
95A WO 0.993 1.0 0.96 0.999 0.462
97A WO 0.983 0.996 0.941 0.998 0.243

115A# SC 0.998 1.0 0.984 0.999 0.4
116A♦ SC 0.584 0.622 0.602 0.634 0.4

143F WO 0.608 0.644 0.599 0.65 0.364
144D↓ WO 0.978 0.998 0.979 1.0 0.429
144Jδ WO 0.983 0.996 0.954 0.999 0.445

3.4, respectively). First we discuss results from the top-layer representations produced
by our encoders, which are commonly used in downstream tasks. Then we test and
analyze the representations across all layers of the models.

4.1 Top-Layer Sentence Representations

Baseline. To test to what extent the classifier relies on information from the encoder
as opposed to information learned from task-specific training, we use randomized
encoders as a baseline for comparison. Following Tenney et al. (2019), we randomized
the weight matrices of our pretrained models. We found that our simple classifier is
unable to learn from these representations, falling back to majority class voting in all
cases. Thus, the performance for all randomized encoders is identical and we report
these scores under Baseline in Table 4.
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Results. In Table 4, we report the performance over all languages per task. Note that,
due to missing values, not all languages were used for each task, as indicated in the
table. The results show that within all encoders we are able to separate languages based
on features related to word order (e.g., 81A, 85A, 95A, and 97A), pronouns (45A, 47A),
and negation (144D, 144J). For M-BERT and XLM-R, however, the classifier generally
outperforms LASER and XLM when it comes to separating languages based on lexical
and morphological properties, such as in the nominal (e.g., 37A, 51A) and verbal (e.g.,
70-72A) category tasks. The strongest difference between encoders is observed when
testing for the suppletion features (79A,B). Furthermore, for none of the encoders is
the classifier capable of accurately predicting properties related to the form of questions
(92A, 93A, 116A). Lastly, we find that, while obtaining a high performance for other word
order tasks, the classifier fails to predict the feature 82A (SV order).

Evaluating the Task Set-up. To further analyze our models, we investigated the accuracy
per feature broken down by language and specific feature values. Overall, we find that
the classifier consistently fails to predict certain features for specific languages, as ex-
pected; this results in the per-language performance often being either very high or low
(see Figure 1). This demonstrates that the classifier indeed relies on the language-specific
component of the representations to capture the typological properties of languages.

Moreover, we observe that the classifier may fail both in cases where the labels for
the paired test and train languages are identical and in cases where they are different.
For instance, despite Bulgarian having the same label as Macedonian, the classifier
based on LASER or XLM fails for Bulgarian in multiple tasks (e.g., 71A, 72A, 116A).3

On the other hand, there are also cases where the classifier succeeds despite the test
language and its most similar training language having a different label—for example,
LASER for Spanish (92A), XLM for French (71A), and both LASER and M-BERT for
French (82A). This demonstrates that the classifier does not merely rely on similar
language identification either (see Appendix C for further analysis).

As a last test for the validity of the language-level probing tasks, we repeated
experiments for properties specific to questions on a subset of our data, where only
questions were used as input sentences. This resulted in a subset of ≈ 10% of the full
dataset per language and we obtained similar classifier performance for the features
of interest across encoders, again confirming the hypothesis that the language-specific
components under investigation remain constant across sentences with varying mean-
ing in a language.

Languages and Feature Values. From Figure 1 we also see that no languages or language
families were found for which an encoder always fails. Instead, low performance
tends to be associated with specific features. In addition, XLM obtains performance
levels similar to LASER for languages it was not pretrained on. In fact, we found no
relationship between the support of language and performance, indicating that XLM
successfully generalizes to unseen languages (see Appendix F). When comparing the
per-language performance across encoders, we see that, although LASER and XLM
exhibit a lower performance in more languages, there are specific cases in which all
encoders fail. Consequently, encoders might not benefit from encoding information
about these properties in their language-specific components. Such cases include, for

3 Note that all encoders were trained on Bulgarian.
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Ukrainian Swedish Polish Spanish Marathi Bulgarian French
Language

37A

38A

51A

70A

71A

72A

79A

79B

82A

86A

92A

93A

116A

143F

Fe
at

ur
e

0.67 0.954 0.867 0.979 0.994 0.507 0.93

0.994 0.042 0.869 0.932 0.998 -1 0.914

1 0.016 0.983 0.726 0.998 -1 -1

0.997 0.952 0.875 0.043 0.001 0.886 0.897

0.661 0.959 0.942 0.923 0.001 0.026 0.246

0.881 0.997 0.998 0.995 0 0.021 1

0.814 -1 0.997 -1 -1 0.093 -1

0.16 -1 0.687 -1 -1 0.12 -1

1 0.997 0.001 0.236 1 0 0.814

-1 0.864 0.072 0.921 0.929 0.959 0.889

0 1 0.002 0.859 -1 -1 0.006

-1 0.913 0.032 -1 1 -1 -1

0.992 0.979 0.245 0.157 0.998 0.27 -1

0.999 0.814 0.996 0.998 0 0.988 0.011

LASER

Ukrainian Swedish Polish Spanish Marathi Bulgarian French
Language

37A

38A

51A

70A

71A

72A

79A

79B

82A

86A

92A

93A

116A

143F
Fe

at
ur

e

0.946 0.976 1 0.993 1 0.892 0.901

0.999 0.012 1 0.998 1 -1 1

1 0.002 1 0.997 1 -1 -1

0.999 0.971 0.999 0.001 0 1 0.999

0.99 0.997 1 0.999 0 0.819 0.017

0.994 1 1 1 0 0.905 1

0.961 -1 1 -1 -1 0.883 -1

0.001 -1 0.979 -1 -1 0.921 -1

0.999 1 0 0.018 1 0 0.702

-1 0.978 0 0.997 1 0.994 0.967

0 1 0 0.113 -1 -1 0.095

-1 0.954 0 -1 1 -1 -1

1 0.997 0.001 0.003 0.999 1 -1

1 0.963 1 1 0 1 0.003

M-Bert

Ukrainian Swedish Polish Spanish Marathi Bulgarian French
Language

37A

38A

51A

70A

71A

72A

79A

79B

82A

86A

92A

93A

116A

143F

Fe
at

ur
e

0.759 0.95 0.968 0.862 0.968 0.48 0.607

0.997 0.168 0.942 0.982 0.985 -1 0.968

1 0.042 0.982 0.888 0.998 -1 -1

1 0.876 0.976 0.05 0.001 0.997 0.809

0.518 0.998 0.999 0.475 0.007 0.373 0.781

1 1 1 1 0 0 1

0.531 -1 1 -1 -1 0.54 -1

0.002 -1 0.999 -1 -1 0.578 -1

1 0.956 0.012 0.274 1 0.001 0.681

-1 0.678 0.092 0.993 0.87 0.851 0.969

0 0.995 0.003 0.433 -1 -1 0.329

-1 0.968 0.023 -1 0.933 -1 -1

0.996 0.963 0.02 0.054 0.997 0.985 -1

1 0 1 1 0 1 0

XLM

Ukrainian Swedish Polish Spanish Marathi Bulgarian French
Language

37A

38A

51A

70A

71A

72A

79A

79B

82A

86A

92A

93A

116A

143F

Fe
at

ur
e

0.992 0.999 0.999 1 0.999 0.984 0.999

1 0.009 0.995 0.999 1 -1 0.999

1 0.001 1 0.993 1 -1 -1

0.999 0.999 0.998 0.001 0 0.996 0.997

1 1 1 0.986 0 0.928 0.399

0.968 1 1 1 0 0.94 1

0.999 -1 1 -1 -1 0.943 -1

0.002 -1 1 -1 -1 0.946 -1

0.998 0.999 0.007 0.188 0.985 0.002 0.211

-1 0.999 0.019 0.999 1 0.984 0.998

0 0.999 0.001 0.029 -1 -1 0.355

-1 0.999 0 -1 1 -1 -1

0.997 0.999 0.086 0.001 1 0.999 -1

1 1 1 1 0 1 0

XLM-R

Figure 1
Heatmaps of the performance in (%) accuracy for a selected number of interesting tasks from all
four multilingual encoders broken down per language.

instance, features Indefinite articles (38A) and Postverbal negative morpheme (143F) for
Swedish and French, respectively.

In addition, we analyzed specific feature values for which we cannot separate
languages within the encoders. For example, we find that for LASER and XLM the
classifier fails to predict the label Maximal system (assigned to Bulgarian and Marathi) for
feature 72A (Imperative-hortative systems). M-BERT and XLM-R, while failing for Marathi,
obtain ±90% accuracy for Bulgarian. A similar effect for LASER is observed for other
labels of verbal and nominal category tasks (e.g., Tense [79A: Suppletion according to tense
and aspect]), and to a lesser extent also XLM (e.g., Special imperative + special negative [71A:
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The prohibitive]). No such cases were identified for M-BERT or XLM-R. This observation
clarifies our finding that M-BERT and XLM-R outperform LASER and XLM on the
majority of nominal and verbal category tasks. Whereas LASER and XLM omit both
certain feature values as well as specific language-feature combinations, M-BERT and
XLM-R only discard some of the latter.

In the particular case of feature 82A (SV order), the classifier always fails to predict
No dominant order, assigned to Bulgarian, Spanish, and Polish, for all encoders. As
explained in Section 2.1, this label is sometimes assigned by linguistics experts as an
alternative to categorizing by the predominant order in corner cases. We speculate that
the encoders are instead inclined to categorize languages by the order predominantly
seen during training, without quantifying an extent, thereby forcing an order to non-
dominant order languages.

Similarly, in the few cases in which ±50% accuracy is obtained, LASER specifically
seems to omit the encoding of a lack of certain properties—for example, Ukrainian:
No definite or indefinite article (37A), Spanish: No case affixes or adpositional clitics (51A),
Polish: No suppletive imperatives (79B). Since the performance is ±50%, this information
is likely not coming from the language-specific component that remains constant across
representations. Hence LASER seems to organize its language-specific subspaces based
on the properties that are present in the language instead.

Figure 2
Macro-averaged F1-scores on probing tasks, when probing from the activation of different layers
in LASER, M-BERT, XLM, and XLM-R. Layer 0 corresponds to the non-contextualized token
embeddings used by these models.
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Figure 3
Learned mixing weights sτ and corresponding KL divergences K(s) for LASER and M-BERT.

4.2 Typological Information Across Layers

Results. Figure 2 shows the classifier performance when testing the different layers of the
models. We find that in both models that incorporate a cross-lingual objective (LASER
and XLM), the typological properties are more prevalent in lower layers of the network
(1–2) and performance steadily decreases in higher layers (3+). In contrast, in M-BERT
and XLM-R the performance is stable throughout all layers. This indicates that while
M-BERT and XLM-R rely on language-specific components that remain constant across
all layers, these components evolve throughout the layers of LASER and XLM, meaning
that the latter models start to restructure their linguistic organization.

Figure 3 shows the distribution of the learned mixing weights across layers (see
Appendix D for XLM and XLM-R). We find that for LASER and XLM the classifiers
almost exclusively rely on information from the first layers, which is in line with
our findings from the per-layer results. Given the low KL divergences across tasks,
the learned weights remain more uniform for M-BERT and XLM-R. Nevertheless, we
observe a trend that middle layers gradually decrease in importance, while the last few
layers regain it again.

These results indicate that in models pretrained with a cross-lingual objective—
LASER and XLM—typological information is localizable in the lower layers, but is
lost in higher layers. For M-BERT and XLM-R, which rely on monolingual pretraining
objectives, the results remain somewhat inconclusive, as we interpret the lower KL
divergences as an indication of less localizable features. Thus, this information is either
captured in the lower layers and correctly propagated through the higher layers, or it
could be spread across the model instead.

Universality vs. Language-Specific Information. Previous research suggests that M-BERT
partitions its multilingual semantic space into separate language-specific subspaces,
and is thus not a true interlingua (Libovickỳ, Rosa, and Fraser 2020; Singh et al. 2019).
In Figure 4 we visualize the representations of all sentences in our test datasets from
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Figure 4
t-SNE plots of representations from layers of LASER (top) and M-BERT (bottom), where layer 0
corresponds to the non-contextualized token embeddings.

layers in LASER and M-BERT in a t-SNE plot.4 In agreement with previous research,
we find that in M-BERT and XLM-R, languages continue to occupy separate subspaces
in the last layer (see Appendix E for XLM and XLM-R plots, which exhibit similar
trends to LASER and M-BERT, respectively). Initially, LASER and XLM also appear to
create a continuous language space by representing language relationships in terms
of geometric distance between subspaces. However, these initial subspaces become
increasingly more clustered throughout the layers, thereby creating a common, shared,
interlingual space in the higher layers. Consequently, there appears to be a connection
between the loss of typological information and the creation of more language-agnostic
representations. Universality of LASER and XLM seems to come at the cost of retaining
language-specific information.

It should be noted that all encoders at some point cluster languages by fam-
ily; however, M-BERT and XLM-R recover from this (at layer 10) by projecting lan-
guages back to separate subspaces. Moreover, XLM-R does not appear to organize its
space differently from M-BERT and only improves on the performance patterns also
seen in M-BERT. This indicates that XLM-R simply refines the mechanism deployed
by M-BERT.

Pretraining Objectives. LASER and XLM retain typological properties in higher layers to a
lesser extent. Given that higher layers of a model are more tuned toward the pretraining
objective, we speculate that this effect can be ascribed to their differences in the type
of pretraining: LASER and XLM are trained with a cross-lingual objective vs. M-BERT
and XLM-R trained on monolingual tasks only. In MT, the encoder needs to capture
semantic meaning, while the decoder is responsible for reconstructing that meaning in
a target language. While the decoder might benefit from typological information about
the target language, the encoder has no incentive from the decoder to capture such
properties of the source language. Similarly, in TLM, the model can leverage informa-
tion from both languages and is explicitly stimulated to align patterns from them. On
the contrary, for monolingual tasks, the model must know which language it is encoding

4 We use the sklearn TSNE visualizer using the default parameters. Because TSNE is an expensive
procedure, PCA is first applied as a simpler dimension reduction technique (as recommended in the
documentation).
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Table 5
The table shows the mean and standard deviation of the performance in (%) accuracy computed
across languages in the test set. We report the results obtained before any neutralization and
after self-neutralizing each language.

M-BERT XLM-R

τ before after before after

37A 0.96 ± 0.04 0.4 ± 0.07 1.0 ± 0.01 0.41 ± 0.06
38A 0.83 ± 0.37 0.37 ± 0.03 0.83 ± 0.37 0.39 ± 0.03
45A 1.0 ± 0.0 0.58 ± 0.11 1.0 ± 0.0 0.54 ± 0.04
47A 1.0 ± 0.001 0.51 ± 0.14 1.0 ± 0.0 0.5 ± 0.04
51A 0.8 ± 0.4 0.53 ± 0.11 0.8 ± 0.4 0.5 ± 0.04
70A 0.71 ± 0.45 0.34 ± 0.09 0.71 ± 0.45 0.38 ± 0.11
71A 0.69 ± 0.43 0.36 ± 0.1 0.76 ± 0.37 0.35 ± 0.08
72A 0.84 ± 0.35 0.56 ± 0.09 0.84 ± 0.35 0.58 ± 0.09
79A 0.95 ± 0.05 0.54 ± 0.04 0.98 ± 0.03 0.55 ± 0.03
79B 0.63 ± 0.45 0.33 ± 0.07 0.65 ± 0.46 0.38 ± 0.1
81A 1.0 ± 0.0 0.57 ± 0.06 1.0 ± 0.01 0.53 ± 0.04
82A 0.53 ± 0.47 0.53 ± 0.02 0.48 ± 0.45 0.5 ± 0.08
83A 1.0 ± 0.0 0.58 ± 0.07 1.0 ± 0.0 0.5 ± 0.02
85A 1.0 ± 0.0 0.63 ± 0.11 1.0 ± 0.01 0.52 ± 0.02
86A 0.82 ± 0.37 0.35 ± 0.04 0.83 ± 0.36 0.36 ± 0.01
87A 1.0 ± 0.0 0.54 ± 0.06 1.0 ± 0.0 0.52 ± 0.03
92A 0.24 ± 0.38 0.37 ± 0.02 0.28 ± 0.39 0.36 ± 0.05
93A 0.65 ± 0.46 0.42 ± 0.03 0.67 ± 0.47 0.48 ± 0.03
95A 1.0 ± 0.0 0.54 ± 0.03 1.0 ± 0.0 0.5 ± 0.01
97A 1.0 ± 0.01 0.39 ± 0.05 1.0 ± 0.0 0.4 ± 0.08
115A 1.0 ± 0.0 0.53 ± 0.05 1.0 ± 0.0 0.52 ± 0.03
116A 0.67 ± 0.47 0.5 ± 0.03 0.68 ± 0.45 0.5 ± 0.03
143F 0.71 ± 0.45 0.52 ± 0.14 0.71 ± 0.45 0.52 ± 0.07
144D 1.0 ± 0.0 0.5 ± 0.02 1.0 ± 0.0 0.52 ± 0.03
144J 1.0 ± 0.0 0.54 ± 0.04 1.0 ± 0.0 0.54 ± 0.06

to succeed (e.g., to avoid predicting a French word for a Spanish sentence during MLM).
This objective provides the model with a better incentive to retain typological properties
in higher layers, as useful information can be leveraged from them to complete the tasks.
Hence, cross-lingual objectives appear more suitable for training language-agnostic
models. Moreover, it might not be reasonable to expect M-BERT and XLM-R to yield
language-neutral representations, as their pretraining objectives do not stimulate them
to learn an interlingua. This, in turn, poses challenges in zero-shot transfer on distant
languages (Pires, Schlinger, and Garrette 2019) and in resource-lean scenarios (Lauscher
et al. 2020).

5. Testing for Information-Sharing

We now examine the interaction of linguistic typological information within M-BERT
and XLM-R, using the 25 language-level probing tasks and the neutralization methods
that we proposed in Section 3.5.
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Figure 5
Change in performance for all test languages when cross-neutralizing with Spanish. Languages
are categorized by an identical (blue) or different (orange) feature value from Spanish for the
respective task.

5.1 Self-Neutralizing

First, we test whether the approximated language centroids ūx successfully capture the
typological properties of the language. We do this by testing whether self-neutralizing
results in a substantial loss of information about the typological properties of the lan-
guages in our test set. We evaluate the change in performance before and after applying
this method in Table 5. We observe that self-neutralizing decreases performance to
chance accuracy for each language. This shows that the method successfully removes
crucial typological information from the encodings.5 Moreover, the language identity,
approximated by the language centroid, is crucial for the encoding of typological
properties, suggesting that typological information is largely encoded in the relative
positioning of the language-specific subspaces of our models.

5.2 Cross-Neutralizing

Having confirmed that computing ūx is a viable method to localize the typological prop-
erties of a language x, we apply our cross-neutralizing method. From the results, we see
that depending on the language we cross-neutralize with (i.e., language x from which
we compute ūx): (1) performance on a different set of languages is affected, and (2) this
set of languages varies per task. Upon further inspection, we observe that the affected
languages tend to share the same feature value as x for the respective task. Figure 5
shows the change in performance on all test languages when cross-neutralized with
Spanish (see Appendix G for cross-neutralization with other languages). We categorize
these languages based on whether their feature value is the same (blue) or different
(orange) from the feature value of Spanish in the respective task. We indeed see that
the performance on the set of languages that have the same feature value tend to
deteriorate, while the performance on languages with a different feature value remains
mostly constant.

Moreover, when the classifier predicts the incorrect feature value for language x, we
find that the languages that share this value are affected instead (regardless of typologi-
cal relationship). For instance, for task 116A: Polar Questions the label Question particle is
always incorrectly predicted for the Spanish representations (even before neutralizing).

5 Note that Libovickỳ, Rosa, and Fraser (2020) already confirmed that this method does not negatively
effect the underlying meaning of the sentence representations.
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Table 6
The average change in performance per task τ and cross-neutralizing language x for M-BERT,
categorized by languages that have the same (same) or different (diff) feature value from
language x. Cases for which the probing task performance on the language before neutralizing
was insufficient (< 75% accuracy) are denoted in gray (it is unclear what information these
centroids capture, hence we cannot reasonably expect the same trend to emerge). Note that the
blank spaces indicate the cases in which x was omitted from the task due to a lack of coverage in
WALS.

Consequently, when cross-neutralizing with Spanish, the performance for languages
that share this feature value deteriorates (note that in Figure 5 the orange dots drop in
this case). This indicates that the model encodes the feature value Question particle for
Spanish. Thus, when we compute ūx, we capture information about this feature value
instead of the correct one Interrogative word order.

Table 6 shows the average change in performance for M-BERT, categorized by
feature value, for each language with which we neutralize (see Appendix, Table H.1
for XLM-R results). The table shows that there is a clear overall pattern where the
performance in languages with the same feature value suffers, while that in languages
with a different feature value remains intact. These results hold true for all languages
we cross-neutralize with and for both encoders. In some cases, however, we notice
that cross-neutralizing on average increases performance in languages with a different
feature value (e.g., x = Ukrainian for task 70A). We speculate that removing information
about the feature value of x reduces noise in the representations, allowing the classifier
to pick up on the right signal.

Thus, we find that language centroids capture specific feature values in a localizable
and systematically similar way across different languages, indicating that typological
properties are jointly encoded across languages. We reproduced all our experiments
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using sentence representations from the other layers of the models and obtained similar
results in all layers (see Appendix, Figure I.1).

6. Conclusion

In this work, we proposed methods for testing multilingual sentence encoders by in-
vestigating a simple classifier’s ability to separate languages within the models based
on a wide range of typological properties. We found that all encoders capture language
relationships based on some typological properties related to word order, pronouns,
and negation. However, M-BERT and XLM-R generally outperform LASER and XLM,
capturing variation along a wider range of linguistic properties. This is particularly
evident for features pertaining to lexical properties. Thus, M-BERT and XLM-R appear
to rely on typological properties to organize their language subspaces to a greater extent.
Moreover, we found that these properties are localizable to the lower layers of LASER
and XLM, while in M-BERT and XLM-R they are encoded in all layers. We hypothesize
that these differences can be ascribed to the models’ pretraining tasks. We found a
correspondence between the language independence of models, induced during cross-
lingual training, and a loss of typological information, indicating that universality
comes at the cost of language-specific information. While we leave correlating typolog-
ical features with performance on downstream tasks for future work, these findings can
guide design choices when thinking about the behavior we want the model to exhibit.

Moreover, we have shown that typological feature values are encoded jointly across
languages and are localizable in their respective language centroids. In the future, we
will correlate the model’s ability to encode typological features with its performance in
downstream tasks by progressively deteriorating the amount of typological information
encoded. In addition, our method enables us to carefully select which languages we
want to neutralize with respect to certain typological properties. This could inspire work
on encouraging selective generalization in large-scale models based on typological
knowledge, as opposed to enforcing complete language-agnosticism. Lastly, our cross-
neutralizing method is easily applicable to test for joint encoding in other scenarios—for
example, linguistic and visual information sharing in multimodal models.

Appendix A. Languages Supported by XLM

Bulgarian (bul), French (fra), Spanish (spa), German (deu), Greek (ell), Russian (rus),
Turkish (tur), Arabic (ara), Vietnamese (vie), Thai (tha), Chinese (zho), Hindi (hin),
Swahili (swa), Swedish (swe) and Urdu (urd).

These languages are typologically diverse and cover all feature values used in our
tasks. Thus, while the model might not have been trained on all languages used for
probing, we made sure that the model was trained on languages that contain all values
we probe for. Note that all other encoders support 93 (or more) languages, including all
languages used in this work.

Appendix B. Reproducibility Details

Links to Source Code and Data. The following links can be used to download the pre-
trained models that we study in this work:

• LASER: BiLSTM.93langs.2018-12-2
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• M-BERT: Bert-Base, multilingual cased version

• XLM: xlm mlm-tlm-xnli15

• XLM-R: xlm-r.base.v0

For the Transformers we relied on the implementations from HuggingFace, and for
LASER we consulted the publicly available source code on their GitHub repository.
Furthermore, sentences for all languages can be downloaded from the Tatoeba Web site,
and to extract typological information from WALS we used the LingTypology API.

Table B.1
Summary statistics of the model architectures: tokenization method, number of layers L,
dimensionality of sentence representations dim, number of attention heads H, number of model
parameters, vocabulary size V, and pretraining tasks used.

Model tokenization L dim H params V task languages

LASER BPE 5 1,024 – 52M 50K MT 93
M-BERT WordPiece 12 768 12 172M 110K MLM+NSP 104
XLM BPE 12 1,024 8 250M 95K MLM+TLM 15
XLM-R SentencePiece 12 768 12 270M 250K MLM 100

Number of Model Parameters. The probing classifier has a varying number of parameters,
depending on the dimensionality of the sentence representations dim and the number
of class labels in the task on: params = (dim× 100) + (100× on) + 100 + on. In the scalar
mixing weights experiments, another L + 1 weights are added to this. See Table B.1 for
the number of parameters in each multilingual encoder.

Computing infrastructure. The top-layer probing experiments were run using a 2.7 GHz
Intel Core i7 CPU. The other experiments required more memory and were run on the
Lisa cluster, maintained by SURFsara, using a 2.10 GHz Intel Xeon Silver 4110 CPU.
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Appendix C. Similar Language Identification

For each test language we removed the most similar language from the train set and
retrained the classifiers to test whether it is still able to predict the right label without
being able to fall back to similar language identification. Each time we replace the most
similar train language from each pair with German such that we still train on the same
number of languages (e.g., when testing Spanish we replace Portuguese with German,
for French we replace Italian with German, etc). We obtained the following results (for
the classifier trained on top of XLM), shown in Table C.1, which confirm that in most
cases it is still able to succeed with a high accuracy ( > 85%).

Table C.1
For each language under investigation we see: (1) the number of times that the classifier is still
able to succeed after removing the most similar language (note that we excluded languages from
the total for which we did not succeed in the first place) and (2) the average accuracy across the
tasks for which the classifier still succeeded.

Language # times the classifier succeeds Avg. accuracy across tasks

French 7/7 86.5%
Swedish 9/13 91.3%
Polish 10/15 85.0%
Ukrainian 6/7 99.5%
Bulgarian 5/6 86.6%
Spanish 11/12 87.3%
Marathi 0/3 N/A
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Appendix D. Learned Mixing Weights

LayerLayer

LASER M-Bert XLM

Layer Layer

XLM-R

Figure D.1
Learned mixing weights sτ for each encoder and the corresponding KL divergence K(s) for all 25
tasks. We see that LASER and XLM exhibit the same pattern, where higher layers become less
important. In M-BERT and XLM-R, on the other hand, layers from ± 10 and up seem to regain
importance again.
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Appendix E. t-SNE Plots per Layer
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Figure E.1
t-SNE visualizations of the sentence representations retrieved from the different layers of
LASER, M-BERT, XLM, and XLM-R, where layer 0 corresponds to the non-contextualized token
embeddings (made using PCA with k = 10). Whereas LASER and XLM project all languages to a
shared space in their last layers, M-BERT and XLM-R project the representations back to
language-specific subspaces. Note that a similar trend is observed when only plotting the
representations for the languages that XLM is trained on.
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Appendix F. XLM Generalization to Unseen Languages

Table F.1
Macro-averaged-F1 scores for LASER and XLM computed separately over the set of XNLI
languages that are not supported by XLM (Ukrainian, Polish, and Marathi) (non-XNLI). Note
that LASER was trained on all languages and is thus used as a comparison to the scores obtained
by XLM. We see that, in general, XLM obtains similar, and sometimes better, scores compared to
LASER, despite not having been trained on the languages.

WALS code LASER non-XNLI XLM non-XNLI

37A 0.305003 0.315463
38A 0.325383 0.329041
45A 0.498301 0.494767
47A 0.481012 0.498201
51A 0.498408 0.498352

70A 0.257501 0.266342
71A 0.221012 0.209911
72A 0.386056 0.400814
79A 0.475045 0.433473
79B 0.198133 0.221936

81A 0.991734 0.963265
82A 0.399975 0.411855
83A 0.991061 0.944318
85A 0.991632 0.970614
86A 0.360055 0.363591
87A 0.495345 1.000000
92A 0.000754 0.000975
93A 0.367556 0.340872
95A 0.991335 0.985749
97A 0.659789 0.655212

115A 0.499235 0.497361
116A 0.426288 0.400575

143F 0.400558 0.400814
144D 0.499834 0.499734
144J 0.499083 1.000000
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Appendix G. Cross-Neutralizing Results for M-BERT

Figure G.1
Change in performance after cross-neutralizing with the other test languages for M-BERT. The
performance change for all 25 probing tasks is shown per language used for cross-neutralizing.
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Appendix H. Averaged Performance Change Over Languages for XLM-R

Table H.1
The average change in performance per task τ and cross-neutralizing language x for XLM-R
categorized by languages that have the same and those that have a different feature value from
language x. Cases for which the probe performance on the language before neutralizing was
insufficient (< 75% accuracy) are denoted in gray (it is unclear what information these centroids
capture, hence we cannot reasonably expect the same trend to emerge). Note, the blank spaces
indicate the cases in which x was omitted from the task due to a lack of coverage in WALS.
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Appendix I. Cross-Neutralizing Results for M-BERT Across Layers

Layer 0

Layer 1

Layer 6

Layer 12

M-BERT

Figure I.1
The change in performance for all test languages when cross-neutralizing M-BERT
representations with a language centroid computed from the Spanish sentences. Languages are
categorized by whether they had the same or different feature value from that of Spanish for the
respective tasks.
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