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We contribute to the discussion on parsing performance in NLP by introducing a measurement
that evaluates the differences between the distributions of edge displacement (the directed dis-
tance of edges) seen in training and test data. We hypothesize that this measurement will be
related to differences observed in parsing performance across treebanks. We motivate this by
building upon previous work and then attempt to falsify this hypothesis by using a number of
statistical methods. We establish that there is a statistical correlation between this measurement
and parsing performance even when controlling for potential covariants. We then use this to
establish a sampling technique that gives us an adversarial and complementary split. This gives
an idea of the lower and upper bounds of parsing systems for a given treebank in lieu of freshly
sampled data. In a broader sense, the methodology presented here can act as a reference for future
correlation-based exploratory work in NLP.

1. Introduction

Evaluating the performance of NLP systems is an important task that is often done
using a well-established metric or set of metrics. Error analysis often just includes
cherry-picking examples that are easy to discuss but don’t necessarily give a clear
picture of the quality of systems. However, in the context of syntactic parsing, plenty of
literature has been written discussing what factors influence parsing performance and
it is toward this discussion that this work contributes. We do so by looking at the edge
displacement of nodes (the directed distance between the position of the node and its
head; see Figure 1) and the corresponding distributions over samples. More specifically,
we evaluate the distributions seen in training and test data of treebanks and use the
Vaserstein distance to measure the difference between these two distributions. We then
compare this with the parsing performance of two different systems that are, broadly
speaking, a transition-based and graph-based parser.
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Figure 1

Example tree highlighting dependency displacement for two nodes. der at position 2 with its
head Not at position 3 has a DET edge (in magenta) with a dependency displacement of

2 — 3 = —1. Similarly, Fliegen at position 7 with its head frisst at position 4 has an OBJ edge with
a dependency displacement of 7 — 4 = 3. English: When in need the devil eats flies.

Hypothesis. We postulate that the differences between the edge dependency displace-
ment distributions of the training and test data of treebanks (as measured by the
Vaserstein distance, formally introduced in Section 3.1) are related to the performance
of parsers (as defined by the labeled attachment score). We use a number of methods in
an attempt to falsify this hypothesis and conclude that based on the data and systems
used in this analysis, it cannot be fully refuted. However, the sentence-length binning
analysis tempers our complete confidence in this hypothesis.

Utility. We suggest using the observed correlation of Vaserstein distances between edge
displacement distributions and parsing performance to guide a sampling method to
create adversarial and complementary splits better suited for evaluating parsers.

2. Related Work

In this section we give a brief overview of previous work focused on explaining parsing
performance and also focused on dependency distance.

2.1 Analyzing Parsing Performance

An obvious and well-attested predictor of parsing performance is the amount of train-
ing data available, which is typically observed to be logarithmically related to pars-
ing performance (Sagae et al. 2008; Falenska and Cetinoglu 2017; Strzyz, Vilares, and
Gomez-Rodriguez 2019; Dehouck, Anderson, and Gémez-Rodriguez 2020). The lengths
of sentences have also been observed to impact parsing performance, with longer
sentences being harder to parse than shorter sentences (McDonald and Nivre 2011).
In a similar vein, others have highlighted the effect that dependency distance has on
parsers, namely, that longer dependencies tend to be harder to predict (McDonald and
Nivre 2011; Anderson and Gémez-Rodriguez 2020; Falenska, Bjorkelund, and Kuhn
2020). Edge direction entropy and word order freedom has also been shown to have
a meaningful effect (Alicante et al. 2012; Rehbein et al. 2017; Gulordava and Merlo
2015, 2016). This is not consistently observed across all data: Chung, Post, and Gildea
(2010) found that for Korean this is not so strongly related to parsing performance as
other features of the language such as its pro-drop tendencies. Alicante et al. (2012)
only found that it impacted Italian constituency parsing, but not dependency parsing.
Part-of-speech bigram perplexity (Berdicevskis et al. 2018), entropy over trees (Corazza,
Lavelli, and Satta 2013), the degree of non-projectivity (McDonald and Satta 2007), and
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morphological complexity (Dehouck and Denis 2018; Coltekin 2020) have also been
presented as explanations or measurements for differences in parsing performance.

Analyses also focus on comparisons between parsing paradigms and algorithms.
Transition-based parsers often appear to struggle with longer distance relations more
than graph-based parsers (McDonald and Nivre 2011; Falenska, Bjorkelund, and Kuhn
2020). However, Kulmizev et al. (2019) observed that the use of contextualized word em-
beddings offset the typical issues associated with transition-based parsers. de Lhoneux,
Stymne, and Nivre (2017) investigated the performance of the same transition-based
algorithm using a neural network implementation and also a classical implementa-
tion, observing the same tendency for performance to decline as dependency distance
increased. Anderson and Gémez-Rodriguez (2020) found that the similarity of the
inherent displacement distributions of algorithms to the distributions of treebanks was
meaningfully correlated with parsing performance when accounting for sentence length
for different transition-based algorithms. Beyond this, different frameworks and anno-
tation schemes have been found to perform differently, often related to one or more
of the metrics mentioned above (Kiibler, Rehbein, and van Genabith 2008; Matsuzaki
and Tsujii 2008; Bosco et al. 2010; Mille et al. 2012; Alicante et al. 2012; Pretkalnina and
Rituma 2014).

Differences between training and test data have also been evaluated. Zhang and
Wang (2009) looked at certain metrics such as the rate of out-of-vocabulary tokens
and unseen part-of-speech trigams and observed some correlation between these and
parsing performance. However, the main focus in this area is on domain shifts between
training and test data. Although this issue is not unique to parsing, there have been ex-
tensive results showing that domain shift can result in very steep drops in performance
if the domains are very different (Gildea 2001; Bosco et al. 2010; Plank and van Noord
2010; Foster 2010). More recently, Sogaard (2020) proposed the ratio of tree structures in
the test data that did not occur in the training data as a predictor of parsing performance,
but the results presented were found to be spurious once covariants were accounted for
(Anderson, Segaard, and Gémez-Rodriguez 2021). Here we present a similar analysis
but with a measurement that is not so restricted, based on dependency displacement
distributions.

2.2 Dependency Distance

Dependency distance is hypothesized to be constrained by working memory restric-
tions, resulting in distances being minimized (Gibson 2000; Liu, Xu, and Liang 2017).
This has been corroborated by numerous corpus-based analyses (Ferrer-i-Cancho 2004;
Liu 2008, 2007; Buch-Kromann 2006; Futrell, Mahowald, and Gibson 2015; Temperley
and Gildea 2018), although different languages appear to adhere to these restrictions
to varying extent (Jiang and Liu 2015; Gildea and Temperley 2010). This relates to NLP
parsing because if different languages or treebanks adhere to this constraint more or
less than others, it could result in differences in the achievable performance of parsers.
Hudson (2017) also highlighted that mean dependency distance varies significantly
between treebanks, but added that the direction of dependencies could impact parsing
difficulty as well. Different syntactic traits associated with parsing difficulty have been
shown to be correlated with an increase in dependency length, for example, free-
order languages (Gulordava and Merlo 2015), and with an increase in non-projective
dependencies (Ferrer-i-Cancho and Gémez-Rodriguez 2016; Gémez-Rodriguez and
Ferrer-i-Cancho 2017).
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Goémez-Rodriguez (2017) hypothesized that transition-based parsers perform ade-
quately because they are biased toward short dependencies. This was somewhat cor-
roborated by Eisner and Smith (2010), who improved parser performance by imposing
limits on dependency length and using dependency lengths as a feature for their system.
It was further substantiated by the work of Anderson and Gémez-Rodriguez (2020) as
described in Section 2.1.

The work presented here can be considered an extension of the previous work cited
above where we use a method based on edge displacement distributions to compare
differences between training and test data to attempt to explain variation in parsing
performance across different treebanks.

3. Methodology

In this section we introduce the core principles behind the measurement we focus on in
this article and we give the details of the parsing systems and data used in our analysis.

3.1 Edge Displacement Vaserstein Distance

We follow Anderson and Gémez-Rodriguez (2020) and use edge displacement instead
of distance as this gives us a measurement that encodes both distance and direction.
Fundamentally, it is the signed distance of a node with respect to its head. We alter the
definition from Anderson and Gémez-Rodriguez (2020), so that it better resembles the
standard definition of physical displacement, that is, the endpoint minus the starting
point:

Sedge = ¥*node — Xhead 1)

Then for a given treebank the edge displacement for each node is measured, excluding
the root node and its displacement with respect to the dummy root as position 0. The
range [—30,30] is used for the distributions so that the measurement isn’t impacted by
potential unreliable long tails. This range covers 99.40% of the edges in UD v2.5 and
99.38% in UD v2.6. The distribution of edge displacements is then normalized such that
it takes the form of a probability distribution. In this way, a probability distribution over
displacements is obtained for the training treebank and test treebank for each dataset.
We then use these two probability distributions to calculate the Vaserstein distance
(Vaserstein 1969), thus obtaining the edge displacement Vaserstein distance (EDV) for a
given dataset. The Vaserstein distance (technically the Vaserstein-1 distance) is defined
as follows (Vaserstein 1969):

)= inf [ x-yldveow) o)

vel(w,v)

where p and v are probability distributions of two random variables (in our case, the
variables will correspond to dependency displacements), x and y are points in the x-axis
of these probability distributions (i.e., concrete values of each of the variables), |x — y| is
the distance between two such values, and the infimum is with respect to v, a coupling
from I" which is the set of all joint distributions whose marginals are wand v.

A more grounded interpretation of the Vaserstein distance is that it gives a measure-
ment of how much mass needs to be moved from each x to each y so that p is transformed
into v. As such, this metric is also known as earth mover’s distance in computing
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Figure 2

Example displacement distributions of the training and test data for Catalan-AnCora (top) and
Marathi-UFAL (bottom), which exhibit the smallest and largest measured EDV values in UD
v2.6. While both EDV values are small, there is an order of magnitude difference between them.
LAS is shown for UDPipe 2.0.

science. Ultimately, it gives a measurement of how different two distributions are, with
larger values indicating a greater divergence and values approaching zero indicating
similar distributions.

Example. Distributions are shown for two treebanks from the Universal Dependency
(UD) v2.6 treebanks in Figure 2. As can be seen, Catalan-AnCora has very similar
distributions for its training and test data, which is reflected in a small EDV of 3 x 10~*.
Marathi-UFAL is also shown, where differences between the two sets can be clearly seen
despite the distributions following similar trends. This still results in a small EDV of
5 x 1073, but it is an order of magnitude greater than that observed for Catalan-AnCora.
These two treebanks show the highest EDV (Marathi-UFAL) and the lowest (Catalan-
AnCora), and so show the range of EDV values observed in the data (the mean EDV
observed in UD v2.6 is 1.40(0.85) x 1073, and 1.35(0.87) x 102 for UD v2.5). Despite
the values of EDV both being fairly small, there is a large difference in performance
seen for these two treebanks, with Catalan-AnCora achieving a labeled attachment score
(LAS) of 92.95 when using UDPipe 2.0, and Marathi-UFAL only achieving 60.92. There
are clearly other contributing factors relating to the difference in performance between
these two treebanks (not least training data size, as Marathi-UFAL only has 373 training
instances whereas Catalan-AnCora has 13,123), which we have discussed above and
that we take into consideration in our analysis discussed below.

3.2 Parser Systems

We used two neural-based parsers: version 1.2.1-devel (1.2) of UDPipe, and version 2.0
(Straka and Strakové 2017; Straka 2018). For UDPipe 1.2 we use models 2.5! and for

1 https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-3131.
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UDPipe 2.0 we use models 2.6.> We opted to use these systems as the models have been
optimized for their respective UD treebank and UDPipe 1.2 is a transition-based system
whereas UDPipe 2.0 is a graph-based system, thus allowing us to evaluate EDV for
different parser systems. Furthermore, UDPipe 1.2 came 8th out of 33 at the CoNLL 2017
shared task and was used as the baseline model for comparison of systems submitted to
the CoNLL 2018 shared task, where it came 18th out of 26 with respect to average LAS.
For its part, UDPipe 2.0 was one of the top performing parsers of the 2018 shared task,
tied for the 3rd place (Zeman et al. 2017, 2018). An earlier version of UDPipe 2.0 was
also one of the leading systems at the SIGMORPHON 2019 shared task, and the winner
of EvaLlatin 2020 (McCarthy et al. 2019; Sprugnoli et al. 2020).

Both systems include tokenization and sentence segmentation capabilities, but we
fed gold tokenized data to the systems, as we are interested in the impact of EDV on
parsing specifically and not how it relates to these preliminary tasks. When running the
systems, we opted to run the taggers when parsing so as to use the systems close to
how they were intended to be used, even though we are not interested in the tagging
performance (of UPOS and mfeats). This results in using predicted tags at runtime.

UDPipe 1.2 is a basic feed-forward neural transition-based parser which uses a
simple feature function as input for each timestep (Chen and Manning 2014; Straka
et al. 2015). We used models 2.5 which were pre-trained on UD v2.5 treebanks, resulting
in 94 parsers on separate treebanks. Each model is optimized for each treebank, which
includes the type of algorithm and oracle used. Details of the system can be found in
Straka et al. (2015) and Straka, Haji¢, and Strakova (2016).

UDPipe 2.0 is based on the graph-based biaffine parser of Dozat and Manning
(2017) where the hidden representations of tokens from BiLSTM layers are mapped into
two separate perceptron layers, considered representations of the tokens as a head and
as a dependent, which are combined using a biaffine attention mechanism, resulting
in a probability distribution over all other tokens in a sentence indicating the proba-
bility that any given token is its head. A well-formed tree is then enforced using the
Chu-Liu/Edmonds” algorithm (Chu and Liu 1965; Edmonds 1967). We could not run
Czech-PDT, Hindi-HDTB, German-HDT, and Russian-SynTagRus, as the Web site had
issues with large files, so we ended up with results from 90 models. Note that although
the treebanks used for UDPipe 1.2 and 2.0 are very similar, they are not exactly the
same. There are a few differences in the actual treebanks included and there are also
differences within given treebanks between iterations of UD releases.

Data. We used UD treebanks for our analysis (as such, we lay no claim to any results
that span different frameworks). We used the sets of treebanks that correspond to the
parser models we used for each system, namely, UD v2.6 with UDPipe 2.0 and UD v2.5
for UDPipe 1.2. We also used UD v2.7 to extend our analysis beyond the pretrained
model for evaluation of the linear regression model using unseen data. We picked
treebanks that had no UDPipe 1.2 model but contained both training and test data
and that contained at least 100 sentences in the training data. We also used UD v2.7
for a proof of concept for using EDV to guide sampling for a more robust evaluation
procedure for parsers. This resulted in 94 treebanks for UDPipe 1.2, 90 treebanks for
UDPipe 2.0, 11 treebanks for evaluating the UDPipe 1.2 linear model, and 105 treebanks
for the sampling work.

2 https://lindat.mff.cuni.cz/services/udpipe/.
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3.3 Statistical Methods

The statistical analysis was undertaken using the Pingouin Python library version
0.3.8, except the partial coefficients (§4.2.3) were calculated using version 0.4.0, which
corrected errors associated with these (Vallat 2018).

Correlation Coefficients. We evaluate the impact variables have on parsing performance
by measuring their correlation coefficients with respect to LAS. We use a non-parametric
correlation coefficient in the form of Spearman’s p, which measures the correlation
between variables and assesses the monotonic relationship between them. We do not
use Pearson’s 1, as the data being analyzed do not strictly adhere to bivariate prob-
ability distributions and the sample sizes are small enough that this can affect the
measurement’s sensitivity. Further, Pearson’s r is less robust with respect to outliers.
For each coefficient, we report the correlations and the corresponding p-value. For the
main correlation results, we include the upper and lower bounds of the 95% confidence
interval, the coefficient squared (a measure of the proportion of explained variance), the
adjusted coefficient (which somewhat tempers the coefficient’s bias), and the power of
the analysis. For p-values, we report the exact value unless the value is less than 0.001,
following common practice (American Psychological Association 2010).

Partial Correlations. We make use of partial correlations to evaluate the impact of co-
variants. This allows us to remove the impact of variables that are correlated with the
control variable and the target variable, so as to avoid situations where a measurement
seemingly explains X variance in the data but in reality it is merely a measurement of
one or more basic variables.

Background Removal. Here we take a standard method found in physics used to remove
known background functions from data, for example, removing the spectra associ-
ated with amorphous radiators from those associated with lattice-structure radiators
to obtain enhanced spectra that is without noise (Timm 1969). Here we consider the
variations associated with covariants as similar background data to be removed, so as to
observe if there is any variation associated with EDV. Similar to partial correlations, re-
moving the background signal of a potential covariant allows us to visually evaluate the
specific impact a variable of interest has on the target variable. This involves fitting the
control data and the target (e.g., the size of training data and LAS) and then dividing
the target variable by the predicted values from this fit. This normalized data is then
used to fit a second potential covariant which too is used to divide the normalized
target variable values. This can be repeated for any number of covariants. Ultimately, a
normalized version of the target variable is left and the control target of interest (e.g.,
EDV) is evaluated against these values and if a trend is still observed, it is evidence
that this variable has an impact on the target variable even with the variance associated
with these covariants removed. This technique ultimately acts as a way of tempering
correlations we calculate and gives us a means of disentangling contributions that might
not be caught by partial correlation calculations.

Linear Regression. The preceding methods allow us to hone in on the impact of a given
variable, but with linear regression we can fit models to the data with more than one
variable. This allows us to evaluate the impact certain variables have when used with
other covariants. For linear regression models we report the adjusted R? (the square of
the residuals) as a measurement of the proportion of explained variance, which it equals

523



Computational Linguistics Volume 48, Number 3

0.0060 1
0.0055 1
2
2 0.0050

0.0045

0.0040 %

5 10 15 20 25 30
Sentence Length

Figure 3
EDV between sub-samples of the training and test data binned by sentence length for UD v2.6
(111 treebanks).

when the residual mean is normalized so as to equal zero (as is the case in this analysis).
In addition, we report the relative importance of each variable and the corresponding
p-values (Sen et al. 1981; Groemping 2006).

Sentence Length Binning. Ferrer-i-Cancho and Liu (2014) highlighted the impact mixing
sentence lengths can have on treebanks analyses and Anderson and Gémez-Rodriguez
(2020) observed sentence-length dependencies when evaluating edge displacement
distributions of treebanks and the inherent distributions of transition-based parsers.
Considering this potential impact, we also undertake a sentence-length binned analysis.
This simply entails constructing samples of each treebank based on the length of the
sentences. We take bins ranging from 3 tokens to 30 tokens, as any shorter and the EDV
has little meaning (i.e., with 2 tokens, there can only be one edge which can either be -1
or 1) and any longer and the number of instances in a given bin for a given treebank is
too small to obtain a meaningful measurement. Note that parsers were trained on the
full data and the binning procedure is undertaken solely at the analysis stage. Figure 3
shows the EDV calculated between training and test data for each sentence length bin
for UD v2.6 (the corresponding data for UD v2.5 is shown in Figure A.1in Appendix A).
Itis clear that EDV does vary based on sentence length, but it remains to be seen whether
that variation has an impact on parsing performance.

Variables Assessed. Beyond assessing EDV and how it correlates to parsing performance
(as given by LAS) we look at a number of variables that are potential covariants. First
we look at the size of the training data (measured both in tokens and sentences), which
as described above has been shown to correlate to parsing performance and could
feasibly impact EDV measurements. That is, larger treebanks allow for a more accurate
representation of a language’s true underlying distributions of edge displacements so
deviations with respect to the test data could be minimized, and vice versa: If the
sample is too small, it could be some random sample at the fringes of what would be
a standard distribution for a given language. Similarly, we also consider the number
of tokens and sentences in the test data. We also look at the mean sentence length of
the test data, (L), as this theoretically puts a limit on the potential distribution of
edge displacements and has been observed to impact parsing performance (i.e., longer
sentences are harder to parse than shorter ones). For the sake of completeness, we also
look at the mean length of the training data, (Ly.i,). Finally, we look at the Vaserstein
distance between the training and test distributions of sentence lengths (SLV) because
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it is feasible that EDV merely vaguely measures differences with respect to sentence
length.

4. Analysis and Results

In this section we describe the analysis in detail and discuss the results we obtained.

4.1 Evaluating Normality

Here we justify the use of Spearman’s p for the following analysis. Figure 4 shows
the distribution of the variables of interest in our analysis (as described in Section 3.3)
for UD v2.6 (the corresponding distributions for UD v2.5 are shown in Figure A.2 in
Appendix A). Visually, it is clear that only (L) could be sampled from a normal
distribution.

To thoroughly evaluate the variables for normality, we use the Shapiro-Wilk test
(Shapiro and Wilk 1965), as it is a higher power test compared with the alternatives,
making it the most suitable for our fairly small sample size (Yap and Sim 2011). The
values from the tests (W) and the corresponding p-values (where the null hypothesis
is that the sample is from a normal distribution) are shown in Table 1 for both UD
v2.5 (top) and UD v2.6 (bottom). A smaller W indicates that a sample is not drawn
from a normal distribution, but the more informative metric here is the p-value (as
W is nonlinear and difficult to interpret). Basically, larger p-values mean we cannot
reject the null hypothesis that the sample is drawn from a normal distribution. Only
(Liest) has a large p-value and does so for both datasets (0.121 for UD v2.5 and 0.402
for UD v2.6). The leftmost column of Table 1 shows the result of the test based on the

0.4

0.2 1 R

o.ov--.lllll
, 06 0.8 0 200k 400k
= LAS Train Tokens
=
o
O 0.4
-
[«)
£ 0.24 1
E J.III...-,-1
E 0.0/
2 0.002  0.004 10 20 30

EDV <Ltest>

0.4

0.2

0.0

0.0075 0.0150 O 25k 50k
SLV Test Tokens

Figure 4

Distributions of the variables of interest in UD v2.6 (90 treebanks) in order to evaluate whether
they are sampled from normal distributions.

525



Computational Linguistics Volume 48, Number 3

Table 1

Shapiro-Wilk tests to evaluate if samples are drawn from normal distributions for UD v2.5 (top)
and UD v2.6 (bottom). Only the (L) test has values for which the null hypothesis (i.e., normal
distribution) cannot be rejected under any reasonable thresholds.

Variable W p-value Normal
LAS 0.920 <0.001 False
Train Tokens 0.418 <0.001 False
EDV 0.785 <0.001 False
(Liest) 0978 0121  True
SLV 0.686  <0.001 False
Test Tokens 0.350 <0.001 False
LAS 0.894 <0.001 False
Train Tokens 0.851  <0.001 False
EDV 0.761 <0.001 False
(Liest) 0985 0402  True
SLV 0.665 <0.001 False

Test Tokens 0.825  <0.001 False

ever arbitrary distinction of significance, that is, p-value < 0.05. We are not particularly
interested if one variable is or is not normally distributed; the important result here
is that most variables including the control variable of interest (EDV) and the target
variable (LAS) quite definitively do not follow normal distributions. This, along with the
other considerations mentioned in Section 3.3, thoroughly justify the use of Spearman’s
p. Further, it is useful that this coefficient doesn’t specifically evaluate the linearity
of relationships because not all variables assessed here are linearly related to parsing
difficulty, but are monotonically related.

4.2 Correlation Coefficients

Here we evaluate basic coefficients between the control variables and LAS and also
between the potential covariants and EDV.

(=}

5 ag ®
B B

o
3 3, o |
2] o B of o

60 o | %o o | o @ ojm 8 @ s® o
0 200k 400k 10 20 30 0.002 0.004 0 20k 40k 60k 0.0050.0100.015
Train Tokens (Lyesy) EDV Test Tokens SLV
Figure 5

Visualization of LAS (for UDPipe 2.0 and UD v2.6) with respect to variables of interest with fits
shown in red to highlight whether the data appears correlated or not.

526



Anderson and Gémez-Rodriguez EDV and UD Parsing Performance

4.2.1 Basic Coefficients. Figure 5 shows LAS against the control variables of interest for
UDPipe 2.0 (the corresponding visualization for UDPipe 1.2 is shown in Figure A.4 in
Appendix A). In the first subplot, it is fairly clear that LAS increases logarithmically with
respect to the number of tokens in the training data, which corroborates the findings
discussed above in Section 2. It appears that the number of tokens in the test data is
not associated with parsing performance for UDPipe 2.0, however, there is a potentially
logarithmic relationship seen for UDPipe 1.2, but that could easily be down to a few
serendipitously placed outliers. (L) is loosely linearly related to LAS, but EDV seems
like it is more strongly linearly related. SLV doesn’t seem to be related to LAS, but there
are a few clusters which upset the fitting procedure that should not affect the calculation
of the corresponding Spearman p for this relation. Note that we do not visualize all
variables for the sake of space and to avoid redundancy, that is, the number of training
tokens is more strongly correlated to parsing performance than the number of training
sentences (as seen in Table 2).

Table 2 shows the corresponding Spearman p values for the data shown in figures 5
and A.4 and the remaining variables mentioned above in Section 3.3, that is, control
variables related to LAS. First, we want to note that measuring data in tokens rather
than sentences results in stronger correlations for both test and training and for both
parsers (with the number of test instances not even being correlated to LAS for UDPipe
2.0). Based on this, we use the number of tokens in the training and test data from
this point forward. Also, the number of training tokens is the variable most strongly
correlated with parsing performance, but the next strongest for both systems (excluding
the number of training sentences) is actually EDV. SLV is not correlated at all for
UDPipe 2.0 and only weakly so for UDPipe 1.2, with a p-value higher than any arbitrary
threshold of significance.

Next we investigate how the variables most strongly correlated to LAS correlate
with one another, that is, we check for potential covariants. Figure 6 shows how perti-
nent variables relate to EDV. Clearly, the number of tokens in the training data and the

Table 2
Spearman’s p for correlations between variables of interest and LAS.

Parser Variable p p-value

Train Tokens 0.660 <0.001

Train Trees 0.535 <0.001

(Ligain) 0.376  <0.001

. Test Tokens 0.433 <0.001
UDPipe 1.2 1ogt Trees 0208  0.045
(Liest) 0.351 0.001

SLV —0.191 0.065

EDV —0.492 <0.001

Train Tokens 0.605  <0.001

Train Trees 0.467 <0.001

(Lisain) 0323  0.002

. Test Tokens 0.309 0.003
UDPipe 2.0 1ot Trees 0073  0.496
(Liest) 0.309 0.003

SLV —0.086 0.422

EDV —0.466  <0.001
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Figure 6

Visualization of EDV (for UD v2.6) with respect to variables of interest with fits shown in red to
highlight whether the data appears correlated or not.

test data are strongly related and, as one would expect, SLV looks related (confirmed
by the actual correlation coefficient of 0.549 with a p-value less than 0.001, as seen in
Table 3). However, as SLV is not correlated to parsing performance, it is not necessary to
consider it when evaluating EDV with respect to LAS. It seems like (L) is not clearly
related to EDV despite our expectations that it would be.

The corresponding correlations are found in Table 3 alongside correlations between
other variables as well. The correlations clearly corroborate the trends observed in
Figure 6. (Lyain) is not shown in Figure 6 but it behaves similarly to (L), closely
echoing the measured correlations between (L) and EDV for both systems. We also
show the correlation between the number of training tokens and test tokens because
typically the amount of data for both are linked (i.e., it is not particularly common for
a treebank to have a huge training set but a tiny test set, although the opposite does
occur, e.g. Kazakh-KTB). For both sets of data the correlations are high (0.772 for UD
v2.5 and 0.659 for UD v2.6) both with p-values below 0.001. We assume, therefore, that
these measurements loosely capture the same aspect of treebanks and use the number

Table 3
Spearman’s p for different pairs of variables.

Parser Variables P p-value

Train Tokens — EDV —0.480 <0.001

(Liest) — EDV —0.080 0.443
(Lirain) — EDV —0.089 0.393
UDPipe 1.2 Test Tokens — EDV —0.523  <0.001
SLV — EDV 0.617  <0.001

Test — Train (Tokens) 0.772  <0.001
(Liest) — Train Tokens 0.149 0.153

Train Tokens — EDV —0424 <0.001

(Liest) — EDV —0.025 0.817
(Liain) — EDV —0.023 0.833
UDPipe 2.0  Test Tokens — EDV —0.446  <0.001
SLV — EDV 0.549  <0.001

Test — Train (Tokens) 0.659  <0.001
(Liest) — Train Tokens 0.096 0.370
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of training tokens as the best option: It is more strongly correlated to LAS by a large
amount and is similarly correlated to EDV if slightly less so than the number of test
tokens. We further justify this choice in Section 4.2.2. Lastly, we show the correlation
of (Liest) and the number of training tokens as it has been noted that smaller treebanks
(especially very low-resource treebanks) not only have less training instances but also
sentences tend to be shorter (Dehouck and Gémez-Rodriguez 2020). However, we don’t
find any correlation in these datasets, presumably because this issue is not prevalent
once a certain threshold of data size is reached.

4.2.2 Background Removal. As described above, we removed the background signal asso-
ciated with other variables to evaluate the independent relationship of certain variables.
First, we evaluated whether the number of test tokens actually captured a different
aspect of the treebanks with respect to parsing performance. Figure 7 shows this process
for UDPipe 1.2, where the first plot shows LAS against the number of training tokens
and the second plot shows the normalized LAS (LAS / fit from first plot) against test
tokens.

We show this process for UDPipe 1.2 rather than 2.0, which we have used for the
visual representations in the main body thus far (the corresponding plot for UDPipe 2.0
is shown in Figure A.3 in Appendix A), as the visual relationship observed for UDPipe
1.2 between the number of test tokens and LAS was much more convincing than for
UDPipe 2.0 and the correlation reported in Table 3 was higher for UDPipe 1.2. It is
clear that once we remove the signal associated with the number of training tokens, the
signal associated with the number of test tokens disappears. This is backed up by the
correlations observed for the number of test tokens and LAS (0.433, p-value < 0.001)
disappearing when comparing the number of training tokens to the normalized LAS
with a correlation of —0.123 (p-value = 0.236).

We note here that when looking at the partial coefficient for the number of test
tokens for UDPipe 1.2 when using the number of training tokens as a covariant, we
obtain a coefficient of —0.325 (p-value = 0.001), which is not particularly meaning-
ful and highlights the fragility of correlation coefficients. In fact, the reversal of the

8 10 12 14 6 8 10 12

IOg(SiZG) log(Sizetest)

Figure 7

Background removing method used to evaluate whether the number of test tokens carries
additional information with respect to the number of training tokens for UDPipe 1.2 and UD
v2.5. Correlation between the number of test tokens and LAS is 0.433 (p-value < 0.001) and
that between the number of test tokens and the normalized LAS (right plot) is —0.123
(p-value = 0.236).
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Background removal method to evaluate whether a correlation is observed between EDV and
LAS (for UDPipe 2.0 and UD v2.6) after removing the variation associated with the training test
size and (Lies). The correlation between EDV and LAS is —0.466 (p-value < 0.001), the
correlation between EDV and the LAS normalized by the variance associated with number of
tokens in training data is —0.222 (p-value = 0.036), and the correlation for the fully normalized
LAS (removing the variance associated with (L)) is —0.283 (p-value = 0.007).

sign is indicative of multicollinearity, exactly what we anticipated these variables to
be (Farrar and Glauber 1967). For UDPipe 2.0 the same partial correlation is —0.045
(p-value = 0.671) and so it is even clearer for this system.

We next use this technique to evaluate the relationship observed between EDV
and LAS. In Figure 8 we show the fit of LAS against the number of training tokens
(leftmost plot), and then the first normalized LAS against (L) (middle plot), and
the final normalized LAS against EDV (rightmost plot) for UDPipe 2.0 (Figure A.6 in
Appendix A shows the equivalent analysis for UDPipe 1.2). We opted to include (Lic:)
even though no correlation was observed between (L) and EDV because theoreti-
cally it could impact the measurement of EDV, and if the coefficients failed to capture
this, it could still impact the final analysis. However, removing the signal associated
with it and the number of training tokens still results in a clear linear relationship
between EDV and LAS (correlation of —0.283 with p-value = 0.007). The correlation
is much diminished compared to the original coefficient measured for EDV of —0.466
(Table 2), but it is still meaningful. The results are echoed in the analysis for UDPipe 1.2
with a correlation of —0.249 (p-value = 0.015) between EDV and the final normalized
LAS compared to —0.492 for the original measured coefficient (Table 2).

4.2.3 Partial Coefficients. This ultimately leads us to evaluating EDV with respect to LAS
using partial coefficients. The main covariant of interest is the number of tokens in the
training data, which is not only the most strongly correlated variable with respect to
LAS (Table 2) but also the second most strongly correlated variable with respect to
EDV (Table 3). We also include (L) despite measuring no correlation with it and
EDV because of the apparent impact it had in the background subtraction analysis
(Section 4.2.2). In Table 4, we show the full measurement of the partial coefficients for
EDV with respect to LAS for UDPipe 1.2 and 2.0 with no covariants (i.e., the standard
coefficient), with the number of training tokens as the sole covariant, and with both the
training tokens and (L) as covariants. As expected, when evaluating the correlation
with the number of training tokens as a covariant we observe the biggest change in the
measured coefficient. For UDPipe 1.2 it drops from —0.492 to —0.265 and for UDPipe
2.0 it drops from —0.466 to —0.290. We also note that despite not being correlated based
on the calculated coefficients between (L) and EDV, we still checked its impact. There
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Table 4
Partial coefficients (except for rows with None in Covariant(s) column) for EDV with respect to
LAS for UDPipe 1.2 and UD v2.5 (top) and for UDPipe 2.0 and UD v2.6 (bottom). Shown is the

coefficient itself (p), the 95% confidence interval (CI95%), p? as an indication of the proportion of
explained variance, the adjusted p? (Adj. p?) as a less biased version of p?, the corresponding
p-values, and the achieved power of the test (power).

Parser Covariant(s) p CI95% p? Adj.p?> p-value power
None —0.492 [-0.63 -0.32] 0.242 0.234 <0.001 0.999
UDPipe 1.2  Train Tokens —0.265 [—0.44 —0.06] 0.070 0.050 0.010 0.735
Train Tokens, (List) —0.278  [-0.46 —0.08] 0.077  0.047 0.007 0.773
None —0.466 [-0.61 -0.29] 0217  0.208 <0.001 0.997
UDPipe 2.0  Train Tokens —0.290 [-0.47 —0.09] 0.084 0.063 0.006 0.796
Train Tokens, (List) —0.312  [-0.49 —0.11] 0.097  0.066 0.003 0.849

is a small increase in the partial coefficients here signaling that (L) is not a covariant
of EDV with respect to LAS. This partial correlation coefficient results in an adjusted p?
of 0.047 for UDPipe 1.2 and 0.066 for UDPipe 2.0, which gives a less biased indication of
the proportion of explained variance associated with EDV (5% for UDPipe 1.2 and 7%
for UDPipe 2.0). Only including the number training tokens as a covariant results in an
adjusted p? of 0.050 for UDPipe 1.2 and 0.063 for UDPipe 2.0 (5% and 6%, respectively).
Therefore, in this setting, we can say that EDV is correlated with a non-trivial amount
of the differences observed in parsing performance across treebanks.’

4.3 Multilinear Regression

We then evaluated the impact EDV has in a multilinear regressive fit of the data for
both systems. The results are shown in Table 5. We start by simply fitting a model using
the log of the number of training tokens and for both systems we obtain a fit that has
reasonably large adjusted R? (0.475 and 0.434 for UDPipe 1.2 and 2.0, respectively). We
also use (L) based on the results from Sections 4.2.2 and 4.2.3 and see that the adjusted
R? for the model using this and the log of training token size is slightly higher than only
using the training tokens (about 0.03 for both systems). Using training tokens with EDV,
however, results in a larger increase of 0.09 for UDPipe 1.2 and 0.06 for UDPipe 2.0. We
also observe an increase when using EDV in addition to the other two variables, which
results in the largest adjusted R? of 0.589 and 0.522 for UDPipe 1.2 and 2.0, respectively.

It is necessary to highlight that despite reporting the adjusted R?, it is still a biased
indication of the proportion of explained variance of a model. However, it is still
indicative of the quality of the model, but more importantly it allows us to evaluate
the impact of EDV. We also report the relative importance percentages in Table 5, which
show that EDV roughly carries 40% of the importance in the models it is used in for
UDPipe 1.2 and about 35% for UDPipe 2.0.

3 However, interpreting correlations is somewhat subjective. Others might see these values and surmise
that EDV is less informative than the training data size on its own and only adds a small amount of
additional explanation of the observed variation in parsing performance. We have attempted to report
the statistics in a way that readers can come to their own conclusions while also offering our personal
interpretations.
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Table 5

Statistics associated with linear regression models using combinations of log size, EDV, and
(Liest) as predictors. We report the adjusted R? scores for linear regression fits as a less biased
indication of the proportion of explained variance and report the percentage of relative
importance of each predictor along with the corresponding p-values.

Parser Variables Adj.R?> Relative Importance p-values
logTrain Tokens 0.475 100.0 <0.001
UDPipe 1.2 logTrain Tokens, (Liest) 0.503 87.8,12.2 <0.001, 0.015
pe L. logTrain Tokens, EDV 0.567 55.7,44.3 <0.001, <0.001
logTrain Tokens, (Ltegt), EDV 0.589 50.8, 8.6, 40.6 <0.001, 0.018, <0.001
logTrain Tokens 0.434 100.0 <0.001
. logTrain Tokens, (Ltest) 0.468 88.3,11.7 <0.001, 0.012
UDPipe 20 1o Train Tokens, EDV 0.494 61.4,38.6 <0.001, 0.001
logTrain Tokens, (Liest), EDV 0.522 56.0,9.1, 35.0 <0.001, 0.015, 0.001

4.3.1 Testing the Model with UDPipe 1.2. As there exists a more up-to-date version of
UD that contains more treebanks not used in the systems we have evaluated, we can
use these new treebanks to evaluate the linear model from Section 4.3. We select the
new treebanks based solely on two criteria: that the treebanks have at least 100 training
sentences (as very small treebanks tend to be very volatile with respect to performance)
and that they contain pre-existing training and test sets (and potentially a development
set). This resulted in 11 new treebanks. Note, Latin-LLCT fit these criteria but we opted
not to use it, as it contains the same sentence 356 times across the training, development,
and test data.

We trained models using UDPipe 1.2 with the general settings. This means these
data points are slightly different from those used to develop the linear regression model
that were all optimized for each treebank based on the algorithm and oracle used. We
ran the evaluation the same as described in Section 3.2. We did not train models for
UDPipe 2.0 as the parser is not publicly available. We then compared the LAS we
obtained from these parsers and the values predicted by the linear regression model
using all 3 variables, as discussed in Section 4.3. The comparisons are shown in Figure 9,
where the predicted values are not outlandishly different for most treebanks except for
those that obtained fairly low LAS. While we have not set out to develop a predictive
model, this is still useful as a sanity check (if the predictions had been wildly inaccurate
across the board, then one would have to question not only the linear model but the
calculated coefficients).

4.4 Sentence Length Binning

Here we turn to our sentence length binning analysis. As shown above in Figure 3
(and Figure A.1 in Appendix A), EDV does show an expected dependency on sentence
length. We also would like to highlight that this dependency is hardly unique to this
situation, but consideration of this is almost completely lacking in NLP. Figure 10 shows
the partial correlation coefficients and the corresponding p-values for each sentence
length bin we evaluated in this analysis (sentence lengths of 3 to 30) for both parsers.
Note that we only used the number of tokens in the training data as a covariant because
for each bin (L) is constant across each treebank by design.
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Figure 9

Comparison of performance of new UDPipe 1.2 models for treebanks not covered in current
UDPipe 1.2 models that appear in UD v2.7 with predictions from linear model from Section 4.3
using the log of the number of training tokens, (L), and EDV as predictors. The mean absolute

error is 11.05.

A clear trend can be observed where the magnitude of the correlations increases as
a function of sentence length. However, most correlations don’t have a particularly low
p-value, with the largest sentence-length bin being the exception. We offer visualization
of the corresponding scatter plots for each bin in figures A.7 and A.8 in Appendix A for
UDPipe 1.2 and 2.0, respectively. From these plots, it appears that there are some linear
relations that echo the correlation coefficients reported in Figure 10, but these plots
of course don’t handle the number of training tokens. In this setting, EDV’s interplay
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Partial correlation coefficients (top, blue) and their corresponding p-values (bottom, red) for
UDPipe 1.2 (left) and UDPipe 2.0 for sub-samples binned with respect to sentence length.
Comparison is between the EDV and LAS of each sub-sample with training tokens as covariant.
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with parsing performance is not as convincing as in the other analyses. This could be
related to issues with having less data as a necessary result of the binning procedure,
therefore impacting the reliability of the statistics. It could also be that it introduces
wider variances with respect to amount of training data in each sentence bin. It is clear
that sentences of length 30 are correlated and have a coefficient that follows the trend,
so it isn’t as if EDV is completely uncorrelated in this setting. Whatever the reason for
the different result observed here, this highlights the need to evaluate these exploratory
correlation-based studies in different ways, so as to temper the certainty with which we
present our results.

We note that unlike other treebank analyses focusing on measurements that are
likely to be related to sentence length, EDV has a clear global correlation with our
target variable (e.g., Anderson and Gémez-Rodriguez [2020] did not observe a global
correlation in their analyses). But the sentence length binning highlights that different
signals can be found in a more fine-grained analysis.

5. Morphological Complexity

Here we offer a small analysis of a subset of the data that are measured to be mor-
phologically complex. We use an aggregate measurement that is explained in detail
in Appendix C to measure the morphological complexity of the training data in a
given treebank. This consists of 5 metrics that have been normalized and calibrated
such that for each measurement 0 means no morphological complexity and 1 means
maximum complexity. The average is then taken of these 5 metrics. They are based on
word entropy (Shannon 1948), type-token ratio (Bentz et al. 2016), form to lemma ratio,
form to inflected lemma ratio, and head part-of-speech entropy (Dehouck and Denis
2018). They all measure slightly different aspects of morphological production, except
head part-of-speech entropy, which measures morphosyntactic complexity. Mathemati-
cal descriptions of these measurements are given in Appendix C, detailing the original
measurements and how they have been normalized so that they could be more readily
combined. For more details on these measurements (including experiments evaluating
the interplay between them and parsing), see Bentz et al. (2016), Dehouck and Denis
(2018), and Dehouck (2019).

We simply take the most morphologically complex treebanks by considering a tree-
bank morphologically complex if its complexity is greater than the mean measurement
across treebanks. This results in 50 morphologically complex treebanks in UD v2.5 (out
of 94) and 47 in UD v2.6 (out of 90). Lists containing the specific treebanks considered
morphologically complex are given in Appendix C. We cut it this way as we did not
find other reasonable arguments for applying a different threshold. They are all equally
arbitrary. At least following this criterion we split in a way that doesn’t introduce any
biases (outside of the data). It does result in some treebanks from similar languages
(or the same) appearing in different subsets, for example, Portuguese-GSD has a result
of 0.60 for the aggregate score, Portuguese-Bosque has 0.52, Galician-TreeGal has 0.55,
and the mean score is 0.57, which results in Portuguese-GSD being classed as morpho-
logically complex and Galician-TreeGal and Portuguese-Bosque as not. However, this
measurement is not meant to classify languages but to compare given samples of a
language that appear in treebanks. Furthermore, if a given property (in our particular
case, correlation between LAS and EDV) tends to hold for morphologically complex
treebanks and not the others (or vice versa), the fact that a treebank of intermediate
complexity falls on one or other side of the split should have little influence on the
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Table 6

Partial coefficients (except for rows with None in covariant column) for the full set of treebanks
(Full), the morphologically complex subset (Com.), and the not morphologically complex subset
(Not) for EDV with respect to LAS for UDPipe 1.2 and UD v2.5 (top) and for UDPipe 2.0 and UD
v2.6 (bottom). Shown is the coefficient itself (p), the 95% confidence interval (CI95%), p? as an
indication of the proportion of explained variance, the adjusted p? (Adj. p?) as a less biased
version of p?, the corresponding p-values, and the achieved power of the test (power).

Parser Set N Covar. p CI95% p? Adj.p?> p-value power

Com. 50 None —0.678 0.80 —0.49] 0.459 0.448  <0.001 1.000

[_

Not 44 None —0.073 [-036 023] 0005 —0018 0636 0076
UDPipe12 _Full 94 None 0492 [-0.63 —032] 0242 0234 <0001  0.999

Com. 50 TrainToks —0481 [-0.67 —023] 0231 0199 <0001  0.948

Not 44 TrainToks  0.163 [-0.14 044] 0027 —0.021 029 0182

Full 94 TrainToks —0.265 [—044,-0.06] 0070  0.050  0.010  0.735

Com. 47 None —0.624 [-077 —041] 0389 0376 <0.001  0.998

Not 43 None —0.118 [-040 0.19] 0014 —0010 0450  0.118
UDPipe 2.0

Com. 47 TrainToks —0.466 0.64 —0.16] 0.183 0.146 0.003 0.857
Not 43 Train Toks = —0.008 0.31 0.30] 0.000 —0.050 0.958 0.050

=
Full 90  None —0.466 }:0.61 —-0.29] 0.217 0.208  <0.001 0.997
[~
Full 90  Train Toks —0.290 {:0.47 —0.09] 0.084 0.063 0.006 0.796

aggregate metrics that we use to detect this, as long as clear-cut cases are assigned to
the correct subset.

Table 6 gives the correlation coefficients for the two subsets of the data, the morpho-
logically complex and the not morphologically complex, along with those for the full
data. It is very clear that the morphologically complex subset has the clearest association
with parsing performance for both parsers with an adjusted p? of 0.448 for UDPipe
1.2 and 0.376 for UDPipe 2.0, whereas the not morphologically complex subset has a
negative p? for both (signaling that there is no linear relation). This clear relation holds
even when accounting for the size of the training data with an adjusted p* of 0.199
for UDPipe 1.2 and 0.146 for UDPipe 2.0. It is clear from the visualization in Figure 11
that this is due to the morphologically complex subset having a wider range of EDV
values with many having much higher EDV values than the small values exclusively
observed from the not morphologically complex subset. It is also very clear from this
visualization that it is not necessarily the case that a morphologically complex treebank
will exhibit large discrepancies between samples with respect to the edge displacement
distributions, i.e., many treebanks in the morphologically complex subset have very
small EDV values.

6. EDV for Evaluation

Having established that EDV does correlate to parsing performance when accounting
for covariants in a number of ways, we turn to a proof of concept for a potential
application of EDV in NLP: using it to inform a more linguistically motivated means
of creating adversarial splits. We note here that large EDV values between samples for a
given language likely capture a linguistic feature of that language, in that large samples
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Visualization of LAS against EDV for UDPipe 1.2 and UDPipe 2.0 for the morphologically
complex subset of treebanks (Complex, blue) and the not morphologically complex subset (Not,
yellow). Linear fits are shown to aid visualization (continuous line for not complex and dashed
for complex).

that deviate to a great extent suggest that language is more syntactically volatile than
others. This could be true across the board or it could be a matter of greater variety
in syntactic structures in a given domain. However, differences can also occur intra-
domain based on author preferences.

We mention this here because recent work on developing adversarial splits focused
on sentence lengths (Segaard et al. 2021). This was an extension from criticism based
on using standard splits, where random splits were suggested instead (Gorman and
Bedrick 2019). Together these analyses showed that standard splits and random splits
are not enough to truly evaluate the brittle nature of NLP systems trained on data from
a narrow set of domains. Segaard et al. (2021) found that even when evaluating systems
with adversarial splits (based on sentence length), the evaluation overestimated the
performance of the systems when compared with fresh samples. We argue that creating
adversarial splits based on sentence length is only weakly linguistically motivated
(i.e., the variance in sentence length could be associated with different domains, but
maximizing the difference between test and training set is only a very coarse approx-
imation of differences in domain, as not all long sentences are necessarily harder for
a model to handle). With this in mind, we propose using EDV to guide sampling to
create adversarial and complementary splits to give an approximation of the volatility
of parsing performance. As highlighted by Segaard et al. (2021), this only offers us a
clearer picture of the generalizability of models based on the data available, which often
overestimates the quality of models. However, in lieu of fresh data, this offers us a clear
path to a more robust evaluation.

This approach is not dependent on the parser being evaluated as the parser does
not directly play a role in developing the splits. Despite this, it is clear that splitting on
EDV might not offer robust evaluation for all parsers and all parser types (e.g, parsers
that are not data-driven might be less sensitive to EDV). But if that were to be the case
(certain parsers being less sensitive to differences in EDV), it could be argued that such
parsers are more robust than others. Finally, although we suggest this sampling method
for evaluating parsers (and potentially other NLP systems), we are not suggesting this
sampling method be the only means of evaluating the generalizability of models.
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6.1 Sampling

We sample data in such a way so as to minimize EDV and maximize EDV, in order
to give certain empirical limits of performance for a given treebank. We do this by
collating all trees for a given treebank across all splits that are available. We remove
trees with 2 tokens or less. We then bin the trees by sentence length and by the mean
edge displacement (MED) of each sentence. MED is defined as:

MED = ﬁ > st €)
neN

where 1 is a given node in a given tree, N is the total number of nodes in the tree,
and s, is the edge displacement of a given node as defined in Equation (1). Note the
denominator is N — 1 as the root node is not included.

We initialize the process by selecting a sentence length at random and also an MED
value that exists for that sentence length bin. We then sample 3 more sentences with the
closest sentence length and closest MED value available. This gives us 4 sentences with
the same (or similar) sentence length and the same (or similar) MED. These are added
to the training trees. We then either sample a sentence to match the MED value (when
trying to keep EDV low) or sample a sentence with the furthest MED value available for
the current sentence length bin (or closest if no sentences are left in a given bin) in order
to maximize EDV. We repeat this process with the subsequent MED values chosen for
the training instances to match the overall MED of the current training data. We do this
until we have split the whole data into 80% training data and 20% test data. We then
split the training data so as to obtain development data such that the overall split is
60]20]20 for training, dev, and test data, respectively. Note, we use MED and sample by
tree as a more direct use of EDV would require the creation of many samples and hoping
that one serendipitously maximizes/minimizes EDV. One could also potentially use an
evolutionary algorithm to find splits that maximize (or minimize) EDV, but it would
likely be computationally expensive.

We then train models using UDPipe 1.2 for the minimized EDV split and the max-
imized EDV split. We do this for all treebanks that have a training set of 100 sentences
or more in the original split.

6.2 Sampling Results

Figure 12 shows the distributions of ALAS (LAS,,;,,—LAS,,;,) for each treebank. We fit
the distribution with a skewed Gaussian function to better evaluate variance seen in
this process (a more conservative one at least). When evaluating the mean of the data
itself we see a mean ALAS of —4.26 (2.17), whereas the fit is slightly lower and with a
higher standard deviation at —4.18 (2.68). This difference is considerable with typical
claims of state-of-the-art performance coming down to tenths of a LAS point, so this
process certainly gives a good range of performance across treebanks. Figure 13 shows
the actual distribution of LAS values for both sets of splits. The median values of LAS
are 75.40 and 70.77 for the minimum and maximum EDV splits, respectively. Note too
that the spread across the first and second quartile is wider for the maximum EDV splits
and with the lower tail being much smaller than that of the minimum split.

We also evaluate whether this difference in performance can be attributed to
the differences in EDV between the splits. Figure 14 shows ALAS against AEDV
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Distribution of ALAS (the LAS obtained from split where EDV is minimized minus the LAS
obtained for the split where EDV is maximized) for UDPipe 1.2 models trained using UD v2.7
(103 treebanks). Shown is a fit used to obtain a more conservative measure of the variance
between splits with x? = 0.40 and p-value = 0.820 (note Hy means the data comes from the
distribution described by the fit).

50 1

Min EDV Max EDV

Figure 13

Distribution of LAS for UDPipe 1.2 models trained on splits sampled so as to miminize EDV
(Min EDV) and sampling so as to maximize EDV (Max EDV) using UD v2.7 (103 treebanks). The
median LAS for Min EDV is 75.40 and 70.77 for Max EDV.

(EDV,;x—EDV,,;;,). A strong negative linear relationship is observed, as expected. To
validate this observation, we once again turn to correlation coefficients. These are
reported in Table 7. We look at the variables deemed most pertinent to evaluate EDV
from the preceding analysis in Section 4.2. In this context, the number of training tokens
(here we take the mean across the splits as an approximation) is not associated with the
difference in performance across splits, which would only likely be the case if this had
a major role in constraining the maximization of EDV. Similarly, the difference between
the number of training tokens is not correlated to ALAS (the difference between splits
is not large at a mean relative difference of 0.097%).

However, (L) (defined as the mean across splits) is strongly correlated to ALAS
(p = 0.507, p-value < 0.001) and even more so to AEDV (p = 0.847, p-value < 0.001).
This is likely due to the dependence on sentence length to vary EDV (see Figure 3 and
Figure A.1 in Appendix A). However, the difference between (L) for each split is
not correlated to ALAS, meaning that the difference observed is not merely due to
the sampling procedure being forced to sample sentences of different length so as to
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Figure 14

ALAS against AEDV where both are the value associated with the split where EDV has been
minimized minus that of the split where EDV has been maximized, for UDPipe 1.2 models using
UD v2.7 (103 treebanks).

Table 7

Correlations between variables of interest with respect to ALAS using UD v2.7 (103 treebanks)
and UDPipe 1.2. Shown are the coefficients (p), the 95% confidence intervals (CI95%), p? as an
indication of the proportion of explained variance, the adjusted p? (Adj. p?) as a less biased
version of p?, the corresponding p-values, and the achieved power of the tests (power). The
mean absolute ATokens is 45.0 (68.7), which is a relative difference 0.097% (with respect to the
split where EDV is minimized). Mean absolute A(Li) is 0.059 (0.172), which is a relative
difference of 0.25% with respect to. Tokens and (L) used here are the average across both splits.

Variable Target Covar. p CI95% p? Adj.p> p-value power

Train Tokens 0.104 —0.09, 0.29] 0.011 0.001 0.295 0.182

[
(Ltest) 0507 [ 035 0.64] 0258 0251 <0.001  1.000
ATokens ALAS . 0067 [-0.13, 026] 0.004 —0.006 0502  0.103
A{Ltest) —0.037 [-023, 0.16] 0.001 —0.009 0713  0.065
ASLV 0.139 [-0.06 032] 0019 0010 0.161  0.290
AEDV 0478 [-0.61,—-031] 0228 0220 <0001  0.999
(Ltest) AEDV —0.847 [-0.89,-078] 0717 0711 <0001  1.000

AEDV ALAS (L) —0.105 [-029 0.09] 0.011 —0.009 0.295 0.182

[
ASLV AEDV 0.088 [-0.11 0.28] 0.008 —0.002 0.379 0.143
[-o0.
AEDV ALAS ASLV ~ —0497 [-0.63 —0.33] 0.247 0.231 <0.001 1.000

maximize EDV. This is further attested to by the small mean relative difference between
the splits of 0.25%.

AEDV is also strongly correlated to ALAS at —0.478 (p-value < 0.001), which fits
with the trend observed in Figure 14. We also report the partial coefficient of AEDV
with respect to ALAS with (L) as a covariant. This results in a coefficient of —0.105 (p-
value = 0.295), which clearly shows the variation in EDV between the splits is strongly
bounded by the sentence lengths of the data. In a sense, the sentence length distribution
or (L) dictates how much we can optimize the difference between the max and
min EDV splits, although sampling splits so as to maintain a similar sentence length
distribution across splits but sampling randomly for each sentence length bin is likely
to result in easier splits than maximizing EDV. We also check to see if the difference
between the sentence length distributions (ASLV) diminishes the correlation between
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AEDV and ALAS if used as a covariant, but it doesn’t (it is in fact slightly larger but
this increase is meaningless).

7. Conclusion

We have offered an analysis that has shown a clear correlation between the differences
in the edge displacement distributions of training and test data in UD treebanks (as
measured by the Vaserstein distance) and parsing performance (as measured by the
labeled attachment score) by using a number of methods to falsify this hypothesis.
We attempted to remove signals associated with covariants which were also correlated
with LAS, but still observed a linear relationship between EDV and a normalized LAS.
We use statistical methods to first evaluate the partial correlations of EDV and LAS
when accounting for covariants and still observed meaningful coefficients. We also used
multilinear regression to evaluate whether EDV adds any predictive power to models
using these same covariants and measured small but meaningful contributions from
EDV. In addition, we evaluated this linear model by training new parsers with one of the
systems under investigation here on treebanks in the most recent release of UD that did
not already have a model and obtained predictions that were not outlandish, especially
for higher performing treebanks. Further, we evaluated the partial coefficients for EDV
when using a sentence-length binning analysis and observed stronger coefficients for
sentences of moderate length with a clear monotonic relationship between the magni-
tude of the correlation of EDV to LAS and sentence length. However, the p-values are
fairly high with only the largest sentences (of 30 tokens) exhibiting a large and clear
correlation to parsing performance.

As mentioned above, we suspect EDV is indicative of parsing performance because
it captures syntactic differences at the sample level, which could be due to a number
of reasons, spanning different syntactic structures being adopted in different domains
to linguistic features of a language causing greater degrees of freedom in the tree
structures found in different samples. Beyond linguistic considerations, the difference
in performance observed due to EDV is likely to be explained by supervised techniques
struggling to predict unobserved patterns, as larger EDV values indicate differences in
the tree patterns found in the training and test data.

Finally, we have shown the potential for using EDV to create splits to evaluate
an advantageous and a disadvantageous (based on the available data) scenario that is
likely to be more indicative of real-world usage of parsers where out-of-domain, unseen
syntactic structures likely occur in the outer regions of the distributions seen in narrow
training data sets. We envisage this analysis also being useful for other practices in
NLP. For example, it could be used for evaluating the difficulty of a given instance
for curriculum learning for training parsers or for other NLP tasks, that is, batches
measured for EDV based on the overall distribution in the training data.

Appendix A. Further Visualization

This appendix is mainly for showing the corresponding data for UDPipe 1.2 (as we
showed the data for UDPipe 2.0 for the most part in the main text). Almost universally
the observed behavior follows that shown in the main text. If it had been otherwise, we
would have opted to show conflicting data visualizations. Figures A.7 and A.8 show the
data used to evaluate the coefficients shown in Figure 10.
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Figure A.1
EDV between sub-samples of the training and test data binned by sentence length for UD v2.5
(105 treebanks).
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Distributions of the variables of interest in UD v2.5 (94 treebanks) in order to evaluate whether
they are sampled from normal distributions.
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Figure A.3

Background removing method used to evaluate whether the number of test tokens carries
additional information with respect to the number of training tokens for UDPipe 2.0 and UD
v2.6. Correlation between the number of test tokens and LAS is 0.309 (p-value = 0.003) and that
between the number of test tokens and the normalized LAS (right plot) is —0.101 (p-value =
0.342).
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Figure A4
Visualization of LAS (for UDPipe 1.2 and UD v2.5) with respect to variables of interest with fits
shown in red to highlight whether the data appears correlated or not.
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Figure A.5

Visualization of EDV (for UD v2.5) with respect to variables of interest with fits shown in red to
highlight whether the data appears correlated or not.
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Background removal method to evaluate whether a correlation is observed between EDV and
LAS (for UDPipe 1.2 and UD v2.5) after removing the variation associated with the training test
size and (Lie). The correlation between EDV and LAS is —0.492 (p-value < 0.001), the
correlation between EDV and the LAS normalized by the variance associated with number of
tokens in training data is —0.186 (p-value = 0.072), and the correlation for the fully normalized
LAS (removing the variance associated with (L)) is —0.249 (p-value = 0.015).

100

501

100

501

100

501

1=11 ° 1=12 1=13 1=14

° °

100

501

LAS

100 T——5= o

504{ °%®e ° ] 88 ) °

100

501

100

501 o §o ° 3
1=29 1=30
0.02  0.00 0.02

0.00

Figure A.7
LAS versus EDV for each sentence length bin (labeled I = length) for UDPipe 1.2 used for
calculating the coefficients shown in Figure 10.
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LAS versus EDV for each sentence length bin (labeled I = length) for UDPipe 2.0 used for
calculating the coefficients shown in Figure 10.

Appendix B. Training Data Measurements Unrelated to EDV

In this appendix, we include additional analysis looking at some linguistically focused
measurements of the training data that are related to parsing performance. These are
presented here rather than the main text because there is no theoretical justification
for expecting these measurements to impact the EDV of a given treebank split. The
first metric is a normalized count of the number of crossings in a tree C/|Q|, where C
is the number of crossings in a tree and |Q| is the total number of possible crossings
(Ferrer-i Cancho, Gémez-Rodriguez, and Esteban 2018). The second measurement is
the type—token ratio, defined as the number of unique forms divided by the number of
tokens found in a treebank, which gives a measure of the lexical diversity of a sample
and a coarse indication of the degree of morphology. As can be seen in Table B.1,
neither of these measurements are correlated to EDV for either UD v2.5 or UD v2.6.
A visualization of the corresponding data is shown in Figure B.1.
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Table B.1
Spearman’s p for correlations between treebank measurements of training data and EDV. C/|Q)|
is the normalized number of crossings found in a treebank and TTR is the type-token ratio.

Data Variable p CI95% p-value power
Ubvas  C/IQl 0.126 [-0.08,0.32] 0228  0.227
i TTR —0.048 [-0.25,0.16] 0.644 0.075
Upvae C/Ql 0136 [-0.07,033] 0202  0.248
: TTR —0.038 [—-0.24,0.17] 0.724 0.064
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Figure B.1

C/|Q| (the normalized number of crossings found in a treebank) and type—token ratio of the
training data found in UD v2.5 (column 1) and UD v2.6 (column 2) against the corresponding
EDV for each treebank.

Appendix C. An Aggregate Measurement of Morphological Complexity

In this appendix, we provide the details about the measurement we used for
approximating morphologically complex subsets of the treebanks that were used in
Section 5. It is an aggregate measurement, consisting of word entropy (Shannon 1948),
type—token ratio (Bentz et al. 2016), form to lemma ratio, form to inflected lemma ratio,
and head part-of-speech entropy (Dehouck and Denis 2018). These are normalized
when needed such that 0 means no morphological complexity and 1 means the highest
possible morphological complexity, so that we can simply take the mean measurement
across all 5 metrics.
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Normalized Word Entropy: Word entropy gives an indication as to how much informa-
tion any given word has, with a higher entropy resulting from a treebank having many
forms. It is given by:

Hyod = — »_ p(v)log, p(v) (C.1)

vey

where V is the vocab space in a given treebank, v is a given word in that space, and p(v)
is the probability of that word occurring estimated by its frequency count (Shannon
1948). The normalized word entropy, H};  ,, is obtained by dividing by the log of the
magnitude of the vocab space:

ord”/

* _ Hword
word — 10g2|V| (CZ)

Type-Token Ratio: The type—token ratio gives an indication of the morphological pro-
duction in a given treebank. It is given by:

TTR = m (C.3)

where V is the vocab space in a given treebank and T is the number of tokens (Bentz
et al. 2016). While this number isn’t exactly bounded by 0 at the lower margin (it is
bounded by 1 at the upper margin), when T is suitably big, which is typically the
case, the instance where V only consists of 1 type, TTR tends to zero. However, this
is clearly not a likely scenario in a treebank and so this inconsistency is not a worry
in reality.

Form to Lemma Ratio: The form to lemma ratio is similar to the type-token ratio but
it more closely measures morphological production by homing in on lemmas having
multiple forms rather than just looking at the more global measurement of production
in TTR. It is given by:

/L= 3 |7 (C4)
|£| leL

where £ is the lemma vocab of a treebank,  is a given lemma in the vocab, and F; is the
set of forms associated with [ (Dehouck and Denis 2018).

As defined, F/L ranges from 1 to |V| (the absurd case of a singular lemma). By
taking the reciprocal, we obtain a value that tends to zero in the absurd case and has an
upper bound of 1. However, this gives us an inverse scale, that is, a lower value means
more morphology and a higher value less. Therefore we subtract the reciprocal of F/L
from 1:

* 1
L =1-gr (C.5)
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Inflected Form to Lemma Ratio: This is the same as F/L but for the case where a
lemma is actually inflected, namely, the case where the set of word forms associated
with a given lemma is greater than 1. It is given by:

: 1
F/iL = E F C.6
/ ‘ C2| ; ’ l| ( )
€Ly

where £, is the subset of lemmas that have 2 or more forms associated with them in a
treebank, [ is a given lemma in that subset, and F; is the set of forms associated with [
(Dehouck and Denis 2018). It is normalized in the same way as F/L:

—— 1
Fi/L"=1- ¢ (C.7)

Head Part-of-Speech Entropy: The head part-of-speech entropy (HPE) is the mea-
surement of morphology most related to parsing as it captures the morphosyntactic
complexity found in a treebank. It is measured on the delexicalized version of the
treebank, where the unit is a concatenation of a token’s POS tag and morphological
feature tags. The HPE of a treebank is an average over the HPE of each delexicalized
word type:

1
HPE = - > HPE, (C.8)
|D| deD
where:
HPE; = = p(Hy)log, p(th) (C9)
teTy;

where 1!, denotes the head of d having the POS tag t from the tagset 7; (the set of tags
that d is headed by in the treebank) and p(h}) is the probability of this occurring based on
frequency counts (Dehouck and Denis 2018). As defined this gives a value that tends to
zero when morphosyntactic complexity is prevalent and increases unbounded the less
morphosyntactic complexity is present. In order to normalize this, we have to normalize
HPE;:

HPE,

HPEj = C.10
"~ Tog, 73 10
such that the normalized head part-of-speech entropy is simply:
*x _1_ 1 *
HPE* =1 D > HPE; (C.11)

deD
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Note that the sum over the normalized HPE; values is subtracted from 1 to invert the
scale such that 0 denotes no morphosyntactic complexity and 1 the maximum.

Aggregate metric: The final metric we used is a simple unweighted average of the 5
normalized metrics described above:

_ (H}oq + TTR + F/L* + F/iL* + HPE")

MC 5

(C.12)

Below are the lists with the treebanks considered morphologically complex in UD v2.5 and
v2.6, respectively. The code used for this is available at https://github.com/markda
/morphological-complexity.

List of morphologically complex treebanks in UD v2.5:
Ancient Greek-PROIEL ~ Gothic-PROIEL

Ancient Greek-Perseus ~ Greek-GDT
Armenian-ArmTDP Hungarian-Szeged

Persian-Seraji
Polish-LFG
Polish-PDB

Basque-BDT Irish-IDT

Belarusian-HSE
Bulgarian-BTB
Croatian-SET
Czech-CAC
Czech-CLTT
Czech-FicTree
Czech-PDT
Estonian-EDT

Latin-ITTB

Latin-PROIEL
Latin-Perseus
Latvian-LVTB

Lithuanian-ALKSNIS

Lithuanian-HSE
Maltese-MUDT
Marathi-UFAL

Portuguese-GSD
Romanian-Nonstandard
Romanian-RRT
Russian-GSD
Russian-SynTagRus
Russian-Taiga
Serbian-SET
Slovak-SNK
Slovenian-SSJ

Estonian-EWT
Finnish-FTB
Finnish-TDT
German-HDT

North Sami-Giella Slovenian-SST
Old Church Slavonic-PROIEL ~ Tamil-TTB
Old French-SRCMF Telugu-MTG
Old Russian-TOROT Turkish-IMST

List of morphologically complex treebanks in UD v2.6:

Ancient Greek-PROIEL
Ancient Greek-Perseus
Armenian-ArmTDP
Basque-BDT
Belarusian-HSE
Bulgarian-BTB
Croatian-SET
Czech-CAC
Czech-CLTT
Czech-FicTree
Estonian-EDT

Greek-GDT

Hungarian-Szeged

Irish-IDT
Latin-ITTB
Latin-PROIEL
Latin-Perseus
Latvian-LVTB

Lithuanian-ALKSNIS

Lithuanian-HSE
Maltese-MUDT
Marathi-UFAL

Old Russian-TOROT
Persian-Seraji
Polish-LFG
Polish-PDB
Portuguese-GSD
Romanian-RRT
Russian-GSD
Russian-Taiga
Sanskrit-Vedic
Serbian-SET
Slovak-SNK

Estonian-EWT North Sami-Giella Slovenian-SSJ

Finnish-FTB Old Church Slavonic-PROIEL  Slovenian-SST
Finnish-TDT Old French-SRCMF Tamil-TTB
Gothic-PROIEL Old Russian-RNC Telugu-MTG

Appendix D. Variance in EDV for Different Sizes of Training Data

We offer a small analysis on how much variance we observe in the same treebank when
sampling smaller amounts of training data, as it is possible that evaluation undertaken
in this work would only hold true for these very specific splits—although the sampling
evaluation makes this unlikely.

We selected treebanks from UD v2.7 that had at least 20,000 training instances, so
that samples could be sufficiently different. We opted for Czech-PDT, Estonian-EDT,
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Table D.1

Standard deviation is reported with respective means in the form mean (standard deviation).
Each value x (other than full training count) in the table corresponds to x x 10~*. Values are
given for sample sizes of 2K, 4K, 6K, and 8K training sentences. The final column “Full training”
gives the total number of sentences in the original training data. Standard deviation ranges from
3.7% to 17.1% of respective means (5.6% on average).

EDV — meanx10~* (standard deviationx10~%)
2K Sample 4K Sample 6K Sample 8K Sample Full training

Czech-PDT 3.8 (0.7) 34(05)  3.2(03) 3.3 (0.4) 68,495
Estonian-EDT 5.8 (0.7) 59(0.6) 5.6 (0.4) 5.4 (0.3) 24,633
German-HDT 4.1 (0.7) 3.6 (0.5) 3.3 (0.4) 3.3 (0.3) 153,035
Japanese-BCCWJ 9.9 (0.9) 10.0 (0.7) 9.6 (0.5) 9.8 (0.5) 40,740
Korean-Kaist 5.4 (0.5) 53(0.5)  5.2(0.3) 5.0 (0.2) 23,010
Persian-PerDT 6.2 (0.8) 58(0.5) 5.8 (0.5) 5.9 (0.3) 26,196
«10-3 Persian-PerDT Korean-Kaist Japanese-BCCWJ
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Figure D.1

Distributions of EDV for different treebanks with varying sample sizes. Smaller sample sizes
exhibit greater variance than larger sample sizes, but not to such a degree that the values
measured for EDV for different languages change how they compare to those of other treebanks.

German-HDT, Japanese-BCCW], Korean-Kaist, and Persian-PerDT, as this offered us the
best spread across different languages and language families from the largest treebanks.
We then sampled different amounts of training data for each of these treebanks. We
sampled 2,000; 4,000; 6,000; and 8,000 training samples. For each training size, we
sampled 20 unique sets of training instances.

Figure D.1 shows the distributions of EDV values split across each treebank for
the different training size. The first thing that is clear is that across different sample
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sizes, the differences observed across treebanks are fairly stable. However, for most
treebanks the variance in EDV decreases as the sample size increases. This is expected
and the variance observed for the smallest sample size is still not particularly high.
Table D.1 gives the corresponding mean and standard deviation from the values used
in Figure D.1. This further corroborates that the variance in EDV for the smaller sample
sizes is not problematically high, with the standard deviation averaging at 5.6% of their

respective means.
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