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Reflectively looking into the future of biomedical language processing

Dina Demner-Fushman, Sophia Ananiadou, Kevin Bretonnel Cohen, Junichi Tsujii

The 2022 meeting of the Biomedical Natural Language Processing workshop at the Association for
Computational Linguistics conference reminds us of the first such workshop at the 2002 conference. The
twenty years that have passed since then have seen enormous growth in the BioNLP community, and
now seems like a good time to take stock of where we have come over the course of those two decades.

Interest in scientific natural language processing started soon after the launch of the Sputnik satellite
in 1957, when the Anglophone scientific world realized that there was quite a bit of good research
being published in Russian that it hadn’t been reading. Interest in, first, clinical and then more general
biomedical language processing started in the 1960s, and biomedical language processing interest
groups soon formed within the clinical, and later the bioinformatics, communities. The Association
for Computational Linguistics BioNLP community came together in 2002 to answer the needs of
a deeply interdisciplinary area of research focused on natural language processing and text mining
methods applied to biomedical text. The field spread quickly, but the events and publication venues
for computational linguists interested in the biomedical sublanguage were dispersed across a range of
disciplines and conferences. Clinical natural language processing had a natural home in the Association
for Medical Informatics, and biologically oriented language processing focused on the rapidly growing
scientific literature was well-housed in the International Society for Molecular Biology and Pacific
Symposium for Biocomputing publication venues; the Association for Computational Linguistics
seemed like a natural home for research that focused around the linguistic nature of our field, rather
than being oriented around its clinical and biological applications.

To bring together the passion for the domain and the benefits of belonging to the ACL community,
SIGBioMed was formed as an ACL SIG in 2007. SIGBioMed is celebrating 15 years this summer. From
the beginning, the SIG strove to be inclusive in terms of the topics of interest, languages studied, and
researchers invited for presentations and keynotes. As can be seen in the work presented in this 2022
workshop, SIGBioMed continues that policy of diversity, equity and inclusion. Borrowing from the New
York Times, SIGBioMed’s (unofficial) motto is “All the Work That’s Fit to Print—as long as it broadly
applies to the biomedical and clinical domains.”

Biomedical language processing started with rigorous text mining research that helped advancing
understanding of biomedical text and provided services to the target domains. For example, the MedLee
system was used to support clinical applications (Friedman et al., 2004), whereas BioNLP shared tasks
in 2011 and 2013 focused on extraction of information about pathways and development of biomedical
event extraction systems (Miwa, M. et al 2013; Bjorne J. et al. 2015). Recent developments in and
availability of large pre-trained language models (BioBERT, ClinicalBERT, SciBERT, etc.) provide
us not only with a chance to advance the research and applications towards language and context
understanding, but also to start understanding how the models perform the tasks, as evidenced by the
work presented in the next sections.

Looking back: The test of time award

This meeting marking two decades of research in and around the ACL community provides an
opportunity to reflect on how we got to where we are. So, following up on a suggestion from Tim
Miller, we solicited nominations for a new BioNLP Workshop award: recognition of papers in our field
that have “stood the test of time.”
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As the nominations came in, we quickly realized that the request was underspecified. In what publication
venues could a nominee have appeared? Should it be limited to the BioNLP Workshop, or would any
venue qualify? How much time? Would authors be allowed to nominate their own papers? And what
would it mean to have “stood the test,” exactly? Number of citations? Actual usage of a system, a
technique, a resource, an idea? Would a once-heavily-cited paper that is not cited much any more qualify?
And did we need to normalize for the length of time since publication? And who should do the selection
from amongst the nominees? What if a paper by a member of the organizing committee was nominated?
The organizing committee? An external panel? Open vote of the entire community?

We began with the assumption that we might be able to induce the answers to those questions from
the nominations themselves. To facilitate that, we asked nominators to consider writing up a note—of
the length of their choice—describing why they felt that their nominee rated recognition. We explicitly
allowed self-nomination. And then we waited.

As it turned out, the set of nominations did not answer our questions. Some nominators expressed a
well-argued opinion that only publications from the BioNLP Workshop should qualify, but submissions
came in from a number of venues. The time spans since their publications varied widely. They covered
systems, techniques, resources, and—thank goodness—ideas. Papers were submitted by non-authors,
papers were submitted by their own authors, and we had submissions that were co-authored by the
organizers of the workshop.

The only thing we did not have was a voting mechanism. We considered counting the number of
nominations per paper, but several papers were nominated twice; the only one that was nominated
three times had two of its nominations from its own authors—not forbidden, but it made the number-of-
nominations criterion seem unreasonable; and in any case, elementary power calculations soon convinced
us that the total number of nominations was not sufficient to differentiate between one vote, two votes,
or three. In the end, we contemplated the set of nominations, saw perfectly good reasons to accept that
they had all, in one or more ways, “stood the test of time.” Consequently, this year we are awarding the
BioNLP Test of Time Award to multiple papers—in fact, to all of the papers that were nominated. You
will find them listed in Table 1, which accords to all co-authors concerned the right to add “2022 BioNLP
Test Of Time Award Recipient” to their CVs. Although we resolved essentially none of the issues that
we had identified, this was a tremendously fun exercise, and we look forward to excellent suggestions
from the community as to how to answer the questions that we raise above, as well as how to do this next
year in a more principled way without quite so glaring an appearance of conflict of interest.

Looking forward: Overview of the work in this volume

BioNLP 2022 received 59 valid submissions, of which 11 were accepted as oral presentations and 32 as
posters.

The scope and the depth of the work in this volume reflects the growing rigor and maturity of biomedical
language processing. True to the historical inclusiveness of the workshop, the processed text includes
scientific publications, clinical notes, and other forms of formal and informal communications, primarily
in English, but also in Bangla (Sazzed et al.), Spanish-Catalan (Amin et al.), Spanish (Carrino et al.) and
Romanian (Mitrofan et al.)

Advances in literature processing are reflected in the work that presents end-to-end document level
relation extraction that leverages coreference resolution and entity extraction (Giorgi et al.); linking
citing sentences in a publication to the cited sentences in referenced sources (Roy et al.); and extracting
design and evidence from the descriptions of Clinical Trials (Witte et al.)
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The biomedical domain and particularly clinical language processing suffers from a dearth of resources.
The community is clearly addressing the need for annotated data by creating new datasets, data
augmentation, and exploring approaches to reducing the need for data. We see many efforts in
zero-, few-shot training, data augmentation and distant supervision: for causal precedence among
chemical interactions (Liang et al.); information extraction (events, named entity, and relation extraction)
(Papanikolaou et al., Wang et al., Khandelwal et al., linuma et al., Trieu et al., Dhrangadhariya et al.,
Watanabe et al., Sarrouti et al., Phan et al., Kim et al.); term normalization (Zeng et al.), summarization
(Soleimani et al), and cross-lingual transfer (Amin et al.).

The new datasets introduced at BioNLP 2022 include the Medical Video Question Answering Shared
Task data (Guota et al.) ; biomedical named-entity annotated corpus for Bangla (Sazzed et al.); ICD
coding (Huang et al.); and curation of antibiotic-resistant genes (Chandak et al.)

We are happy to see many efforts on model understanding and analysis. This volume includes work
on explaining model decisions on health-related online materials (Boissonnet et al.); explanations of
medical coding predictions (Wood-Doughty et al.); entity memorization and recall in pretrained large
LMs with positional prompting (Abaho et al.); inter-annotator agreement and its relation to model
performance (Richie et al.); and a self-supervised pre-training approach for understanding genetic
information (Cahyawijaya et al.).

We notice increased interest in complex tasks of language generation, summarization and question
answering. Language generation was studied both in general (Yuan et al.) and for the specific tasks of
dialogue generation (Naseem et al., Ngai et al.) and radiology report generation (Yan et al., Tang et al.),
Work on summarization includes extractive/abstractive summarization of documents of varying length
(Bishop et al.), aspect-based scientific document summarization (Soleimani et al.) and summarization as
an approach to calculate seizure frequencies and dates of last seizure (Xie et al.). Question answering
was explored on its own (Pappas et al.) and as a tool for risk prediction (Liang et al.), event extraction
(Wang et al.), and explaining quality assessment of online materials (Boissonnet et al.)

Clinical language processing shows stable interest in ICD coding (Michalopoulos et al., Falis et al.,
Wood-Doughty et al.), risk score prediction (Lianf et al.) and the impact of de-identification (Vakili et
al.)

The Medical Video Question Answering Shared Task co-located with BioNLP 2022 is described in
the overview (Gupta et al.) that includes 8 technical reports submitted by the participating teams, in
addition to the two papers presented as posters in the workshop(Li et al., Kusa et al.)

Last, but most certainly not least in this era of rampant mental health concerns, approaches to supporting
mental health were studied in the works on analysis of speech disfluencies towards automated dementia
detection (Farzana et al.) and dialogue generation for psychotherapeutic counselling (Das et al.)

Acknowledging the community

As always, we are deeply grateful to the authors of the submitted papers and to the reviewers (listed
elsewhere in this volume) who produced three thorough and thoughtful reviews for each paper in a fairly
short review period.

The quality of submitted work continues growing and the Organizers are truly grateful to our amazing
Program Committee that helped us determine which work is ready to be presented and which will benefit
from additional experiments and analyses suggested by the reviewers.

Finally, we thank everyone who nominated papers for the Test of Time Award—especially for their
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well-reasoned and insightful discussions of why they chose those papers.

As in years past, we are looking forward to a productive workshop, and we hope that new collaborations
and research will evolve, continuing contributions of our community to public health and well-being.
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Abstract

The healthcare domain suffers from the spread
of poor quality articles on the Internet. While
manual efforts exist to check the quality of
online healthcare articles, they are not suffi-
cient to assess all those in circulation. Such
quality assessment can be automated as a text
classification task, however, explanations for
the labels are necessary for the users to trust
the model predictions. While current explain-
able systems tackle explanation generation as
summarization, we propose a new approach
based on question answering (QA) that allows
us to generate explanations for multiple cri-
teria using a single model. We show that
this QA-based approach is competitive with
the current state-of-the-art, and complements
summarization-based models for explainable
quality assessment. We also introduce a hu-
man evaluation protocol more appropriate than
automatic metrics for the evaluation of expla-
nation generation models.

1 Introduction

The Internet has become an important source of
medical advice. According to Rutten et al. (2019),
in 2017, 74.4% of the US population first looked
for health-related information on the internet, while
only 13.3% of the population first asked a physician
or healthcare provider. However, poor quality re-
porting, including misinformation, cherry-picking,
exaggerations, etc., is often present online and can
be a severe threat to public health. Recent events,
such as the Covid-19 pandemic, demonstrate the
necessity of developing quality assessment sys-
tems for healthcare reports to limit these harms.
Fortunately, websites such as HealthNewsReview'
critically analyze medical articles to identify poor
quality reporting and improve the public discourse
about healthcare. However, the manual review of
medical news is a time-consuming task that would

Mttps://www.healthnewsreview.org

1

Story #1511

Criterion 1: Does the article adequately discuss the costs of
the intervention?

Answer: Not Satisfactory

Explanation: There was no discussion of cost as there was in
the competing AP story.

Criterion 2: Does the article adequately quantify the benefits
of the treatment/test/product/procedure?

Answer: Satisfactory

Explanation: The story adequately quantified the benefits
seen in the study that led to FDA approval.

Criterion 3: ...

Table 1: Example of an article evaluated by the Health-
NewsReview website. Each article is evaluated accord-
ing to ten criteria (two shown) and explanations are
given to support the answers.

benefit from automated systems to scale up to the
volumes needed in today’s media ecosystem.

Assessing the quality of news articles has been
the focus of numerous studies that tackle it as a
text classification task (Louis and Nenkova, 2013;
Chakraborty et al., 2016; Kryscinski et al., 2020).
However, explanations for the predictions only re-
cently started receiving attention, despite being nec-
essary to convince the readers of such assessments.
For instance, Dai et al. (2020) have built on the eval-
uation work conducted by the HealthNewsReview
website (see Table 1) to automate article quality
assessment in healthcare, but have only focused
on articles classification, without providing expla-
nations. Likewise, Wright and Augenstein (2021)
have also studied exaggeration detection in health-
care as classification, but without explanations.

Beyond quality assessment, previous works have
formulated textual explanation generation for clas-
sification as summarization (Atanasova et al., 2020;
Kotonya and Toni, 2020). However such ap-
proaches suffer from a number of shortcomings
when applied to the assessment of an article based
on multiple criteria. As these approaches always

Proceedings of the BioNLP 2022 workshop, Dublin, Ireland, pages 1-9
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output a single summary for a given input text,
separate models must be trained to generate expla-
nations for each classification label and evaluation
criterion (e.g. reliability of sources, lack of infor-
mation, etc.), as in the example given in Table 1.
This considerably reduces the number of available
training instances per model, because gold expla-
nations of only one criterion at a time can be used
for training, and it also requires developing and
maintaining a model per criterion. Summarization-
based models are also not appropriate to return an
explanation for a label that is justified by the lack of
information in the text (see criterion 1 in Table 1).

In this work, we develop an explainable quality
assessment system for health news reports, and we
evaluate it on the FakeHealth corpus (Dai et al.,
2020). It differs from previous work as its expla-
nation generation model is based on question an-
swering (QA), which takes into consideration the
definition of each evaluation criterion in the form of
a question (see Table 1). This approach addresses
the limitations of summarisation-based systems: it
benefits from a larger training dataset consisting of
instances from all criteria and labels at once, can
better generate explanations regarding the absence
of information, and requires training and maintain-
ing a single model for all criteria.

We compare our approach for explanation genera-
tion against a summarization-based system inspired
from Kotonya and Toni (2020). Our results show
that both approaches are complementary and per-
form better in different cases. More specifically,
summarization-based systems are more appropri-
ate when relevant information is explicitly given
in articles, while QA-based systems perform better
when relevant information is missing.

Finally, evaluating generated explanations is not
an easy task as we should consider both the struc-
ture and the sense of texts. Previous works used
automatic metrics for the evaluation of explana-
tions, which are known to be insufficient for ab-
stractive text generation. Mani (2002) precisely
insisted that assessing the readability and quality
of a generated text requires human annotators as no
automatic metric can achieve good performance on
this task. Likewise, Kryscinski et al. (2019) have
recently highlighted that automatic evaluation pro-
tocols, usually relying on ROUGE scores, correlate
weakly with human judgement and fail to evaluate
critical features, such as factual consistency. For

this reason, we propose a new human evaluation
protocol to assess the fluency, consistency, and fac-
tual correctness of the explanations, and we show
that automatic metrics are not appropriate for this
task.

2 Methodology

Our system starts with classifying articles accord-
ing to ten evaluation criteria, then generates ex-
planations using QA, taking into account the pre-
dicted classification labels. The purpose of the
text classification step is to determine whether an
article is satisfactory with respect to different eval-
uation criteria. We consider different options from
the literature: logistic regression for its simplicity,
BERT-based classification which is commonplace
but truncates texts to 512 tokens, and a Longformer-
based encoder model (Beltagy et al., 2020), which
is able to deal with long input texts like those of
our study. Both BERT and Longformer-based clas-
sifiers are pre-trained for a large classification task
on a biomedical dataset, PubMed”, then fine-tuned
on the FakeHealth dataset. In line with Beltagy
et al. (2020)’s recommendation, we use a classifica-
tion objective for Longformer classifier, that places
a global attention mask on a [CLS] token. This
token aggregates the representation of the whole
text at the beginning of the input text as shown in
Table 6 in Appendix C.1, that gives an example of
the encoding of input texts and shows the global
attention mask of our model. Readers should refer
to Beltagy et al. (2020) for further details about
attention masks of Longformer models.

The second stage of the pipeline generates ab-
stractive explanations for the previously predicted
classes. As the QA approach takes into account
the classes and the questions posed by criteria, we
only need to train a single model, handling all
criteria and classes. Following Soni and Roberts
(2020), we have chosen to work with a Longformer-
based encoder-decoder that we first train on the
open-domain dataset SQuAD v2.0 (Rajpurkar et al.,
2018), and then fine-tune on FakeHealth. Be-
cause gold explanations in the FakeHealth dataset
are abstractive, our model learns to write com-
plete explanations despite the pre-training step on
SQuAD whose explanations are spans of phrases.
Even though we always use the same ten questions
(shown in Table 9 in Appendix C.2) for fine-tuning

thtps ://deepai.org/dataset/pubmed



and evaluation, this approach differs from query-
focused summarization because of its ability to gen-
erate explanations for information missing from the
article which a summarization system cannot han-
dle. We use the QA objective introduced by Beltagy
et al. (2020) for Longformer that places a global
attention mask on all question tokens (see Table 6
in Appendix C.1), and we feed our model with
the article, the criterion, and the class prediction.
During training, we use the gold classes of articles
to generate explanations, as generating post-hoc
explanations for incorrectly predicted labels would
not be meaningful.

Following recent previous work on explainable fact-
checking in healthcare by Kotonya and Toni (2020),
we implement a baseline for the explanation gener-
ation task, based on summarization. Because such
a system does not take into account the criteria def-
initions in its input, it cannot combine all criteria
together as it would always produce the same ex-
planation for all criteria. Therefore, this approach
requires training independent models for each class
within a criterion, which results in 30 models (10
criteria X 3 classes) in the case of the FukeHealth
dataset. We use here a summarization objective for
the Longformer model, that applies a global atten-
tion mask to the very first token of input texts (see
Table 6 in Appendix C.1 and Beltagy et al. (2020)).

3 Human evaluation of explanations

Unlike previous works that assess generated text
with automatic metrics, we design a human eval-
uation protocol that assesses four aspects of ex-
planations: their fluency, consistency, factual cor-
rectness, and whether they are indicative of the
label that they are supposed to explain. An expla-
nation is considered fluent if it sounds natural, and
consistent if it does not contradict itself, include
repetitions, or information that is not mentioned in
the article. The factual correctness criterion looks
for incorrect facts, contradictions with respect to
the article, or hallucinations. Finally, generated
explanations should allow a human judge to infer
correctly the label they are meant to explain.

We conducted two pilot studies in order to assess
the quality of our guidelines. As reported in Ta-
ble 2, Pilot 1 brought to light the ambiguity of
the initial version of the guidelines, while Pilot 2
reached higher inter-annotator agreement scores.
The new version of the guidelines is more detailed

Guessed class
0.76
0.58

Fluency Factual correctness
-0.12 0.29
0.46 0.49

Pilot 1
Pilot 2

Table 2: Inter-annotator agreement scores (averages of
Cohen Kappa scores) of the two pilot studies.

Criterion Not S. S. Not A.
1 1431 495 370
2 1505 768 23
3 1413 717 166
4 1445 848 3
5 286 1921 89
6 1135 1147 14
7 1120 1063 113
8 538 1457 301
9 672 1543 81
10 391 1771 134

Table 3: Distribution of articles in each class per crite-
rion. These numbers combine both the HealthRelease
and HealthStory datasets.

than the first one and provides some examples of
what is expected. For instance, instead of asking if
an explanation is fluent, the new guidelines specify
that explanations should be rated as fluent if they
sound natural and their syntactic structure is cor-
rect. Thus, the sentence “it’s sunny but it’s sunny”
should not be considered as fluent, while “it’s sunny
but it’s not sunny” should be considered fluent de-
spite the contradiction, which is judged negatively
under consistency.

The final guidelines used for the evaluation in Sec-
tion 5 are fully detailed in Appendix B. In Table 2,
the consistency criterion is missing as it was added
after Pilot 2.

4 Data

We evaluate our QA and summarization-based
models on the FakeHealth corpus of health news
articles, released by Dai et al. (2020). Each article
in the dataset was evaluated by at least two experts,
according to ten criteria that assess diverse aspects
such as “the overclaiming, missing of information,
reliability of sources and conflict of interests" (Dai
et al., 2020). Dai et al. (2020) found zero to a mi-
nor positive correlation between the criteria, which
justifies the relevance of all of them. These criteria
are reported in Table 9 in Appendix C.2.



For each criterion, articles are annotated with one
of three labels, Not Satisfactory, Satisfactory, and
Not Applicable, and a textual explanation that jus-
tifies the assigned label, as shown in Table 1. The
label distribution across criteria is highly unbal-
anced, Not Applicable instances being the rarest.
For example, criteria 2, 4, and 6 have at least 65
times more Not Satisfactory instances than Not Ap-
plicable ones (see Table 3).

5 Results

5.1 Quality assessment per criterion

We compare Longformer-based, BERT-based, and
Logistic Regression models for the quality of the
classification task via their macro Fi-scores for
each criterion. Table 4 shows that our Longformer-
based models perform the best due to their ability
to encode longer texts. The Logistic Regression
models also achieves great performance despite its
simplicity, but this must be qualified as classes are
highly unbalanced and Logistic Regression mostly
predicts the dominant class. An analysis broken
down by criterion also highlights that all models
perform unevenly across criteria. This suggests
that some criteria are harder to handle, notably,
those requiring external knowledge or subjective
judgment (e.g. criterion 5 asking whether articles
commit disease-mongering).

We also tried to build a single Longformer-based
model handling all classes at once using a QA-
based approach that treats criteria as questions and
predicts labels, but it performed poorly. We suspect
that we have poor results because we perform a
classification task with a QA-based model.

5.2 [Explanation generation

Table 5 reports the overall performance of both
summarization and QA-based approaches for the
explanation generation task only. These results
show that the QA-based approach performs bet-
ter than, or as well as, the baseline system. Both
approaches achieve similar performance in terms
of consistency and factual correctness, but the QA
approach produces explanations that are more flu-
ent and that indicate the correct label more often.
Table 7 in Appendix C.2 provides some examples
of the generated explanations. In these tables, gold
explanations correspond to the explanations written
by health expert in the FakeHealth dataset.

An analysis per class (see Table 5) reveals that the

4

Longformer BERT LogReg From gen. expl.
Criterion 1 0.67 0.63 0.59 0.61
Criterion 2 0.43 0.42 0.40 0.30
Criterion 3 0.52 0.55 0.46 0.45
Criterion 4 0.40 0.42 0.36 0.61
Criterion 5 0.35 0.30 0.37 0.33
Criterion 6 0.42 0.39 0.37 0.60
Criterion 7 0.35 0.37 0.36 0.40
Criterion 8 0.57 0.59 0.49 0.46
Criterion 9 0.40 0.37 0.37 0.34
Criterion 10 0.45 0.45 0.36 0.24
Mean 0.46 0.44 0.41 0.43

Table 4: Macro F;-scores of our different classifiers for
each criterion. The last row Mean gives the average
performance of each model across criteria. The column
From gen. expl. corresponds to the classification task
conducted from generated explanations, as described in
Section 5.3.

summarization approach performs better for the
Satisfactory class, while the QA approach performs
better for the Not Satisfactory and Not Applicable
classes. This can be explained by the fact that Satis-
factory articles include the relevant information to
the criteria and require models to reuse this infor-
mation to generate explanations, thus resembling
summarization. On the other hand, for the Not Sat-
isfactory class, models need to point out missing
information and this is naturally harder for a sum-
marization model, but easier for a QA-based one
that can generate text about missing information.
Finally, the Not Applicable class suffers mainly
from having very few instances for training (see
Table 3). With a single model, the QA approach
is able to overcome this issue and generate better
explanations.

To achieve the best performance, the previous re-
sults suggest combining both systems and using
the summarization-based system for Satisfactory
instances, and the QA-based system for all others.
With this combination, 81% of explanations are
fluent, 76% consistent, 57% factually correct, and
85% indicate correct labels. The pretty low factual
correctness of explanations can be explained by
the severeness of guidelines that ask annotators to
rate an explanation as factually incorrect as soon
as at least one detail is incorrect, regardless of the
correctness of all other details.

5.3 Predicting classes from generated
explanations

To further test our methodology, we run an ex-
periment in which we first generate explanations,



Fluency

Consistency Factual correctness

Correct class

Sum. QA | Sum. QA | Sum. QA |Sum. QA | Count
All classes 745 80 | 725 725 | 525 52 | 8 86 | -
Not S. 732 835 | 67 732 423 48.5 87.6 897 | 97
S. 79.6 76.3 | 80.6 73.1 | 63.4 53.8 8 828 | 93
Not A. 40 80 | 50 60 | 50 70 50 80 10

Table 5: Results of the evaluation of the summarization and QA-based systems per class (as percentages).

and then classify articles from the predicted ex-
planations. We use the same approach as before,
i.e. a Longformer-based model with a QA objec-
tive fine-tuned on FakeHealth articles for explana-
tion generation, and a Longformer-based classifier
fine-tuned on predicted explanations. Results are
reported in Table 4 and show that classifying arti-
cles before generating explanations, achieves better
performance. This finding is not surprising as the
explanation generation model is influenced by dom-
inant classes and ignores minority classes. Wrong
explanations propagate then to the classification
task and are responsible for incorrect labels. How-
ever, the classification model built from generated
explanations performs very well for criteria 4 and 6.
Yet, these results should be considered with caution,
as classes for these criteria are highly unbalanced
(with respectively 3 and 14 instances in the Not
Applicable class) and the model predicts most of
the time the majority class. This ablation study
corroborates the recommendations of Kotonya and
Toni (2020) and Mani (2002).

5.4 Automatic v. human evaluation

Finally, we investigate the correlation between hu-
man judgement and automatic metrics used in pre-
vious works (Ermakova et al., 2019), including
ROUGE (Lin, 2004) and BLEU (Papineni et al.,
2002) scores. Table 8 in Appendix B.3 reports the
correlation coefficients between all metrics. Using
Kendall’s Tau, we find that all these correlations
are very low, at most 0.11 with ROUGE scores and
0.07 with the BLEU score. This finding was ex-
pected as most of the automatic metrics focus on
word overlap, which makes it difficult to check the
grammatical and syntactic correctness of explana-
tions, as well as their factual consistency. This
conclusion echoes Kryscinski et al. (2019)’s work
on automatic evaluation protocols.

6 Conclusion and discussion

In this work, we propose a new QA-based approach
to generate explanations for quality assessment
systems. This approach allows us to build a sin-
gle model, able to generate explanations for dif-
ferent criteria and classes, by taking into account
the questions related to criteria. We have shown
that the QA-based system is competitive with the
summarization-based one, and that they are com-
plementary. Notably, the QA-based approach is
more appropriate when the relevant information is
not explicitly given in articles or for small classes.
As for the classification task, Longformer-based
models perform best thanks to their ability to deal
with long input texts. Finally, we have highlighted
that automatic metrics, such as ROUGE, correlate
very weakly with human judgment when it comes
to evaluating explanation generation models. This
paper could serve as a starting point to explore the
use of QA models for explainable article assess-
ment.
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A Ethical concerns

The ethical concerns of this work are two-fold.
First, readers must be aware that such a deep learn-
ing model is prone to make mistakes, as evidenced
by the results of the experiments we did (see Sec-
tion 5). Outputs should be treated as an indication
or recommendation, rather than the ground truth.

Secondly, our QA-based approach needs to
train a single model, by comparison with the
summarization-based one that requires 30 mod-
els. Having a single model reduces the pressure
on computing resources and consequently, on the
environment. It also makes the model easier to
maintain.

B Human evaluation

B.1 Definition of the evaluation guidelines

To design our human evaluation protocol, we con-
ducted two pilot studies with the same two annota-
tors. To begin with, the first study gathered three an-
notators who evaluated all explanations generated
for the same six articles (three releases and three
stories, which results in 60 explanations in total)
with the baseline system for explanation generation.
They were asked to determine if explanations were
written in fluent English, consistent, factually cor-
rect, and which classes were suggested by explana-
tions. This evaluation task combined both intrinsic
and extrinsic methods to have a complete overview
of models’ performance, and we assessed to what
extent annotators agreed on the evaluation task by
looking at inter-annotator agreement scores com-
puted with the Cohen Kappa score. It resulted in a
high disagreement among annotators (see Table 2):
annotators 1 and 2 even seemed to disagree on the
fluency criterion. An in-depth exploration of their
annotations revealed that they never agreed when
one of them judged that an explanation was not
fluent. These low inter-annotator agreement scores
seem therefore to be caused by unclear guidelines.

For this reason, more detailed guidelines about
the fluency and factual correctness of explanations



were defined, and another pilot study was intended
to validate them. It gathered two of the three previ-
ous annotators, who evaluated all explanations gen-
erated for the same five articles (two releases and
three stories) with whether the baseline or the QA-
based system. We reduced the number of articles
to evaluate as evaluation tasks are time-consuming
and five articles, resulting in 50 explanations, are
enough to validate guidelines. This second evalu-
ation task achieved a much higher inter-annotator
agreement reported in Table 2 and confirmed the
new evaluation guidelines. However, the agreement
score for the guessed classes slightly decreased be-
tween the first and second evaluation task. An
analysis of annotations highlighted that some crite-
ria could be ambiguous. For example, criterion 5
wonders if articles commit disease-mongering, and
if they do, they should be rated as Not Satisfactory
because it implies that they are less reliable. Con-
sequently, a detailed description of each criterion,
extracted from HealthNewsReview’s website, has
been given to annotators for the last evaluation task
to raise all ambiguities.

B.2 Final guidelines

Based on the outcome of the pilot studies, annota-
tors were given the following guidelines:

* Fluency: Is the generated explanation writ-
ten in fluent English? An explanation should
be considered non-fluent if it does not sound
natural or its structure is not correct (e.g. para-
graphs title). Words case (uppercase or low-
ercase) should not be taken into account. For
example, "it’s sunny but it’s sunny" should be
considered as non-fluent, but "it’s sunny but
it’s not sunny" should be considered as fluent.
Likewise, "intro: it’s sunny, results: it’s sunny,
conclusion: it’s sunny" should be considered
as non-fluent (inappropriate structure).

* Consistency: Is the generated explanation con-
sistent? An explanation should be considered
inconsistent if it includes contradiction, rep-
etition, extra information. For example, "it’s
sunny but it’s sunny" should be considered as
consistent, but "it’s sunny but it’s not sunny"
should be considered as non-consistent.

¢ Factual correctness: Are the details (numbers,
names, facts, etc.) included in the generated
explanation correct? Explanations that con-
tain incorrect facts, contradictions, or halluci-

nations should be evaluated as not satisfactory;
but whether or not the factual details are re-
lated to the question should not be taken into
consideration.

* Suggested class: According to the generated
explanation, how would you classify the arti-
cle? (Not Satisfactory, Satisfactory, Not Appli-
cable, Can’t tell) A Can’t tell class has been
added if generated explanations do not help
classify articles. A description of what was ex-
pected for each criterion was given to annota-
tors to raise all ambiguities. It was taken from
the HealthNewsReview website from which
explanations had been extracted. The inferred
classes are considered correct if it matches the
gold classes of articles.

The consistency criterion has been added after the
two pilot studies, so we have not evaluated the
inter-annotator agreement for it. However, the cor-
responding guidelines have been defined and de-
tailed similarly to the other evaluation criteria to
raise any ambiguity for annotators.

For the real evaluation task, annotators have eval-
uated ten different articles each. They were the
same annotators as for pilot studies, so their inter-
annotator agreement was high and we were able
to evaluate more articles with great confidence in
annotations.

B.3 Correlation with automatic metrics

Table 8 reports the correlation scores between hu-
man judgement and automatic metrics used in pre-
vious works (Ermakova et al., 2019), including
ROUGE (Lin, 2004) and BLEU (Papineni et al.,
2002) scores. Using Kendall’s Tau, we find that all
these correlations are very low, at most 0.11 with
ROUGE scores and 0.07 with the BLEU score.

C Model

C.1 Model’s Attention

For the Longformer model, Beltagy et al. (2020) de-
fines different global attention masks according to
the task to complete. For classification, the [CLS]

token of input texts receives global attention. For
a QA task, the global attention mask is applied to
all question tokens, while it is applied to the very
first token of input texts for a summarization task.
Table 6 illustrates these different attention masks.

C.2 Example of models’ outputs



Question-Answering objective

<s> Does the story adequately discuss the costs of the intervention? </s> Satisfactory </s> Tri-
umph for Drug to Straighten Clenched Fingers </s> About one in 20 men is estimated to have
Peyronie’s, but figures are not precise because people with the condition tend not to discuss it publicly.
e </8>

Summarization objective

<s> Triumph for Drug to Straighten Clenched Fingers </s> About one in 20 men is estimated to
have Peyronie’s, but figures are not precise because people with the condition tend not to discuss it
publicly. ... </s>

Classification objective

[CLS] Triumph for Drug to Straighten Clenched Fingers </ s> About one in 20 men is estimated
to have Peyronie’s, but figures are not precise because people with the condition tend not to discuss it
publicly. ... </s>

Table 6: Example of the inputs and global attention masks of the Longformer model for the different training
objectives for HealthStory 1613, Criterion 1. The global attention is put on the tokens highlighted in grey.

HealthRelease #528, Criterion 5, Satisfactory
Gold explanation
There is no disease mongering in this release.

Generated explanation — QA-based system

There is no disease mongering in this news release. Obesity is a serious health issue, and the release
provides some context about the prevalence of obesity in the US.

Rated as fluent, consistent, factually incorrect, and suggesting a Satisfactory label

Generated explanation — baseline system

There is no disease mongering in the news release. The release provides some context about the
prevalence and severity of obesity and its consequences.

Rated as fluent, consistent, factually incorrect, and suggesting a Satisfactory label

HealthStory #1619, Criterion 1, Satisfactory
Gold explanation
The story notes that a 5.29-ounce tube of the product retails for $39.99 at drugstores.

Generated explanation — QA-based system

The story notes that the cream is available at Sephora.com for $69.99. The story could have done a
better job of comparing the cost of the cream to other products on the market.

Rated as fluent, consistent, factually incorrect, and suggesting a Satisfactory label

Generated explanation — baseline system

The story states that the cream “takes the redness out of new stretch marks." That’s good enough for the
story, but it would have been better if the story would have mentioned the cost.

Rated as fluent, consistent, factually correct, and suggesting a Not Satisfactory label

Table 7: Examples of explanations generated with our QA-based and summarization-based baseline systems.



Fluency Consistency Factual correctness Correct class Can’t tell class

ROUGE-1 Precision 0.09 0.04 0.03 0.08 -0.07
ROUGE-1 Recall -0.02 -0.08 -0.05 -0.04 -0.00
ROUGE-1 F1 0.01 -0.05 -0.01 0.00 -0.04
ROUGE-2 Precision 0.08 0.05 0.04 0.09 -0.11
ROUGE-2 Recall 0.04 -0.02 -0.01 0.04 -0.09
ROUGE-2 F1 0.06 0.01 0.01 0.07 -0.11
ROUGE-L Precision 0.10 0.08 0.05 0.09 -0.09
ROUGE-L Recall 0.01 -0.04 -0.03 -0.01 -0.03
ROUGE-L F1 0.06 0.03 0.02 0.06 -0.08
BLEU -0.01 -0.07 -0.04 -0.01 -0.03
Length ratio 0.09 0.08 0.05 0.08 -0.06
Cosine similarity 0.08 -0.01 0.03 0.06 -0.05
Euclidean distance -0.04 0.01 -0.04 -0.02 0.03

Table 8: Correlation between human and automatic evaluation metrics (Kendall Tau correlation coefficient).

Criterion Question

Criterion 1  Does it adequately discuss the costs of the intervention?
Criterion 2  Does it adequately quantify the benefits of the treatment/test/product/procedure?
Criterion 3  Does it adequately explain/quantify the harms of the intervention?
Criterion4  Does it seem to grasp the quality of the evidence?
Criterion 5  Does it commit disease-mongering?
Does the story use independent sources and identify conflicts of interest? / Does the
news release identify funding sources & disclose conflicts of interest?
Criterion 7  Does it compare the new approach with existing alternatives?
Criterion 8  Does it establish the availability of the treatment/test/product/procedure?
Criterion 9 Does it establish the true novelty of the approach?
Does the story appear to rely solely or largely on a news release? / Does the
Criterion 10 news release include unjustifiable, sensational language, including in the quotes of
researchers?

Criterion 6

Table 9: Datasets’ criteria.
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Abstract

Motivated by the fact that many relations cross
the sentence boundary, there has been increas-
ing interest in document-level relation extrac-
tion (DocRE). DocRE requires integrating in-
formation within and across sentences, captur-
ing complex interactions between mentions of
entities. Most existing methods are pipeline-
based, requiring entities as input. However,
jointly learning to extract entities and relations
can improve performance and be more effi-
cient due to shared parameters and training
steps. In this paper, we develop a sequence-to-
sequence approach, seq2rel, that can learn the
subtasks of DocRE (entity extraction, corefer-
ence resolution and relation extraction) end-to-
end, replacing a pipeline of task-specific com-
ponents. Using a simple strategy we call en-
tity hinting, we compare our approach to ex-
isting pipeline-based methods on several popu-
lar biomedical datasets, in some cases exceed-
ing their performance. We also report the first
end-to-end results on these datasets for future
comparison. Finally, we demonstrate that, un-
der our model, an end-to-end approach outper-
forms a pipeline-based approach. Our code,
data and trained models are available at https:
//github.com/johngiorgi/seq2rel. An online
demo is available at https://share.streamlit.
io/johngiorgi/seqg2rel/main/demo.py.

1 Introduction

PubMed, the largest repository of biomedical lit-
erature, contains over 30 million publications and
is adding more than two papers per minute. Accu-
rate, automated text mining and natural language
processing (NLP) methods are needed to maximize
discovery and extract structured information from
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this massive volume of text. An important step in
this process is relation extraction (RE), the task of
identifying groups of entities within some text that
participate in a semantic relationship. In the do-
main of biomedicine, relations of interest include
chemical-induced disease, protein-protein interac-
tions, and gene-disease associations.

Many methods have been proposed for RE, rang-
ing from rule-based to machine learning-based
(Zhou et al., 2014; Liu et al., 2016). Most of
this work has focused on intra-sentence binary RE,
where pairs of entities within a sentence are classi-
fied as belonging to a particular relation (or none).
These methods often ignore commonly occurring
complexities like nested or discontinuous entities,
coreferent mentions (words or phrases in the text
that refer to the same entity), inter-sentence and
n-ary relations (see Figure 1 for examples). The
decision not to model these phenomena is a strong
assumption. In GENIA (Kim et al., 2003), a corpus
of PubMed articles labelled with around 100,000
biomedical entities, ~17% of all entities are nested
within another entity. Discontinuous entities are
particularly common in clinical text, where ~10%
of mentions in popular benchmark corpora are dis-
continuous (Wang et al., 2021). In the CDR corpus
(Li et al., 2016b), which comprises 1500 PubMed
articles annotated for chemical-induced disease re-
lations, ~30% of all relations are inter-sentence.
Some relations, like drug-gene-mutation interac-
tions, are difficult to model with binary RE (Zhou
et al., 2014).

In response to some of these shortcomings, there
has been a growing interest in document-level RE
(DocRE). DocRE aims to model inter-sentence re-

Proceedings of the BioNLP 2022 workshop, Dublin, Ireland, pages 10-25
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Figure 1: Examples of complexities in entity and relation extraction and the proposed linearization schema to model
them. CID: chemical-induced disease. GDA: gene-disease association. DGM: drug-gene-mutation.

Complexities Example

Comment

Discontinuous Induction by paracetamol of and

mentions

Discontinuous mention of

paracetamol @DRUG@
paracetamol @DRUG@

@CIDe
@CIDe

Coreferent Proto-oncogene (also known as or neu) plays an important  Two coreferent mentions of
mentions role in the carcinogenesis and the prognosis of .

; ; @GDAe@
n-ary, inter- The deletion mutation on exon-19 of gene was present in 16 patients, Ternary D relationship
sentence while the point mutation on exon-21 was noted in 10. All patients  crosses a sentence boundary.

were treated with gefitinib and showed a partial response.

gefitinib @DRUGE@

@DhGMa@

lations between coreferent mentions of entities in
a document. A popular approach involves graph-
based methods, which have the advantage of natu-
rally modelling inter-sentence relations (Peng et al.,
2017; Song et al., 2018; Christopoulou et al., 2019;
Nan et al., 2020; Minh Tran et al., 2020). However,
like all pipeline-based approaches, these methods
assume that the entities within the text are known.
As previous work has demonstrated, and as we
show in §5.2, jointly learning to extract entities
and relations can improve performance (Miwa and
Sasaki, 2014; Miwa and Bansal, 2016; Gupta et al.,
2016; Li et al., 2016a, 2017; Nguyen and Verspoor,
2019a; Yu et al., 2020) and may be more efficient
due to shared parameters and training steps. Ex-
isting end-to-end methods typically combine task-
specific components for entity detection, corefer-
ence resolution, and relation extraction that are
trained jointly. Most approaches are restricted to
intra-sentence RE (Bekoulis et al., 2018; Luan et al.,
2018; Nguyen and Verspoor, 2019b; Wadden et al.,
2019; Giorgi et al., 2019) and have only recently
been extended to DocRE (Eberts and Ulges, 2021).
However, they still focus on binary relations. Ide-
ally, DocRE methods would be capable of mod-
elling the complexities mentioned above without
strictly requiring entities to be known.

A less popular end-to-end approach is to frame
RE as a generative task with sequence-to-sequence
(seq2seq) learning (Sutskever et al., 2014). This
framing simplifies RE by removing the need for
task-specific components and explicit negative
training examples, i.e. pairs of entities that do not
express a relation. If the information to extract is
appropriately linearized to a string, seq2seq meth-
ods are flexible enough to model all complexities
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discussed thus far. However, existing work stops
short, focusing on intra-sentence binary relations
(Zeng et al., 2018; Zhang et al., 2020; Nayak and
Ng, 2020; Zeng et al., 2020). In this paper, we
extend work on seq2seq methods for RE to the doc-
ument level, with several important contributions:

* We propose a novel linearization schema that
can handle complexities overlooked by previ-
ous seq2seq approaches, like coreferent men-
tions and n-ary relations (§3.1).

Using this linearization schema, we demon-
strate that a seq2seq approach is able to learn
the subtasks of DocRE (entity extraction,
coreference resolution and relation extraction)
jointly, and report the first end-to-end results
on several popular biomedical datasets (§5.1).

* We devise a simple strategy, referred to as “en-
tity hinting” (§3.3), to compare our model to
existing pipeline-based approaches, in some
cases exceeding their performance (§5.1).

2 Task definition: document-level relation
extraction

Given a source document of S tokens, a model
must extract all tuples corresponding to a relation,
R, expressed between the entities, ' in the doc-
ument, (F1, ..., E,, R) where n is the number of
participating entities, or arity, of the relation. Each
entity F; is represented as the set of its coreferent
mentions {eé-} in the document, which are often ex-
pressed as aliases, abbreviations or acronyms. All
entities appearing in a tuple have at least one men-
tion in the document. The mentions that express a
given relation are not necessarily contained within



lidocaine —~

Encoder

T

Lidocaine -

T

induced cardiac asystole @START@

)

@DRUG@

@ cenerated from target vocabulary

[J copied from source tokens

cardiac asystole @DISEASE@ @CIib@ @END@

Decoder

Figure 2: A sequence-to-sequence model for document-level relation extraction. Special tokens are generated by
the decoder. Entity mentions are copied from the input via a copy mechanism (not shown). Decoding is initiated by
a @STARTE token and terminated when the model generates the @END@ token. Attention connections shown only for
the second timestep to reduce clutter. CID: chemical-induced disease.

the same sentence. Commonly, E is assumed to be
known and provided as input to a model. We will
refer to these methods as “pipeline-based”. In this
paper, we are primarily concerned with the situa-
tion where F is not given and must be predicted by
a model, which we will refer to as “end-to-end”.

3 Our approach: seq2rel

3.1 Linearization

To use seq2seq learning for RE, the information to
be extracted must be linearized to a string. This
linearization should be expressive enough to model
the complexities of entity and relation extraction
without being overly verbose. We propose the
following schema, illustrated with an example:

X: Variants in the ( ) gene and
its mRNA contribute to risk for
Y: ;

@GDA@

The input text X, expresses a gene-disease associa-
tion (GDA) between and .In
the corresponding target string Y, each relation be-
gins with its constituent entities. A semicolon sepa-
rates coreferent mentions (; ), and entities are termi-
nated with a special token denoting their type (e.g.
@GENE@). Similarly, relations are terminated with a
special token denoting their type (e.g. @GDA@). Two
or more entities can be included before the special
relation token to support n-ary extraction. Entities
can be ordered if they serve specific roles as head
or tail of a relation. For each document, multiple
relations can be included in the target string. En-
tities may be nested or discontinuous in the input
text. In Figure 1, we provide examples of how this
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schema can be used to model various complexities,
like coreferent entity mentions and n-ary relations.

3.2 Model

The model follows a canonical seq2seq setup. An
encoder maps each token in the input to a contex-
tual embedding. An autoregressive decoder gener-
ates an output, token-by-token, attending to the out-
puts of the encoder at each timestep (Figure 2). De-
coding proceeds until a special “end-of-sequence”
token (GEND@) is generated, or a maximum number
of tokens have been generated. Formally, X is the
source sequence of length .S, which is some text
we would like to extract relations from. Y is the
corresponding target sequence of length 7, a lin-
earization of the relations contained in the source.
We model the conditional probability

T
p(V1X) =[] p(wel X, y<t)
t=1

(1

During training, we optimize over the model pa-
rameters 6 the sequence cross-entropy loss

T
(o) = - Zlogp(de, Y<t;0)
=1

(@)

maximizing the log-likelihood of the training data.'

The main problems with this setup for RE are: 1)
The model might “hallucinate” by generating entity
mentions that do not appear in the source text. 2)
It may generate a target string that does not fol-
low the linearization schema and therefore cannot

'See §4.3 for details about the encoder and decoder.



be parsed. 3) The loss function is permutation-
sensitive, enforcing an unnecessary decoding order.
To address 1) we use two modifications: a restricted
target vocabulary (§3.2.1) and a copy mechanism
(§3.2.2). To address 2) we experiment with several
constraints applied during decoding (§3.2.3). Fi-
nally, to address 3) we sort relations according to
their order of appearance in the source text (§3.2.4).

3.2.1 Restricted target vocabulary

To prevent the model from “hallucinating” (gen-
erating entity mentions that do not appear in the
source text), the target vocabulary is restricted to
the set of special tokens needed to model entities
and relations (e.g. ; and @DRUG®). All other tokens
must be copied from the input using a copy mecha-
nism (see §3.2.2). The embeddings of these special
tokens are initialized randomly and learned jointly
with the rest of the model’s parameters.

3.2.2 Copy mechanism

To enable copying of input tokens during decoding,
we use a copying mechanism (Gu et al., 2016a).
The mechanism works by effectively extending the
target vocabulary with the tokens in the source
sequence X, allowing the model to “copy” these
tokens into the output sequence, Y. Our use of
the copy mechanism is similar to previous seq2seq-
based approaches for RE (Zeng et al., 2018, 2020).

3.2.3 Constrained decoding

We experimented with several constraints applied
to the decoder during test time to reduce the like-
lihood of generating syntactically invalid target
strings (strings that do not follow the linearization
schema). These constraints are applied by setting
the predicted probabilities of invalid tokens to a
tiny value at each timestep. The full set of con-
straints is depicted in Appendix A. In practice, we
found that a trained model rarely generates invalid
target strings, so these constraints have little effect
on final performance (see §5.3). We elected not to
apply them in the rest of our experiments.

3.2.4 Sorting relations

The relations to extract from a given document are
inherently unordered. However, the sequence cross-
entropy loss (Equation 2) is permutation-sensitive
with respect to the predicted tokens. During train-
ing, this enforces an unnecessary decoding order
and may make the model prone to overfit frequent
token combinations in the training set (Vinyals
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et al., 2016; Yang et al., 2019). To partially miti-
gate this, we sort relations within the target strings
according to their order of appearance in the source
text, providing the model with a consistent decod-
ing order. The position of a relation is determined
by the first occurring mention of its head entity.
The position of a mention is determined by the sum
of its start and end character offsets. In the case
of ties, we then sort by the first mention of its tail
entity (and so on for n-ary relations).

3.3 Entity hinting

Although the proposed model can jointly extract
entities and relations from unannotated text, most
existing DocRE methods provide the entities
as input. Therefore, to more fairly compare to
existing methods, we also provide entities as input,
using a simple strategy that we will refer to as
“entity hinting”. This involves prepending entities
to the source text as they appear in the target string.
Taking the example from §3.1, entity hints would
be added as follows:

X: ;
@SEP@ Variants in the
( ) gene and its mRNA contribute to risk
for

where the special @SEP@ token demarcates the end
of the entity hint.> We experimented with the com-
mon approach of inserting marker tokens before
and after each entity mention (Zhou and Chen,
2021) but found this to perform worse. Our ap-
proach adds fewer extra tokens to the source text
and provides a location for the copy mechanism to
focus, i.e. tokens left of @SEP@. In our experiments,
we use entity hinting when comparing to methods
that provide ground truth entity annotations as input
(§5.1.1). In §5.2, we use entity hinting to compare
pipeline-based and end-to-end approaches.

4 Experimental setup

4.1 Datasets

We evaluate our approach on several biomedi-
cal, DocRE datasets. We also include one non-
biomedical dataset, DocRED. In Appendix B, we
list relevant details about their annotations.

Some pretrained models have their own separator token
which can be used in place of @SEP@, e.g. BERT uses [SEP].



CDR (Li et al., 2016b) The BioCreative V CDR
task corpus is manually annotated for chemicals,
diseases and chemical-induced disease (CID) rela-
tions. It contains the titles and abstracts of 1500
PubMed articles and is split into equally sized train,
validation and test sets. Given the relatively small
size of the training set, we follow Christopoulou
et al. (2019) and others by first tuning the model on
the validation set and then training on the combina-
tion of the train and validation sets before evaluat-
ing on the test set. Similar to prior work, we filter
negative relations with disease entities that are hy-
pernyms of a corresponding true relations disease
entity within the same abstract (see Appendix C).

GDA (Wu et al., 2019) The gene-disease asso-
ciation corpus contains 30,192 titles and abstracts
from PubMed articles that have been automatically
labelled for genes, diseases and gene-disease as-
sociations via distant supervision. The test set is
comprised of 1000 of these examples. Following
Christopoulou et al. (2019) and others, we hold
out a random 20% of the remaining abstracts as a
validation set and use the rest for training.

DGM (Jia et al., 2019) The drug-gene-mutation
corpus contains 4606 PubMed articles that have
been automatically labelled for drugs, genes, muta-
tions and ternary drug-gene-mutation relationships
via distant supervision. The dataset is available in
three variants: sentence, paragraph, and document-
length text. We train and evaluate our model on the
paragraph-length inputs. Since the test set does not
contain relation annotations on the paragraph level,
we report results on the validation set. We hold out
arandom 20% of training examples to form a new
validation set for tuning.

DocRED (Yao et al., 2019) DocRED includes
over 5000 human-annotated documents from
Wikipedia. There are six entity and 96 relation
types, with ~40% of relations crossing the sen-
tence boundary. We use the same split as previ-
ous end-to-end methods (Eberts and Ulges, 2021),
which has 3,008 documents in the training set, 300
in the validation set and 700 in the test set’.

4.2 Evaluation

We evaluate our model using the micro F1-score by
extracting relation tuples from the decoder’s output
(see Appendix D). Similar to prior work, we use a
“strict” criteria. A predicted relation is considered

3h'ctps ://github.com/lavis-nlp/jerex
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correct if the relation type and its entities match
a ground truth relation. An entity is considered
correct if the entity type and its mentions match
a ground truth entity. However, since the aim of
DocRE is to extract relations at the entity-level
(as opposed to the mention-level), we also report
performance using a relaxed criterion (denoted “re-
laxed”), where predicted entities are considered
correct if more than 50% of their mentions match
a ground truth entity (see Appendix E).

Existing methods that evaluate on CDR, GDA
and DGM use the ground truth entity annotations
as input. This makes it difficult to directly compare
with our end-to-end approach, which takes only the
raw text as input. To make the comparison fairer,
we use entity hinting (§3.3) so that our model has
access to the ground truth entity annotations. We
also report the performance of our method in the
end-to-end setting on these corpora to facilitate
future comparison. To compare to existing end-to-
end approaches, we use DocRED.

4.3 Implementation, training and
hyperparameters

Implementation We implemented our model in
PyTorch (Paszke et al., 2017) using AllenNLP
(Gardner et al., 2018). As encoder, we use a pre-
trained transformer, implemented in the Transform-
ers library (Wolf et al., 2020), which is fine-tuned
during training. When training and evaluating on
biomedical corpora, we use PubMedBERT (Gu
et al., 2020), and BERTgasg (Devlin et al., 2019)
otherwise. In both cases, we use the default hyper-
parameters of the pretrained model. As decoder, we
use a single-layer LSTM (Hochreiter and Schmid-
huber, 1997) with randomly initialized weights.
We use multi-head attention (Vaswani et al., 2017)
as the cross-attention mechanism between encoder
and decoder. Select hyperparameters were tuned
on the validation sets, see Appendix F for details.

Training All parameters are trained jointly us-
ing the AdamW optimizer (Loshchilov and Hutter,
2019). Before training, we re-initialize the top L
layers of the pretrained transformer encoder, which
has been shown to improve performance and stabil-
ity during fine-tuning (Zhang et al., 2021b). During
training, the learning rate is linearly increased for
the first 10% of training steps and linearly decayed
to zero afterward. Gradients are scaled to a vector
norm of 1.0 before backpropagating. During each
forward propagation, the hidden state of the LSTM



Table 1: Comparison to existing pipeline-based methods.
Performance reported as micro-precision, recall and F1-
scores (%) on the CDR and GDA test sets. Results
below the horizontal line are not comparable to existing
methods. Bold: best scores.

CDR GDA

Method P R Fl1 P R Fl

Christopoulou et al. (2019) 62.1 652 63.6 - - 81.5
Nan et al. (2020) - - 648 - - 822
Minh Tran et al. (2020) - - 66.1 - - 82.8
Lai and Lu (2021) 649 67.1 660 - - -

Xu et al. (2021) - - 687 - - 837
Zhou et al. (2021) - - 694 - - 839
seq2rel (entity hinting) 682 662 672 844 853 849
seq2rel (entity hinting, relaxed) 68.2 66.2 67.2 84.5 854 85.0
seq2rel (end-to-end) 435 375 402 550 554 552
seq2rel (end-to-end, relaxed) 56.6 488 524 703 70.8 70.5

decoder is initialized with the mean of token em-
beddings output by the encoder. The decoder is
regularized by applying dropout (Srivastava et al.,
2014) with probability 0.1 to its inputs, and Drop-
Connect (Wan et al., 2013) with probability 0.5
to the hidden-to-hidden weights. As is common,
we use teacher forcing, feeding previous ground
truth inputs to the decoder when predicting the next
token in the sequence. During test time, we gener-
ate the output using beam search (Graves, 2012).
Beams are ranked by mean token log probability af-
ter applying a length penalty.* Models were trained
and evaluated on a single NVIDIA Tesla V100.

5 Results

5.1 Comparison to existing methods

In the following sections, we compare our model to
existing DocRE methods on several benchmark cor-
pora. We compare to existing pipeline-based meth-
ods (§5.1.1), including n-ary methods (§5.1.2), and
end-to-end methods (§5.1.3). Details about these
methods are provided in Appendix G.

5.1.1 Existing pipeline-based methods

In Table 1, we use entity hinting to compare our
method to existing pipeline-based methods on CDR
and GDA. We also report end-to-end performance,
which is not comparable to existing pipeline-based
methods but will facilitate future comparisons.
The large performance improvement when using
entity hinting (+27-29%) confirms that the model

4https ://docs.allennlp.
org/main/api/nn/beam_search/
#lengthnormalizedsequencelogprobabilityscorer

5ht’cps ://www.nvidia.com/en-us/data-center/
v100/
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Figure 3: Effect of training set size on performance.
Performance reported as the median micro Fl-score
obtained over five runs with different random seeds on
the CDR and GDA validation sets, with and without
entity hinting. Error bands correspond to the standard
deviation over the five runs. The absolute number of
training examples are displayed for each corpus. Some
labels are excluded to reduce clutter.

exploits the entity annotations. The fact that re-
laxed entity matching makes a large difference
in the end-to-end setting (+12-15%) suggests that
a significant portion of the model’s mistakes oc-
cur during coreference resolution. Although our
method is designed for end-to-end RE, we find
that it outperforms existing pipeline-based meth-
ods when using entity hinting on GDA. Our method
is competitive with existing methods when using
entity hinting on the CDR corpus but ultimately
underperforms state-of-the-art results. Given that
GDA is 46X larger, we speculated that our method
might be underperforming in the low-data regime.
To determine if this is a contributing factor, we
artificially reduce the size of the CDR and GDA
training sets and plot the performance as a curve
(Figure 3). In all cases besides GDA with entity
hinting, performance increases monotonically with
dataset size. There is no obvious plateau on CDR
even when using all 500 training examples. To-
gether, these results suggest that our seq2seq based
approach can outperform existing pipeline-based
methods when there are sufficient training exam-
ples but underperforms relative to existing methods
in the low-data regime.

5.1.2 n-ary relation extraction

In Table 2 we compare to existing n-ary meth-
ods on the DGM corpus. With entity hinting,
our method significantly outperforms the existing
method. The difference in encoders partially ex-
plains this large performance gap. Where Jia et al.
(2019) use a BiLSTM that is trained from scratch,
we use PubMedBERT, a much larger model that
has been pretrained on abstracts and full-text ar-



Table 2: Comparison to existing n-ary methods. Perfor-
mance reported as micro-precision, recall and F1-scores
(%) on the DGM validation set. Results below the hor-
izontal line are not comparable to existing methods.
Bold: best scores. T Jia et al. 2019 do not report results
on the validation set, so we re-run their paragraph-level
model.

Method P R F1

Jiaet al. (2019) 629 762 689
seqZ2rel (entity hinting) 84.0 84.8 844
seq2rel (entity hinting, relaxed) 84.1 849 84.5
seqZ2rel (end-to-end) 689 659 674
seq2rel (end-to-end, relaxed) 783 749 76.6

ticles from PubMedCentral.® However, this does
not completely account for the improvement in
performance, as recent work that has replaced the
BiLSTM encoder of (Jia et al., 2019) with Pub-
MedBERT found that it improves performance
by approximately 2-4% on the task of drug-gene-
mutation prediction (Zhang et al., 2021a).” Our
results on the DGM corpus suggest that our lin-
earization schema effectively models n-ary rela-
tions without requiring changes to the model archi-
tecture or training procedure.

5.1.3 End-to-end methods

In Table 3 we compare to an existing end-to-end
approach on DocRED, JEREX (Eberts and Ulges,
2021). To make the comparison fair, we use the
same pretrained encoder (BERTgasg). We find that
although our model is arguably simpler (JEREX
contains four task-specific sub-components, each
with its own loss) it only slightly underperforms
JEREX, mainly due to recall. We speculate that
one reason for this is a large number of relations
per document, which leads to longer target strings
and, therefore, more decoding steps. The median
length of the target strings in DocRED, using our
linearization, is 110, whereas the next largest is 19
in GDA. Improving the decoder’s ability to process
long sequences, e.g. switching the LSTM for a
transformer or modifying the linearization schema
to produce shorter target strings, may improve re-
call and close the gap with existing methods.

5.2 Pipeline vs. End-to-end

In §5.1.1 and §5.1.2, we provide gold-standard
entity annotations from each corpus as input to

6h’ctps ://www.ncbi.nlm.nih.gov/pmc/

"The authors have not released code at the time of writ-
ing, so we were unable to evaluate this model on the DGM
validation set in order to compare with our method directly.
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Table 3: Comparison to existing end-to-end methods.
Performance reported as micro-precision, recall and F1-
scores (%) on the DocRED test set. Results below the
horizontal line are not comparable to existing methods.
Bold: best scores.

Method P R F1

JEREX (Eberts and Ulges, 2021) 42.8 38.2 404
seqZ2rel (end-to-end) 44.0 338 382
seqZ2rel (end-to-end, relaxed) 537 413 46.7

Table 4: Comparison of pipeline-based and end-to-end
approaches. Gold hints use gold-standard entity anno-
tations to insert entity hints in the source text. Silver
hints use the entity annotations provided by PubTator.
Pipeline is identical to silver entity hints, except that
we filter out entity mentions predicted by our model
that PubTator does not predict. The end-to-end model
only has access to the unannotated source text as input.
Performance reported as micro-precision, recall and F1-
scores (%) on the CDR test set, with strict and relaxed
entity matching criteria. Bold: best scores.

Strict Relaxed
P R F1 P R F1
Gold hints 682 662 672 682 662 672
Silver hints 424 373 397 53.0 46.7 49.7
Pipeline 450 169 246 625 235 34.1
End-to-end 43.5 375 40.2 56.6 48.8 524

our model via entity hinting (referred to as “gold”
hints from here on, see §3.3). This allowed us
to compare to existing methods that also provide
these annotations as input. However, gold-standard
entity annotations are (almost) never available in
real-world settings, such as large-scale extraction
on PubMed. In this setting, there are two strate-
gies: pipeline-based, where independent systems
perform entity and relation extraction, and end-to-
end, where a single model performs both tasks. To
compare these approaches under our model, we per-
form evaluations where a named entity recognition
(NER) system is used to determine entity hints (re-
ferred to as “silver” hints from here on) and when
no entity hints are provided (end-to-end).® How-
ever, this alone does not create a true pipeline, as
our model can recover from both false negatives
and false positives in the NER step. To mimic error
propagation in the pipeline setting, we filter any
entity mention predicted by our model that was
not predicted by the NER system. In Table 4, we

8Speciﬁcally, we use PubTator (Wei et al., 2013). PubTator
provides up-to-date entity annotations for PubMed using state-
of-the-art machine learning systems.



Table 5: Ablation study results. Performance reported
as the micro-precision, recall and F1-scores (%) on the
CDR and DocRED validation sets. A: difference to the
complete models F1-score. Bold: best scores.

CDR DocRED
P R Fl1 A P R F1 A
seq2rel (end-to-end) 41.0 35.1 37.8 - 469 36.1 40.8 -
- pretraining 94 69 80 -298 185 7.7 10.8 -30.0
- fine-tuning 243 205 222 -15.6 424 155 227 -18.1
- vocab restriction 39.6 322 355 -23 452 355 397 -l1.1
- sorting relations 36.1 292 323 -56 529 174 262 -147

+ constrained decoding 40.8 35.6 38.0 46.8 359 406 -

present the results of all four settings (gold and sil-
ver entity hints, pipeline and end-to-end) on CDR.

We find that using gold entity hints significantly
outperforms all other settings. This is expected,
as the gold-standard entity annotations are high-
quality labels produced by domain experts. Using
silver hints significantly drops performance, likely
due to a combination of false positive and false neg-
atives from the NER step. In the pipeline setting,
where there is no recovery from false negatives, per-
formance falls by another 15%. The end-to-end set-
ting significantly outperforms the pipeline setting
(due to a large boost in recall) and performs compa-
rably to using silver hints. Together, our results sug-
gest that performance reported using gold-standard
entity annotations may be overly optimistic and cor-
roborates previous work demonstrating the benefits
of jointly learning entity and relation extraction
(Miwa and Sasaki, 2014; Miwa and Bansal, 2016;
Gupta et al., 2016; Li et al., 2016a, 2017; Nguyen
and Verspoor, 2019a; Yu et al., 2020).

5.3 Ablation

In Table 5, we present the results of an ablation
study. We perform the analysis twice, once on
the biomedical corpus CDR and once on the gen-
eral domain corpus DocRED. Unsurprisingly, we
find that fine-tuning a pretrained encoder greatly
impacts performance. Training the same encoder
from scratch (- pretraining) reduces performance
by ~30%. Using the pretrained weights without
fine-tuning (- fine-tuning) drops performance by
15.6-18.1%. Restricting the target vocabulary (-
vocab restriction, see §3.2.1) has a small positive
impact, boosting performance by 1.1%-2.3%. De-
liberately ordering the relations within each target
string (- sorting relations, see §3.2.4) has a large
positive impact, boosting performance by 5.6%-
14.7%. This effect is larger on DocRED, likely
because it has more relations per document on av-
erage than CDR, so ordering becomes more impor-
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tant. Finally, adding constraints to the decoding
process (+ constrained decoding) has little impact
on performance, suggesting that a trained model
rarely generates invalid target strings (see §3.2.3).

6 Discussion

6.1 Related work

Seq2seq learning for RE has been explored in
prior work. CopyRE (Zeng et al., 2018) uses an
encoder-decoder architecture with a copy mech-
anism, similar to our approach, but is restricted
to intra-sentence relations. Additionally, because
CopyRE’s decoding proceeds for exactly three
timesteps per relation, the model is limited to gen-
erating binary relations between single token en-
tities. The ability to decode multi-token entities
was addressed in follow-up work, CopyMTL (Zeng
etal., 2020). A similar approach was published con-
currently but was again limited to intra-sentence
binary relations (Nayak and Ng, 2020). Most re-
cently, GenerativeRE (Cao and Ananiadou, 2021)
proposed a novel copy mechanism to improve per-
formance on multi-token entities. None of these
approaches deal with the complexities of DocRE,
where many relations cross the sentence boundary,
and coreference resolution is critical.”

More generally, our paper is related to a recently
proposed “text-to-text” framework (Raffel et al.,
2020). In this framework, a task is formulated so
that the inputs and outputs are both text strings, en-
abling the use of the same model, loss function and
even hyperparameters across many seq2seq, classi-
fication and regression tasks. This framework has
recently been applied to biomedical literature to
perform named entity recognition, relation extrac-
tion (binary, intra-sentence), natural language infer-
ence, and question answering (Phan et al., 2021).
Our work can be seen as an attempt to formulate
the task of DocRE within this framework.

6.2 Limitations and future work

Permutation-sensitive loss Our approach adopts
the sequence cross-entropy loss (Equation 2),
which is sensitive to the order of predicted tokens,
enforcing an unnecessary decoding order on the
inherently unordered relations. To partially mit-
igate this problem, we order relations within the

°Concurrent to our work, REBEL (Huguet Cabot and Nav-
igli, 2021) also extends seq2seq methods to document-level
RE, achieving strong performance on DocRED. However, the
method was not evaluated on n-ary relations.



target string according to order of appearance in
the source text, providing the model with a consis-
tent decoding order that can be learned (see §3.2.4,
§5.3). Previous work has addressed this issue with
various strategies, including reinforcement learning
(Zeng et al., 2019), unordered-multi-tree decoders
(Zhang et al., 2020), and non-autoregressive de-
coders (Sui et al., 2020). However, these works
are limited to binary intra-sentence relation extrac-
tion, and their suitability for DocRE has not been
explored. A promising future direction would be to
modify our approach such that the arbitrary order
of relations is not enforced during training.

Input length restriction Due to the pretrained
encoder’s input size limit (512 tokens), our ex-
periments are conducted on paragraph-length text.
Our model could be extended to full documents
by swapping its encoder with any of the recently
proposed “efficient transformers” (Tay et al., 2021).
Future work could evaluate such a model’s ability
to extract relations from full scientific papers.

Pretraining the decoder In our model, the en-
coder is pretrained, while the decoder is trained
from scratch. Several recent works, such as T5
(Raffel et al., 2020) and BART (Lewis et al.,
2020), have proposed pretraining strategies for en-
tire encoder-decoder architectures, which can be
fine-tuned on downstream tasks. An interesting
future direction would be to fine-tune such a model
on DocRE using our linearization schema.

7 Conclusion

In this paper, we extend generative, seq2seq meth-
ods for relation extraction to the document level.
We propose a novel linearization schema that
can handle complexities overlooked by previous
seq2seq approaches, like coreferent mentions and
n-ary relations. We compare our approach to ex-
isting pipeline-based and end-to-end methods on
several benchmark corpora, in some cases exceed-
ing their performance. In future work, we hope
to extend our method to full scientific papers and
develop strategies to improve performance in the
low-data regime and in cases where there are many
relations per document.
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A Constrained decoding

In Figure 4, we illustrate the rules used to constrain
decoding. At each timestep ¢, given the prediction
of the previous timestep ¢ — 1, the predicted class
probabilities of tokens that would generate a syn-
tactically invalid target string are set to a tiny value.
In practice, we found that a model rarely generates
invalid target strings, so these constraints have little
effect on final performance (see §3.2.3 and §5.3).

B Details about dataset annotations

In Table 6, we list which complexities (e.g. nested
& discontinuous mentions, n-ary relations) are con-
tained within each dataset used in our evaluations.
We also report the fraction of relations in the test
set that are inter-sentence. We consider a relation
intra-sentence if any sentence in the document con-
tains at least one mention of each entity in the
relation, and inter-sentence otherwise. This pro-
duces an estimate that matches previously reported
numbers for CDR (~30%). In Yao et al. (2019), the
fraction of inter-sentence relations in DocRED is
reported as ~40.7%. We can reproduce this value
if we consider relations intra-sentence when all
mentions of an entity exist within a single sentence
and inter-sentence otherwise.

C Hypernym filtering

The CDR dataset is annotated for chemical-induced
disease (CID) relationships between the most
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specific chemical and disease mentions in an ab-
stract. Take the following example from the corpus:
Carbamazepine-induced [...] A patient

with sinus and , induced
by carbamazepine, prompted an extensive literature review

of all previously reported cases.

In this example (PMID: 1728915), only (carba-
mazepine, bradycardia) and (carbamazepine, atri-
oventricular block) are labelled as true relations.
The relation (carbamazepine, cardiac dysfunction),
although true, is not labelled as cardiac dysfunction
is a hypernym of both bradycardia and atrioventric-
ular block. This can harm evaluation performance,
as the prediction (carbamazepine, cardiac dysfunc-
tion) will be considered a false positive. There-
fore, we follow previous work (Gu et al., 2016b,
2017; Verga et al., 2018; Christopoulou et al., 2019;
Zhou et al., 2021) by filtering negative relations like
these, with disease entities that are hypernyms of a
corresponding true relations disease entity within
the same abstract, according to the hierarchy in the
MeSH vocabulary.!?

D Parsing the models output

At test time, our model autoregressively generates
an output, token-by-token, using beam search de-
coding (see §3.2). In order to extract the predicted
relations from this output, we apply the following
steps. First, predicted token ids are converted
to a string. We use the decode()!' method of
the HuggingFace Transformers tokenizer (Wolf
et al., 2020) to do this. For example, after calling
decode() on the predicted token ids, this string
might look like:

monoamine oxidase b ; maob @GENE@ parkinson’s
disease ; pd @DISEASE@ @GDA@

We then use regular expressions to extract any rela-
tions from this string that match our linearization
schema (see §3.1), which produces a dictionary of
nested lists, keyed by relation class:

{
"GDA" : [
L

Ohttps://meshb.nlm.nih.gov

11https: //huggingface.co/docs/transformers/
main_classes/tokenizer#transformers.
PreTrainedTokenizerBase.decode
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Figure 4: A diagram depicting syntactically valid predictions during decoding at each timestep ¢t. The log
probabilities of all other possible predictions are set to a tiny value to prevent the model from producing a
syntactically invalid target string. BOS is the special beginning-of-sequence token, COPY denotes any token copied
from the source text, and COREF is the special token used to separate coreferent mentions (i.e. ;). ENTITY is any
special entity token (e.g. @ENE@) and RELATION any special relation token (e.g. @GDA@ for gene-disease association).
Nents denotes the number of entities predicted by the current timestep and n.ns the expected arity of the relation.
The special end-of-sequence token (not shown) is always considered valid and its log probability is never modified.

Table 6: Evaluation datasets used in this paper with details about their annotations. Inter-sentence relations (%) are
the fraction of relations in the test set that cross sentence boundaries. We consider a relation intra-sentence if any
sentence in the document contains at least one mention of each entity in the relation, and inter-sentence otherwise.
*This differs from the estimate in Yao et al. (2019), see Appendix B.

Corpus Nested Mentions? Discontinuous Mentions?  Coreferent mentions? n-ary relations? Inter-sentence relations (%)

CDR (Li et al., 2016b) 4 v 4 X 29.8

GDA (Wu et al., 2019) v X 4 X 15.6

DGM (Jia et al., 2019) X X v/ v/ 63.5

DocRED (Yao et al., 2019) X X 4 X 12.5%
[["monoamine oxidase b"”, "maob”], "GENE"], criteria, proposed in prior work (Jain et al., 2020)

] [["parkinson’s disease”, "pd"], "DISEASE"] considers P to match G if more than 50% of P’s
] mentions belong to G, that is

b

Finally, we apply some normalization steps to the w > 0.5

entity mentions. Namely, we strip leading and trail- 7]

ing white space characters, sort entity mentions  In this paper, alongside the strict criteria, we re-
lexicographically (as their order is not important),  port performance using this relaxed entity matching
and remove duplicate mentions. Similarly, we re-  strategy, denoted “relaxed”.

move duplicate relations. These steps are applied to

both target and model output strings. The F1-score ¥ Hyperparameters

can then be computed by tallying true positives,

o . In Table 7, we list the hyperparameter values used
false positives and false negatives.

during evaluation on each corpus, with and without
entity hinting. Select hyperparameters were tuned
using Optuna (Akiba et al., 2019). The tuning
The aim of DocRE is to extract relations at the en-  process selects the best hyperparameters accord-
tity-level. However, it is common to evaluate these  ing to the validation set micro F1-score using the
methods with a “strict” matching criteria, where a ~ TPE (Tree-structured Parzen Estimator) algorithm
predicted entity P is considered correct if and only ~ (Bergstra et al., 2011).!> During tuning, we use
if all its mentions exactly match a corresponding  greedy decoding (i.e. beam size of one). Once opti-
gold entities mentions, i.e. P = G. This penalizes ~—5—— )

del dicti hat mi inol f https://optuna.readthedocs.io/en/stable/
mode pr.e ictions tha mlss.even a SINGIC COTCICT-  roference/generated/optuna. samplers. TPESampler.
ent mention, but are otherwise correct. A relaxed  html
23

E Relaxed entity matching



Table 7: Hyperparameter values used for each corpus. Hyperparameters values when using entity hinting, if they
differ from the values used without entity hinting, are shown in parentheses. Tuned indicates whether or not the

hyperparameters were tuned on the validation sets.

Hyperparameter Tuned? CDR GDA DGM DocRED
Batch size v 4 4 4 4
Training epochs v 130 (70) 30 (25) 30 (45) 50
Encoder learning rate X 2e-5 2e-5 2e-5 2e-5
Encoder weight decay X 0.01 0.01 0.01 0.01
Encoder re-initialized top L layers v 1 1(2) 1 1
Decoder learning rate v 1.21e-4 (1.13e-4) Se-4 (4e-4) 8e-4 (1.5e-5) 7.8e-5
Decoder input dropout X 0.1 0.1 0.1 0.1
Decoder hidden-to-hidden weights dropout X 0.5 0.5 0.5 0.5
Target embedding size X 256 256 256 256
No. heads in multi-head cross-attention X 6 6 6 6
Beam size v 3(Q2) 4 (1) 3(Q2) 8
Length penalty v 1.4 (0.2) 0.8 (1.0) 0.2 (0.8) 1.4
Max decoding steps X 128 96 96 400

mal hyperparameters are found, we tune the beam
size (bs) and length penalty («v) using a grid search
over the values bs = {2...10}, with a step size of
1, and o = {0.2...2.0}, with a step size of 0.2.

G Baselines

This section contains detailed descriptions of all
methods we compare to in this paper.

G.1 Pipeline-based methods

These methods are pipeline-based, assuming the en-
tities are provided as input. Many of them construct
a document-level graph using dependency parsing,
heuristics, or structured attention and then update
node and edge representations using propagation.

* Christopoulou et al. (2019) propose EoG, an
edge-orientated graph neural model. The
nodes of the graph are constructed from men-
tions, entities, and sentences. Edges between
nodes are initially constructed using heuristics.
An iterative algorithm is then used to generate
edges between nodes in the graph. Finally,
a classification layer takes the representation
of entity-to-entity edges as input to determine
whether those entities express a relation or
not. We compare to EoG in the pipeline-based
setting on the CDR and GDA corpora.

Nan et al. (2020) propose LSR (Latent Struc-
ture Refinement). A “node constructor” en-
codes each sentence of an input document and
outputs contextual representations. Represen-
tations that correspond to mentions and tokens
on the shortest dependency path in a sentence

24

]

are extracted as nodes. A “dynamic reasoner’
is then applied to induce a document-level
graph based on the extracted nodes. The clas-
sifier uses the final representations of nodes
for relation classification. We compare to LSR
in the pipeline-based setting on the CDR and
GDA corpora.

Lai and Lu (2021) propose BERT-GT, which
combines BERT with a graph transformer.
Both BERT and the graph transformer accept
the document text as input, but the graph trans-
former requires the neighbouring positions for
each token, and the self-attention mechanism
is replaced with a neighbour—attention mecha-
nism. The hidden states of the two transform-
ers are aggregated before classification. We
compare to BERT-GT in the pipeline-based
setting on the CDR and GDA corpora.

Minh Tran et al. (2020) propose EOGANE
(EoG model Augmented with Node Represen-
tations), which extends the edge-orientated
model proposed by Christopoulou et al. (2019)
to include explicit node representations which
are used during relation classification. We
compare to EOGANE in the pipeline-based
setting on the CDR and GDA corpora.

SSAN (Xu et al., 2021) propose SSAN (Struc-
tured Self-Attention Network), which inherits
the architecture of the transformer encoder
(Vaswani et al., 2017) but adds a novel struc-
tured self-attention mechanism to model the
coreference and co-occurrence dependencies
between an entities mentions. We compare



to SSAN in the pipeline-based setting on the
CDR and GDA corpora.

e Zhou et al. (2021) propose ALTOP (Adaptive
Thresholding and Localized cOntext Pooling),
which extends BERT with two modifications.
Adaptive thresholding, which learns an opti-
mal threshold to apply to the relation classifier.
Localized context pooling, which uses the pre-
trained self-attention layers of BERT to create
an entity embedding from its mentions and
their context. We compare to ALTOP in the
pipeline-based setting on the CDR and GDA
corpora.

G.2 n-ary relation extraction

These methods are explicitly designed for the ex-
traction of n-ary relations, where n > 2.

* Jia et al. (2019) propose a multiscale neural
architecture, which combines representations
learned over text spans of varying scales and
for various sub-relations. We compare to Jia
et al. (2019) in the pipeline-based setting on
the n-ary DGM corpus.

G.3 End-to-end methods

These methods are capable of performing the sub-
tasks of DocRE in an end-to-end fashion with only
the document text as input.

* Eberts and Ulges (2021) propose JEREX,
which extends BERT with four task-specific
components that use BERTs outputs to per-
form entity mention localization, coreference
resolution, entity classification, and relation
classification. They present two versions of
their relation classifier, denoted “global re-
lation classifier” (GRC) and “multi-instance
relation classifier” (MRC). We compare to
JEREX-MRC in the end-to-end setting on the
DocRED corpus.
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Abstract

Probing factual knowledge in Pre-trained Lan-
guage Models (PLMs) using prompts has in-
directly implied that language models (LMs)
can be treated as knowledge bases. To this
end, this phenomena has been effective, espe-
cially when these LMs are fine-tuned towards
not just data, but also to the style or linguistic
pattern of the prompts themselves. We observe
that, satisfying a particular linguistic pattern in
prompts is an unsustainable, time-consuming
constraint in the probing task, especially be-
cause, they are often manually designed and
the range of possible prompt template patterns
can vary depending on the prompting task. To
alleviate this constraint, we propose using a
position-attention mechanism to capture posi-
tional information of each word in a prompt
relative to the mask to be filled, hence avoid-
ing the need to re-construct prompts when the
prompts’ linguistic pattern changes. Using our
approach, we demonstrate the ability of elicit-
ing answers (in a case study on health outcome
generation) to not only common prompt tem-
plates like Cloze and Prefix, but also rare ones
too, such as Postfix and Mixed patterns whose
masks are respectively at the start and in mul-
tiple random places of the prompt. More so,
using various biomedical PLMs, our approach
consistently outperforms a baseline in which
the default PLMs representation is used to pre-
dict masked tokens.

1 Introduction

Language models (LMs) as knowledge bases (KBs)
(LM-as-KB) is a rapidly growing phenomenon at-
tracting a lot of attention in the Natural Language
Processing (NLP) community (Petroni et al., 2019;
Brown et al., 2020; Shin et al., 2020; Schick and
Schiitze, 2020b). LM-as-KB implies the usage

*Danushka Bollegala holds concurrent appointments as
a Professor at University of Liverpool and as an Amazon
Scholar. This paper describes work performed at the Univer-
sity of Liverpool and is not associated with Amazon.
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Prompts Answers

1. The primary outcome is |[MASK] \ 1.severe pain

/

ient's |[MASK]| . .
2. The patient's improved — 2 quality of life
over the course of treatment.

3.|[MASK] was diagnosed in

— 3. Depression

~

seven patients.

LMse.g.
4, (MAsK] | such as| [MASK] | were BERT, 4.Adverse eve nts,
— — BioBERT blurred vision,
observed in patients with| [MASK] |, SGiBERT etc and glaucoma

Figure 1: Prompt query variants used for probing evi-
dence (in form of health outcomes) from PLMs, includ-
ing common styles like Prefix (1) and Cloze (2) style,
as well as rare styles Postfix (3) and Mixed (4) styles
with [MASK] token/s at the beginning and in multiple
positions in the prompt.

of LMs as an alternative or at least a proxy for
explicit KBs. To achieve LM-as-KB, researchers
adopt prompt-based learning (PBL) in which LMs
learn to probabilistically predict missing informa-
tion once given fill-in-the-blank prompt inputs (Liu
et al., 2021) such as “Fiffel tower is located in ___ .
PBL has generally been a success, for example, in a
systematic survey of prompting methods, Liu et al.
(2021) indicate that “pre-train, prompt and predict”
is a new paradigm replacing “pre-train and fine-
tune” paradigm in NLP. Because of this success,
the rationale that LMs contain factual retrievable
knowledge (LM-as-KB) is ostensibly justified and
therefore continually explored.

The prompt sequences often used in PBL have a
masked token or span (denoted by [MASK] in the
remainder of the paper) that positionally appears
either in the middle (Cloze-style) (Petroni et al.,
2019; Schick and Schiitze, 2020b; Cui et al., 2021)
or at the very end of the sequence (Prefix style)
(Qin and Eisner, 2021; Shin et al., 2020). Moreover,
we learn that the majority of the PBL tasks probe
relational knowledge possessed by pre-trained lan-
guage models (PLMs) (Jiang et al., 2020b; Petroni
et al., 2019; Davison et al., 2019), which implies
that the prompt inputs used in querying the PLMs
have to contain relational information (such as

Proceedings of the BioNLP 2022 workshop, Dublin, Ireland, pages 26-36
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“subject-relation-object” triples). Furthermore, we
observe that, a fair amount of time in several PBL
tasks is spent reconstructing prompt inputs through
manually designing templates (Petroni et al., 2019;
Davison et al., 2019) or corrupting prompt inputs
through deletion (Lewis et al., 2019), replacement
(Raffel et al., 2019) or permutation (Heinzerling
and Inui, 2020).

As discussed above, we notice that, the syntac-
tic and semantic structure of prompt inputs is a
constraint encountered in PBL, notwithstanding
the multitude of constraints that could arise given
that PBL is inherently a text generation task (Liu
et al., 2021). This constraint will usually require
researchers to laboriously prepare supervised data
with prompts whose linguistic patterns suit the ob-
jective of the prompting task, For instance, (Davi-
son et al., 2019; Jiang et al., 2020a; Heinzerling and
Inui, 2020), use templates that reformulate prompts
to contain relational information connecting a par-
ticular text span to the to-be filled information.
However, template-based prompt reformulation has
two main challenges. First, it presents a risk of cor-
rupting the grammar of the prompts unwittingly
(Davison et al., 2019). Second, the search space
of the candidate prompts is too large (Gao et al.,
2020) and is practically impossible to create tem-
plates that can enumerate all possible linguistic
patterns that prompt queries can be tailored to. For
example, prompt template patterns with missing
information at the beginning and or with multiple
missing information in a sequence are yet to be
explored in prior works.

To address the above-mentioned challenges,
we propose a strategy we denote position-based
prompting (PBP), which is less concerned about
the linguistic pattern or shape the prompt takes on,
but rather focuses on the words (that the prompts
are composed of) and their positions relative to the
[MASK]. PBP is focused on shifting the empha-
sis on subject-relation-object triples to the masked
positions as well as the interaction of all the other
words with the [MASK]s position. PBP is built to
automatically adjust from one prompt template to
another, which essentially eliminates the need to
prepare hand crafted prompts in the event that an
LM is to be probed for rare knowledge. In its ar-
chitecture, PBP enhances contextualised word rep-
resentations with position-aware representations
to solve fill-in-the-blank tasks. In our approach,
we fine-tune PLM parameters along with position-
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oriented parameters to generate position-based con-
textualised word representations.

To test our approach, we investigate how well
biomedical LMs store and recall information rel-
evant to biomedical entities, with a specific in-
terest in health outcomes, which are defined as
measurements or observations used to capture and
assess the effect of treatments (Williamson et al.,
2017). In addition to the Prefix and Cloze styles,
we incorporate two rare prompt style patterns that
we denote Postfix and Mixed, where the former
contains the [MASK] token/s at the beginning of
the prompt sequence and the latter has multiple
[MASK] token/s in various positions (Figure 1).
Our approach obtains mean scores (across several
biomedical LMs) in Exact Match (EM) and Par-
tial Match (PM) metrics that are an improvement
(2.4% across both metrics) over those obtained us-
ing the vanilla PLM representations, reporting a
significant improvement of 6.49% in F1 on the
EBM-NLP (Nye et al., 2018) dataset. As later de-
fined in section 4.1, EM measures the percentage
of predictions of all [MASK] tokens (or spans) that
match the ground truth, whereas PM measures the
percentage of correctly predicted [MASK] tokens.

2 Entity memorisation and recalling

Large-scale LMs with billions of parameters have
already shown to recall facts that were observed
in the training data (Heinzerling and Inui, 2020;
Jiang et al., 2020a). However, the ground truth
for these LMs to achieve this is already laid with
systematically handcrafting rules to follow in cre-
ating the prompt input sequences they receive at
the training stage. For instance, the majority of the
prompts created in PBL tasks embed knowledge in
form of triples {subject,relation,object} such that
LMs could correctly predict object entities when
prompted with a sequence containing a subject and
relation or otherwise predict subject entities when
prompted with a sequence containing an object and
a relation (Sung et al., 2021; Jiang et al., 2020a;
Qin and Eisner, 2021). Whichever the case, models
often predict answers as shown in (1).

Ui = argmax p(IMASK] = yilzprompt) (1)

Yi
where i is the position of masked token within a
prompt Zp,ompt-

In this work, we however do not assume any
prior knowledge contained in a prompt, but rather



simply locate outcome entities in the sentences
extracted from Randomised Clinical Trial (RCT)
abstracts and mask them, an approach we refer to
as custom masking.

3 Method

In addition to formally defining the task we under-
take, this section discusses the data used as well as
the different stages of our proposed PBP strategy.

3.1 Task

Let us consider an input prompt sequence s
with one or more outcomes masked such that
s = x1,...[M];...[M]j...x,, where [M] is
a masked token sequence, [M] {xz}ggM‘ ,
i € [1,n] and |M] is the length of the masked
sequence. We consider four different prompt query
variants shown in Figure 1: Prefix prompts con-
tain [M] at the end of the prompt, Cloze prompts
contains [M] in the middle of the prompt, Postfix
prompts contain [M] at the start of the prompt, and
Mixed prompts where there are several masked
sequences distributed across the prompt. The ques-
tions we then pose are: (a) can we determine how
knowledgeable biomedical PLMs are of stored facts
such as health outcomes?, and (b) If queried with
any of the above variants, would these PLMs cor-
rectly fill in [M|s with the correct outcomes?

3.2 Datasets

Different from previous PBL works, we neither
create custom templates nor do we reformulate
prompts to follow an ideal linguistic pattern. We
use plain raw sentences (that mention health out-
comes) extracted from RCT PubMed abstracts,
which are contained in the revised version of
EBM-NLP (Abaho et al., 2019) and EBM-COMET
(Abaho et al., 2021b) datasets. Both of these
datasets support evidence based medicine (EBM)
tasks such as extraction of health outcomes from
clinical trials (Beltagy et al., 2019; Abaho et al.,
2021a).

We do not eliminate any of the abstract sentences
that do not mention outcomes, because we aim
to familiarise the PLM (at fine-tuning) with text
or context in RCT abstracts which generally re-
port about outcomes during clinical trial studies
(Williamson et al., 2017). We refer to these sen-
tences as no_blank sequences and use them along-
side the prompt query variants introduced earlier.
To our advantage, several sentence segments have
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no outcome annotations in both the EBM-NLP and
EBM-COMET datasets.

3.3 Masked Language model and Prompt
engineering

We extract a hidden state h; for each token in an
input prompt s using a domain-specific PLM,

h; = PLMy(x;) )

where h; is a hidden state for the word x at position
1. The matrix of hidden states for the entire input
prompt is represented as H € R™** where n is
number of words in s and k is the hidden state size.

We define a function fprompt that concatenates
the h; in (2) to a randomly initialised d dimen-
sional vector, which we denote as z; corresponding
to one of the four prompt query variants or the ad-
ditional no_blank sequences (introduced in §3.2),
where ¢ € @reﬁx, cloze, postfix, mixed, no_blank].
The function ensures that if an input s is a Prefix
prompt, the corresponding vector zpfi, 1S con-
catenated to each h; generated from s as shown
in (3). This is done to enable knowledge transfer
from one prompt query to another. For example,
Mixed prompts are by construction a combination
of Prefix, Postfix, and Cloze, hence they should
benefit from information sharing via a common
vector space.

fprompt(hi) = [Zt§ hz] 3)

2 € R% where z is a query type embedding of
size d;.

3.4 Position based conditioning (PBC)

To enrich the token representations, we propose
a position-based attention mechanism to steer the
model’s focus on relevant information in the input
prompt. We define a sequence of position ids for
each input prompt, where all masked positions take
on an id of 0 and all the other tokens take id’s rela-
tive to the masked position id. For example given a
Cloze prompt with m tokens, we assign a mask at
position ¢ an id 0, and resulting sequence of posi-
tionidsisp=[1—14,2—14,...,—1,0,1,..., (m—
1) — 4, m—1]. We compute an attention vector A,
given by (4), for an input prompt s that allows each
token to interact with every other token and retain
knowledge of the relative position of the masked
tokens in the input sequence.

A — softmaX(VT tzmh(WHT + UP; ) 4



Here, A(®) € R"*1 vV ¢ Rkax1 [ is size of
attention layer, W € RFexk P, c R"*k» and
U ¢ RFaXk» P is a matrix of position embed-
dings of size k), extracted for each position p,, in the
input prompt s. These embeddings are extracted
from a trainable matrix P € R?"**» of randomly
initialised vectors of size k,, for all possible posi-
tions 2n where n is the maximum sequence length,
[{pn}",}| = 2n. The position based representa-
tion of each token is then computed with respect
to the type of prompt. For the Prefix, Postfix and
Cloze prompts, we obtain a prompt representation
M? given by (5).

M®) = ACH (5)

Here, M®) ¢ R™**_ For the Mixed prompts
in which we have multiple masked positions
within the input sequence, we avoid biasing the
attention mechanism towards masks at a spe-
cific position and thereby considering as many
position id sequences as there are masked posi-
tions in the input prompt. For example, given
a sequence with 3 masked positions, s
[M], x9, x3, [M], x5, x¢, [M], we obtain 3 position
id sequences, i.e. the combined position id se-
quences is,

P = P,

where each P; is obtained with respect to the cur-
rent mask position ¢. For the example above, we
have P®) = {[0,1,2,3,4,5.,6], [-3,-2,-1,0,1,2,3.], [-
6,-5,-4,-3,-2,-1,0]}, where the first position id se-
quence is obtained by treating the [M] at position
1, as mask at 4, the second is obtained by treating
the [M] at position 4 as mask at 7 and finally the
third by treating [M] at the last position as mask at
1. Attention vectors are computed for each position
id sequence (P;) and subsequently used to obtain
the prompt representation M, . We compute the
final representation of a Mixed prompt as the mean
pool across these different representations,

[P
M@ =3 M ©
i
3.5 Prompt fine-tuning
The predicted probability of each vocabulary token

is estimated via (7).

y = softmax( f(WUM(S)T) (7)
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Therein, W, € RY"** v* is the vocabulary size
and f is a non-linear activation function. We use a
BERT-based loss in predicting the masked tokens
in each input given by (8).

Lppa=— Y Y log P(yils)

seT i

(®)

where 7 is the set of training example prompts.
Some of the prompt query variants (Postfix and
Prefix) are rare in the datasets, and some other
prompt sequences are quite lengthy. This poses
a challenge particularly when using small PLMs
(with few parameters) to recall factual information.
In order to mitigate model forgetfulness in such
examples, we introduce an auxiliary task that com-
putes a text classification loss as a cross entropy
loss given by (9).

Lrc == log P(yily<i, )

sET i€En

®

The overall training loss is defined as the weighted
combination of the two losses as given in (10).

L= Lpry + AL7C (10)

Similar to (Chronopoulou et al., 2019) and (Schick
and Schiitze, 2020a), we introduce a weighting
parameter A(> 0) to adapt the auxiliary losses to
the main mask prediction task'.

3.6 Prediction

Similar to BERT (Devlin et al., 2018), we consider
generating outputs in parallel, initially treating the
default representations provided by the model in
(2) as a baseline and therefore use them to predict
tokens in masked positions. We then use position-
aware representation obtained using the attention
mechanism in §3.4 to predict the mask tokens,
calling these results Position-based conditioning
(PBCQ). Lastly, we endeavour to retain the contex-
tual knowledge presented by the PLMs as much as
we possibly can by computing an average of the
Baseline and PBC representations and term these
Contextual PBC.

4 Experiments

In our experiments, we use several PLMs that
are pre-trained on clinical texts such as PubMed

'Our  implementation is  publicly  available
https://github.com/MichealAbaho/outcome_
generation.git



Dataset- EBM-COMET EBM-NLP

Method- Baseline PBC Contextual PBC Baseline PBC Contextual PBC
Metric- EM PM EM PM EM PM EM PM EM PM EM PM
BERT 43,12 47.55 43.04 49.84 4432 5594 3740 4555 41.10 47.00 47.31 51.06
BioBERT 50.71 58.01 50.55 58.61 5334 59.65 51.15 55.62 51.19 53.80 52.15 54.50
SciBERT 61.17 6748 6234 69.85 63.00 7095 57.12 6225 57.18 63.75 59.44 6391
Biomed_RoBERTA 44.01 59.67 4432 59.73 4432 6286 4045 51.72 4721 49.81 49.17 55.00
UmlsBERT 31.05 3461 3047 3577 3188 3646 28.66 33.15 30.02 38.51 39.16 40.15
Mean score 46.01 5346 46.14 54776 47.37 57.17 4296 49.66 4534 50.57 49.45 52.92

Table 1: Table reports EM and PM accuracies of the various biomedical Pre-trained Language Models for the
outcome recalling experiments. Mean score in a particular column is the average across all results in that column.

abstracts, which often report outcomes such as
BioBERT (Lee et al., 2020), SciBERT (Beltagy
et al., 2019) and Biomed_RoBERTA (Gururan-
gan et al., 2020). Additionally, we include Umls-
BERT because it augments BERT’s pre-training
input with semantic type embeddings aligned to
clinical knowledge (semantic types) in the Uni-
fied Medical Language System (UMLS) Metathe-
saurus (Michalopoulos et al., 2020). We also use
BERT (Devlin et al., 2018) as a vanilla PLM that
has not been pre-trained specifically on clinical
texts.

4.1 Training and Evaluation

Unlike previous works where a particular relation
within a prompt e.g. born-in, lives-in etc. might
appear multiple times within the train set, in our
case, prompts are not semantically related in any
way (i.e. their is no relation knowledge that can
be transferred over from one prompt to another).
Because of the nature of our prompts, we believe it
might be harder for the model to memorise them,
we therefore opt to train the models until the per-
plexity on the training data reaches 1 or until the ac-
curacy on the validation data saturates. We examine
the model’s generalisation ability to transfer knowl-
edge to unseen prompts in few-shot and zero-shot
settings. For the few-shot setting, we design exper-
iments where we measure a model’s accuracy in
generating outcomes (as answers), which it encoun-
tered in a small number of prompts during training.
The contexts in these evaluation prompts are not
encountered during training. For example, con-
sider an evaluation prompt — “The patient’s overall
[MASK] improved according to the HRQOL ques-
tionnaire”, the model would not have encountered
the context surrounding the “/MASK]”. For the
zero-shot evaluation, the model would have neither
encountered the prompt nor the target outcomes
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during training. To simulate both the zero- and
few-shot settings, we randomly split the datasets
into train (80%) and test (20%) splits, and use the
latter for the generalisation evaluation task shown
in Table 3. We tune all hyperparameters using the
validation data, and obtain optimal values as fol-
lows: learning rate - Se-5, batch size - 8, query type
embedding size - 50, position embedding size - 300
and an attention layer size - 200. Further details on
tuning bounds are provided in the Appendix.

Metrics: We define two different metrics for eval-
uating the proposed PBP strategy: Exact Match
(EM) and Partial Match (PM). EM counts a pre-
diction as 1 only if it matches completely with the
correct answer, whereas PM uses the fraction of
the overlapping tokens between the predicted and
correct answers. Both EM and PM are averaged
over all test instances to compute aggregated eval-
uation metrics, and we report their percentages in
the paper.

5 Results

In this section, we evaluate how well the model
generates health outcomes when queried to answer
a given prompt. For example, “After patients were
given sorafenib, they reported [MASK]”, the model
should correctly generate the outcome Fatigue for
the [MASK].

5.1 Outcome memorisation and retrieval

Table 1 shows the performance of the proposed
PBC method in the outcome generation task. As
observed, PBC consistently outperforms the base-
line across most of the clinically informed BERT
LM:s (for both datasets), particularly for the PM re-
sults. More interestingly, we notice that Contextual
PBC further improves the performance (both in EM
and PM), indicating the importance of preserving
the contexts in the position-based representations.



Average

prompt length PM
Postfix 65 18.5 48.43 58.51
Prefix 53 9.1 69.23 77.24
Cloze 630 242 50.08 60.49
Mixed 2594 38.8 43.68 45.46

Table 2: Exact Match (EM) and Partial Match (PM)
accuracies for Outcome memorisation/recalling for the
different prompt types using the EBM-COMET dataset.

Comparing the different LMs, we found
that, SciBERT performs best followed by
Biomed_RoBERTA and BioBERT. Since all tested
models follow the original BERT’s architecture, we
hypothesize that, the nature of corpora used in pre-
training the best performing models was responsi-
ble for the performance, i.e. unlike UMLSbert and
BERT, all the other models are pre-trained on text
that includes PubMed abstracts, which often report
outcomes. Additionally, we observe that PM re-
sults were generally better than EM results, which
we attribute to the fact that PM is less strict com-
pared to EM because it rewards the model for cor-
rectly generating a few of the tokens in the masked
positions. Overall, the results suggest that PBC
can be used to effectively retrieve facts such as
health outcomes (biomedical entities) by simply
augmenting contextual word representations with
position-aware representations.

5.1.1 Prompt query variants

In Table 2, we notice that the accuracy with which
a model correctly answers Prefix prompts is signif-
icantly higher than that of the other prompts. We
attribute this performance to the short length of
these spans such as the one shown in Table 4 and
the average number of tokens to decode per prompt.
We also notice that the model struggles to correctly
answer Mixed prompts compared to other types of
prompts. We attribute this to the fact that, Mixed
prompts are generally very long sequences (38.8
tokens on average) and contain multiple masked
positions to be predicted.

5.2 Few- and Zero-shot Evaluations

To evaluate the model’s generalisability, we fine-
tune the model towards a small amount of target
outcomes, and then measure the transferability of
this knowledge by requiring the model to accu-
rately generate these outcomes in prompts with
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Cloze Mix Postfix Prefix

# 174 613 13 12

Table 3: Number of prompts per prompt type used in
evaluation of the few- and zero-shot settings.

Few shot setting

2.40 0.00 0.00

Prefix

25.50

0.00 0.00

Postfix
partial_match

- 30

partial_match accuracy

Cloze

-15

17.15 41.67

Mixed

' | i
0-6 6-12 12-21

21-70
Target outcome occurrence frequency

Few shot setting

3.08 0.00 0.00 40

Prefix

32

Y

Postfix

N

e
exact_match

-16

exact_match accurac

Cloze

12.26

Mixed

' i
0-6 6-12

12-21
Target outcome occurrence frequency

21-80

Figure 2: Visualizing the Partial Match and Exact match
accuracies when the best model (SciBERT+Contextual
PBC+EBM-COMET) is trained with only a certain num-
ber of target outcomes.

completely different contexts. Test set prompts in
Table 3 are carefully chosen using regular expres-
sion matching such that the contexts surrounding
the missing outcomes are different from that of
similar outcomes observed during training. For ex-
ample, the model could have been trained on the
outcome “adverse events” in five different prompts,
and then at evaluation, the model is required to gen-
erate the same outcome, however using prompts
that are different from those encountered during
training. By different here we mean that the con-
text (e.g. {ctxt} surrounding masks [M] in Table 4)
in the prompt changes during this evaluation. Fig-
ure 2 plots shows results of model evaluation on
prompts (Table 3). As observed in the plots, the
model struggles to generate outcomes it hardly en-
countered during training (i.e. outcomes appearing
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Figure 3: Analysis of the accuracy (PM) with which best model (SciBERT+Contextual PBC+EBM-COMET) recalls
different types of factual information (outcome types) with varying span lengths and occurrence frequency (in the

dataset).

in 0-6 prompts or 6-12 prompts). This is mostly ev-
ident in generating outcomes for Prefix and Postfix
prompts, which is because there were not just few
evaluated prompts of this types, but there were also
few (53 and 65 respectively as shown in Table 2)
in the train set. However, we see a trend of perfor-
mance improvement when the frequency of target
outcomes encountered during training increases,
particularly for the Mixed and Cloze prompt.

6 Analysis

6.1 Impact of Length and Frequency of
Outcomes

We partition the entire set of outcomes in EBM-
COMET into 3 different groups based on lengths.
Dividing the length of the longest outcome (22) by
3, we get approximately 7 which we use to create 3
groups i.e. 1) “short span length” to represent out-
comes that are < 7 tokens long, 2) “medium span
length” to represent outcomes of 7 > and < 14
tokens, and finally 3) “long spans” to represent
outcomes of > 14 tokens long. Figure 3 shows
how well the best model (SciBERT+Contextual
PBC+EBM-COMET) performs when recalling out-
comes of varying lengths and frequencies. Follow-
ing prior work on EBM NLP, we endeavour to show
the model’s outcome recall rate by outcome type,
which can be informative in terms of the complex-
ity of modelling these outcomes. We firstly notice
the skewed distribution of outcome lengths with
short spans dominant in the training sample. Un-
surprisingly, we observe a trend of a performance
increase as the frequency increases across the left
hand plot with short outcomes, implying that the
model struggles to recall infrequent outcomes de-
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spite their size but easily recalls the more frequent
ones.

6.2 Random masking Vs custom masking

Figure 4 shows results of an ablation test in which
we replace our custom masking approach with ran-
dom masking. The key difference between the two
is, while custom masking involves masking (or hid-
ing) the outcomes in the prompts, random masking
arbitrary masks 15% of the prompts tokens. As
shown in the figure, the number of epochs required
to reach a perplexity of 1.0 on the train data for the
two masking approaches is almost incomparable,
with custom masking quickly achieving this in ap-
proximately 7 epochs and random masking failing
to achieve this, even after 20 epochs. The earli-
est random masking achieves 1.0 perplexity is 80
epochs for SciBERT, however we only visualise 20
epochs because of space. Besides this, the insight
suggests that, custom masking would significantly
reduce GPU run-time or otherwise minimise over-
whelming computational resources with massive
datasets.

6.3 Error Analysis

We analyse the outcomes generated by the
best model (SciBERT+Contextual PBC+EBM-
COMET) during the few shot evaluation and notice
that whilst the model generates correct outcomes
for some prompts, it makes various kinds of mis-
takes. Table 4 includes a fair sample of the most
commonly discovered mistakes. Incomplete out-
comes, such in the Postfix where instead of “Qual-
ity of life”, the model generates “Life”. Qutcomes
with irrelevant information, such as Prefix case
where the models generates more than what’s ex-



Query Variant Prompt Correct Generated outcomes
Cloze Self-reported life-time medical diagnosis of [M] oruse Depression - Depression
{ctxt} [M] {ctxt} of antidepressants was considered as outcome. p P
Postfix [M] was assessed by questionnaires EORTC QLQ-C30,
and EORTC QLQ-BR23 at baseline, and at three, six, - Quality of life - Life
(M] {ctxt} .
and nine months.
Prefix Two CMZ patients and one morphine patient showed -~ pain _ unwanted pain
{ctxt} [M] complete [M]. p P
Mixed Further additional benefits are better [M] and shorter - quality of life (QOL) — Immunosuppressive
{ctxt} [M] {ctxt} [M] compared with standard GVHD prophlaxis - immunosuppressive treatment PP
[M] {ctxt} without ATLG. treatment

The incidence of postoperative [M], [M], [M] and [M]

was similar between the groups

- nausea, - vomiting,

. - anxiety, - depression
- drowsiness, -headache ¥ P

Table 4: Example prompts from our test set and their predicted or generated outcomes for the outcome generation
task. The Query variant column indicates the type of prompt as well as the prompt structure where {ctxt} implies
context which might appear before, after or either ends of a masked sequence span.

Comparison of the two masking approaches

UmlsBert
scibert
Biomed
Biobert
Bert

t1144

Perplexity

I— Random mask
24 & f— Custem mask

T
2.5

T T T T T
10.0 12.5 15.0 17.5 20.0

epochs

T T
5.0 75

Figure 4: Achieving a target perplexity of 1.0 on the
train dataset takes no fewer than 20 epochs with generic
random masking of 15% of the input prompt tokens
(Devlin et al., 2018) compared to masking target factual
information i.e. outcome spans themselves. Hitting
target perplexity is shown using a diamond.

pected, “unwanted pain” instead of “pain”. Finally,
wrong outcomes, where the model generates com-
pletely unexpected outcomes such as the case in
the Mixed prompts.

7 Related work

Interrogating PLMs with fill-in-the-blank prompts
to determine their knowledge and awareness of
factual information is a trending paradigm in NLP.
Despite the emergence of subtle techniques such as
automating prompt structuring (Shin et al., 2020;
Gao et al., 2020), selectively updating parameters
of LMs and prompts (also known as continuous
prompting) (Li and Liang, 2021; Qin and Eisner,
2021), or even not tuning at all (Brown et al., 2020),
several works including these still heavily rely on
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handcrafted prompts to use in probing LMs. Our
efforts are motivated by the fact that we need not
worry about the nature of the prompt, but rather can
leverage on information local to the prompt such
as word positions to probe the LMs. We attempt
to enhance a word’s contextualised representation
with position based representations to capture the
word’s position relative to the mask to be filled.
Previously some works have used similar position-
aware attention over LSTMs for relation extraction,
sequence labelling and slot filling tasks in different
datasets (Wei et al., 2021; Zhang et al., 2017). To
the best of our knowledge, we are the first to use
an extra position-attention layer above transformer
models such as BERT to solve the fill-in-the-blank
prompting task.

8 Conclusion

This paper assesses the possibility of ignoring the
constraint of aligning prompts to specific linguis-
tic patterns in prompting tasks that aim to store
knowledge in LMs that could later be retrieved
or transferred for fact generation tasks. In experi-
ments using clinical domain datasets (supporting
EBM tasks), we show that the position-based at-
tention implemented over contextualised LMs can
improve the ability of PLMs to recall facts such as
outcomes (biomedical entities) encountered during
training. We further observe our proposed model
is able to generalise across unseen prompts, per-
forming considerably well for Cloze and Mixed
(extremely rare in PBL tasks) prompts. With the
obtained experimental results, despite not aligning
our prompts to commonly followed linguistic pat-
terns, we can positively answer the question posed



in §3.1 by claiming that PLMs are knowledgeable
of stored facts.
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Appendices
A Hyperparameters and Run time

Using BioBERT in the Position based conditioning
framework, we perform a grid search through mul-
tiple combinations of hyperparameters included in
Table Table 5 below. The model is tuned on 20%
of EBM-COMET dataset (as a dev set), we obtain
the best Partial Match (PM) and Exact Match (EM)
accuracies. Table Table 5 shows the range of values
(including the lower and upper bound) for which
the model is tuned to obtain optimal configurations.
Using a shared TITAN RTX 24GB GPU, the base-
line model runs for approximately 40 minutes per
epoch.

Parameter Tuned-range Optimal
Train Batch size [8,16,32] 16,32
Eval Batch size [8,16,32] 8
Query type embedding size [50,100,150] 50
Position embedding size [100,200,300] 300
Attention layer size [100,200,300] 200
Optimizer [Adam, SGD] Adam
Learning rate [5e-5, le-4, 5e-3, 1e-3] 5e-5

Table 5: Parameter settings for the Position-based con-
ditioning model

B Datasets

B.1 EBM-NLP

EBM-NLP corpus (Nye et al., 2018) is a crowd
sourced dataset in which ca.5,000 clinical trial ab-
stracts were annotated with elements in the health
literature searching PICO framework (Huang et al.,
2006). PICO stands for Participants, Interventions,
Comparators and Outcomes. The dataset has sup-
ported clinicalNLP research tasks (Beltagy et al.,
2019; Brockmeier et al., 2019). The corpus has two
versions, (1) the “starting spans” in which text
spans are annotated with the literal “PIO” labels (I
and C merged into ) and (2) the “hierarchical la-
bels” in which the annotated outcome “PIO” spans
were annotated with more specific labels aligned
to the concepts codified by the Medical Subject
Headings (MeSH) 2, for instance the Outcomes
(O) spans are annotated with more granular (spe-
cific) labels which include Physical, Pain, Mental,
Mortality and Adverse effects. For the clinical
recognition task we attempt, we use the hierarchi-
cal version of the dataset. The dataset has however

https://www.nlm.nih.gov/mesh



been discovered to have flawed outcome annota-
tions (Abaho et al., 2019) such as (1) statistical
metrics and measurement tools annotated as part
of clinical outcomes e.g.“mean arterial blood pres-
sure” instead of “arterial blood-pressure” *“Quality
of life Questionnaire” instead of “Quality of life”
and (2) Multiple outcomes annotated as a single
outcome “Systolic and Diastolic blood- pressure”
instead of “Systolic blood-pressure” and “Diastolic
blood-pressure”.

B.2 EBM-COMET

A biomedical corpus containing 300 PubMed “Ran-
domised controlled Trial” abstracts manually anno-
tated with outcome classifications drawn from the
taxonomy proposed by (Dodd et al., 2018). The
abstracts were annotated by two experts with exten-
sive experience in annotating outcomes in system-
atic reviews of clinical trials (Abaho et al., 2021b).
Dodd et al. (2018)’s taxonomy hierarchically cate-
gorised 38 outcome domains into 5 outcome core
areas and applied this classification system to 299
published core outcome sets (COS) in the Core
Outcomes Measures in Effectiveness (COMET)
database.

C Layer probing

Initially, the hidden state we used (Equation (2)) ex-
tracted from the last layer for each of the Biomed-
ical PLMs for all experiments. We however ex-
plore an option of extracting a weighted average
of representation across all layers (Equation (12))
as a hidden state and study the performance of the
models once this hidden state is introduced in the
Position based conditioning framework to obtain
position-aware representations.

h! = PLMy(z;) (11)

h; = MeanPool(h, .., hé, e héN) (12)

where hé is a hidden state extracted from the [

layer for word z at position .

We only repeat training experiments using the
Contextual PBC setup (subsection 3.6) however
this time round using a mean pooled embedding
across all layers as the hidden state. We notice
that, aggregating a tokens representation by mean
pooling across all layers of the transformer-based
models does improve the performance in the out-
come recalling experiments for both datasets.
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Dataset EBM-COMET
Contextual PBC  Contextual PBC
Method (last layer) (Mean pool)
Metric EM PM EM PM
BERT 4332 5594  45.80 57.19
BioBERT 53.34 59.65 53.58 61.22
SciBERT 63.00 7095 63.15 72.67
Biomed_Roberta 44.32 62.86 45.00 63.17
UmlIsBERT 31.88 36.46  33.10 39.21
Mean score 4737 57.17 48.13 58.70

Table 6: Table reports EM and PM accuracies of the
various biomedical Pre-trained Language Models for the
outcome recalling experiments using the EBM-COMET
and Contextual PBC. Mean score in a particular column
is the average across all results in that column.

Dataset EBM-NLP

Contextual PBC Contextual PBC
Method (last layer) (Mean pool)
Metric EM PM EM PM
BERT 4731 51.06 4745 53.41
BioBERT 52.15 5450 54.80 55.15
SciBERT 59,44 6391 60.08 66.93
Biomed_Roberta 49.17 55.00 49.19 56.33
UmlIsBERT 39.16 40.15 41.12 42.41
Mean score 49.45 52.92  50.53 54.85

Table 7: Table reports EM and PM accuracies of the
various biomedical Pre-trained Language Models for
the outcome recalling experiments using the EBM-NLP
and Contextual PBC. Mean score in a particular column
is the average across all results in that column.
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Abstract

Automatic speech recognition (ASR) sys-
tems usually incorporate postprocessing mech-
anisms to remove disfluencies, facilitating the
generation of clear, fluent transcripts that are
conducive to many downstream NLP tasks.
However, verbal disfluencies have proved to
be predictive of dementia status, although lit-
tle is known about how various types of verbal
disfluencies, nor automatically detected disflu-
encies, affect predictive performance. We ex-
periment with an off-the-shelf disfluency anno-
tator to tag disfluencies in speech transcripts
for a well-known cognitive health assessment
task. We evaluate the performance of this
model on detecting repetitions and corrections
or retracing, and measure the influence of gold-
annotated versus automatically detected verbal
disfluencies on dementia detection through a
series of experiments. We find that remov-
ing both gold and automatically-detected dis-
fluencies negatively impacts dementia detec-
tion performance, degrading classification ac-
curacy by 5.6% and 3% respectively.

1 Introduction

As populations grow older worldwide, the num-
ber of people with Alzheimer’s disease (AD) and
related dementia is also on the rise (Alzheimer’s
Association, 2018). Significant changes to speech
and language use caused by dementia occur early
in disease progression (Bucks et al., 2000). Interest-
ing case studies have demonstrated how diachronic
analysis of patients’ language use may reveal signs
of dementia, using writing samples from British
novelists Iris Murdoch, who ultimately perished
with Alzheimer’s, and Agatha Christie, who was
suspected of it (Le et al., 2011). Numerous stud-
ies have also sought to automatically detect early
signs of the disease and model its progression using
speech and writing samples (Becker et al., 1994;
Herd et al., 2014; Yancheva et al., 2015; Masrani,
2018; Di Palo and Parde, 2019; Zhu et al., 2019;
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Fraser et al., 2019; Eyre et al., 2020; Farzana and
Parde, 2020; Sarawgi et al., 2020).

Although some studies have pointed to disflu-
ency patterns as an important predictor of AD sta-
tus (Lopez-de Ipina et al., 2017; Mueller et al.,
2018), research in this area has been limited by sev-
eral factors. Disfluency detection is a challenging
and resource-intensive task in itself (Wang et al.,
2017; Jamshid Lou and Johnson, 2017; Zayats and
Ostendorf, 2019), and may lie out of scope for
many interdisciplinary researchers already strad-
dling boundaries between NLP and clinical practice
(Valizadeh and Parde, 2022; Kaelin et al., 2021).
Rich manual disfluency annotations are present in
some datasets common in automated dementia de-
tection (Becker et al., 1994), but off-the-shelf ASR
systems do not typically transcribe disfluencies.
Moreover, inconsistencies between automatically
generated and gold standard transcripts may pose
significant challenges for modeling dementia in
real-world applications (Balagopalan et al., 2020b),
for which ASR will be a necessary component of
any speech-based pipeline.

We address these limitations, by investigating the
impacts of automatically derived disfluencies on
modeling cognitive decline. Our key contributions
are as follows:

1. We experiment with an off-the-shelf disflu-
ency detection model to automatically assign
word- and phrase-level disfluency tags to sam-
ples from the most popular dementia detection
dataset, focusing on repetitions and retraces.

We measure the influence of these disflu-
ency types on the downstream task of demen-
tia detection by systematically ablating gold-
labelled and automatically tagged disfluencies
from manual transcripts.

. We compare AD classification performance
on manually and automatically generated tran-
scripts, and compare the removal of gold and

Proceedings of the BioNLP 2022 workshop, Dublin, Ireland, pages 37-48
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automatically detected disfluencies from man-
ual transcripts, to investigate the influence ver-
bal disfluencies have on dementia detection.

This analysis' not only paves the way for the
discovery of approaches to automated dementia de-
tection that are more suitable for realistic scenarios,
but also enhances our understanding of the individ-
ual contributions of different disfluency types to
this task. We report on related studies and provide
relevant background for automatic disfluency de-
tection in §2. We describe our datasets and task
setup in §3, and detail our methods in §4. We report
the results of our experiments in §5, and further
analyze our findings in §6 before concluding in §7.

2 Related Work

2.1 Studies of Disfluency in the Context of
Cognitive Decline

Disfluency, defined as any interruption in the nor-
mal flow of speech, is prevalent in spoken lan-
guage. Verbal disfluency comprises several major
subcategories: false starts, repetitions, filled pauses
(e.g., “uh,” “um,” etc.), and sentence corrections
(Shriberg, 1994). Although verbal and nonverbal
(unfilled pauses) disfluencies are common in spon-
taneous speech, there is a fine line between normal
and abnormal disfluencies. This boundary can be
exploited to facilitate modeling cognitive decline.

Studies have found that verbal fluency is an ef-
fective indicator of cognitive decline, as fluency
declines rapidly for subjects suffering from early
stage Mild Cognitive Impairment (MCI) relative
to healthy controls (Mueller et al., 2018). Re-
searchers have previously leveraged both acous-
tic and transcript-based fluency features to auto-
matically detect MCI (Lopez-de Ipina et al., 2017,
Mueller et al., 2018). Another study revealed
that anomic aphasic subjects tend to produce more
disfluent speech than non-aphasic subjects during
word retrieval tasks, when examining disfluencies
or “stutterings” including part-word repetitions, vo-
cal segregate repetitions, and prolongations (Brown
and Cullinan, 1981).

Transcript-based normalized verbal disfluency
features (e.g, filled pause count, retracing count,
and repetition count) have proved to be discrimina-
tive in predicting outcomes from cognitive screen-

"https://github.com/AshwinDeshpande96
/Measuring_the_Impact_of_Verbal_Disflue
ncy_Tags_on_Automated_Dementia_Detection
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EDITED NP VP
EDITED S PRP VBP
NP NP VP

A I R
PRP PRP VBP ‘

|
I I 've I enjoy
Figure 1: An example of gold labelled parse tree

(Jamshid Lou et al., 2019).

ing tests such as the Mini Mental State Examina-
tion (MMSE) and AD classification, as have con-
catenations of automatically detected verbal disflu-
ency segments (e.g., repair onset, edit term, and
fluent words) with word vectors (Farzana and Parde,
2020; Rohanian et al., 2020, 2021). Automatically
extracted non-verbal disfluency features from both
transcripts and speech (e.g., silent pauses, speed of
articulation, and pronounciation) have also shown
performance boosts in AD classification (Yuan
et al., 2020; Qiao et al., 2021).

2.2 Automatic Disfluency Detection

Disfluency detection is a key challenge in pars-
ing transcribed speech. Disfluencies are defined
structurally with three main components (Shriberg,
1994): the reparandum, the interregnum and the
repair. The reparandum is replaced by the repair
segment and the interregnum is an optional part
of the structure consisting of filled pauses (e.g.,
“uh”) and discourse connectives (e.g., “I mean”).
We present an example disfluency with all three
components present below:

I'(f]?(l}'(,l”duﬂl [‘/11('/‘/‘("‘5’/111/11 repair
et B N o ey
I[1’ve uhlmean Ienjoy

Disfluencies are further categorized into rep-
etition, correction/retracing, and false start
(Jamshid Lou and Johnson, 2020a), following es-
tablished typology of speech repairs (Shriberg,
1994). Repetition contains identical reparandum
and repair segments, whereas the reparandum and
repair differ in correction/retracing. The latter is
much harder to detect automatically.

Disfluency detection on pre-segmented utter-



ances from the Switchboard treebank corpus (God-
frey and Holliman, 1993; Marcus et al., 1999) has
been the focus of many prior works (Johnson and
Charniak, 2004; Charniak and Johnson, 2001; Qian
and Liu, 2013; Honnibal and Johnson, 2014). In
the Switchboard corpus, reparanda, filled pauses,
and discourse connectives are marked by EDITED,
INTJ, and PRN labels respectively (illustrated in
Figure 1). Conventional syntactic parsers often
fail to capture the unconventional relation between
reparandum and repair, where repair uses similar
words to the reparandum in the same order, func-
tioning as a “rough copy” rather than providing ad-
ditional information (Johnson and Charniak, 2004;
Charniak and Johnson, 2001). Because of the dif-
ficulty of addressing disfluency within the task of
syntactic parsing, systems have instead been devel-
oped to detect and remove disfluency prior to pars-
ing (Charniak and Johnson, 2001; Kahn et al., 2005;
Lease and Johnson, 2006). Nonetheless, transition-
based dependency parsers designed with special
mechanisms to handle disfluencies have proven
useful for detecting and removing disfluent words
and their dependencies from sentences (Honnibal
and Johnson, 2014; Rasooli and Tetreault, 2013;
Yoshikawa et al., 2016; Tran et al., 2018). More-
over, encoder-decoder constituency parsing mod-
els using lexical and prosodic cues (Tran et al.,
2018) have resulted in small performance gains
both in parsing and disfluency detection. Augment-
ing parsing models with location-aware attention
mechanisms has also been especially effective for
disfluency detection (Tran et al., 2018).

Specialized disfluency detection models frame
the problem as a sequence labelling task where
each word in the input is labelled as disfluent or
not. Neural models (CNNs and LSTMs) have been
employed for this (Zayats et al., 2016; Jamshid Lou
et al., 2018; Wang et al., 2016) but until recently
have not performed very well. A recent state-of-
the-art semi-supervised approach introduced a self-
attentive model (Wang et al., 2018) that jointly per-
forms syntactic parsing and disfluency detection.

The incremental approach for disfluency detec-
tion has been explored on both unsegmented and
pre-segmented utterances from manual and auto-
mated transcripts using LSTM with different decod-
ing schemes (Hough and Schlangen, 2015, 2017)
leveraging joint and multitask settings. Another
recent approach introduced the incremental pro-
cessing of words to a Transformer model (BERT
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(Devlin et al., 2019)) to detect speech disfluency
(Rohanian and Hough, 2021). However, these in-
cremental approaches perform poorly on detecting
reparanda of longer lengths.

3 Data and Task Setup

We used the ADReSS Challenge corpus for our
experiments (Luz et al., 2020). The ADReSS Chal-
lenge corpus, developed as part of a shared task
for INTERSPEECH 2020, is a benchmark dataset
of spontaneous speech in the domain of AD classi-
fication and MMSE score prediction. It has been
acoustically preprocessed, and is balanced in terms
of age and gender. The data consists of audio
recordings and manual transcriptions of spoken pic-
ture descriptions elicited from participants through
the Cookie Theft task from the Boston Diagnostic
Aphasia Exam (Roth, 2011). The corpus is a subset
of the Pitt corpus,? which is itself a subset of the
DementiaBank dataset (Becker et al., 1994).

In the Cookie Theft task, an investigator and a
participant (in this case, an older adult) carry on
a conversation in which the investigator asks the
participant to describe what is depicted in an event-
ful image containing, among other subjects, a boy
stealing a cookie from a cookie jar.> There is no
specific time limit for the conversation, allowing
participants to talk as long as they want. In the
Pitt corpus and by extension the ADReSS Chal-
lenge corpus, these conversations were recorded
and manually transcribed using the CHAT tran-
scription protocol (MacWhinney, 2000). Partici-
pants were labelled as HC (healthy control with
no cognitive decline) or AD (declined cognitively)
based on their prior diagnostic test results.

We report the transcript-level mean utterance
count and standard deviation (SD) for data col-
lected from AD and HC participants in Table 1,
showing that the lengths of conversations across
groups were fairly balanced (HC = 13.79 4+ 5.21
utterances; AD = 13.93 & 9.54 utterances). We
also report the mean MMSE score and SD for
each speaker category, showing a significant dif-
ference in cognitive health between groups (HC
29.11 £ 0.98 MMSE; AD = 17.06 + 5.46
MMSE). To assess significance, we applied the
Mann—Whitney U test (as the normality assump-

nttps://dementia.talkbank.org/access
/English/Pitt.html

3We refer interested readers to Karlekar et al. (2018),
Mueller et al. (2018), or some others cited in this paper for a
copy of the original image.



Test

AD HC Statistics
Utterance 13.93 13.79 U=135.0
Count (SD=9.54) (SD=5.21) p=0.25
MMSE 17.06 29.11 U=47.5
Score (SD=5.46) (SD=0.98) p=0.00

Table 1: Mean utterance count and MMSE score for the
AD and HC groups, with standard deviations in paren-
theses. Statistical significance (p) for differences be-
tween groups is reported along with the Mann-Whitney
U test statistic.

Ref.: and UM THAT 'S UH that 's about allican see

A”gned: kkk kok kokkk kk not kkkk kk xxkkkk 3l| | can see

Figure 2: The reference (Ref.) and aligned ASR out-
put for a sample utterance from the ADReSS Challenge
corpus. The reference transcript is human-transcribed
speech with gold disfluent words (red, capitalized) and
fluent words (black). Aligned refers to the desired align-
ment of ASR output with the reference text for making
meaningful FER and DER evaluations (Jamshid Lou
and Johnson, 2020a).

tion was violated) across the two speaker groups,
and we also report the test statistic (U) and signifi-
cance value (p) for each group in Table 1.

3.1 ASR Setup

We used the phone call enhanced model (16khz2)
of the Google Cloud-based Speech Recognizer
to automatically transcribe the audio files in the
ADReSS Challenge corpus to facilitate our compar-
isons of manually and automatically generated tran-
scriptions. Manually segmented utterances were
fed to the speech recognizer for transcription. The
overall word error rate (WER) for the automati-
cally generated transcripts was 69.47%. To evalu-
ate more fine-grained performance of the speech
recognizer, we estimated the fluent and disfluent
error rates (FER and DER). We provide the equa-
tions for computing both below, where dy, sy, i ¢,
and n refer to the number of deleted, substituted,
inserted, and total fluent words, respectively, and
dg, S4, 14, and ng refer to the number of deleted,
substituted, inserted, and total disfluent words, re-
spectively (Jamshid Lou and Johnson, 2020a):

_ df—f-Sf-l-if
_77”

FER )
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Group FER DER

AD 53.30% 77.60%
HC 47.30% 80.70%
Overall 50.20% 78.80%

Table 2: Rates of ASR error on the ADReSS Challenge
dataset, both at the class level (AD and HC) and overall.
For DER calcualtion, we consider all the disfluencies in
Table 6 as well as the Filled pauses (e.g. uh, um)

Repetition Retracing

76.50% 61.10%

DER

Table 3: DER of broad disfluency categories (repeti-
tion and retracing, as defined in Table 6).

dg+ sq+ g
nd

DER = 3)
To calculate DER,* we considered word repeti-
tion, multiple repetition, phrase repetition, word
retracing, and phrase retracing, with additional
details regarding each disfluency type provided in
Table 4. We show an alignment between gold and
automatically generated transcriptions for an ex-
ample utterance from the ADReSS Challenge cor-
pus in Figure 2. Computing FER for this example
would setdy =4, sy = 0,iy = 0,and ny = 8, re-
sulting in FER=0.5. Computing DER for the same
sample would set dg = 3, s4 = 1, iy = 0, and
ny = 4, resulting in DER=1.0. We report FER and
DER across the ADReSS Challenge corpus for AD,
HC, and all participants in Table 2 and the break-
down of DER for broad disfluency types (repetition,
encompassing word repetition, multiple repetition,
and phrase repetition, and retracing, encompassing
word retracing and phrase retracing) in Table 3.

3.2 Disfluency Annotator Setup

We leverage the self-attentive neural parsing model
(Jamshid Lou and Johnson, 2020b) to automati-
cally detect disfluencies in the ASR-generated tran-
scripts. The model is trained to jointly parse and
detect disfluency using contextualized word em-
beddings (BERT (Devinney et al., 2020) or ELMO
(Peters et al., 2018)) and currently produces state-
of-the-art performance with a parsing accuracy of

4 Although the original DER formulation counts the num-
ber of copies, we replace this with the number of deletions
since we expect the ASR to transcribe disfluent as well as
fluent words.



93.9% and a disfluency detection F;-score of 0.924
on the Switchboard development set (Jamshid Lou
and Johnson, 2020b) in the joint task. We use the
pretrained version of the disfluency detector and
parser.’ This version is self-trained on the Switch-
board gold parse trees (Marcus et al., 1999) and
Fisher Corpus Part 1 (Cieri et al., 2004) and Part 2
(Cieri et al., 2005) silver parse trees, using BERT-
base-uncased word representations.

4 Methods
4.1 Verbal Disfluency Types

We consider several disfluency types in this inves-
tigation: word repetition, phrase repetition, word
retracing, and phrase retracing. We limit our scope
to these disfluency types for two primary reasons:
(1) these verbal disfluency types are annotated in
our corpus of interest, and (2) automatic detection
of these types is challenging. We provide examples
of each of these in Table 4.° Word and phrase repe-
tition indicate repeated utterance of the same word
or phrase in such a way that is disfluent with the
natural flow of speech, whereas word and phrase
retracing indicate verbal “backtracking” to correct
a previously uttered word or phrase. In Table 5,
we report the frequencies of these disfluency types
across speaker groups.

4.2 Automatic Disfluency Annotation

We leveraged the self-attentive neural disfluency
annotator described in §3.2, trained on the Penn
Treebank-3 SWBD corpus (Marcus et al., 1999)
and the Fisher I and II corpora (Cieri et al.,
2004, 2005) using a semi-supervised approach
(Jamshid Lou and Johnson, 2020b). This multi-
task learning setup enables the model to predict
both parse trees and disfluency tags for utterances.
The disfluency annotator adds word-level annota-
tions to disfluent words, or those acting as EDITED,
INTJ, or PRN nodes (illustrated in Figure 1).

We preprocessed both the reference and ASR-
generated transcripts by removing punctuation and
(for the reference transcripts) existing disfluency
tags. We then fed the disfluency annotator one
utterance per line, in turn producing both a parse
tree and a disfluency-tagged version of the utter-
ance as output. Figure 3 shows an example ut-

Shttps://github.com/pariajm/english-£
isher—annotations

8 Although multiple repetition is coded distinctly from sin-

gle word repetition under the CHAT transcription protocol,
we consider both as members of the word repetition category.
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Disfluency
Example
Type P
Word the [/] the cabinet door has just
Repetition swung open
Multiple there’s nothing going on outside
Repetition there’s just bushes [x 3].
Phrase (what are) [/] what are the
Repetition instructions ?
and there are dishes [/ /] &uh
Word
. &uh two cups and a saucer on
Retracing .
the sink
Phrase and outside the window there’s a
. (walk with a) [/ /] &c curved
Retracing

walk with a garden .

Table 4: Example of different types of disfluencies
from transcripts annotated using the CHAT protocol
(MacWhinney, 2000). Disfluencies are bold-faced fol-
lowed by disfluency markers. Angle brackets indicate
phrase-level disfluencies, whereas [x n] indicates that
the word before the marker is repeated n times.

terance with: (1) the actual text and disfluency
tags from the ADReSS Challenge corpus, consid-
ering the disfluency types referred in Table 4; (2)
the gold disfluency tags formatted as the expected
output from the automatic disfluency annotator;
and (3) the predicted word-level disfluency tags
from the automatic disfluency annotator. Phrase
repetition accuracy for the utterance in Figure 3
would be 100% as both the words in the repeated
phrase (highlighted in red) are predicted correctly,
whereas phrase retracing accuracy would be 0%,
as no words in the retraced phrase (highlighted in
blue) are predicted as disfluent.

Table 6 illustrates the performance of the auto-
matic disfluency annotator at predicting different
disfluency types for the ADReSS Challenge train-
ing set, providing evidence that retracing/correction
(especially at the phrase level) is harder to predict
than repetition. The annotator often fails to de-
tect cases of multiple repetition (accuracy=11.11%,
making it lowest among all disfluency types in Ta-
ble 6), likely because it was intermixed with word-
level repetition in the training data.

4.3 Disfluency Removal

We implement two methods for removing disfluen-
cies from transcribed speech, described further in



Disfluency AD HC
Word Repetition 9% 29
Phrase Repetition 27 17
Word Retracing 48 35
Phrase Retracing 67 46
Total 238 127
Disfluency-Tagged 317 176

Table 5: Frequencies of disfluency types across AD
and HC participants, where 7otal refers to the sum of
all of our disfluency types of interest (rows 1-4), and
Disfluency-Tagged refers to the sum of all disfluencies
reported (including those not in the focus of this inves-
tigation).

Disfluency Type Accuracy
Word Repetition 72.65%
Phrase Repetition 73.61%
Word Retracing 50.00%
Phrase Retracing  42.64%

Table 6: Percentages of disfluent words in the
manually-transcribed ADReSS Challenge training set
tagged with different disfluency labels (considering
multiple repetition as a subset of word repetition) by
the Fisher annotator.

§4.3.1 and §4.3.2.

4.3.1 Gold Disfluency Removal

We removed gold labelled disfluencies from the
manually created reference transcripts. We did
this by removing different CHAT transcription tags
corresponding to repetition and retracing behaviors.
Thus, the text in Figure 3 was converted to:

* Repetition Removal: his sister has her hand
up finger up to her mouth like she’s saying.

* Retracing Removal: his sister has her has
her finger up to her mouth like she’s saying.

4.3.2 Fisher Disfluency Removal

We removed disfluencies predicted by the Fisher
tagger (described in §4.2) from the automatically
transcribed speech. To remove words of a particular
disfluency type, we matched the relevant segment
of text with the predicted tag (see Figure 3) and re-
moved the words tagged as E (representing errors,
or disfluencies). For instance, to remove retrac-
ing, the blue segments of actual text and predicted
tags in Figure 3 are matched, and since none of the

42

Actual text: his sister <has her>
[/] has her <hand up> [//] finger
up to her mouth like she's saying.

Gold tag: his _ sister _ has E her
E has _ her _ hand E up E finger _
up _ to_ her_ mouth _ like _ she
_'s__saying _

Predicted tag: his _ sister _ has E
her E has _ her _ hand _ up _
finger _ up _ to _ her_ mouth _
like _ she _ 's _ saying _

Figure 3: Example utterance annotated by automatic
disfluency annotator. Actual text represents the gold
label annotated utterance from the ADReSS Challenge
training set. Gold tag represents the expected word
level annotation given the gold labels, whereas Pre-
dicted tag shows the predicted disfluency annotations
(fluent words are followed by _ tags and disfluent words
are followed by E tags) by the disfluency tagger. Repe-
tition is highlighted in red and retracing in blue.

words are predicted as E, none are removed. Thus,
after the removal of disfluencies according to the
Fisher tagger, the text in Figure 3 was converted to:

* Repetition Removal: his sister has her hand
up finger up to her mouth like she’s saying.

* Retracing Removal: his sister has her has
her hand up finger up to her mouth like she’s
saying.

4.4 Classification Setup

4.4.1 Input and Output

The ADReSS Challenge training corpus included
data from N=108 participants. The input for a
given data point was a sequence of words from the
processed transcript, and the output was the class
of the speaker: 0 for HC, or 1 for AD. Transcripts
were preprocessed to remove disfluency markers,
punctuation, and digits. When multiple repetition
markers followed a word in any utterance, the word
was added the specified number of times, and the
marker was then removed.

4.4.2 Model

We used Bert-for-Sequence-Classification to im-
plement our model, experimenting with bert-base-

"Thttps://github.com/huggingface/trans
formers



uncased as our base model and using the follow-
ing hyperparameters: learning rate = 2e-5, batch
size = 4, epochs = 8, max input length of 256 (a
length sufficient to cover most cases). The standard
default tokenizer was used. Two special tokens,
[CLS] and [SEP], were added to the beginning and
the end of each transcript utterance. We chose
these model and parameter settings since they at-
tained promising performance in previously pub-
lished work (Yuan et al., 2020) with leave-one-out
cross-validation on the ADReSS Challenge dataset.

S Experiments

5.1 Experimental Setup

To evaluate the impact of disfluency presence and
type on classifying AD status, we performed exper-
iments considering the following conditions:

* ALLTEXT: The baseline condition using the
original manually-created transcripts, com-
plete with gold disfluencies, preprocessed as
defined in §4.4.

ASR: Transcripts are generated using ASR
(explained in §3.1), and the ASR-generated
transcripts are fed to the model.

-REP.: Repetitions (both word- and phrase-
level) are removed from ALLTEXT transcripts
using either the gold or Fisher disfluency re-
moval method.

-RET.: Incidents of retracing (both word- and
phrase-level) are removed from ALLTEXT us-
ing either the gold or Fisher disfluency re-
moval method.

-DISF.: Transcripts are processed so that all
cases of word- or phrase-level repetition or
retracing are removed. When using the Fisher
disfluency removal method, this includes all
disfluency-tagged words.

We report accuracy, precision, recall, and F; for
each condition. When performing development
experiments, we observed large performance differ-
ences across folds. Such brittleness has also been
reported previously (Yuan et al., 2020), and may be
attributed to the use of a large model (BERT) for
classification on a small dataset. To address this,
we perform three runs, each using different ran-
dom seeds, of five-fold cross-validation and report
averages and standard deviations across runs.
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5.2 Results

We report our evaluation results in Table 7. As ex-
pected, we observe the highest performance in the
baseline condition (ALLTEXT), which is compara-
ble to the results in previous literature (Balagopalan
et al., 2020a). The ASR condition exhibits the
worst performance, with accuracy, F; for AD, and
F; for HC decreasing 17.7%, 14%, and 33% re-
spectively relative to the baseline. This underscores
one of our primary motivations in conducting this
work—namely, that ASR has a high error rate in
real-world settings and particularly in this task en-
vironment, and moreover that its mistagging (or
in some cases, purposeful removal) of disfluency
has a deleterious impact on dementia detection per-
formance. We observe from Tables 2 and 3 that
DER is much higher than FER for ASR output.
ASR tends to delete or replace repetitive words, in-
creasing overall word error rate and leading to poor
performance in the AD detection task. Prior work
has clearly suggested that disfluencies are impor-
tant indicators of cognitive health status (Lopez-de
Ipina et al., 2017; Mueller et al., 2018).
Furthermore, performance clearly degrades rela-
tive to the baseline when gold disfluencies are re-
moved (-REP.g, -RET.g, and -DISF.). Although
retracing removal caused a slightly higher decrease
in accuracy than repetition removal, there is no
significant difference in performance between the
-REP.; and -RET. conditions across metrics. Ac-
curacy and F; decrease 5.6% and 6% (for both AD
and HC) compared to the baseline when all gold
disfluencies are removed from the transcripts.
Removal of Fisher disfluencies also leads to per-
formance degradation across all metrics. Since the
Fisher disfluency annotations are more limited than
the gold disfluency labels, performance in this con-
dition (-REP.f, -RET.r, and -DISF.r) degrades
less than is observed with gold disfluency removal.
Accuracy, F for AD, and F; for HC decrease 3%,
4%, and 2% respectively compared to the baseline
when all Fisher-predicted disfluencies are removed.

5.3 Distinctive Effects of Disfluency Removal

To further investigate why disfluency removal in-
fluences classification performance, we experiment
with measures of syntactic complexity, context-free
grammar rules, and measures of vocabulary rich-
ness® to identify linguistic features having mod-

$https://github.com/vmasrani/dementia
_classifier



Accuracy Precision Recall F1
AD HC AD HC AD HC
ALLTEXT 0.843+.015 0.88+.017 0.82+.020 0.80+.028 0.89+.019 0.844+.016 0.85+.013
ASR 0.670+.037 0.69+.062 0.54+.032 0.724+.060 0.52+.121 0.70+.023 0.524+.065
-REP.¢; 0.797+.034 0.81+£.044 0.79+.034 0.784+.049 0.80+.053 0.80+.021 0.79+.036
-RET.¢¢ 0.787+.024 0.77£.043 0.80+.012 0.81+.015 0.76£.060 0.80+.017 0.784+.035
-DISF.¢¢ 0.7874.020 0.78+.025 0.77+.028 0.764+.040 0.814+.030 0.784.026 0.79+.020
-REP.p 0.827+.015 0.86£.021 0.80+.010 0.78+.011 0.88+.021 0.82+.014 0.84+.014
-RET.p 0.820+.010 0.86+.013 0.79+.021 0.784+.032 0.874+.019 0.82+.013 0.83+.006
-DISF.p 0.813+.006 0.85+.018 0.78+.004 0.76+.000 0.874.018 0.80+.008 0.83+.010

Table 7: Five-fold cross-validation results, averaged across three runs with different random seeds on the ADReSS
Challenge training set. The subscript G refers to gold disfluency removal and F refers to Fisher disfluency removal.

erate to high correlation with disfluency (as mea-
sured by normalised disfluency count, repetition
count, and retracing count). We find that disflu-
ency count (considering all disfluencies in Table
4) has significant, high negative Spearman corre-
lation (r = —0.55, p < 0.001) with type token
ratio (TTR). This indicates that verbal disfluencies
are highly negatively correlated with vocabulary
richness, which is in turn an important feature of
AD detection (Masrani, 2018). Some context-free
grammar rules (INTJ, INTJ_to_UH, VP_to_VBG,
VP_to_AUX) and syntactic complexity features
(constituency parse tree height), also key features
for AD detection (Masrani, 2018), exhibit moder-
ate correlation with disfluency frequency. Such
results show that vocabulary richness and the syn-
tactic structure of language are vulnerable to the
deletion of disfluencies, which may in turn lead to
classification performance degradation.

6 Discussion

From our corpus analyses, we find that members of
the AD group exhibit more verbal disfluency (Table
2), with increased rates of repetition and correction
relative to the HC group. This is in line with our
expectations, since disfluencies and speech errors
are correlated with cognitive functions such as cog-
nitive load, arousal, and working memory (Arciuli
et al., 2010; Daneman, 1991); with increased im-
pairment of these functions, hesitations and disflu-
encies increase. Previous studies have also reported
that verbal disfluency frequency can be an impor-
tant predictor of fine-grained cognitive status of
older adults (Farzana et al., 2020). Our evaluation
provides evidence that removing both gold-labelled

and Fisher-annotated verbal disfluencies leads to
changes in AD detection performance, opening
intriguing questions for follow-up work that may
further tease apart the nature of these contributions.

We speculate that some of these findings may
transfer to other conditions as well. For example,
studies have also reported that filled pauses are less
frequently uttered by children with autism spec-
trum disorder than typically developed children
(Gorman et al., 2016; Irvine et al., 2016). It is possi-
ble that incorporating richer disfluency information
in speech-based systems for autism detection and
monitoring may improve performance similarly to
that seen with AD detection.

7 Conclusion

Verbal disfluencies are an important indicator of
AD, and current ASR systems fail to capture and la-
bel word- and phrase-level disfluencies adequately.
Doing so is necessary to generate useful transcripts
with minimal human intervention, such that they
can be leveraged for successful AD detection. Our
future work will focus on training an end-to-end
ASR system on disfluent speech so that it can gen-
erate richer disfluency annotated transcripts, which
will pave the way for building end-to-end speech-
based dementia detection systems.
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Abstract

We study the zero-shot setting for the aspect-
based scientific document summarization task.
Summarizing scientific documents with respect
to an aspect can remarkably improve docu-
ment assistance systems and readers experi-
ence. However, existing large-scale datasets
contain a limited variety of aspects, causing
summarization models to over-fit to a small set
of aspects and a specific domain. We estab-
lish baseline results in zero-shot performance
(over unseen aspects and the presence of do-
main shift), paraphrasing, leave-one-out, and
limited supervised samples experimental se-
tups. We propose a self-supervised pre-training
approach to enhance the zero-shot performance.
We leverage the PubMed structured abstracts
to create a biomedical aspect-based summa-
rization dataset. Experimental results on the
PubMed and FacetSum aspect-based datasets
show promising performance when the model
is pre-trained using unlabelled in-domain data.'

1 Introduction

Scientific document summarization aims to sum-
marize research papers, and it is usually considered
as generating paper abstracts (Cohan et al., 2018).
Compared to the news summarization datasets
like CNN/Daily Mail (Hermann et al., 2015) and
XSUM (Narayan et al., 2018), scientific papers are
significantly longer, follow a standard structure,
and contain more technical terms and complex con-
cepts (Yu et al., 2020). Recently, there have been
remarkable improvements in the area of scientific
document summarization due to the availability of
large-scale datasets such as arXiv, PubMed (Co-
han et al., 2018), and SUMPUBMED (Gupta et al.,

*Work done while interning at NAVER LABS Europe.
! github.com/asoleimanib/ZeroShotAspectBased
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Figure 1: Overview of our approach to create self-
supervised pre-training datasets from unlabelled sci-
entific documents. The aspect-based summarization
model is pre-trained on unlabelled documents, the sec-
tion headings as aspects, and the following paragraphs
corresponding to the aspects as aspect-based summaries.

2021) and pre-trained sequence to sequence models
such as BART (Lewis et al., 2020) and PEGASUS
(Zhang et al., 2020). However, little research has
been conducted on aspect-based scientific docu-
ment summarization.

Aspect-based summarization is the task of sum-
marizing a document given a specific point of in-
terest. Aspect-based scientific document summa-
rization has several advantages for readers to ex-
plore articles quickly and facilitates document as-
sistance systems. Collecting a large-scale dataset
for this task is extremely costly. Meng et al. (2021)
introduce FacetSum, an aspect-based document
summarization dataset from mainly management,
marketing, and education domains. They employ

Proceedings of the BioNLP 2022 workshop, Dublin, Ireland, pages 49-62
May 26, 2022. ©2022 Association for Computational Linguistics



structured abstracts from the Emerald database” to
create summaries from four perspectives (purpose,
method, findings, value). However, readers may
be interested in new aspects beyond proposed an-
notations or new domains, particularly biomedical
area.

Summarization heavily relies on sequence-to-
sequence models that require numerous training
data. While scientific summarization problem can
benefit from large amount of articles with their
summaries available (Cohan et al., 2018), the data
for aspect-based summarization of scientific papers
is scarce. Moreover, most existing methods for
aspect-based summarization rely on pre-defined as-
pects. Adding new aspects would require gathering
new data and retraining the whole system.

In this work, we are interested in zero-shot
aspect-based summarization of scientific literature.
Large pre-trained models such as BERT (Devlin
et al., 2019) and BART have demonstrated the
high potential of knowledge transfer from self-
supervised tasks to downstream tasks. Continuing
the BART pre-training task (e.g., token masking
and deletion) with domain-related or target datasets
can improve the final performance on low-resource
domains. However, this process, specifically us-
ing domain-related datasets, is substantially time-
consuming (Yu et al., 2021). Also, training a sum-
marization model using a second summarization
dataset on the same task enhances the performance
(Yu et al., 2021). Such approaches only cover
limited aspects. We believe a good aspect-based
summarization system should establish semantic
similarity between aspect and document content.
We leverage the semantic representations emerging
during LM pre-training to allow the model to estab-
lish this semantic connection between the aspect
and the summary. We also propose an additional
pre-training procedure to reinforce this connection.
The contributions of this work are the following:

* We establish baselines for aspect-based sum-

marization using two datasets from different

domains, biomedical and management, and

analyse the zero-shot capabilities of those

models on unseen aspects.

For zero-shot capabilities, we study the effect

of domain shift and unseen aspects on aspect-

based summarization performance.

* We propose self-supervised pre-training to
boost the zero-shot capability of the model

2www.emerald.com
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and demonstrate its effectiveness.

* Finally, we analyse how different models be-
have as the amount of supervision decreases.

2 Related Work

Abstractive Summarization. Early research on
abstractive summarization mainly focused on
paraphrasing-based compression methods (Filip-
pova, 2010; Berg-Kirkpatrick et al., 2011). Later
motivated by the success of neural attention mech-
anism (Bahdanau et al., 2014), attention-based
sequence-to-sequence models have been developed
for abstractive summarization (Rush et al., 2015;
Nallapati et al., 2016). Adopting pre-trained trans-
former models by self-supervised objectives has led
to significant improvements in NLP (Devlin et al.,
2019). In particular, BART and PEGASUS extend
such idea to text generation and have the state of
the art performance on abstractive summarization.

Scientific Document Summarization. Scientific
documents have complex structures. Extractive
summarization under-performs abstractive summa-
rization in scientific documents because informa-
tion is distributed across documents (Cohan et al.,
2018). Different approaches have been proposed
to improve models on scientific data, such as a
hierarchical encoder with a decoder attending to
discourse-level information (Cohan et al., 2018)
or summarizing sections separately (Gidiotis and
Tsoumakas, 2019). Two-step pipelines is another
approach (Gidiotis and Tsoumakas, 2020) to sum-
marize scientific documents. BART is also used in
this task (Meng et al., 2021). It can handle long
sequences using a hierarchical attention model (Ro-
hde et al., 2021) or simply by extending its posi-
tional embedding (Meng et al., 2021). Extended
BART might enhance the performance for sum-
maries requiring information spread mostly at the
end of papers. However, as BART is not pre-trained
on long texts, the extended model would under-
perform efficient transformers (e.g., Longformer
(Beltagy et al., 2020)). We performed some initial
experiments by extending BART beyond its default
input length and found no significant improvement
on average scores (Appendix B). Moreover, our ini-
tial experiments exposed similar zero-shot trends
across different BART versions. Therefore for com-
putational reasons in follow up experiments, we
stick to the standard BART model.



# Samples (Aspect, Document)
Train: 139.4K / Validation: 7.9K / Test: 8.1K
Average Length (# Words)
Documents: 3.5K
Summaries:
Objectives  Methods  Results
38 76 94

# Samples (Aspect, Document)
Train: 182.4K/ Validation: 23.7K / Test: 23.7K
Average Length (# Words)
Documents: 6.6K
Summaries:
Methods
49

PubMed

Conc.
40

Intro.
53

FacetSum

Value
46

Results
66

Objectives
53

Table 1: Statistics of the PubMed and FacetSum aspect-
based scientific summarization datasets.

Aspect-based Summarization. Prior to scien-
tific documents, aspect-based summarization has
been primary studied on reviews to summarize
opinions (Titov and McDonald, 2008; Lu et al.,
2009; Yang et al., 2018; Angelidis and Lapata,
2018), arguments (Wang and Ling, 2016), and
news articles (Frermann and Klementiev, 2019;
Krishna and Srinivasan, 2018). PMC-SA (Gidi-
otis and Tsoumakas, 2019) leverages structured
scientific abstracts for structured summarization
over three sections. In particular, FacetSum, an
aspect-based scientific document summarization,
has been collected using the structured outline of
papers from the Emerald database.

Training separated models per aspects (Hayashi
et al., 2020) is not preferable in the zero-shot set-
ting. To integrate aspects and input sequences
representations, an attention mechanism over as-
pects is used for RNNs (Yang et al., 2018), pointer-
generator networks (Krishna and Srinivasan, 2018;
Frermann and Klementiev, 2019), and Transformer
(Xie et al., 2020). Concatenating aspects with docu-
ments is a straightforward method result in promis-
ing performance using BART (Meng et al., 2021;
Tan et al., 2020; Su et al., 2021). We follow this di-
rection and study to what extent models are robust
to new aspects and domain shift.

Aspect-based summarization can be seen as a
special case of query-based summarization. How-
ever, in the query-based literature (Ishigaki et al.,
2020; Xu and Lapata, 2021) and datasets (Baumel
et al., 2016; Nema et al., 2017) queries are more
diverse and mostly long phrases or questions.

Zero-Shot Summarization Hua and Wang
(2017) combine in-domain and out-of-domain
datasets to improve abstractive summarization on
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small data. While Magooda and Litman (2020)
propose a template-based data synthesis method to
improve the small data abstractive summarization.
Coavoux et al. (2019) study an unsupervised aspect-
based abstractive summarization approach but it is
difficult to extend it to predefined aspects. Recently,
AdaptSum (Yu et al., 2021) leverages the idea of
extra pre-training on BART. They compare interme-
diate training by a second summarization dataset
with continuing BART pre-training using two pre-
training approaches: a time-consuming domain-
adaptive pre-training (using a corpus related to
target) and task-adaptive pre-training (using un-
labelled target data). They show intermediate train-
ing surpasses continuing the BART pre-training.
Similar to our idea of using task-specific self-
supervised pre-training, self-supervised generic
summaries extracted from the first sentences of
Wikipedia documents (Fabbri et al., 2021) and
news articles (Zhu et al., 2021) are used to pre-train
summarization models for social media, patent doc-
ument, and news summarization tasks. Duan et al.
(2019) also investigate cross-lingual abstractive
summarization using a back-translation approach.
Zero-shot multi-document summarization has been
also studied using pre-trained models (Goodwin
et al., 2020). To the best of our knowledge, our pa-
per is the first study investigating zero-shot aspect-
based summarization.

3 Methods

In this section, we first present how we formulate
the aspect-based summarization problem relying
on BART pre-trained model. Then, we propose
a method to use unlabelled data for an additional
self-supervised pre-training step to improve the
zero-shot performance.

3.1 Aspect-Based Summarization

Given an aspect phrase A = {A;, Ay, ..., Ax}
containing K words, and a document D
{Wy,Ws,...,Wx} containing N words, the
aspect-based summarization task aims to summa-
rize D into summary S = {S, S, ..., Sar} with
respect to aspect A using an autoregressive summa-
rization model Sy = Model(S¢, X = {D, A})
for ¢ {0,...,M—1}. We use BART, a pre-
trained model combining bidirectional and auto-
regressive transformers, to encode documents and
aspects together and generate aspect-based sum-
maries. To combine aspects and documents as in-



put X, we concatenate A to the beginning of D
with the following format:

X =<s> {Al, ...,AK} </S> {Wl, ...,WN}

where < s> and < /s> are the beginning of sen-
tence, and separation tokens, respectively. Finally,
we train the model with cross-entropy loss function
similar to a generic summarization task.

3.2 Self-Supervised Training

A model can extend its prediction to unseen aspects
only if it can make a semantic connection between
the aspect and the document content. When only
a limited amount of aspects is available, there is a
risk that the model treats those as "special tokens"
and does not exploit their semantic meaning. There-
fore, to make such connection stronger, the model
needs more diverse samples. In order to extend it,
we propose self-supervised pre-training on (sub-
)sections headings from the articles. We assume
headings are phrases conveying the central topic of
sections and are good alternatives for aspects.

We propose extracting self-supervised samples
from the PubMed and FacetSum training sets. Fig-
ure 1 explains our extraction method. We use
the (sub-)sections headings as aspects. We assign
sentences in the corresponding (sub-)sections as
aspect-based summaries and truncate the sentences
up to 300 characters. We pre-train BART with
the extracted dataset using the same cross-entropy
loss function used for the final summarization task.
While our pre-trained model can theoretically copy
text from input to output, it is impossible to copy
sentences for most aspects as they are not in the
model input range. We experimented with exclud-
ing targets from inputs and found no significant
difference in the final performance (Table 10 Ap-
pendix C).

We assume training a model to generate sen-
tences conditioned on an aspect (heading) helps
the model to understand the concept of aspect and
learn representations better for diverse aspects. In
other words, instead of directly training on labelled
aspect-based summarization, we train the model in-
directly using a self-supervised approach and later
fine-tune it on real summarization samples.

4 Datasets

For our experiments, we consider FacetSum, an
aspect-based summarization benchmark built on
Emerald articles. In addition, we process PubMed
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Figure 2: Histogram of 50 most frequent aspects in
the self-supervised samples (top: PubMed*, bottom:
FacetSum*). PubMed* has [150K,1.4K,214,33] unique
aspects with frequency of higher than [1,10,100,1000]
(FacetSum*:[96K,841,120,21]). Aspects removed from
the NoOverlap datasets are highlighted in red.

and convert into a large aspect-based scientific
document summarization dataset. We scraped
the PubMed website to collect the structured ab-
stracts corresponding to the papers in the PubMed
summarization dataset. We match papers to their
web-page using their article ID. We use Beautiful-
Soup library? and leverage the HTML structure
of abstracts on their web-page to extract five as-
pects: introduction, objectives, methods, results,
and conclusion. We manually checked the aspects
and their summary and set rules to convert differ-
ent spellings and typos (e.g., intro—introduction,
method—methods) into the five standard aspects.
For papers text and sections, we stick to the
PubMed dataset. Table 1 shows the datasets statis-
tics. We slightly change the aspects in FacetSum
to make it similar to our dataset and make do-
main shift study possible (purpose—objectives,
method—smethods, findings—sresults).

For self-supervised pre-training we create two
self-supervised datasets: PubMed* and FacetSum™,
from PubMed and FacetSum aspect-based sum-
marization datasets as described in section 3.2.
PubMed* and FacetSum* contain 658K and 279K
samples and 150K and 96K unique aspects, respec-
tively. Additional dataset PubMed*-NoOverlap and

3www.crummy.com/software/BeautifulSoup/bs4/doc/



Model R-1 R-2 R-L
B2 Discourse (Cohan et al., 2018) 38.93 1537 35.21
%g PEGASUS (Zhang et al., 2020) 3998 15.15 25.23
£ BART 45.04 1845 40.62
Greedy Extractive (Oracle) 56.61 39.23 47.58
g "BART 7 39.03 1847 3410
Z  BART-Independentt 3891 18.21 33.89
BART Shuffle Aspects 2421 6.18 19.86
Ex  BART (Mengetal, 2021) 4549 18.10 42.74
22 BART-Facet engeral.2021)  49.29  19.60  45.76
£  BART 49.98 19.89  46.68
Greedy Extractive (Oracle) 51.87 32.09 41.55
. " BART Mengeta, 202y 2327 1031 2029
2 BART-Facet (Mengetal, 2021y  37.97 15.17  32.08
%  BART 36.97 1550 31.48
“  BART-Independent} 36.77 15.26  31.23
BART Shuffle Aspects 28.18 694 2271

Table 2: Baselines and the state of the art performance
on PubMed and FacetSum generic and aspect-based
summarization evaluation sets. Results for the models
with T are averaged over all aspects. Results by Meng
etal. (2021) are based on BART extended to 10K tokens.

FacetSum*-NoOverlap are the variants in which we
exclude aspects that overlap with the main aspects
(shown by red in Figure 2). We only exclude as-
pects containing the main aspects but not semanti-
cally equivalent words. These datasets would allow
assessing to what extent the model can perform
semantic connection with new aspects.

5 Experiments and Results

In this section, we first explain model hyper-
parameters. Then, we assess models’ ability to
make a semantic connection between aspects and
summaries in different experimental setups and un-
derstand to what extend pre-training helps.

We rely on BART base available through Hug-
gingFace’s Transformers library (Wolf et al., 2019).
It is trained for each dataset we tackle. Fine-tuning
is done on 1 GPU (NVIDIA V100), with a batch
size of 64 (8 gradient accumulation steps). We
train the model for 10 epochs (2 epochs for self-
supervised pre-training) with a learning rate of
3e—4 and 500 warm-up steps and set the maximum
input length to 1024, the BART official length (see
Appendix A for a full list of hyper-parameters).

5.1 Baselines Experiments

System performance is evaluated with the ROUGE
metric (Lin and Hovy, 2003), the default evalua-
tion metric in the field in absence of universally
acceptable semantic and factuality metrics. Table
2 reports R-1, R-2 and R-L scores, measuring the
N-gram overlap between the reference and gener-
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ated summaries for different baseline models. The
first part of the table reports the results on generic
summarization (summarizing into full abstracts)
for a sanity check and compare the ROUGE scores
between off-the-shelf BART model, as well as the
BART model fine-tuned on PubMed or FacetSum.*
For aspect-based summarization we consider fol-
lowing baselines:

* Greedy extractive: an extractive summariza-
tion oracle using the greedy extractive (Nal-
lapati et al., 2017) method. We calculate
ROUGE-N between every sentence in a doc-
ument and the reference aspect-based sum-
maries to find top sentences with the highest
scores. The best set of sentences in terms of
ROUGE-N scores is selected per document,
and then scores are aggregated for all samples.
The same score chooses sentences for each
ROUGE-N score oracle.

BART: BART model fine-tuned on the aspect-
based summarization task containing all the
available aspects. This is used as a fully su-
pervised baseline for zero-shot experiments.

BART-Independent: BART model trained on
each aspect independently; we report an aver-
age performance across all the aspects. This
baseline is not applicable in zero-shot settings
and is reported for comparing baselines.

BART Shuffle Aspects: We evaluate the BART
aspect-based summaries generated from a
wrong aspect (input document is the same
but aspects’ summaries are replaced randomly,
e.g., objectives—methods). This baseline
serves as a lower-bound performance.

Table 2 shows the baseline results of the generic
and aspect-based summarization models. As
expected, greedy extractive establishes a maxi-
mum oracle extractive summarization performance.
BART slightly surpasses BART-Ind, showing that
training all aspects together results in a better per-
formance. Also, independent training is not appli-
cable in the zero-shot setups. BART-Shuffle per-
forms significantly worse than the other models.

*We use BART with a length of 1024. We experimented
with longer BART models (extending positional embedding
to 2,048 and 4,096 tokens) and PEGASUS. We did not see a
significant gain in the overall performance of longer BART
except the improvement on summaries requiring information
from the end of papers (e.g., conclusion). Thus we continued
all the experiments with the standard BART (Appendix B).



Model Introduction Objectives Methods Results Conclusion
Greedy-Ext.  55.54/38.51/47.09 57.86/37.94/49.65 57.86/37.94/49.65 56.59/40.00/46.09  61.08/44.88/53.81
"BART  40.66/22.12/36.18  51.45/31.79/46.09  40.78/19.08/35.84 = 34.73/12.91/30.69 34.03/14.11/28.17
BART-Ind. 40.76/22.03/36.22  51.11/31.09/45.44  41.01/19.26/35.99  34.16/12.40/30.10  33.95/13.76/28.13
BART-Shuf.  26.14/07.14/21.63  27.94/08.51/22.04  24.07/06.14/19.86  20.16/04.08/17.08  24.67/05.78/19.79

Table 3: Baseline and SOTA performance on the PubMed aspect-based summarization dataset (R-1/R-2/R-L).

Model Objectives Methods Results Value
Greedy-Ext. 54.94/34.27/44.54  49.27/29.82/39.18  53.25/34.35/42.49  50.18/29.97/40.33

" BART (Mengetal.,2021) ~ 46.74/27.09/41.21  23.66/07.92/20.53 ~ 16.39/04.63/14.33 06.30/01.62/05.07
BART-Facet (Meng et al., 2021)  48.65/27.72/42.55 33.49/11.01/28.07 34.46/10.49/28.98  35.27/11.44/28.70
BART 48.83/29.10/43.46  32.79/11.71/27.64  32.67/10.21/27.43  33.58/10.98/27.38
BART-Ind. 48.77/28.92/43.31  32.59/11.61/27.39  32.26/09.80/26.96  33.47/10.73/27.26
BART-Shuf. 32.52/09.75/26.34  25.86/05.71/20.96  25.76/05.61/20.83  28.48/06.63/22.79

Table 4: Baseline and SOTA performance on the FacetSum aspect-based summarization dataset (R-1/R-2/R-L).

PubMed FacetSum
Pre-Train Train R-1 R-2 R-L [ Pre-Train Train R-1 R-2 R-L
Fully Supervised BART Baseline
- PubMed 39.03 1847 34.10 \ - FacetSum 3697 1550 3148
Lower-bound BART Shuffle Aspect Baseline
- PubMed 24.21 6.18 19.86 [ - FacetSum  28.18 6.94 2271
Domain Shift: Out-Of-Domain Labelled Data & Unlabelled
- FacetSum 28.89 1020 24.52 | - PubMed 31.03 10.04 25.75
PubMed* FacetSum 31.31 11.53 26.79 | FacetSum” PubMed 31.67 10.34 26.25
PubMed* Nooverapy ~ FacetSum  30.37 10.68 25.69 | FacetSum™ (Nooverap)y PubMed 31.17  10.10 25.90
FacetSum™ FacetSum 28.92 10.12 24.46 | PubMed* PubMed 30.48 948 25.29
Only Unlabelled Data
PubMed* - 30.76 11.64 26.16 | FacetSum* - 28.18 7.60 23.54
PubMed* NoOverlap) - 2970 1093 25.20 | FacetSum* NooOverlap) - 26.90 6.67 2245
FacetSum”* - 28.68 9.79  24.30 | PubMed* - 27.24 7.01 2234

Table 5: Performance on PubMed and FacetSum when out-of-domain training data is available (domain shift) or
only unlabelled data is available. PubMed* and FacetSum* are the self-supervised datasets for pre-training.

It indicates that the aspects belonging to a spe-
cific paper still demand significantly different sum-
maries. Such a model primarily generates generic
summaries rather than aspect-related summaries.
Tables 3 and 4 report the performance in terms
of different aspects. In both datasets, objective
reaches the best ROUGE scores while the perfor-
mance drops for results, conclusion, and value. A
similar phenomenon has been observed by Meng
et al. (2021) and can possibly happen due to fact
that information needed for summarizing results,
conclusion, and value are mostly spread at the end
of papers while information about objectives is
skewed toward the beginning of the papers. The
performance drop could be also because we trun-
cate documents into a maximum length (1024 to-
kens) required by default BART architecture.

5.2 Domain Shift and Unlabelled Experiments

We define different experimental setups concerning
the dataset used for pre-training and training. To be
zero-shot, a model cannot be trained on in-domain

labelled dataset. However, it can be pre-trained on
the same unlabelled in-domain dataset (PubMed*
or FacetSum™) in a self-supervised approach. This
is a real-life case when there are numerous unla-
belled but no labelled samples. As shown in Table
5, our proposed in-domain pre-training alleviates
the domain shift problem. The best performance
on both datasets is when the models trained on
an out-of-domain dataset (PubMed or FacetSum)
is pre-trained on the unlabelled in-domain dataset
(PubMed* or FacetSum*). It gets closer to the
fully supervised baseline performance and outper-
forms the lower-bound. In addition, experiments
with only unlabelled data show that our proposed
pre-training achieves comparable results with cases
where out-of-domain labelled data is available. In-
terestingly, the models pre-trained on PubMed* per-
forms better on PubMed than the model fine-tuned
only on FacetSum*. This does not hold for the same
case on the FacetSum experiment. We hypothesize
that it might be due to the significantly larger size of
PubMed* (658K) compared to FacetSum* (279K).
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PubMed FacetSum
Pre-Train Train Test R-1 R-2 R-L R-1 R-2 R-L
X All - Introduction  Introduction  30.88 11.65 25.66 - - -
v All - Introduction  Introduction  40.07 21.22  35.5 - - -
v All - Introduction  Introduction 38.76 20.29 33.86 - - -
X All - Objectives Objectives 2897 897 2299 | 29.08 833 23.87
v All - Objectives Objectives 3428 14.26 28.06 | 36.28 12.92 29.74
ve4 All - Objectives Objectives 30.69 10.60 24.84 | 29.15 828 23.77
X All - Methods Methods 2568 7.03 21.10 | 2732 6.59 22.16
v All - Methods Methods 2728 7.70 2223 | 2813 6.84 22.79
v All - Methods Methods 2741 7.89 22.8 | 2807 6.59 22.63
X All - Results Results 21.28 4.68 1792 | 23.82 5.25 19.47
v All - Results Results 2286 5.05 19.51 | 23.07 480 18.90
VE'4 All - Results Results 21.12 4.67 17.79 | 24.22 5.28 19.83
X All - Conclusion Conclusion 2792 736 21.86 - - -
v All - Conclusion Conclusion 31.23 917 24.73 - - -
v All - Conclusion Conclusion 30.03 8.13 2349 - - -
X All - Value Value - - - 30.41 7.86 2422
v All - Value Value - - - 3145 792 25.05
v All - Value Value - - - 2925  7.41 23.52

Table 6: Leave-one-out experiment on PubMed and FacetSum. The models are trained on all aspects except the one
which the model is tested on. Considering in-domain training, this table shows unseen aspect performance. X: no
pre-training except the BART official pre-training. v: model is pre-trained on PubMed* or FacetSum* (in-domain).

vv: model is pre-trained on PubMed* (No Overlap) or FacetSum* (No Overlap) (in-domain).

PubMed FacetSum
Pre-Train Paraphrased Aspect R-1 R-2 R-L R-1 R-2 R-L
X Introduction (baseline) 40.66 22.12 36.18 - - -
"X~ 7 7 7 7 Introduction > Backgroundv ~ ~ ~ 2798 ° 934 T 2362 | - - -
v Introduction -> Background 41.47 2248 36.79 - - -
"X~ 7 7 7 7 Introduction -> Contextv ~ ~ ~ ~ ~ 30.37 ~ 1192 ~ 2595 | - - -
v Introduction -> Context 40.28 21.58 35.04 - - -

X Objectives (baseline) 5145 3179 46.09 | 48.83 29.10 43.46
"X~ 7 7 7 7 Objectives > Objective ~~ ~ ~ ~ 51.37  31.66 46.03 | 4891 29.17 4352
v Objectives -> Objective 51.10 31.39 4560 | 48.51 28.81 43.14
"X~ 7 7 7 7 Objectives >Purpose ¥~~~ 36,03 1593 29.84 | 4670  26.11 ~ 41.11
v Objectives -> Purpose 49.77 29.92 44.09 | 48.28 28.46 42.88
"X T 7 7 7 Objectives>Aims v~~~ 2889 929 " 23.02 | 3095 9.64 ~ 2534
v Objectives -> Aims 42.67 2299 36.72 | 45.19 24.82 39.55
X Methods (baseline) 40.78 19.08 35.84 | 3279 11.71 27.64
"X~ 77 7 7 Methods->Method” ~ ~ ~ ~ ~ ~ " 40.67 1875 3575 3294 1182 2773
v Methods -> Method 41.13 19.24 36.07 | 32.85 11.88 27.69
"X~ 7 7 7 7 Methods -> Materials and Methods ~ 40.84 ~ 19.16 ~ 35.82 | 32.98  11.75  27.82
v Methods -> Materials and Methods  40.58 19.05 35.58 | 32.77 11.80 27.69
"X 7 7 7 7 Methods -> Research Design v~~~ 34.82 ~ 14.23 ~ 29.74 | 32.68 ~ 11.34 ~ 27.41
v Methods -> Research Design 38.22 1718 33.12 | 32.84 11.81 27.62
"X 7 7 7 7 Methods -> Methodology ~ ~ ~ ~ ~ 40.88 " 19.13 ~ 35.90 | 3292 " 11.82  27.81
v Methods -> Methodology 40.82 19.24 3575 | 3277 11.82 27.62
X Results (baseline) 3473 1291 30.69 | 32.67 1021 27.43
"X 77 7 T Results->Result T T T T 7 7 7 3442 12737 3030 | 3246  10.05 2721
v Results -> Result 3412 1253 30.00 | 32.46 998 27.22
"X~ 7 7 7 7 Results->Discussiony 2357 7.09 " 20.09 | 26.12 590 ~ 2125
v Results -> Discussion 19.80 4.18 16.65 | 29.06 7.82 23.93
"X 7 7 7 T Results->Findingv ~ ~ ~ 7 " 7 2485 601 2137 ] 2663 6.40 ~ 21.8T
v Results -> Finding 29.11  9.24 2529 | 3246 10.01 27.20

X Conclusion (baseline) 34.03 14.11 28.17 - - -
"X~ 7 7 7 7 Conclusion -> Conclusions ~ ~ ~ ~ 3397 ~ 1413 ~ 2816 | - - -

v Conclusion -> Conclusions 33.94 1392 28.04 - - -

X Value (baseline) - - - 3358 1098 27.38
TXT T 7 7 7 Value>Valuesvy T T T -7 T T T T T 773224 1059 2698

v Value -> Values - - - 3346 1099 27.35

Table 7: Paraphrasing experiment on PubMed and FacetSum. In each section, we evaluate the model trained on all
original aspects on a new paraphrased aspect, e.g., introduction— background reports the case when introduction
summaries are assigned to background. Considering in-domain training, this table shows unseen aspect performance.
Significant drop in no pre-train cases are shown by v.
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Figure 3: Aspect-based summarization performance
with limited supervised examples. Pre-training with
in-domain and out-of-domain datasets significantly im-
proves the low-resource training sample performance.
Top: evaluation done on PubMed dataset, Bottom: eval-

uation is done on FacetSum dataset. (— BART,

, —X— BART + pre-
trained on FacetSum*, - - - BART fine-tuned on all
samples)

It is also promising that pre-trained models with
no aspect overlap with the target aspect perform
quite well. Such cases simulate the entirely unseen
aspects in real scenarios.

5.3 Unseen Aspect Experiments

Leave-One-Out Experiments. This section stud-
ies leave-one-out experiments, aiming to investi-
gate performance on unseen aspects within the
same domain. We fine-tune BART for aspect-based
summarization on all aspects except one that is left
out for evaluation. We repeat the experiments for
all the aspects available within our dataset. Ta-
ble 6 reports the results for this experiment for
both PubMed and FacetSum datasets. We com-
pare baseline model (X) and models enriched with
self-supervised pre-training step as described in the
section 3.2. The self-supervised pre-training can be
done either on all the section headings (v) or only
on those non-overlapping with aspects of interest
(v'vV). First, we note that zero-shot performance
without self-supervised pre-training performs sig-
nificantly worse compared to fully supervised mod-
els although it is still above random lower bound
BART-Shuffle model (cf. tables 3 and 4). The pre-
training step allows to significantly improve this
performance for most of the aspects. As shown,
non-overlapping pre-training (v'v') also performs
better than without pre-training cases except re-
sults and value. introduction and objective aspects
experience the most improvement. As discussed

previously (section 5.1) this could be due to the
fact that information required to summarize these
aspects are skewed toward the beginning of papers
(Meng et al., 2021), and therefore is always within
the input range of BART.

Paraphrasing Experiments. We study another
zero-shot experiment where aspect word is para-
phrased for evaluation. This experiment aims to
understand to what extent a model can exploit the
semantic meaning of aspects to generate good sum-
maries. Table 7 reports results comparing models
with and without pre-training. As in the previous
experiment, the model without pre-training may
significantly drop when replacing the original as-
pect with its alternative, specially when it does not
share common sub-words. However, it still per-
forms better than the random lower bound model
meaning that it relies on the semantics of the aspect
to some extent (cf. tables 3 and 4). The pre-training
step makes the models suffering from a significant
drop (W) more robust to aspects paraphrasing while
it does not significantly decline the performance in
other cases. This is probably because the model has
been exposed to a much richer and more diverse
set of aspects during pre-training, and therefore
learned to exploit aspect semantics better.

5.4 Few-Shot Experiments

Our final experiment aims at evaluating the sum-
marization performance with limited supervised
examples. For this, we train BART on the first
10, 100, 1K, 10K, and 100K training samples from
each dataset. We repeat the experiments with the
BART models pre-trained on the PubMed* and
FacetSum* self-supervised datasets. Figure 3 plots
the learning curves behaviour of different models
as the amount of supervision grows. We see that
models with self-supervised pre-training consis-
tently surpass the baseline model. This superior-
ity is much more significant in the few-shot cases,
but the differences fade as more training samples
is available and models become fully supervised.
As expected, the models pre-trained on in-domain
datasets perform better than the out-domain pre-
trained models.

6 Conclusion

In this paper, we studied the problem of zero-
shot aspect-based summarization of scientific docu-
ments. We established various experimental setups
to investigate the effect of additional pre-training



and intermediate training on the zero-shot perfor-
mance with respect to domain shift from biomed-
ical to management and unseen aspects. We pro-
posed a self-supervised approach to pre-train the
model using unlabelled target datasets. Results
indicate that additional pre-training on the target
dataset followed by intermediate training results in
the best zero-shot performance.

We established leave-one-out and paraphrasing
experimental setups to simulate the practical case
of facing unseen aspects and showed the promis-
ing effect of additional self-supervised pre-training.
Our proposed pre-training step improves the per-
formance in the few-shot settings.

Investigating the effect of pre-training in terms
of semantics and factuality evaluation scores can
be done in the future.
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A Training Hyper-parameters

BART fine-tuning is done on 1 GPU with 32GB
memory (NVIDIA V100) with a batch size of 64.
We use a gradient accumulation step of 8 and have
8 training samples per GPU per step. We train the
model for 10 epochs (2 epochs for self-supervised
pre-training). We use a learning rate of 3e — 4 and
500 warm-up steps. The maximum source length
is set to 1024, and the maximum target length is
set to 256. We set weight decay to 0.01, maxi-
mum gradient norm to 0.1, learning scheduler type
to polynomial, label smoothing factor to 0.1, and
dropout to 0.1, length penalty to 1.0, and the num-
ber of beams to 4.

B BART with Extended Input Length

BART has been pre-trained with a standard maxi-
mum input length of 1024 (Lewis et al., 2020). We
can simply extend its positional embedding. How-
ever, as it has not been pre-trained with extended
positional embedding, it would under-perform ef-
ficient transformers such as Longformer which is
pre-trained on long inputs (Beltagy et al., 2020;
Sekuli¢ et al., 2020). In addition, the computa-
tional complexity of BART increases quadratically
with input length; therefore, extended BART is sub-
stantially expensive to be trained. Table 8 and 9
compare the performance of standard BART with
BART 2048 and BART 4096. While the extended
models enhance the performance for method, re-
sults, conclusion, and value, which require informa-
tion spread mostly at the end of papers, the overall
improvement is not significant considering extra
complexity and excessive training time. The BART-
Facet model (Meng et al., 2021), which is an ex-
tended BART to 10,000 tokens, confirms the same
trend.

C Masked Self-Supervised Pre-training

This section compares our default pre-trained ap-
proach with a masked version where we exclude
target texts from inputs during the pre-training step.
Our goal is to see the performance change when
we remove the slight chance of copying sentences
from input to output in the default setup. Note, it
is impossible to copy sentences for most aspects
as they are not in the model input range. Table 10



indicates that the difference between the two cases
is insignificant.

D Summarization Examples

This section provides a number of summaries using
different experimental setups. Table 11 presents
generated summaries in fully-supervised, zero-
shot, leave-one-out, and paraphrasing setups. It
is not trivial to interpret these examples; how-
ever, some simple patterns can be observed. In
the absence of in-domain supervised training, sum-
maries are far from perfect, but pre-training can
improve summaries when there is domain-shift or
unseen aspect. Also, simple paraphrasing (e.g.,
conclusion—conclusions) cannot change the sum-
mary significantly unlike when there is no common
sub-words between the two aspects (e.g., objec-
tives—purpose,aims).
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Model Introduction Objectives Methods Results Conclusion

BART 1024  40.66/22.12/36.18 51.45/31.79/46.09  40.78/19.08/35.84  34.73/12.91/30.69  34.03/14.11/28.17
BART 2048  39.92/21.27/35.33  52.05/32.30/46.52  40.01/20.29/36.89  38.88/17.28/34.51  36.01/16.39/30.27
BART 4096  39.28/21.53/34.86  52.05/32.17/46.39  44.44/20.04/36.32  39.33/18.87/35.13  41.13/23.25/36.12

Table 8: Comparing BART with the standard maximum length of 1024 and the extended BART models on the
PubMed aspect-based summarization dataset.

Model Objectives Methods Results Value

BART 1024 48.83/29.10/43.46  32.79/11.71/27.64  32.67/10.21/27.43  33.58/10.98/27.38
BART 2048 49.82/30.22/44.34  34.64/13.48/29.22  34.16/11.41/28.70  34.19/11.72/27.95
BART 4096 49.96/30.63/44.58  35.20/13.97/29.68  34.18/12.04/29.27  33.95/11.76/27.86

BART-Facet 10000 (Meng et al., 2021)

48.65/27.72/42.55

33.49/11.01/28.07

34.46/10.49/28.98

35.27/11.44/28.70

Table 9: Comparing BART with the standard maximum length of 1024 and the extended BART models on the

FacetSum aspect-based summarization dataset.

PubMed FacetSum
Pre-Train Train R-1 R-2 R-L [ Pre-Train Train R-1 R-2 R-L
Domain Shift: Out-Of-Domain Labelled Data & Unlabelled

PubMed* FacetSum 31.31 11.53 26.79 | FacetSum”* PubMed 31.67 10.34 26.25
PubMed* Masked FacetSum 31.44 11.52 26.83 | FacetSum*Masked PubMed 31.27 10.18 25.96

" FacetSum*  ~ = FacetSum 28.92 ~ 10.12 ~ 24.46 | PubMed® ~ PubMed 3048 948 2520
FacetSum™Masked  FacetSum  28.23 9.87 23.75 | PubMed*Masked PubMed 31.21 991 25.87

Only Unlabelled Data

PubMed* - 30.76 11.64 26.16 | FacetSum* - 28.18 7.60 23.54
PubMed™* Masked - 30.73 11.79 26.15 | FacetSum™Masked - 28.30 791 23.71

" FacetSum* - 28.68 979 2430 | PubMed* = = - 27247 701 2234
FacetSum™Masked - 28.49 9.63 24.12 | PubMed*Masked - 27.90 7.50 23.06

Table 10: Comparing normal self-supervised pre-training using PubMed* and FacetSum* with their masked version.

In masked datasets, the target text is masked during training.
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Aspect: Objectives
Reference: To evaluate the efficacy and safety of outpatient management of severe ovarian hyperstimulation
syndrome (OHSS) requiring placement of a pigtail catheter.

~ Fully Supervised (Training: PubMed): To evaluate the efficacy and safety of pigtail catheter drainage in the -
management of severe/critical OHSS in patients who underwent in vitro fertilization and embryo transfer at our
centre. (50/36/43)

* Zero-Shot (Training: FacefSum): The purpose of this paper is to evaluate the efficacy and safety of pigtail
catheter drainage in the management of severe ohss in patients who underwent in vitro fertilization and embryo
transfer at the centre between 1999 and 2001. (41/31/36)

Zero-Shot (Training: FacetSum, PubMed*): The purpose of this paper is to assess the efficacy of pigtail
catheter drainage in the management of severe/critical ohss in patients who underwent in vitro fertilization.
(44/17/32)

" Leave-One-Out: The mean age of the patients was 22.5 years (range: 12-40 years). The mean duration of
pregnancy was 23.5 months. The mean number of oocytes retrieved per day was 2.5 (range, 1-4). The average
number of embryos retrieved per patient was 3 (range = 1-6). The catheter was successfully placed in all patients.
No complications were observed during the percutaneous drainage of ascites. (11/0/11)

Leave-One-Out (Training: PubMed”*): Patients who underwent in vitro fertilization and embryo transfer at our
centre between 1999 and 2001 on both inpatient and outpatient clinics were included in this study. The catheter
was placed temporarily for a few days and drainage was completed through one procedure. (15/0/9)

" Paraphrasing (Purpose): Percutaneous placement of a pigtail catheter for drainage of ascites caused by
severe/critical OHSS was effective and safe (45/21/25)

Paraphrasing (Purpose) (Training: PubMed™): To evaluate the efficacy and safety of percutaneous placement
of a pigtail catheter for drainage of ascites caused by severe/critical ovarian syndrome (72/47/54)
Paraphrasing (Aims): Percutaneous placement of a pigtail catheter for drainage of ascites caused by se-
vere/critical OHSS was effective in reducing the incidence of severe OHSS in both inpatient and outpatient
populations. (47/20/19)

Paraphrasing (Aims) (Training: PubMed*): We evaluated the efficacy and safety of percutaneous placement
of a pigtail catheter for drainage of ascites caused by severe/critical OHSS. (61/43/51)

Aspect: Conclusion

Reference: Nursing interventions based on family needs of hospitalized patients in the ICU increase their
satisfaction. Attention to family nursing should be planned especially in the ICUs.

~ Fully Supervised (Training: PubMed): According to the findings of this study, nursing interventions based on -
family needs can increase the satisfaction of the families of the hospitalized patients in the ICU. (64/35/45)

~ Zero-Shot (Training: FacetSum): The family needs of the patients hospitalized in intensive care units of al - -
zahra ( sa. (39/10/24)

Zero-Shot (Training: FacetSum, PubMed*): The study showed that the family needs of the patients in the icu
could increase their satisfaction and thus a reduction in stress. (48/29/44)

" Leave-One-Out: The aim of this study was to determine the effectiveness of nursing interventions based on
family needs on family satisfaction level of hospitalized patients in the neurosurgery intensive care unit of
Al-Zahra Hospital, Isfahan, Iran. (48/30/35)

Leave-One-Out (Training: PubMed*): The aim of this study was to determine the effectiveness of nursing
interventions based on family needs on family satisfaction level of hospitalized patients in the neurosurgery
intensive care unit of Al-Zahra Hospital, Isfahan, Iran. (48/30/35)

" Paraphrasing (Conclusions): According to the findings of this study, nursing interventions based on family
needs can increase the satisfaction of the families of the hospitalized patients in the intensive care unit. (58/30/40)
Paraphrasing (Conclusions) (Training: PubMed™*): The results of this study showed that nursing interventions
based on family needs had a positive effect on the family satisfaction level of the hospitalized patients in the
intensive care unit. (49/29/38)

Table 11: Examples of summaries using different experimental setups. ROUGE scores are shown at the end of
summaries (R1/R2/RL).
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Abstract

We study the effect of seven data augmen-
tation (DA) methods in factoid question an-
swering, focusing on the biomedical domain,
where obtaining training instances is partic-
ularly difficult. We experiment with data
from the BIOASQ challenge, which we aug-
ment with training instances obtained from an
artificial biomedical machine reading compre-
hension dataset, or via back-translation, infor-
mation retrieval, word substitution based on
WORD2VEC embeddings or masked language
modeling, question generation, or extending
the given passage with additional context. We
show that DA can lead to very significant per-
formance gains, even when using large pre-
trained Transformers, contributing to a broader
discussion of if/when DA benefits large pre-
trained models. One of the simplest DA meth-
ods, WORD2VEC-based word substitution, per-
formed best and is recommended. We release
our artificial training instances and code.

1 Introduction

Question Answering (QA) systems aim to answer
natural language questions by searching in struc-
tured (Fu et al., 2020; Luo et al., 2018; Yadati et al.,
2021) or unstructured data, such as free-text docu-
ments (Aghaebrahimian, 2018). Here we consider
QA of the latter kind. Fully fledged QA systems for
document collections retrieve relevant documents,
identify relevant passages, extract and aggregate
answer spans etc. (Chen et al., 2017a; Pappas and
Androutsopoulos, 2021). There are also different
types of questions, e.g., yes/no, factoid, list, how-to.
Thus, creating realistic datasets to train and evalu-
ate complete QA systems for document collections
is resource intensive, especially for systems target-
ing specialized domains. A prime example is the
biomedical domain, the focus of this work, where
obtaining realistic training (and test) instances re-
quires medical expertise, which is costly and diffi-
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cult to obtain. Consequently, biomedical datasets
for full QA systems contain just a few thousand
training instances (Tsatsaronis et al., 2015; Moller
et al., 2020) or focus on simpler question types
only, e.g., yes/no questions (Jin et al., 2019).

A simplified form of QA for textual data is Ma-
chine Reading Comprehension (MRC) (Yang et al.,
2015; Rajpurkar et al., 2016; Campos et al., 2016;
Chen et al., 2017b; Lai et al., 2017; Joshi et al.,
2017; Kwiatkowski et al., 2019; Reddy et al., 2019;
Jin et al., 2019; Wang et al., 2020), where the sys-
tem is given a question and a particular (or a few)
passage(s) and the answer must be found therein.
In effect, MRC focuses on a particular core stage
of a full QA pipeline, identifying answer spans,
assuming that relevant documents and passages
have already been identified. We also focus on
this stage, adopting an MRC setting. Large generic
(non domain-specific) MRC datasets have been con-
structed via crowd-annotation (Rajpurkar et al.,
2016, 2018; Yang and Choi, 2019; Joshi et al.,
2017), but crowd-annotation on that scale is dif-
ficult when biomedical expertise is required. An
alternative is to automatically generate cloze-style
MRC datasets. The last sentence or title of a ran-
dom passage is treated as a question, some part
(e.g., named entity) of the ‘question’ is masked,
and the system is required to predict it. This ap-
proach has been used to generate large artificial
cloze-style MRC datasets (Hill et al., 2016; Chen
etal., 2016; Bajgar et al., 2016), including biomedi-
cal ones (Pappas et al., 2018, 2020). These datasets
could be used to augment real ones, but have mostly
been used as artificial experimental setups only.

When training examples for end-tasks are lim-
ited, as in realistic biomedical QA datasets, the
currently dominant approach in NLP is to use pre-
trained Transformers (Devlin et al., 2019; Liu et al.,
2019; Lan et al., 2019; He et al., 2020; Raffel et al.,
2020), possibly pre-trained on domain-specific
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corpora (Lee et al., 2019; Beltagy et al., 2019;
Chalkidis et al., 2020), and fine-tune (further train)
them on the limited examples of the end-tasks. Nev-
ertheless, increasing the number of end-task exam-
ples typically improves performance. One way to
achieve this is to employ data augmentation (DA)
(Shorten et al., 2021; Feng et al., 2021), which adds
artificial training instances to a training set, in our
case the training set of the end task. It is unclear,
however, which DA methods improve most (if at
all) the performance of pre-trained models per end-
task (Longpre et al., 2019, 2020). Consequently,
Feng et al. (2021) recommend exploring when DA
is effective for large pre-trained models.

In this paper, we thoroughly examine the im-
pact of DA in biomedical QA, focusing on the
factoid questions of the BIOASQ challenge (Tsat-
saronis et al., 2015) in an MRC setting, i.e., we
assume that relevant text passages, called snip-
pets in BIOASQ, have already been identified. We
first evaluate on BIOASQ three indicative off-the-
shelf pre-trained models, DISTILBERT (Sanh et al.,
2019), BIOBERT (Lee et al., 2019), ALBERT (Lan
et al., 2019), already fine-tuned on SQUAD (Ra-
jpurkar et al., 2016) or SQUAD-V2 (Rajpurkar et al.,
2018), and we select ALBERT as our weak baseline.
We also fine-tune ALBERT on BIOASQ, on top of
its SQUAD fine-tuning, to obtain a stronger base-
line. We then obtain additional artificial training
instances from an artificial cloze-style MRC dataset,
or via back-translation, information retrieval (IR),
word substitution based on WORD2VEC or masked
language modeling, question generation, or by ex-
tending the given passages with additional context.
WORD2VEC-based word substitution, one of the
simplest DA methods considered, improves test
performance from 76.78% precision-recall AUC
(for ALBERT fine-tuned on SQUAD and BIOASQ) to
84.99%. Although we focus on biomedical QA, our
work should also be of interest in QA for other spe-
cialized domains, e.g., legal QA (Kien et al., 2020;
Khazaeli et al., 2021; Zhang and Xing, 2021). Our
work is the largest, in terms of DA methods consid-
ered, experimental study of DA for QA (Section 4).

Our main contributions are: (1) We present the
largest (in terms of methods) experimental compari-
son of DA methods for QA, focusing on biomedical
QA, where obtaining training instances is partic-
ularly difficult and costly. (2) We show that DA
can lead to very large performance gains, even
when using pre-trained Transformers fine-tuned
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on large generic (SQUAD) and/or small domain-
specific (BIOASQ) end-task datasets, contributing
to a broader discussion of if/when DA benefits pre-
trained models. (3) We show that artificial cloze-
style MRC datasets are useful for DA. (4) We show
that one of the simplest DA methods, WORD2VEC-
based word substitution, is also the best and is,
therefore, recommended. (5) We make our artifi-
cial training examples and code publicly available.'

2 Experimental Setup

2.1 BIOASQ Data in a SQUAD setting

We experiment with data from BIOASQ-8 (2021),
Phase B, Task B (Tsatsaronis et al., 2015), which
contain English questions of biomedical experts.
Each question is accompanied by (i) the gold an-
swer (often several alternative phrasings) and (ii)
gold relevant passages, called snippets (usually a
single sentence each) from biomedical articles; the
gold snippets contain the gold answer or other rel-
evant information. There are four question types:
yes/no, factoid, list, and questions requiring a sum-
mary. We focus on factoid questions (e.g., “Which
gene is involved in Giant Axonal Neuropathy?”).
We convert the BIOASQ data to triples each con-
taining a question, a single gold snippet, and the
span of the gold answer in the snippet, much as in
SQUAD (Rajpurkar et al., 2016). If a question has
multiple gold snippets, we produce equally many
triples, discarding snippets that do not contain the
gold answer. This conversion and considering only
factoid questions allow us to use pre-trained Trans-
formers already fine-tuned on SQUAD in a similar
setting.” A disadvantage of the conversion is that
our results are not directly comparable to those
of BIOASQ. The goal of our work, however, is
to study the effect of different DA methods on a
modern Transformer-based QA baseline (and we
show that fine-tuning it first on SQUAD helps), not
to compete against BIOASQ participants, who often
use models tailored to the particular competition.
From the 941 factoid questions of the original
BIOASQ data, we obtained 3415 question-snippet-
answer triples. We split these in training, develop-
ment, test subsets (2848, 271, 296 triples, resp.),
ensuring no question is in more than one subsets.

'See http://nlp.cs.aueb.gr/publications.html
for links to the code and data.

’In the original BIOASQ data, multiple snippets may be
given for a particular question, the answer may be present in
several of them, and identifying any answer span suffices.
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Figure 1: The model used in all of the following ex-
periments. ALBERT-XL is fed with a question and snip-
pet. Its contextualized embeddings are passed through
an MLP with sigmoid activations that produces a begin
(Pp) and end (P,) probability per token of the snippet.

2.2 Off-the-shelf Models

As a starting point, we compared the performance
of three publicly available pre-trained models that
have already been fine-tuned for MRC on SQUAD
(Rajpurkar et al., 2016) or SQUAD-V2 (Rajpurkar
etal., 2018).3 At the time of our experiments, AL-
BERT-based models (Lan et al., 2019) were among
the best on the SQUAD leaderboards; here, we use
ALBERT fine-tuned on SQUAD-V2. We also con-
sidered BIOBERT (Lee et al., 2019), because it is
pre-trained on a biomedical corpus; again, we use
it fine-tuned on SQUAD-V2. The third model, DIS-
TILBERT (Sanh et al., 2019), was chosen because
of its much smaller size, which makes running
experiments easier. This model is pretrained on
a generic corpus, like the original BERT, and we
use it fine-tuned on SQUAD. All three models are
used here off-the-self, i.e., they are only evaluated,
not trained in any way on BIOASQ data. Through-
out this work, we use the development subset of
the BIOASQ data to select models and configura-
tions of DA methods, but in this experiment we use
the union of the training and development subsets,
since no BIOASQ training is involved. ALBERT is
the best off-the-shelf model considered (Table 1),
hence we use it in all other experiments.*

Model PRAUC (BIOASQ train+dev)
DISTILBERT (SQUAD) 64.27
BIOBERT (SQUAD-V2) 69.22
ALBERT (SQUAD-V2) 75.05

Table 1: Off-the-shelf pre-trained models, fine-tuned
for MRC on SQUAD or SQUAD-V2. We report Precision-
Recall AUC (PRAUC, %) on BIOASQ training and devel-
opment data, since no BIOASQ training is involved.

3We obtained the models from https://huggingface.
co/ktrapeznikov/albert-xlarge-v2-squad-v2. We
use the XL version of ALBERT. The other two models adopt
the BERT-BASE architecture; no XL variants were available.
4We discuss PRAUC in Sections 2.3 and 2.4.
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2.3 Model Architecture Modifications

The results of Table 1 were obtained by feeding the
three off-the-shelf models with the concatenation of
the question and snippet of each question-snippet-
answer BIOASQ triple (training or development),
without training of any kind. Following a typical
MRC architecture, each model was previously fine-
tuned (by others) on SQUAD (or SQUAD-V2) with
a shared dense layer on top of each contextualized
token embedding (of the snippet only) that the pre-
trained model generates. The dense layer produces
two logits per token, indicating the model’s con-
fidence that the token is the beginning or end of
the answer, respectively. Two separate softmax
activations operate across all the begin and end log-
its, respectively, and the answer is the span (of the
snippet) whose first and last tokens have the highest
sum of begin and end probabilities (and the correct
order).> The two softmax activations presuppose
that there is a single contiguous answer span in each
snippet. This is true in SQUAD, but in our BIOASQ
data the (single) answer of a triple may consist
of multiple non-contiguous spans of the triple’s
snippet (this happens in 583 out of 2,848 training
instances). Hence, in the following experiments,
where we further fine-tune ALBERT on BIOASQ or
artificial training data, we replace the two softmax
activations by two sigmoids that produce the begin
and end probability per token of the snippet. Any
token whose begin (or end) probability is above a
threshold 7 is treated as the beginning (or end) of
an answer span. The PRAUC evaluation measure
(discussed below) aggregates results over different
t values. We also replace the dense layer on top of
the contextualized token embeddings by a Multi-
Layer Perceptron (MLP) with a single hidden layer,
which performed better on our development data.
We use this single typical MRC model architecture
(Fig.1) in all the following experiments, since we
aim to study the effect of several DA methods, not
to propose new MRC model architectures.

2.4 Evaluation Measure

Given a development or test question-snippet-
answer triple and a decision threshold ¢ (Sec-
tion 2.3), we compute precision and recall at the to-
ken level, i.e., we measure the ability of the model
to identify the tokens of the answer. Precision is
the number of correctly identified answer tokens,

5In SQUAD-V?2, additional layers decide if a question is
answerable. We do not discuss them to save space.



divided by the number of tokens in the model’s
answer. Recall is the number of correctly identified
answer tokens, divided by the number of tokens
in the correct answer. For different thresholds ¢,
we obtain different precision-recall pairs for the
same question-snippet-answer triple, which can be
plotted as a precision-recall curve. We compute the
trapezoidal area under the precision-recall curve
(PRAUC), and we then macro-average the PRAUC
scores over the test (or development) triples.’

2.5 Baselines

We use two baselines that do not involve DA: i) off-
the-shelf ALBERT, pre-trained on a generic corpus,
already fine-tuned on SQUAD-V2 (last model of Ta-
ble 1); and ii) same as the first baseline, but further
fine-tuned (on top of the fine-tuning on SQUAD-V2)
on our BIOASQ training data, with the modified ar-
chitecture of Section 2.3. Table 2 shows that the
second baseline is much stronger. Hence, we re-
port performance gains with DA methods against
the second baseline in subsequent sections.’

Model +train ex. PRAUC (BIOASQ dev)
ALBERT (SQUAD-V2) 0 80.25
+BIOASQ 2,848 89.57

Table 2: Performance of baselines on BIOASQ dev. data.
The first one is ALBERT-XL fine-tuned on SQUAD-V2.
The second one is also fine-tuned on BIOASQ, with the
modified architecture of Fig. 1. We also show the num-
ber of domain-specific (BIOASQ) training examples.

3 Data Augmentation Methods

There are two alternatives when using the artificial
training instances that DA generates (Yang et al.,
2019). In our case, we always start with ALBERT,
pre-trained on a generic corpus, and already fine-
tuned on SQUAD-V2. In the first alternative, the
model is then further fine-tuned on the artificial
instances, and is then finally fine-tuned on the end-
task data (BIOASQ). In the second alternative, the
artificial and the end-task data are mixed, and the
model is fine-tuned on the mixed data. In each
experiment below, we use the alternative (among
the two) that leads to the best development PRAUC.

3.1 Artificial Cloze-style MRC Dataset

For this augmentation method, we use BIOMRC
(Pappas et al., 2020), the most recent and largest

®PRAUC is similar to Mean Average Precision (Manning
et al., 2008), but obtains precision-recall points differently.

"We also experimented pre-trained ALBERT directly fine-
tuned only on BIOASQ, but the performance was much worse.
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artificial cloze-style biomedical MRC dataset.
BIOMRC comes in two versions, LARGE and LITE,
with 813k and 100k cloze-style questions, respec-
tively. We use BIOMRC LITE. Each ‘question’ is
the title of a biomedical article, with an entity men-
tioned in the title hidden. Each question is accom-
panied by a passage (the abstract of the article),
candidate answers (entities mentioned in the ab-
stract), and the gold answer. From each passage we
keep only the sentence containing the gold answer
as the given snippet, and we generate a question-
snippet-answer triple.® If more than one sentences
of the passage contain the gold answer, we create
multiple triples, one for each sentence. We end up
with approximately 142k artificial training triples.

ALBERT (SQUAD-V2) +train ex. PRAUC (BIOASQ dev)
+BIOASQ 2,848 89.57
+BIOMRC 2,848 78.66

+BIOMRC +BIOASQ 5,696 91.57
+BIOMRC 10,000 91.20
+BIOMRC +BIOASQ 12,848 93.15
+BIOMRC 30,000 90.57
+BIOMRC +BIOASQ 32,848 92.19
+BIOMRC 50,000 91.19
+BIOMRC +BIOASQ 52,848 91.51
+BIOMRC 100,000 90.93
+BIOMRC +BIOASQ 102,848 92.39

Table 3: Adding training examples from an artificial
cloze-style MRC dataset (BIOMRC). The ‘+train ex.’
column shows the number of domain-specific training
examples (from BIOMRC and/or BIOASQ) used, on top
of examples seen during fine-tuning on SQUAD-V2.

In Table 3, the starting point is the weak base-
line of Table 2 (ALBERT fine-tuned on SQUAD-V2).
We compare to the strong baseline (the second
one of Table 2), which was further fine-tuned on
BIOASQ (+BIOASQ). We show results when fine-
tuning on BIOMRC (+BIOMRC) instead of BIOASQ,
and when fine-tuning on both BIOMRC and BIOASQ
(+BIOMRC +BIOASQ), using 10k to 100k randomly
sampled BIOMRC examples. Interestingly, fine-
tuning on 10k artificial BIOMRC examples leads
to better performance (91.20 dev. PRAUC) than
fine-tuning on BIOASQ (89.57). The best perfor-
mance (93.15) is obtained by fine-tuning on both
BIOASQ and 10k BIOMRC examples. We attribute
this improvement to the resemblance of BIOMRC
to BIOASQ data. We see no benefit when adding
more than 10k BIOMRC examples, which may be
an indication that the useful (for BIOASQ) patterns
that the model can learn from BIOMRC are limited.

8See the appendix for examples of all the DA methods.



3.2 Back-translation

Back translation (BTR) has been used for data aug-
mentation in several NLP tasks (Feng et al., 2021;
Shorten et al., 2021). The training examples are
machine-translated from a source to a pivot lan-
guage and back, obtaining paraphrases. We ini-
tially used French as the pivot language, then also
Spanish and German, always translating from En-
glish to a pivot language and back with Google
Translate. For each question-snippet-answer train-
ing triple of BIOASQ, we generate two new triples
by back-translating either the question or the snip-
pet. If a new triple is identical to the original one,
we discard it. We obtained 4,901 new training ex-
amples pivoting only to French, and 15,593 when
also pivoting to Spanish and German.

(or passage therein) that includes the gold answer
is used to construct a new training example (with
the same question and gold answer). We used the
open data from the PUBMED Baseline Repository !’
to create a pool of 22.3M biomedical documents.
Each document is the concatenation of the title
and abstract of a PUBMED article. We indexed all
documents with an ElasticSearch retrieval engine!!
and used the 500 top ranked (by BM25) documents
per question. From the original 2,848 question-
snippet-answer triples, only 289 more were gener-
ated, because in most of the retrieved documents
no sentence included the entire answer (individual
terms of the answer might be scattered in the doc-
ument). We suspect that the biomedical experts
of BIOASQ create questions whose answers cannot
be found in large numbers of documents (unlike

ALBERT (SQUAD-V2)  +train ex. PRAUC (BIOASQ dev) common questions in open-domain QA datasets),
and the few relevant documents (and snippets) of
+BIOASQ 2,848 89.57 . . .
TBTR [FR] 2.848 0184 each question have already been included in the
+BTR [FR] +BIOASQ 5,696 92.95 BIOASQ training data. Table 5 shows that IR-based
+BTR [FR] 4,901 89.80 augmentation led to very minor gains in our case,
+BTR [FR] +BIOASQ 7,749 91.44 L. .
+BTR [FR.ES,DE] 2.848 39.80 because of the very few additional instances.
+BTR [FR,ES,DE] +BIOASQ 5,696 89.99
+BTR [FR,ES,DE] 14,229 92.21 ALBERT (SQUAD-V2) +train ex. PRAUC (BIOASQ dev)
+BTR [FR,ES,DE] +BIOASQ 17,077 9221 +BIOASQ 2348 8957
Table 4: Data augmentation via back-translation (BTR), +IR 289 80.30
using one (FR) or three (FR, ES, DE) pivot languages. +IR +BIOASQ 3,137 89.80

Table 3 shows that adding back-translations to
the BIOASQ training data increases development
PRAUC from 89.57 to 91.44 (or 92.66) with one
(or three) pivot languages. Using back-translations
with one pivot (+BTR [FR]) instead of the original
BIOASQ data slightly surpasses the strong baseline
(89.80 vs. 89.57); and with three pivots, using only
back-translations (+BTR [FR,DE,ES]) performs al-
most the same as adding the original BIOASQ data
t00 (92.52 vs. 92.66). These results show that BTR
produces very good training instances and that fur-
ther benefits may be possible with more pivots.
Nevertheless simpler methods (e.g., WORD2VEC-
based word substitution, discussed below) offer
larger gains with fewer artificial training instances.

3.3 Information Retrieval

Data augmentation based on Information Retrieval
(IR) has been found promising in previous open-
domain QA work (Yang et al., 2019).° Given a
question and a gold answer, the question is used as
a query to an IR system. Any retrieved document

%Yang et al. (2019) gained 2.7 to 9.7 F1 percentage points
(pp.) in all four datasets they experimented with.
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Table 5: Data augmentation via information retrieval
(IR), using PUBMED titles and abstracts as documents.

3.4 Word Substitution

These methods replace words of the original train-
ing examples by similar words (e.g., synonyms)
from a thesaurus (Jungiewicz and Smywinski-Pohl,
2019; Abdollahi et al., 2020) or words with similar
embeddings (Wang and Yang, 2015). More re-
cent work uses large language models, pre-trained
to predict masked tokens, which suggest replace-
ments of randomly masked words of the original
examples (Kobayashi, 2018; Wu et al., 2019).

3.4.1 WORD2VEC-based Word Substitution

In this case, we use biomedical WORD2VEC
(Mikolov et al., 2013; Brokos et al., 2018) em-
beddings. Given a question-snippet-answer train-
ing instance, we consider all the word tokens of
the snippet (excluding stop-words). For each to-
ken w; (i = 1,...,n) of the snippet, we select the
ki < K most similar words w; (j = 1,...,k;) of

1°1hncbe.nlm.nih.gov/ii/information/MBR.html
https://www.elastic.co/



the vocabulary, using cosine similarity of word em-
beddings (w;, w;), that satisfy cos(w;, w;) > C. We
then produce (k; +1)(kp+1) ... (k, +1)—1 artificial
training instances by replacing each token w; of the
snippet by one of its k; most similar words (or it-
self), requiring at least one token of the original
snippet to have been replaced. We then randomly
sample 10k to 100k of the resulting instances and
use them as additional training examples. We set
K =10, C = 0.95 based on preliminary experi-
ments on development data. Adding 10k of the
resulting artificial training examples to the origi-
nal BIOASQ examples leads to 95.60 development
PRAUC, outperforming the strong baseline (89.57)
by six percentage points (Table 6). Using only the
10k artificial examples, without any of the original
examples, achieves almost identical performance
(95.59), which suggests that the generated exam-
ples are of high quality. As when using artificial
MRC examples (Table 3), adding more than 10k
artificial instances provides no further benefit, prob-
ably because we end up adding too many minor

with a new vocabulary extracted from PUBMED. '?
We use the same process as in WORD2VEC word
substitution, but each candidate replacement w; of
an original word w; of the snippet must now sat-
isfy p(w;) > P (instead of cos(W;, W;) > C), where
p(wj) is the probability assigned to w; by the pre-
trained model; we also rank the candidate replace-
ments w; of each w; by p(w;). We set P = 0.95,
based on preliminary experiments on development
data. Table 7 shows that BIOLM-based substitution
is almost as good as WORD2VEC-based substitu-
tion (94.45 vs. 95.60), but for BIOLM the best per-
formance is obtained with 50k artificial examples
(compared to 10k for WORD2VEC). This is proba-
bly due to the fact that BIOLM suggests words that
fit the particular context of the word being replaced
and may, thus, suggest words with very different
meanings that can be used in the particular con-
text, adding noisy examples. By contrast, when
using WORD2VEC we compare more directly each
original word with candidate replacements. !>

variants of the same original examples. ALBERT (SQUAD-V2) +train ex. PRAUC (BIOASQ dev)
+BIOASQ 2,848 89.57
ALBERT (SQUAD-V2)  +train ex. PRAUC (BIOASQ dev) +BIOLM 2,848 91.76
T BIOAS 5548 95 +BIOLM +BIOASQ 5,696 9237
FWORD2VEC 2,848 95.56 +BIOLM 10,000 94.06
+WORD2VEC +BIOASQ 5,696 95.27 +BIOLM +BIOASQ 12,848 94.06
+WORD2VEC 10,000 95.59 +BIOLM 30,000 93.63
+WORD2VEC +BIOASQ 12,848 95.60 +BIOLM +BIOASQ 32,848 93.75
+WORD2VEC 30,000 95.28 +BIOLM 50,000 93.94
+WORD2VEC +BIOASQ 32,848 95.20 +BIOLM +BIOASQ 52,848 94.45
+WORD2VEC 50,000 95.16 +BIOLM 100,000 93.79
+WORD2VEC +BIOASQ 52,848 95.13 +BIOLM +BIOASQ 102,848 93.84

+WORD2VEC 100,000 95.36 . . o

+WORD2VEC +BIOASQ 102,848 95.22 Table 7: Data augmentation with word substitution

Table 6: Data augmentation with WORD2VEC-based
word substitution, using biomedical embeddings.

The same DA mechanism could have been ap-
plied to questions instead of snippets. In prelimi-
nary experiments, we employed an additional pre-
trained natural language inference (NLI) model
(El Boukkouri et al., 2020) as a consistency mecha-
nism to ensure the modified snippets followed from
the original ones, but this also greatly reduced the
number of artificial training instances we could gen-
erate. Performance was better without this mecha-
nism, i.e., generating more artificial instances was
better than generating fewer higher quality ones.

3.4.2 Masked LM Word Substitution

Here we use BIOLM (Lewis et al., 2020) and specif-
ically a ROBERTA-LARGE model pre-trained on
PUBMED, PMC, and MIMIC-III (Zhu et al., 2018)
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based on masked language modeling using BIOLM.

3.5 Question Generation

Question generation (QG) has been found an effec-
tive DA method in open-domain MRC (Alberti et al.,
2019; Chan and Fan, 2019; Lopez et al., 2020). The
main reported benefit is that it increases the diver-
sity of questions (Qiu and Xiong, 2019; Sultan
et al., 2020). Typically QG models are fed with a
snippet s, select an answer span a of s, and gener-
ate a question g answered by a. We take T5 (Raffel
et al., 2020) fine-tuned for QG on a modified version
of SQUAD by Lopez et al. (2020)'* and use it to gen-

12We did not use BIOLM as an off-the-shelf QA model (Sec-
tion 2.2), because it was not available fine-tuned on SQUAD.

3WORD2VEC embeddings are not sensitive to the particular
context of the snippet and rely exclusively on the (many more)
contexts of each word encountered in the pre-training corpus.

“The TS QG model we used is available at https://
github.com/patil-suraj/question_generation.



erate alternative questions ¢’ and answer spans a’
from the snippets s of the BIOASQ (g, s, a) training
triples, producing artificial (¢’, s, a’) triples. Multi-
ple artificial triples can be generated from the same
original one (the same s), but we require each ¢’ to
be answered by a different answer span @’ to maxi-
mize the diversity of questions. We obtained 3,389
artificial triples from the 2,848 original ones this
way. An alternative we explored is to select random
snippets s from random PUBMED abstracts, and use
the QG model to produce artificial (¢’, s, a’) triples.
The alternative approach can generate millions of
artificial triples; we generated up to 100k.

ALBERT (SQUAD-V2) +train ex. PRAUC (BIOASQ dev)

+BIOASQ 2,848 89.57
+T5@BIOASQ 3,389 84.46

+T5 @BIOASQ +BIOASQ 6,237 88.46
+T5 @PUBMED 2,848 85.79

+T5 @PUBMED +BIOASQ 5,696 89.29
+T5 @PUBMED 10,000 87.30
+T5@PUBMED +BIOASQ 12,848 89.34
+T5 @PUBMED 30,000 86.65

+T5 @PUBMED +BIOASQ 32,848 90.51
+TS5 @PUBMED 50,000 87.30

+T5 @PUBMED +BIOASQ 52,848 90.69
+TS5 @PUBMED 100,000 87.30
+T5@PUBMED +BIOASQ 102,848 90.61

Table 8: Data augmentation via question generation us-
ing T5. Questions are generated from the training snip-
pets of BIOASQ (TS5 @BIOASQ) or from random snippets
from random PUBMED abstracts (T5 @ PUBMED).

Table 8 shows that adding to the BIOASQ training
data the artificial triples we obtained from BIOASQ
(+T5 @BIOASQ, BIOASQ) is worse (88.46 vs. 89.57)
than our strong baseline (+BIOASQ). Fine-tuning
only on the artificial triples (+T5S@BIOASQ) is
much worse (84.46), i.e., the artificial triples are
much less useful, despite being more than the orig-
inal ones. Adding artificial triples from PUBMED
(+T5@PUBMED, BIOASQ) performs only slightly
better (90.69) than the strong baseline, when us-
ing 50k artificial triples, with no further benefit
when using more. A possible explanation for these
poor results is the TSwas fine-tuned for QG on the
open-domain SQUAD dataset. Thus, the generated
questions are rather simplistic and not indicative of
the specialized questions of BIOASQ. Indeed, most
of the generated questions are minor rephrases of
the given snippet (e.g., subject replaced by ‘what’).

3.6 Adding Context

In the original training question-snippet-answer
(g, s, a) triples, s is usually a single sentence. To
help the QA model learn to better distinguish rele-
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ALBERT (SQUAD-V2) +train ex. PRAUC (BIOASQ dev)

+BIOASQ 2,848 89.57
+CONTEXT (K = 2) 4,568 93.91
+CONTEXT (K = 2) +BIOASQ 7,416 94.05
+CONTEXT (K € {2,4}) 6,428 94.20
+CONTEXT (K € {2,4}) +BIOASQ 9,276 94.21

Table 9: Data augmentation by adding context to the
snippet (K = 2 or K € {2,4} surrounding sentences).

vant from irrelevant parts of the given snippet, we
experimented with an additional DA method, where
we find the original article that s comes from and
we expand s with the k; (and k;) sentences preced-
ing (and following) it."> For each original {q, s, a)
triple, we create multiple new (g, §’, a) artificial
triples, for different values of k; > 0 and k, > 0,
such that k; +k, = K.1® We experiment with K = 2
(three new triples for each original one); then to ob-
tain more artificial examples, we repeat with K = 4
(five new triples for each original). To avoid trunca-
tion of the input examples, we remove all artificial
examples that exceed 500 characters in length. For
K € {2,4}, we obtain a development PRAUC score
of 94.21 (Table 9), which is surpassed only by the
the two embedding-based word substitution meth-
ods (Tables 6-7). This DA method was introduced
by Yoon et al. (2020), who used it in BIOASQ.!”

3.7 Final Results

Table 10 shows the performance of all the DA meth-
ods considered, on both development and test data.
For each DA method, we use the configuration
(from Tables 3-9) with the best development score.
The test scores are lower than the corresponding
development ones, since several hyper-parameters
(e.g., K, C in the case of WORD2VEC-based word
substitution, number of training epochs) are tuned
on the development set. The test set also seems
to be harder than the development one, since our
weak baseline (ALBERT fine-tuned on SQUAD-V2
with no further training) also performs worse on
the test set (77.78 vs. 80.25). Nevertheless, the
test scores confirm that WORD2VEC-based word
substitution is the best DA method considered, lead-
ing to a performance gain of 8.2 percentage points
test PRAUC compared to the strong baseline (84.99
vs. 77.78). The ranking of the other DA methods

3Tn BIOASQ, each gold snippet is accompanied by the
PUBMED id of the article it was extracted from.

16Simply setting k; = k, would risk misguiding the model
to always prefer the central sentence. We also experimented
with random k; (or k,) sentences before (and after) s, but
performance was much worse, possibly because the random
sentences led to inferior context-aware token embeddings.

7Yoon et al. (2020) reported an improvement in BIOASQ’s
Lenient Accuracy by 2.49 percentage points.



does not change when ranking by test score, instead
of development score, with the only exception of
adding context to the given passage (+CONTEXT),
which is now slightly worse than adding instances
from the artificial BIOMRC dataset. Interestingly,
all the DA methods, even the weakest IR-based one,
improve upon the test score of the strong baseline.

Method +train ex. PRAUC (dev) PRAUC (test)

ALBERT (SQUAD-V2) 0 80.25 77.78

+ BIOASQ 2,848 89.57 76.78
+WORD2VEC +BIOASQ 12,848 95.60 (+6.03) 84.99 (+8.21)
+BIOLM +BIOASQ 52,848  94.45 (+4.88) 82.76 (+5.98)
+CONTEXT +BIOASQ 9,276 94.21 (+4.64)  81.63 (+4.85)
+BIOMRC +BIOASQ 12,848 93.15 (+3.58)  82.04 (+5.26)
+BTR +BIOASQ 18,441  92.66 (+3.09) 81.27 (+4.49)
+T5@PUBMED +BIOASQ 52,848 90.69 (+1.12)  80.26 (+3.48)
+IR +BIOASQ 3,137 89.80 (+0.23)  78.66 (+1.88)

Table 10: Performance of DA methods on development
and fest data, ordered by decreasing development score.
For each DA method, we use the configuration (from
Tables 3-9) with the best development score.

4 Related Work

DA is a key ingredient of success in deep learning
for computer vision (Shorten and Khoshgoftaar,
2019). DA for NLP has been explored less, but is
an active research area (Shorten et al., 2021; Feng
etal., 2021), with methods ranging from leveraging
knowledge graphs (Moussallem et al., 2019) to
generating textual data from scratch (Yang et al.,
2020; Bayer et al., 2021a). The most common NLP
task in DA is text classification (Bayer et al., 2021b).
Feng et al. (2021) consider span-based NLP tasks
in specialized domains, which includes biomedical
MRC, among the most challenging for DA.

Word substitution is a simple and common DA
approach in NLP. In thesaurus-based substitution
(Jungiewicz and Smywinski-Pohl, 2019; Abdol-
lahi et al., 2020), words are replaced by synonyms
or closely related words (e.g., hypernyms). Word
embedding substitution (Wang and Yang, 2015)
replaces words by others nearby in a pre-trained
vector space model (Section 3.4). Alternatively, a
random word is removed, inserted (Wei and Zou,
2019a; Miao et al., 2020), or noised with spelling
errors (Belinkov and Bisk, 2018). Sentences may
also be re-ordered or removed (Shen et al., 2020;
Chen et al., 2021). Text generation has also been
used in several NLP tasks for adversarial augmen-
tation (Cheng et al., 2020), to paraphrase training
examples (Ribeiro et al., 2018; Cai et al., 2020;
Xie et al., 2020), or generate new (Anaby-Tavor
et al., 2020; Kumar et al., 2020). Back-translation
(Sennrich et al., 2016) is also widely used across
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NLP tasks (Shorten et al., 2021; Feng et al., 2021).

DA work for QA in particular includes back-
translation (Du et al., 2019), question generation
(Zhang and Bansal, 2019; Alberti et al., 2019; Chan
and Fan, 2019; Lopez et al., 2020; Yang et al.,
2020), paraphrasing (Dong et al., 2017; Liu et al.,
2020), and synonym replacement (Nugraha and
Suyanto, 2019), but not in a biomedical setting.
The IR-based DA we used (Section 3.3) follows
Yang et al. (2019), who experimented in English
and Chinese, but not in the biomedical domain. Ex-
panding the passage with surrounding sentences
(Section 3.6) follows Yoon et al. (2020), who used
this method in BIOASQ. Dhingra et al. (2018) cre-
ate artificial cloze-style MRC datasets and use them
to pre-train neural QA models (not Transformers),
which are then fine-tuned on real training exam-
ples. By contrast, we use artificial MRC datasets to
fine-tune large pre-trained Transformers. All the
above studies experimentally compare at most two
DA methods; we compare seven. Hence, our work
is the largest (in terms of methods considered) ex-
perimental study of DA for QA (and possibly NLP).

Longpre et al. (2019) report that back-translation
did not improve generalization in (non-biomedical)
QA experiments with fine-tuned pre-trained Trans-
formers. Longpre et al. (2020) report that back-
translation and Easy Data Augmentation (Wei and
Zou, 2019b) are not always effective in text clas-
sification when fine-tuning pretrained Transform-
ers, even with small end-task training sets. Conse-
quently, Feng et al. (2021) recommend exploring
when DA is effective for large pre-trained models.
Our work contributes in this discussion by showing
that DA can lead to very significant performance
gains, even when using large pre-trained Trans-
formers fine-tuned on large generic (SQUAD) and/or
small domain-specific (BIOASQ) end-task datasets.

5 Limitations and Future Work

A limitation of our work is that we consider only DA
in the input space, i.e., the artificial instances are
in textual form, like the original ones, as opposed
to, e.g., interpolating feature vectors (Chawla et al.,
2002; DeVries and Taylor, 2017; Shorten et al.,
2021). We also consider only offline augmenta-
tion, i.e., the artificial instances are generated once,
before training, as opposed to artificial instances
generated anew for each training epoch. These two
limitations, which are common in DA for NLP, al-
low generating model-agnostic training instances



once and reusing them across training epochs and
different models. This greatly reduces computation
costs and allows sharing the augmented datasets.
Online DA, however, exposes the model to many
more synthetic data; and feature space DA may act
as layer-specific regularization. One could also
exploit ideas from active learning (Ein-Dor et al.,
2020; Margatina et al., 2021) to select the most
informative, diverse, and representative artificial
training instances among those that DA generates.
Small subsets of the BIOASQ data could also be
used to study the effect of DA in few-shot learning.
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Appendix
A Combining Augmentation Methods

We also tried to combine DA methods. In Ta-
ble Al, we incrementally add to the training set of
the strong baseline (ALBERT fine-tuned on SQUAD-
V2, then BIOASQ) artificial training examples ob-
tained from WORD2VEC-based word substitution,
then (additionally) training examples obtained by
expanding the context of the given passage etc.
We started with the artificial examples of the
WORD2VEC-based method, which had the best de-
velopment score, skipped the other (BIOLM-based)
word substitution method, then continued with ex-
amples from BIOMRC and back-translation, which
were the next best in terms of development score.
Unfortunately, there was no significant gain, com-
pared to using only the WORD2VEC-based method,
which suggests that the DA methods we consider
are not complementary. An alternative approach
would be to stack DA methods, instead of accumu-
lating their training examples. For example, one
could apply the WORD2VEC method to artificial
examples produced by increasing the context of the
given passages. We leave this for future work.

Method +train ex. PRAUC (dev) PRAUC (test)
ALBERT (SQUAD-V2) 0 80.25 77.78
+BIOASQ 2,348 89.57 76.78
+ WORD2VEC 12,848 95.60 84.99
+ CONTEXT 19,276 93.98 83.54
+ BIOMRC 29,276 94.27 85.18
+ BTR 44,869 93.44 83.97

Table Al: Results using a combination of Context In-
creasing and WORD2VEC data augmentation.

B Examples of Artificial Data

B.1 BIOMRC

Table D3 presents training instances generated
from the BIOMRC dataset. Each instance is a triple
containing a cloze-style question, a snippet, and
the span of the snippet answering a question. This
is very similar to the SQUAD setting which we have
adopted in our experiments (see Section 2.1).



B.2 Back-translation

Tables D4 and D5 show training instances gener-
ated via back-translation of BIOASQ questions and
snippets, respectively. The back-translated ques-
tions and snippets retain the semantics of the origi-
nal ones while adding diversity to the training set.

B.3 Information Retrieval

Table D6 contains training instances generated via
Information Retrieval. A BIOASQ question is used
as a query in a search engine to retrieve PUBMED
documents (abstracts and titles). From the retrieved
documents all the snippets containing the answer
are extracted and used to generate new training
triples. Note that although a retrieved snippet may
contain the entity that answers the BIOASQ ques-
tion, it is not always evident that it answers the
question, e.g., it may answer another question as is
the case in the instance with id 29767248.

B.4 Word Substitution

Tables D7 and D8 presents examples generated
via word substitution based on WORD2VEC and
BIOLM respectively. Although some substitutions
may induce noise, the generated snippets tend to
retain the semantics of the original ones and add
diversity to the training set.

B.5 Question Generation

Tables D9 and D10 show examples generated via
Question Generation using BIOASQ snippets and
random snippets from random PUBMED articles
respectively. Although, the generated triples intro-
duce diverse answers they contain rather simplistic
questions which are not indicative of the special-
ized questions found in BIOASQ.

B.6 Additional Context

Table D11 contains examples generated by adding
context to the original BIOASQ snippets. The addi-
tional context provides additional information that
helps the model to better distinguish relevant and
irrelevant parts of the original snippet.

C Computing Infrastructure

All of our experiments run on a titan-X GPU with
12GB of Memory while all code was compiled for
CUDA Version 10.2. The personal computer we
used offers 32GB of DDR4-RAM Memory and a
6-core Intel(R) Core(TM) 17-5820K CPU.
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D Hyper-parameter tuning

The random seed in all experiments was set to 1.
For data augmentation through Information Re-
trieval (IR), we use an ElasticSearch cluster to re-
trieve relevant abstracts using BM25 with default
parameters.

Due to computational and time restrictions,
hyper-parameter tuning was performed with grid-
search by training on the original 2,848 BIOASQ ex-
amples (Table 2), i.e., without data augmentation,
and evaluating on the development data. The ‘best’
hyper-parameter values were then used in all the
augmentation experiments. The hyper-parameter
search space (48 settings) and the selected values
can be seen in Table D2.

Hyperparameter choices best dev. setting
Random Seed {1} 1

MLP Hidden Size {50, 100} 100
Total Epochs {50, 100} 50

Patience {5} 5
Monitor Score {AUC, loss} AUC
Learning Rate {0.1, 0.01, 2e-5, S5e-5 } 5e-5
Weight Decay {0.01} 0.01
Warmup Steps {0} 0
Batch Size {16, 8} 16

Table D2: Hyper-parameter search space and selected
values. We performed a grid-search on a total of 48 dif-
ferent settings. The best choices per hyper-parameter
can be seen in the last column.



DA with instances from BIOMRC

ID Instance

16061304 BIOMRC question: Prognosis of 6644 resected [MASK] in Japan: a Japanese lung cancer
registry study.

BIOMRC snippet: Otherwise, the present TNM staging system seemed to well characterize
the stage-specific prognosis in non-small cell lung cancer .

BIOMRC answer: non-small cell lung cancer

19823942 BIOMRC question: Systolic versus diastolic cardiac function variables during [MASK]
treatment for breast cancer .

BIOMRC snippet: epirubicin induces considerable decrease in left ventricular ejection
fraction and a high risk of CHF.

BIOMRC answer: epirubicin

22457372 BIOMRC question: Pre-operative education and counselling are associated with [MASK]
following carotid endarterectomy: a randomized and open-label study.

BIOMRC snippet: AIM: To investigate the effect of pre-operative visits and counselling by
intensive care unit ( intensive care unit ) nurses on Patients ’s anxiety symptoms following
carotid endarterectomy.

BIOMRC answer: anxiety symptoms

Table D3: Training instances extracted from BIOMRC. Each instance is a triple containing a cloze-style question, a
snippet, and the span of the snippet answering the question.

DA via question back-translation

ID Instance

8699317 Pivot language: French

BIOASQ question: Which is the gene mutated in type 1 neurofibromatosis?
Back-translated Question: What is the mutated gene in type 1 neurofibromatosis?
BIOASQ snippet: An NF1 gene was identified as a gene whose loss of function causes an
onset of human disorder, neurofibromatosis type I.

BIOASQ answer: NF1

11816795 Pivot language: Spansih

BIOASQ question: Which is the primary protein component of Lewy bodies?
Back-translated question: What is the main protein component of Lewy bodies?
BIOASQ snippet: The protein alpha-synuclein appears to be an important structural
component of Lewy bodies, an observation spurred by the discovery of point mutations in
the alpha-synuclein gene linked to rare cases of autosomal dominant PD.

BIOASQ answer: alpha-synuclein

3056562 Pivot language: German

BIOASQ question: Which type of urinary incontinence is diagnosed with the Q tip test?
Back-translated question: What type of urinary incontinence does the Q tip test diag-
nose?

BIOASQ snippet: Simple clinical tests for support of the urethrovesical junction, such as
the Q tip test, are non-specific in patients with stress urinary incontinence.

BIOASQ answer: stress urinary incontinence

Table D4: Training instances generated via back-translation of BIOASQ questions using French, Spanish, and
German as a pivot language. A generated instance contains a back-translated question and the corresponding
BIOASQ snippet and answer.
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DA via snippet back-translation

ID Instance

8699317 Pivot language: French

BIOASQ question: Which is the protein implicated in Spinocerebellar ataxia type 3?
BIOASQ snippet: Ataxin-3 (AT3) is the protein that triggers the inherited neurodegenera-
tive disorder spinocerebellar ataxia type 3 when its polyglutamine (polyQ) stretch close to
the C-terminus exceeds a critical length

Back-translated snippet: Ataxin-3 (AT3) is the protein that triggers spinocerebellar
ataxia type 3 in inherited neurodegenerative disorder when its polyglutamine (polyQ)
stretches near the C-terminus exceeds a critical length.

BIOASQ answer: Ataxin-3

16232326 Pivot language: Spanish

BIOASQ question: Which gene is responsible for the development of Sotos syndrome?
BIOASQ snippet: Haploinsufficiency of the NSD1 gene has been implicated as the major
cause of Sotos syndrome, with a predominance of microdeletions reported in Japanese
patients

Back-translated snippet: NSD1 gene haploinsufficiency has been implicated as the main
cause of Sotos syndrome, with a predominance of microdeletions reported in Japanese
patients.

BIOASQ answer: NSD1 gene

11154546 Pivot language: German

BIOASQ question: Abnormality in which vertebral region is important in the Bertolotti’s
syndrome?

BIOASQ snippet: Repeated fluoroscopically guided injections implicated a symptomatic
L6-S1 facet joint contralateral to an anomalous lumbosacral articulation.
Back-translated snippet: Repeated fluoroscopic injections implied a symptomatic L6-S1
facet joint contralateral to an abnormal lumbosacral articulation.

BIOASQ answer: lumbosacral

Table D5: Training instances generated via back-translation of BIOASQ snippets using French, Spanish, and Ger-
man as a pivot language. A generated instance contains a back-translated snippet and the corresponding BIOASQ
question and answer.

DA via Information Retrieval

ID Instance

25941473 BIOASQ question: Which is the neurodevelopmental disorder associated to mutations in
the X- linked gene mecp2?

Retrieved snippet: Genotype-specific effects of Mecp?2 loss-of-function on morphology
of Layer V pyramidal neurons in heterozygous female Rett syndrome model mice.
BIOASQ answer: rett syndrome

28708333 BIOASQ question: Which is the molecular target of the immunosuppressant drug Ra-
pamycin?

Retrieved snippet Conversion from calcineurin inhibitors to mTOR inhibitors as primary
immunosuppressive drugs in pediatric heart transplantation.

BIOASQ answer: mtor

29767248 BIOASQ question: What is the target of the drug Olaparib?

Retrieved snippet: Mechanistically, dual blockade of PI3K and PARP in ARIDIA-
depleted gastric cancer cells significantly increased apoptosis detected by flow cytometry,
and induced DNA damage by immunofluorescent staining.

BIOASQ answer: parp

Table D6: Training instances generated via IR. A BIOASQ question is used as the query to retrieve PUBMED
documents. For each snippet of the retrieved documents that contains the answer, we generate a new training
triplet consisting of the BIOASQ question, the snippet and the BIOASQ answer.
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DA with word substitution based on WORD2VEC

ID Instance
27965160 BIOASQ question: Sclerostin regulates what process?
BIOASQ snippet: Sclerostin is a soluble antagonist of Wnt/b-catenin signaling secreted

primarily by osteocytes. Current evidence indicates that sclerostin likely functions as a
local/paracrine regulator of bone metabolism rather than as an endocrine hormone.
Snippet after WORD2VEC substitution: sclerostin is a soluble agonist of wnt-b catenin

signaling secreted mainly by osteocytes current evidence suggests that sclerostin likely
functions as a localparacrine regulator of bone metabolism rather than as an endocrine
hormone

BIOASQ answer: bone metabolism

22003227 BIOASQ question: Which microRNA is the mediator of the obesity phenotype of patients
carrying 1p21.3 microdeletions?

BIOASQ snippet: The study also demonstrated significant enrichment of miR-137 at
the synapses of cortical and hippocampal neurons, suggesting a role of miR-137 in
regulating local synaptic protein synthesis machinery. CONCLUSIONS: This study
showed that dosage effects of MIR137 are associated with 1p21.3 microdeletions and

may [therefore contribute to the ID phenotype in patients with [deletions harbouring

this /miRNA .
Snippet after WORD2VEC substitution: the study also demonstrated significant en-
richment of mir 137 at the synapses of cortical and hippocampal neurons indicating

a implication of mir 137 in regulating local synaptic protein synthesis machinerybr-
bconclusionsb this study showed that dosage effects of mirl37 are associated with
2223 microdeletions and 'might 'hence| contribute to the id phenotype in patients

with | microinsertions harbouring this ‘micro-rna

BIOASQ answer: MIR137

21546092 BIOASQ snippet: Beck’s Medical Lethality Scale (BMLS) was administered to assess
the degree of medical injury, and the SAD PERSONS mnemonic scale was used to
evaluate suicide risk.

BIOASQ question: What is evaluated with the SAD PERSONS scale?

Snippet after WORD2VEC substitution: becks medical lethality scale bmls was admin-
istered to evaluate the degree of medical injury and the sad people domain-general

scale was utilized to investigate suicide risk
BIOASQ answer: suicide risk

Table D7: Training instances generated via word substitution based on WORD2VEC. We randomly select at most
10 words of a BIOASQ snippet and substitute each word w; with its most similar word w; from the vocabulary of the
WORD2VEC model. Highlights of the same color indicate substituted words and the corresponding substitutions.
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DA with word substitution based on BIOLM

ID Instance
22140526 BIOASQ question: Which gene is responsible for red hair?
BIOASQ snippet: The association signals at the MC1R gene locus from CDH were

uniformly more significant than traditional GWA analyses. The [CDH [ test| will
contribute towards finding [rare - variants in GWAS and sequencing studies.

BIOASQ snippet after BIOLM substitution: The association signals at the MCIR 1
identified from CDH were significantly more significant than traditional  association

analyses. The |proposed | findings will contribute towards |detecting 'novel - vari-
ants in GWAS and sequencing studies.

BIOASQ answer: MCI1R

26917818 BIOASQ question: Dinutuximab is used for treatment of which disease?

BIOASQ snippet: CONCLUSIONS Dinutuximab is the first anti-GD2 monoclonal anti-
body approved in combination with GM-CSE, IL-2, and RA for maintenance treatment
of pediatric patients with high-risk neuroblastoma who achieve at least a partial response
to first-line multiagent, 'multimodality| therapy.

BIOASQ snippet after BIOLM substitution: CONCLUSIONS Dinutuximab is the first
human monoclonal antibody approved in combination with recombinant IL-2, and
dexamethasone for maintenance treatment of pediatric patients with high-risk neuroblas-
toma who achieve at least a partial response to prior multiagent, standard| therapy.

BIOASQ answer: neuroblastoma

27789693 BIOASQ question: Which database associates human noncoding SNPs with their three-
dimensional interacting genes?

BIOASQ snippet: 3DSNP: a database for linking human noncoding SNPs to their

three-dimensional  interacting [genes'.

BIOASQ snippet after BIOLM substitution: 3DSNP: a method for linking functional
GWAS SNPs to their three-dimensional ' structural |structures

BIOASQ answer: 3DSNP

Table D8: Training instances generated via word substitution based on BIOLM.We randomly select at most 10
words of a BIOASQ snippet and we substitute each word w; with the most probable word w; suggested by BIOLM
after masking w;. Highlights of the same color indicate substituted words and the corresponding substitutions.

DA via Question Generation using BIOASQ snippets
ID Instance
21159650 Generated question: What enzyme inhibits cullin-RING E3 ubiquitin ligases?
BIOASQ snippet: MLN4924 is a first-in-class experimental cancer drug that inhibits
the NEDDS8-activating enzyme, thereby inhibiting cullin-RING E3 ubiquitin ligases and
stabilizing many cullin substrates
Generated answer: NEDD8
17333537 Generated question: What type of RNA triggers silencing of inactivation in eutherian
mammals?
BIOASQ snippet: In eutherian mammals X inactivation is regulated by the X-inactive
specific transcript (Xist), a cis-acting non-coding RNA that triggers silencing of the
chromosome from which it is transcribed
Generated answer: chromosome
16800744 Generated question: What is the human tissue kallikrein family of?
BIOASQ snippet: The human tissue kallikrein family of serine proteases (hK1-hK15
encoded by the genes KLK1-KIK15) is involved in several cancer-related processes.
Generated answer: serine proteases

Table D9: Training instances generated using TS. Given a BIOASQ snippet TSselects a span of the snippet and
generates a question that can be answered by that span. We select spans different than the ones used in BIOASQ.
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DA via Question Generation using random snippets from random PUBMED abstracts
ID Instance
26935709 Generated question: What can be isolated or in combination with accompanying defor-
mities occurring in the forefoot and/or hindfoot?
PUBMED snippet: Symptoms can be isolated or in combination with accompanying
deformities occurring in the forefoot and/or hindfoot.
Generated answer: Symptoms

29260288 Generated question: What supplementation has been integrated into our practice?
PUBMED snippet: Vitamin D supplementation has been integrated into our current prac-
tice.

Generated answer: Vitamin D
30706485 Generated question: What were connected to a volume-cycled ventilator after sedation,

analgesia and endotracheal intubation?

PUBMED snippet: After sedation, analgesia and endotracheal intubation, pigs were con-
nected to a volume-cycled ventilator.

Generated answer: pigs

Table D10: Training instances generated using TS. Given a random snippet from a random PUBMED article
T5selects a span of the snippet and generates a question that can be answered by that span.

DA by adding context

ID Instance

15149039 BIOASQ question: Which metabolite activates AtxA?

BIOASQ snippet: Transcription of the major Bacillus anthracis virulence genes is triggered
by CO2, a signal mimicking the host environment.

BIOASQ snippet with additional context: Transcription of the major Bacillus anthracis
virulence genes is triggered by CO2, a signal mimicking the host environment. A 182-kb
plasmid, pXO1, carries the anthrax toxin genes and the genes responsible for their regula-
tion of transcription, namely atxA and, pagR, the second gene of the pag operon. AtxA has
major effects on the physiology of B. anthracis. It coordinates the transcription activation
of the toxin genes with that of the capsule biosynthetic enzyme operon, located on the
second virulence plasmid, pXO2. In rich medium, B. anthracis synthesises alternatively
two S-layer proteins (Sap and EA1).

Answer: CO2

16757427 BIOASQ question: What tyrosine kinase, involved in a Philadelphia- chromosome positive
chronic myelogenous leukemia, is the target of Imatinib (Gleevec)?

BIOASQ snippet: Imatinib was developed as the first molecularly targeted therapy to
specifically inhibit the BCR-ABL kinase in Philadelphia chromosome (Ph)-positive
chronic myeloid leukemia (CML).

BIOASQ snippet with additional context: The second generation of BCR-ABL tyrosine
kinase inhibitors. Imatinib was developed as the first molecularly targeted therapy to specit-
ically inhibit the BCR-ABL kinase in Philadelphia chromosome (Ph)-positive chronic
myeloid leukemia (CML). Because of the excellent hematologic and cytogenetic responses,
imatinib has moved toward first-line treatment for newly diagnosed CML. However,
the emergence of resistance to imatinib remains a major problem in the treatment of
Ph-positive leukemia. Several mechanisms of imatinib resistance have been identified,
including BCR-ABL gene amplification that leads to overexpression of the BCR-ABL
protein, point mutations in the BCR-ABL kinase domain that interfere with imatinib
binding, and point mutations outside of the kinase domain that allosterically inhibit
imatinib binding to BCR-ABL.

Answer: BCR-ABL

Table D11: Training instances generated by adding context around the original BIOASQ snippet. In the generated
snippet the original one is highlighted.
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Abstract

Information Extraction (IE) from text refers
to the task of extracting structured knowledge
from unstructured text. The task typically
consists of a series of sub-tasks such as
Named Entity Recognition and Relation
Extraction. Sourcing entity and relation type
specific training data is a major bottleneck
in domains with limited resources such as
biomedicine. In this work we present a slot
filling approach to the task of biomedical IE,
effectively replacing the need for entity and
relation-specific training data, allowing us
to deal with zero-shot settings. We follow
the recently proposed paradigm of coupling
a Tranformer-based bi-encoder, Dense Pas-
sage Retrieval, with a Transformer-based
reading comprehension model to extract
relations from biomedical text. We assemble
a biomedical slot filling dataset for both
retrieval and reading comprehension and
conduct a series of experiments demonstrating
that our approach outperforms a number
of simpler baselines. We also evaluate our
approach end-to-end for standard as well as
zero-shot settings. Our work provides a fresh
perspective on how to solve biomedical IE
tasks, in the absence of relevant training data.
Our code, models and datasets are available
at https://github.com/ypapanik/
biomedical-slot-filling.

1 Introduction

In Information Extraction (IE) we are interested in
extracting structured knowledge from unstructured
text. This structured knowledge takes most usu-
ally the form of directed binary relations between
entities, in other words triples of the form head -
relation - tail, which can then be used to populate
a Knowledge Base or a Knowledge Graph with
factual information.

The standard approach to perform IE relies on
a cascade of Natural Language Processing (NLP)
models. First, Named Entity Recognition (NER)

justin.grace,
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is employed to find and extract entities of interest,
subsequently Entity Linking (EL) to link the ex-
tracted entities to Knowledge Base identifiers and
finally Relation Extraction (RE) to identify existing
relations between entities.

These individual sub-tasks tasks have attracted
a great deal of attention in recent years with meth-
ods and datasets fuelling further research (Verga
et al., 2018; Zeng et al., 2014, 2015; Lin et al.,
2016). IE is largely regarded as a main facilitator
of structured data reasoning, such as Knowledge
Base Completion.

1.1 Standard Information Extraction vs Slot
Filling

A major bottleneck in the above approach is that all
modules (NER, EL, RE) need training data specific
to the entity or relation types that we are interested
in extracting. For instance, a NER model recog-
nizing diseases needs training data annotated with
the entity type disease and so forth. The biomedi-
cal domain is particularly affected by these limita-
tions, given the vast variety of entity and relation
types which are commonly of interest. Addition-
ally, sourcing training data for each sub-task and
type is expensive and challenging, requiring subject
matter experts. For reference, the UMLS ontology
contains 125 semantic (entity) types and 54 relation
types.

An alternative approach to standard IE is slot
filling. The way IE is conceptualized in slot filling
is highly reminiscent of open domain question an-
swering (QA): for a given head-relation query the
retriever returns a set of relevant passages, which
are then fed to a reader model that then extracts
a matching tail entity, the answer. By following
such an approach, we can deal with zero-shot set-
tings since, unlike standard IE, we are not seeking
to recognize specific entity types or extract spe-
cific relation types, but rather do machine reading
comprehension, that is, extract answers in response
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to queries. Importantly, this approach extends to
relation types that were unseen during training, ef-
fectively reducing the need for re-training and re-
deployment of a model deployed into production.

Furthermore, standard IE requires processing of
every single sentence of the given corpus through
its different modules (NER, EL, RE). In con-
trast, the computational cost of slot filling is much
smaller as it performs retrieval and reading com-
prehension on far fewer queries to extract relations.
As an example, Hetionet (Himmelstein et al., 2017)
contains around 2.25M relations, but they can be
formulated in around 46k distinct queries, of the
form head-relation' .

As a final point we summarize below how the
two approaches would materialize in a production
setting, to make their differences more apparent.
We note that standard IE might involve additional
tasks, such as coreference resolution (which we do
not describe here for simplicity):

Standard IE:

» For each sentence, recognise entities with
NER model.

 For each recognised entity, link to an entity
identifier from a Knowledge Base, discarding
entries that cannot be linked.

¢ For each sentence that contains more than one
recognized entity, extract relations between
the entities with a RE model.

* Aggregate relations per sentence, resolving
potential conflicts.

Slot filling:

* For each entity in the Knowledge Base and
each possible relation type, consider all pos-
sible head - relation pairs and construct the
relevant queries, in a form head - relation’.

* For each query, retrieve the top k relevant doc-
uments with a retriever model.

* For each query-retrieved document pair, per-
form reading comprehension, extracting zero,
one or multiple answers, i.e., relation tails.

'In other words, if we were trying to build a KB from
biomedical text that would contain these 2.25M relations, we
would require to perform around 46k queries on our index to
retrieve relevant documents.

2With this formulation a head and a tail can be used inter-
changeably, by just changing the relation type, e.g. a drug-
treats-disease relation can also be cast to disease-is treated
by-drug without additional training data.
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* For each answer, link to an entity identifier
from a Knowledge Base, discarding entries
that cannot be linked.

1.2 Slot Filling: General vs Biomedical
Domain

Although similar in most aspects, slot filling in the
general domain against slot filling in the biomedi-
cal and more broadly the scientific domain differ in
a few key ways. The first lies in the link between
relations and entities. In the general domain, a spe-
cific relation type will often imply a specific entity
type as well, whereas this rarely holds in biomed-
ical literature. Consider for example a relation
child-of in the general domain, where we expect
both head and tail of the relation to be entities of
type person, as opposed to a relation (up)regulate
in biomedicine where the head might be gene or
drug equivalently. These nuances in the language
used render the task of slot filling more challenging
in biomedicine.

Another, perhaps more critical aspect relates to
retrieval and more specifically how we build and
evaluate on a retrieval dataset. In the general do-
main, a slot filling query, or more broadly a ques-
tion within the QA framework, will most often have
a unique answer>, whereas this rarely holds when
mining the biomedical literature. For instance, con-
sider the examples illustrated in Table 1 coming
from two well established general domain bench-
marks, Natural Questions (Kwiatkowski et al.,
2019) and zsRE (Levy et al., 2017) against two
datasets from the biomedical domain, BioASQ
(Tsatsaronis et al., 2015) and our slot filling dataset
(BioSF).

This difference has a number of implications
both for training and evaluation. With respect to
training, one of the major successes of neural-based
retrieval methods has been attributed to being able
to present the model with hard negatives, i.e., ex-
amples were a previous version of the retriever (or
a simpler statistical retriever) have failed. When,
for example, we have a query-answer pair that
mentions that Barack Obama’s wife is Michelle
Obama, and the model returns a passage that does
not include the string "Michelle Obama", we can
relatively safely consider this a false positive and
use that passage as a hard negative. This helps
the algorithm correct mistakes and improve. In

3We are implicitly referring only to factoid queries here
which is the case for most open domain QA datasets; queries
of list type would have multiple answers in any case.



Dataset Query Answer(s)
NQ when is the next deadpool movie being released May 18, 2018
NQ what was the first capital city of australia Melbourne
zSRE Elmer George [SEP] spouse Mari Hulman George
zsRE Boone River [SEP] mouth of the watercourse Des Moines River

BioASQ  What are the main indications of lacosamide?

BioASQ Which metabolite activates AtxA?
BioSF sildenafil [SEP] regulator
BioSF Amprenavir [SEP] interacts with

“epilepsy’, *analgesic’
’CO2’, ’bicarbonate’
"L765A’, "F786A’, "F820A
‘rifabutin’, ’ritonavir’

Table 1:

Examples of queries for general domain benchmarks (NQ, zsRE) vs biomedical domain benchmarks

(BioASQ, BioSF). Queries in the biomedical domain usually involve multiple valid answers, as opposed to the

general domain.

biomedicine on the other hand, if we have an
example stating that sildenafil regulates a muta-
tion L765A, we cannot be sure that all alternative
strings extracted by the model are true negatives,
as there may be other valid answers that we cannot
validate due to our Knowledge Base being incom-
plete. This compromises our ability to build gold
standard training data and we are presented with a
situation similar to the one encountered in distant
supervision, where unlabeled examples are consid-
ered as negatives but might be positives in some
cases. Practically, this leads to a noisy training set
which may reduce model accuracy.

During evaluation of a biomedical retriever, we
encounter the same problem, in the sense that we
might obtain misleading low performance since
unknown correct passages might rank higher than
the known correct ones. This leads to an imperfect,
i.e., "silver" quality, evaluation regime making it
hard to compare approaches and models.

In this work we aim to address the challenges
mentioned in the two previous subsections. Specif-
ically,

* We provide a short review of the relevant work
in Section 2.

* We contribute a novel formulation of biomedi-
cal IE as a slot filling task, to address few-shot
or zero-shot settings in Section 3.

We release a new benchmark for biomedical
slot filling, dubbed BioSF which we describe
in Section 4.

* We train a biomedical dense passage retriever
along with a biomedical reading comprehen-
sion model for slot filling, using BioSF. We
provide the models publicly.
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* We present an evaluation of our approach over
several baselines on BioSF, which we are able
to outperform by a large margin, in Section 5.

2 Related Work

Recent years have witnessed a series of signifi-
cant advances in the field of QA, primarily ow-
ing to the Transformer architecture (Vaswani et al.,
2017) and the BERT self-supervised pre-training
paradigm (Devlin et al., 2019). These advances,
both in terms of methods (Chen et al., 2017; Lin
et al., 2019; Guu et al., 2020; Lewis et al., 2020b)
and datasets (Kwiatkowski et al., 2019; Yang et al.,
2018), motivated researchers to formulate a series
of different NLP tasks as open domain QA, includ-
ing entity linking or relation extraction (Levy et al.,
2017; Petroni et al., 2021). In this work we follow
this paradigm by formulating biomedical IE as a
slot-filling task.

In open domain QA, given a query, a retrieval
module first retrieves relevant documents from the
knowledge source (such as Wikipedia). A reading
comprehension module is then used to extract a
span from the relevant documents, the answer. The
retrieval step was, up to very recently, dominated
by statistical-based approaches, namely BM25 or
tf-idf (Chen et al., 2017). ORQA (Lee et al., 2019b)
and REALM (Guu et al., 2020) have been the first
neural based methods to clearly outperform statisti-
cal based retrieval, although they required expen-
sive language model pre-training. Dense Passage
Retrieval (DPR) (Karpukhin et al., 2020) has im-
proved upon these methods by employing BERT-
based encoders, one for the queries and one for
passages. These are jointly optimized during train-
ing to classify passages as relevant versus irrelevant.
This approach has proved superior to other neural



based approaches and has quickly become the pre-
ferred method for open domain QA in subsequent
work (Lewis et al., 2020b; Izacard and Grave, 2021;
Maillard et al., 2021).

Among the subsequent works, Retrieval Aug-
mented Generation (Lewis et al., 2020b) employs
an architecture based on DPR and BART (Lewis
et al., 2020a) that is optimized end to end during
finetuning, to retrieve relevant documents and gen-
erate answers to queries. Fusion-in-decoder (Izac-
ard and Grave, 2021) employs DPR or BM25 as
retrievers coupled with a TS5 language model, to
generate answers by attending at multiple passages
simultaneously. For simplicity, we are not consid-
ering these approaches in this work, leaving their
implementation for the biomedical domain for fu-
ture work.

In an effort to fuel further research on this field,
Petroni et al. (2021) introduced KILT, a new bench-
mark of knowledge intensive tasks, which contains
among others two slot filling datasets, zero-shot RE
which was first presented in (Levy et al., 2017) and
T-REx introduced by Elsahar et al. (2018). In build-
ing our biomedical slot filling dataset we largely
follow the conventions and format of KILT, with
the intention to ease experimentation.

Finally, Glass et al. (2021) have presented a RAG
model specifically finetuned for slot filling on the
above datasets, showing significant improvement
over the generic alternatives, which were finetuned
on Natural Questions (NQ).

3 Biomedical Slot Filling

Formally, let us first define the task of IE. We as-
sume a knowledge source K, consisting of pas-
sages p;. Furthermore, we assume there exists a
Knowledge Base that contains a number of entities
e;. Our goal is to extract from K all possible triples
of the form e, — r; — e, where r; € R and R is
the set of possible relation types. For each e; we
assume that it has a specific entity type e; and that
each e; can be involved in a specific subset of R.
Slot filling further formulates the above task as
follows: we first employ a retrieval model M, that
encodes all passages p; from K. The encoded pas-
sages are indexed to allow fast retrieval. At infer-
ence, for each e; of type e;, we consider all possible
relations from R and construct the relevant queries
q; : e; — r;. Each query is then encoded and the
resulting vector is used to query the index, return-
ing the n most similar p; in terms of the maximum
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inner product:

ey

where E is the query encoder and Ep is the pas-
sage encoder. Subsequently a reader model M,
takes as input the above query and each of the re-
trieved passages and extracts zero, one or more
spans, i.e., answers. Valid answers are considered
as those representing an entity e;.

Here, we adopt as M, a neural, dense bi-encoder,
namely DPR, which uses a different encoder for
passages and queries, but any type of retriever can
be used such as BM25, where Eg = Ep. We ini-
tialize DPR’s encoders with the ones presented in
(Karpukhin et al., 2020) which were finetuned on
the NQ benchmark. We subsequently train DPR on
the dataset presented in Section 4, with the follow-
ing loss function:

sim(qi, pi) = Eq(a:)" Ep(p;)

esim(qmpi)

ot pT) = —
L(q“pz y Pi ) lOg esim(%‘ﬁl’j) + esim((h‘l’;)

2)
Unlike (Karpukhin et al., 2020), we assume that
each training instance is a (g;, p;", p; ) tuple where
pj is a positive, i.e., relevant passage and p; is a
negative passage.

Regarding the reader comprehension model
Mq, we employ a pretrained BioBERT (Lee et al.,
2019a) model and finetune it on the dataset of Sec-
tion 4. To finetune we follow the standard approach
for question answering with BERT where the input
is the concatenated query and passage separated by
special token [SEP] and the outputs are the start
and end token positions within the passage. The
training objective is the sum of the log-likelihoods
of the correct start and end positions. For more de-
tails we refer the interested reader to (Devlin et al.,
2019).

4 Biomedical Slot Filling Dataset

In order to build a slot filling dataset for
biomedicine, we resort to a number of publicly
available biomedical NER and RE datasets, sum-
marized in Table 2. Each instance in these datasets
contains the relation triple as well as the text where
it was found, thus we can easily transform them
in a question answering-like format for slot filling.
In total, we build two datasets, one to train and
evaluate the retriever and one for the reader model
respectively.

Specifically for the retriever training, we use
negative, i.e., null relation instances, as negatives.



Dataset

relation relation types # instances

BioCreative V CDR (Li et al., 2016)

BioCreative VI ChemProt (Krallinger et al., 2017)
DDIExtraction 2013 (Segura Bedmar et al., 2013)

compound-disease 1 15,796
compound-protein 9 15,568
drug-drug 1 32,018

Table 2: Public datasets used to build our biomedical slot filling dataset, BioSF. The relation types for the drug-
drug interactions dataset have been merged into one relation dubbed interacts with.

Additionally, we have used BM25 to add hard neg-
atives to our dataset, exactly as (Karpukhin et al.,
2020; Glass et al., 2021) have done previously. Al-
though, as mentioned above, these negatives might
entail some noise, similarly to when following a
distant supervision approach we expect the noise to
cancel out overall. Both datasets with their training,
development and testing splits are released with our
code. In the following, we refer to our dataset as
BioSF.

5 Experiments

In this Section we present the experiments that
we conducted, followed by a discussion on their
implications. We are interested in evaluating our
biomedical DPR retriever, our biomedical slot fill-
ing reader and finally the end to end slot filling
approach.

5.1 Retrieval

First, we are interested to understand the perfor-
mance of our approach against different baselines.
To that end, we employ BM25 as well as two al-
ready finetuned DPR retrievers from (Karpukhin
et al., 2020; Glass et al., 2021). BM25 is a well
established algorithm for retrieval, outperforming
until very recently more sophisticated neural-based
approaches. It is also particularly efficient and does
not require any training, which makes it a very at-
tractive option for real-world production settings.
Nevertheless, it is a statistical, pattern matching
based approach lacking the ability to learn seman-
tics or context.

Regarding the general domain DPR models,
since they are currently state of the art in the rele-
vant general domain tasks, we seek to see if they
can be used successfully for the biomedical domain.
Our model is trained on far less data, which is nev-
ertheless domain and task specific, therefore it is
crucial to understand which approach fares better.
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5.1.1 Experimental Setup

We employ a PubMed dump from April 2020 as
our knowledge sourse, filtering to documents that
have an abstract and splitting abstracts to roughly
100-token length passages. We also use a smaller
subset of one million passages, in order to be able
to search for optimal hyper-parameters and allow
easy replication of results. In that subset, we ran-
domly sample passages and add the gold passages
from BioSF so as to make sure that a perfect re-
trieval algorithm would be able to retrieve all cor-
rect passages and find the answer. We highlight
that this is an easier version of the real-world task,
where the retriever needs to search among around
29 million passages.

For BM25, we employ the anserini package
(Yang et al., 2017), and build a Lucene index on
the pre-processed passages, whereas we used the
off the shelf Huggingface models () for the general
domain DPR retrievers.

For our retriever, we train DPR on the BioSF
dataset, for 40 epochs keeping the best model in
terms of the validation loss. We use a learning rate
of 3e — 5, an Adam optimizer with default options
and a training batch size of 32 examples. Subse-
quently, we encode the passages with the trained
passage encoder. Encoding the full 29 million pas-
sages takes around 96 GPU hours on a V100. We
then build a flat FAISS (Johnson et al., 2019) index
for the encoded passages.

5.1.2 Results

Initially, we conduct experiments on the smaller
dataset that we described above of one million pas-
sages. As we noted in Section 1.2 evaluating re-
trieval for slot filling or more broadly for QA in the
biomedical domain is significantly different than
in the general domain since in biomedicine a query
has in most cases multiple answers as opposed to
the general domain. Table 3 illustrates the results
for this first series of experiments.

As we can see the DPR models that have been
finetuned on the general domain perform rather



Retriever hits@1 hits@10 hits@100 index size(Gb)
BM25 214 36.1 60.6 1.1
DPR-NQ (Karpukhin et al., 2020) 5.5 17.2 37.6 2.9
DPR-multitask (Maillard et al., 2021) 4.2 14.3 33.8 2.9
DPR-zsRE (Glass et al., 2021) 7.6 19.6 37.2 2.9
Bio-DPR(ours) 31.0 55.1 72.5 2.9

Table 3: Evaluation results for retrieval experiments on the BioSF development set using as content one million
passages from PubMed. Values in bold show statistically significant results in terms of z-test at p-value of 0.05,
whereas for our model we show the average across five different DPR training runs.

Retriever hits@1 hits@10 hits@100 index size
BM25 11.0 30.3 56.1 294
DPR-NQ 5.2 17.9 38.9 90.0
DPR-zsRE 2.3 10.2 26.4 90.0
Bio-DPR(ours)  11.5 33.2 59.1 90.0

Table 4: Evaluation results for retrieval experiments on the BioSF development set on full PubMed. Values in
bold show statistically significant results for a z-test at p-value of 0.05.

poorly compared to the much lighter and computa-
tionally efficient BM25. Nevertheless, our model
Bio-DPR, is substantially better than BM25 in all
cases, achieving up to 19 points of improvement
(in the case of hits@10). These results, are aligned
to the results previously presented for the general
domain where BM25 has been outperformed by
DPR. Nevertheless, in-domain training data seems
critical for DPR to perform well for slot filling, a
finding also shared in (Maillard et al., 2021).

The same findings apply for the full PubMed
knowledge source, as illustrated in Table 4, al-
though the improvement of our model over BM25
is much smaller but still significant.

5.2 Slot Filling Reader

For the reader, we finetune a BioBERT-base and
a BioBERT-large model on the BioSF training set.
We further include two baselines, one trained on the
BioASQ 8 QA dataset and one trained in the zero-
shot RE (zsRE) dataset from (Levy et al., 2017).
We employ these two baselines to test whether in-
domain data from a different task (BioASQ) or
general domain data for the same task (zsRE) can
be helpful in learning an accurate model.

For all models, we train up to ten epochs, keep-
ing the best performing model on the development
set, using a learning rate of 3e — 5, a batch size of
32 and the Adam optimizer with default parameters.
Table 5 presents the results. We observe that the
baselines perform rather poorly compared to the
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models trained with in-domain slot filling data - a
finding that highlights the importance of building
an in-domain dataset for slot-filling.

5.3 End to End Evaluation

Having evaluated both components of our ap-
proach, we now turn our attention to the end to
end setting, which simulates better a real world sce-
nario. In this setting, we are given a head entity and
a relation and we want to correctly extract the tail
entity. To evaluate our approach in such a setting,
we first use the triples included in the BioSF test
set. This dataset contains 3,171 queries with 2.35
answers, i.e. tails, per query on average.

Additionally, we would like to understand how
our approach performs in the zero-shot setting, i.e.,
for entities and relations that our model has not seen
during training. To this end, we employ Hetionet
(Himmelstein et al., 2017), a network of biomedical
knowledge assembled from 29 biomedical Knowl-
edge Bases, containing 24 distinct relation types.
We keep nine relation types that our models have
not previously seen, e.g., "expresses", "localizes",
"treats" and randomly sample 500 queries, with 9.3
answers, i.e. tails, per query on average. We note
that this dataset differs substantially to the previous
one, in the sense that a query might have far more
valid answers. For example, some queries have
more than 100 valid answers.

In both cases, we first retrieve the top-100 pas-
sages for each query, from the full PubMed knowl-



Model Data Exact Match(dev/test) F1(dev/test)
BioBERT-base BioASQ 13.10/13.44 17.95/18.64
" zsRE 16.59/15.77 22.51/22.98

" BioSF 52.30/54.67 58.82/59.98
BioBERT-large = BioSF 54.80/55.65 60.92/61.55

Table 5: Evaluation results for the reader experiments on the BioSF development and testing sets. We report the
averages across five runs for each model, results in bold show a statistically significant improvement for a z-test at

p-value of 0.05.

Setting Dataset

\ end-to-end micro-recall

Standard BioSF test set

Zero-shot Hetionet

24.38
18.66

Table 6: End to end evaluation of our approach on a standard as well as a zero-shot setting.

edge source, using our bio-DPR model and subse-
quently we pass all query-passage pairs through
our reader model. We evaluate with micro-recall
since, as we discussed previously, there might be
multiple valid answers not contained in our KB
and we aim to examine what percentage of the KB
triples we can extract from text. We note again that
this is not a perfect evaluation as, besides the is-
sue mentioned above, there might also be triples in
Hetionet that do not appear in any sentence in the
literature. Table 6 illustrates our results. The recall
is substantially low, a finding that is somewhat ex-
pected due to the imperfect nature of our evaluation
setting, as well the challenging nature of the task,
especially in the zero-shot setting. Nevertheless,
we consider that these two additional datasets, will
enable further research and improved approaches.
Overall, the above experiments should be regarded
as a stepping stone towards a novel paradigm for
biomedical IE, overcoming the shortcomings of the
current standard approach.

6 Conclusions and Future Work

In this work we formulated the task of biomedical
Information Extraction as a slot filling problem.
This approach aims to forgo the need for entity and
relation type specific training data, which is scarce
and costly to annotate in the biomedical domain.
Additionally, this formulation allows to deal with
the addition of new relation types, without needing
to re-train the relevant models.

Additionally, we have introduced a new biomed-
ical slot filling benchmark and used it to train a
biomedical DPR model, a dual BERT-based en-
coder for retrieval, as well as a biomedical slot

88

filling reader based on BioBERT. In a series of ex-
periments our approach outperforms significantly
a number of general domain baselines as well as
the simpler BM25 retriever. Furthermore, our re-
sults illustrate the importance of in-domain, task-
specific training data, in line with findings from
recent works (Glass et al., 2021; Maillard et al.,
2021).

In future work, we aim to focus on sequence to
sequence variants of this work such as the work in
(Izacard and Grave, 2021), as well as to conduct a
thorough comparison of a standard biomedical IE
system against our slot filling approach.
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Abstract

Term clustering is important in biomedical
knowledge graph construction. Using similar-
ities between terms embedding is helpful for
term clustering. State-of-the-art term embed-
dings leverage pretrained language models to
encode terms, and use synonyms and relation
knowledge from knowledge graphs to guide
contrastive learning. These embeddings pro-
vide close embeddings for terms belonging to
the same concept. However, from our prob-
ing experiments, these embeddings are not
sensitive to minor textual differences which
leads to failure for biomedical term clustering.
To alleviate this problem, we adjust the sam-
pling strategy in pretraining term embeddings
by providing dynamic hard positive and neg-
ative samples during contrastive learning to
learn fine-grained representations which result
in better biomedical term clustering. We name
our proposed method as CODER++!, and it
has been applied in clustering biomedical con-
cepts in the newly released Biomedical Knowl-
edge Graph named BIOS?.

1 Introduction

A critical step for building a biomedical knowledge
graph is clustering synonyms terms into concepts
(Nicholson and Greene, 2020; Yu et al., 2022). Af-
ter mining terms from the biomedical corpus or
electronic medical records, these terms may belong
to an existing concept dictionary or newly discov-
ered concepts. It is hard for humans to link terms
to an existing concept dictionary since the volume
of the concept dictionary is huge. Furthermore, it is
almost impossible for humans to determine if one
term is a new concept.
Embedding-based entity linking methods encode
terms into a dense space and use similarities among
* Contributed equally.
' Corresponded author.
'Our codes and model will be released at https://

github.com/GanjinZero/CODER.
’https://bios.idea.edu.cn/
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terms for entity linking (Liu et al., 2021; Yuan et al.,
2022). Terms that belong to newly discovered con-
cepts should have low similarities to all concepts
in the dictionary. Embedding-based entity linking
methods can also assist humans in term clustering
by providing candidates. However, we find that ex-
isting state-of-the-art biomedical term embedding
models SapBERT (Liu et al., 2021) and CODER
(Yuan et al., 2022) are not sensitive to fine-grained
differences (i.e. They provide high similarities for
non-synonymous and textually similar term pairs).
These term pairs are common, especially in dis-
eases (e.g. Type 1 Diabetes v.s. Type 2 Diabetes)
and chemicals (e.g. xyloglucan endotransglycosy-
lase v.s. xyloglucan endoglucanase). We suggest
the reason comes from the pretraining sampling
strategy of SapBERT and CODER. They sample
Concept Unique Identifiers (CUIs) from UMLS
(Bodenreider, 2004) randomly in the mini-batch.
This produces hard positive pairs (i.e. textually dif-
ferent terms with the same CUIs) and easy negative
pairs (i.e. textually different terms with different
CUIs). Supervised contrastive learning is applied
to cluster embeddings under the same CUIs and
to keep away embeddings for different CUIs. For
benchmarking entity linking tasks, the ability to
determine positive pairs is important. For term
clustering, it further requests to determine negative
pairs. Hard negative pairs are absent in pretraining
SapBERT and CODER which lead to unsatisfac-
tory performances in term clustering.

In this paper, we propose a probing experiment
to evaluate term clustering on UMLS automatically.
This experiment shows SapBERT and CODER
have insufficient ability in term clustering. For bet-
ter term clustering, we propose a dynamic sampling
strategy that provides both hard positive and nega-
tive pairs to learn fine-grained terms embeddings
named CODER++. CODER++ not only reserves
the ability to normalize terms but also can distin-
guish different concepts with similar term names.
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CODER++ shows decent ability on biomedical
entity linking and a significant improvement on
biomedical term clustering evaluation.

2 Related Work

Automatic term clustering has long been discussed.
Traditional methods use statistical approaches to
define similar terms and perform clustering. Lin
(1998) defines term similarity based on distribu-
tions and Lewis and Croft (1989) forms clusters
based on co-occurrence in semantically coher-
ent documents. Kok and Domingos (2008) uses
Markov logic for unsupervised concept clustering.

Recent researches focus on deep learning ap-
proaches, where biomedical term embeddings can
be used for term clustering. Nguyen et al. (2015)
identifies biomedical synonyms using word embed-
dings. SapBERT (Liu et al., 2021; Nguyen et al.,
2021) and CODER (Yuan et al., 2022) learn syn-
onyms knowledge from UMLS to provide close
embeddings for synonyms. In this work, we im-
prove these embeddings by providing dynamic hard
negative samples.

3 Term Clustering Evaluation

We introduce the term clustering evaluation on
UMLS as the probing experiment, in which we
find that both CODER and SapBERT show poor
clustering performance. Through the case study,
we find the reason is that both models fail to dis-
tinguish between fine-grained biomedical terms,
which suggests a refinement is needed to support
biomedical term clustering.

3.1 Embedding-based Term Clustering

We use term embeddings including CODER and
SapBERT to perform clustering on UMLS terms.
We first generate embedding e for each term
t in UMLS. The similarity between term ¢;
and ?; is measured by cosine similarity S;; =
cosine(e;, e;). If S;j > 6, where 6 is a hyperpa-
rameter, ¢; and ¢; are predicted to be clustered. In
practice, calculating similarities between all pairs
is time-consuming. Instead, for each term ¢;, we
use the Faiss index (Johnson et al., 2019) to only
save terms with top-m similarities with ¢;, denoted
by M;. Only when t; € M; and also S;; > 0,
t; is predicted to be clustered with ¢; (i.e. ¢; and
t; are synonyms). For convenience, we denote
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3.2 Large-scale Clustering Evaluation

For evaluation, terms under the same CUI 7 in
UMLS are regarded as ground truth clustering, de-
noted by C;. We denote C = | J; C;. Suppose there
are n terms, then we have (g) term pairs. For each
pair (t;,t;), if they are under the same CUI and
also predicted to be clustered, then (¢;,¢;) is re-
garded as true positive (TP). False positive (FP),
false negative (FN), and true negative (TN) are
defined similarly. Recall, precision and F} score
can be computed based on TP, FP, FN, and TN.
Precision suggests how well a model differentiates
between negative term pairs. Recall suggests how
well a model clusters terms with similar meanings.

As n is large in practice (over 10M terms in a
biomedical terminology like UMLS), it is impos-
sible to enumerate all term pairs to directly count
TP, FP, FN, and TN. Nguyen et al. (2021) down-
samples negative pairs for evaluation, but this may
ignore some hard negative pairs. We propose an
efficient algorithm for large-scale clustering eval-
uation, which reduces the time complexity from
O(n?) to O(n) when ground truth cluster C; is
bounded. The algorithm splits the searching space
into two parts, traversing through the Faiss index
M and traversing through the ground truth cluster
space C. When traversing through M, we first get
pairs with predicted labels to be true, then count
how many pairs in C to obtain TP and FP. When
traversing through C, we first get pairs with ground
truth label to be true, then count pairs in M to ob-
tain FN. TN is computed by subtracting TP, FP, and
FN from (72‘) instead of counting which saves time
significantly. To speed up the searching process,
we also store C and M in prefix trees.

3.3 Probing Results

The results of term clustering evaluation in UMLS
2020 AA for CODER and SapBERT are shown
in Table 2. We search for the best threshold 6
according to the F score. I} scores are both low
for SapBERT and CODER, which indicates that
both models could not differentiate terms well and
tend to cluster different terms together. These F}
scores are much lower than reported in (Nguyen
et al., 2021) (0.65 for SapBERT), the reason is they
downsample negative pairs in evaluation which un-
derestimates FN. The performance gap between
SapBERT and CODER comes from their different
sampling strategies.



Similarity

Term 1 Term 2 CODER  SapBERT ~CODER++  Same CUI
julibroside j2 julibroside c1 0.918 0.918 0.339 F
orange colored urine pink urine 0.738 0.783 0.451 F
type 2 diabetes 1 type 1 diabetes 0.908 0911 0.502 F
sb 212047 sb 216754 0.819 0.767 0.356 F
early onset late onset 0.831 0.807 0.416 F
ginsenoside rh ginsenoside rg 0.908 0.979 0.420 F
protein phosphatase 1 delta protein phosphatase 2c delta 0.910 0.832 0.616 F
type ii endometrial carcinoma endometrial cancer stage ii 0.845 0.846 0.420 F
headache cephalgia 0.798 0.741 0.776 T
fhx allergies fh: allergy 0.879 0.881 0.819 T
herpesvirus murid 004 murine herpesvirus 068 0.634 0.823 0.674 T
tex2 tex2 gene 0.890 0.995 0.921 T
eppin 1 protein, human eppin protein, human 0.991 0.941 0.834 T
chmp2b gene chromatin modifying protein 2b 0.743 0.797 0.724 T

Table 1: Similarities of different models between representative term pairs with the same CUI or different CUI.
Term pairs with the same CUI are considered positive. Compared with CODER and SapBERT, CODER++ has
relatively lower similarities on negative term pairs and moderately higher similarities on positive term pairs.

Model [ P R I
SapBERT 0.94 0302 0.268 0.284
CODER 086 0.071 0401 0.121

Table 2: Results for CODER and SapBERT on term
clustering evaluation in UMLS 2020 AA.

3.4 Case Study

We sample term pairs to check why CODER and
SapBERT fail on term clustering evaluation. Sim-
ilarities of representative false positive term pairs
for both CODER and SapBERT are shown in the
upper part of Table 1. We can observe that CODER
and SapBERT embeddings can’t distinguish terms
with number differences, body part differences, and
devices differences. CODER and SapBERT pro-
vide similarities for these false positive term pairs
as high as true positive term pairs shown in the
lower part of Table 1. Hence they tend to clus-
ter terms with highly similar strings but different
meanings.

4 Approach

We introduce CODER++ to address the above-
mentioned problem. The idea is simple, providing
hard negative pairs to reduce false positive term
pairs. We focus on how to construct mini-batches
to learn fine-grained term representations.

4.1 Term Encoding

CODER++ embeds a term s to a dense represen-
tation e with a pretrained language model. We
tokenize s into sub-words, and use the representa-
tion of [CLS] token for term representation.
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4.2 Dynamic Sampling

Positive Sampling For each term ¢, we sample &k
terms pq, ..., pr with same CUI from UMLS. This
adds positive pairs for training. The term p; can
be textually different from ¢ which is considered a
hard positive sample.

Possibly Hard Negative Sampling We take
terms ny, ..., Ny, with top-m similarities with term
t as possibly hard negative samples. It is expen-
sive to find terms with top-m similarities on the
fly, and we use the Faiss index instead. For each
epoch, we update the Faiss index using the present
CODER++. Selected terms can have the same CUI
or different CUIs with term ¢. A not well-trained
model has more different CUIs terms as hard nega-
tive samples. The model is required to distinguish
these fine-grained terms. When the training is pro-
gressed, more selected terms will have the same
CUI with the term ¢.

Overall Sample Strategy We first sample terms
{ti}i randomly from the whole term set. For each
term ¢;, we sample k positive terms p;, , ..., p;, and
m possibly hard negative terms n;,,...,n; . All
these terms {t;, pi, , ..., Piy, Wiy s -+, Mi,, }i construct
a mini-batch, and we use the CUISs of these terms to
guide supervised contrastive learning. An example
of mini-batch is visualized in Figure 1. We follow
Liu et al. (2021); Yuan et al. (2022) to optimize the
model using the Multi-Similarity loss (MS-loss)
(Wang et al., 2019) to guide terms with same CUIs

> T
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Figure 1: Construction of a mini-batch in CODER++.

similar and terms with different CUIs dissimilar.
N = {j|1 <j<m,c¢ 7& C]‘,Sij > min S, — 6}
cr=c;

Py ={jl1 <j<m,c =¢;, S < mngik—i—e}
CLFCj

o % i(log(l + Zjeﬁ/",,- ezp(a(Sij -\))
i=1
+ log(1 + Zjem exp(B(Si; — A))) )

B

where ¢; is the CUI of i*" term, and ¢, a, 3 are
hyperparameters.

5 Experiments

5.1 Pre-training

We train CODER++ initialized by CODER with
1,200K training steps 3. We update the Faiss index
every 60K steps. For each mini-batch, we set k =
m = 30. Training costs 9 days on § NVIDIA A100
40GB GPUs. Each GPU samples 16 terms {¢;}
from UMLS 2020 AA at one time with 8 gradient
accumulation steps which indicates a total of 16 x
(1 430+ 30) x 8 x 8 = 62,464 terms for each
parameter update step. The maximal term length is
set to 32. We use AdamW (Loshchilov and Hutter,
2017) as the optimizer with a linear warm-up in
the first 10000 steps to a peak of 4e-5 learning rate
and a linear decay. The setting of hyperparameters
€, a, 0 in MS-loss is following (Yuan et al., 2022).

5.2 Term Clustering Evaluation

We evaluate CODER++ based on Section 3.2. The
result is shown in Figure 2 and Table 3. Ta-
ble 3 shows that CODER++ greatly outperforms
CODER and SapBERT, obtaining 0.732, 0.576,
and 0.644 for precision, recall, and F} scores
respectively. We can see from Figure 2 that
CODER++ has a comparable spread in recall
with both CODER and SapBERT, which indicates
CODER-++ reserves the ability of clustering terms

3SapBERT can also be used as the initial checkpoint.
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Figure 2: UMLS term clustering evaluation for

CODER, SapBERT, and CODER++ under different
thresholds.

Model 6o P R Fi

SapBERT 094 0302 0.268 0.284
CODER 0.86 0.071 0.401 0.121
CODER++ 0.70 0.732 0.576 0.644

Table 3: Results for CODER, SapBERT, and
CODER++ on term clustering evaluation in UMLS
2020 AA.

with similar meanings, while achieving much bet-
ter precision for most thresholds, which indicates
a significant improvement in distinguishing terms
with different meanings.

5.3 Case Study

We compute similarities for the same term pairs
as in Section 3.4 using CODER++, and the results
are shown in the upper part of Table 1. It sug-
gests that CODER++ has relatively low similarities
on negative term pairs and reduces the FP rate.
To check if CODER++ maintains high similarities
for positive term pairs, we sample some positive
terms pairs and compute the similarities, which are
shown in the lower part of Table 1. We observe
that CODER++ has moderately high similarities
for positive term pairs, which suggests CODER++
reserves the ability to normalize terms with similar
meanings.

In conclusion, our dynamic sampling strategy
significantly decreases similarities in negative term
pairs, while mildly decreasing similarities in posi-
tive pairs. The results indicate the efficacy of our
dynamic sampling strategy in pretraining.

5.4 Zero-shot Term Normalization

We evaluate CODER++ with zero-shot term nor-
malization on BC5CDR (Li et al., 2016), results
are shown in Table 4. CODER++ achieves bet-
ter performance than CODER and comparable



Model BC5CDR-d  BC5CDR-c

SapBERT 93.5,96.0 96.5, 98.2
CODER 92.2,94.7 95.1,97.2
CODER++  92.2,94.9 96.5,97.9

Table 4: Acc@1 and Acc@5 on BC5CDR for CODER,
SapBERT, and CODER++.

Setting 6o P R F

CODER 0.88 0.273 0310 0.290
(a) 0.76 0482 0.289 0.361
(b) 0.74 0.667 0.517 0.583
©) 0.68 0.830 0.659 0.735

Table 5: Ablation study on sampling strategies with D;
term clustering.

performance with SapBERT, which shows that
CODER-++ generalizes well and reserves the ability
to normalize terms with different names.

5.5 Ablation Study

Here we conduct ablation studies on sampling
strategies. Ablation studies are based on a sampled
subset of UMLS, which consists of 500K terms
(denote as D;). We train models with different set-
tings on D respectively, then use each model to
perform clustering evaluation on it:

Setting (a): k = 1, m = 30, do not update Faiss.
Setting (b): k¥ = m = 30, do not update Faiss.
Setting (c): £ = m = 30, update Faiss index every
epoch (i.e. proposed CODER++).

Figure 3 displays results for thresholds ranging
from 0.6 to 0.98, and Table 5 lists the best per-
formances among those thresholds of each model.
Setting (a) has much higher precision than the orig-
inal CODER in all thresholds, which indicates hard
negative samples do improve the ability to differ-
entiate negative term pairs. Setting (b) has higher
precision and recall than setting (a), especially re-
call, which indicates simultaneously using posi-
tive and negative samples reserves the ability of
clustering similar terms while achieving a better
capability of differentiating terms. Setting (c) has
higher precision than setting (b), which indicates
dynamic negative samples greatly enhance the abil-
ity to differentiate negative term pairs. The negative
sampling under setting (b) is static, the model can
easily overfit these samples; while setting (c) will
provide new hard negative samples based on the
current model. The result is quite intuitive since
dynamic negative samples improve precision and
recall simultaneously along with all thresholds. In
conclusion, dynamic negative sampling with bal-
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Figure 3: Ablation study on sampling strategies with
Dy term clustering under different thresholds.

anced positive sampling is the setting that performs
best and we use it for training CODER++.

6 Conclusions

We propose CODER++, a fine-grained biomedical
term representation, which benefits from our dy-
namic sampling strategy that provides hard positive
and negative pairs. We propose an automatic large-
scale clustering evaluation algorithm. Through
a combination of automatic evaluation and the
case study, we find CODER++ greatly outperforms
CODER and SapBERT on UMLS term clustering
and has a much better ability to distinguish dif-
ferent concepts with similar term names. The ef-
fectiveness of our dynamic sampling strategy is
also proved through an ablation study. Our work
can be used for automatic term clustering or rec-
ommend candidate similar terms for experts and
crowdsourcing participants in human term cluster-
ing. Our work also suggests that biomedical term
embedding models such as CODER can be further
pretrained by focusing on specific information.
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Abstract

Pretrained language models have served as im-
portant backbones for natural language process-
ing. Recently, in-domain pretraining has been
shown to benefit various domain-specific down-
stream tasks. In the biomedical domain, natural
language generation (NLG) tasks are of critical
importance, while understudied. Approaching
natural language understanding (NLU) tasks
as NLG achieves satisfying performance in
the general domain through constrained lan-
guage generation or language prompting.We
emphasize the lack of in-domain generative
language models and the unsystematic gener-
ative downstream benchmarks in the biomedi-
cal domain, hindering the development of the
research community. In this work, we intro-
duce the generative language model BioBART
that adapts BART to the biomedical domain.
We collate various biomedical language gen-
eration tasks including dialogue, summariza-
tion, entity linking, and named entity recogni-
tion. BioBART pretrained on PubMed abstracts
has enhanced performance compared to BART
and set strong baselines on several tasks. Fur-
thermore, we conduct ablation studies on the
pretraining tasks for BioBART and find that
sentence permutation has negative effects on
downstream tasks.

1 Introduction

Since the advent of ELMo (Peters et al., 2018) and
BERT (Devlin et al., 2019), the new pretrain-then-
finetune paradigm has brought great performance
improvement and dominated the methodology re-
search of the natural language processing (NLP)
field. Previous research has illustrated that pre-
training language models on the domain-specific
corpora can improve the model performance on
domain-specific tasks further (Gururangan et al.,
2020). With the large-scale publicly accessible

* Contributed equally.
' Corresponded author.
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corpora from PubMed, researchers have already
proposed biomedical domain pretrained language
models such as BioBERT (Lee et al., 2020) and
PubMedBERT (Gu et al., 2022) to aid the later
research.

Natural language generation (NLG) tasks such
as dialogue system (Chao et al., 2017) and ques-
tion answering (Jin et al., 2022) are of critical im-
portance for the biomedical artificial intelligence
research, and there is also a trend to approach nat-
ural language understanding as NLG tasks in the
general domain (Sun et al., 2021; Yan et al., 2021).
For example, an entity retrieval task can be solved
by constrained natural language generation (Cao
et al., 2021). However, there exist two gaps in
the research of the biomedical NLG. On the one
hand, the architectures of the biomedical pretrained
language models are almost all encoder-only trans-
formers. Such architecture is incapable of generat-
ing natural languages auto-regressively. A decoder
is necessary for language generation (Liu and La-
pata, 2019). On the other hand, there are very
few in-domain generative language models for bio-
medicine (Phan et al., 2021). Models pretrained
on biomedical corpora may further enhance the
performance of current biomedical NLG methods.

To bridge the gaps mentioned above, we propose
a biomedical auto-regressive generative language
model, BioBART, pretrained on the biomedical
corpora. In our work, we adopt BART (Bidirec-
tional and Auto-Regressive Transformers), a gen-
erative pretrained language model which achieves
state-of-the-art results on different NLG tasks in
the general domain (Lewis et al., 2020a). We con-
tinuously pretrain BART on PubMed abstracts to
achieve biomedical domain adaption only using the
text-infilling task. We also collate and evaluate Bio-
BART on the existing biomedical NLG tasks. The
in-domain BioBART outperforms BART model
and sets strong baselines for several NLG tasks.

The main contributions of our work are summa-
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rized as follows':

1. In aid of the research concerning the biomedi-
cal NLG tasks, we collate existing biomedical
NLG tasks along with corresponding data and
experimental settings. The archived biomedi-
cal tasks will be released.

We further analyze the influence of the
pretraining task of sentence permutation in
BART, and we find it brings degradation on
the biomedical NLG tasks.

3. We evaluate our BioBART models on various
NLG tasks and demonstrate the superb perfor-
mance over BART. We will release the codes

and weights to help reproduce our results.

2 Related Work

2.1 Auto-regressive Language Model

Most of the prestigious language models such
as BERT, RoBERTa (Liu et al., 2019) are auto-
encoding transformers. The encoder-only archi-
tecture prevents the direct implementation of the
seq2seq language generation. Several generative
auto-regressive language models are proposed to
mitigate the problem. The serial GPT models
(Radford and Narasimhan, 2018; Radford et al.,
2019; Brown et al., 2020) adopt the decoder-only
transformer architecture which is a left-to-right lan-
guage model. They pretrain the models by auto-
regressively predicting the upcoming word of sen-
tences. UniLM1 (Dong et al., 2019) and UniLM2
(Bao et al., 2020) implement attention masks to
the transformer encoder to achieve unidirectional
language modeling. They pretrain their models
with a mixture of masked language modeling and
auto-regressive language generation. TS5 (Raffel
et al., 2020) and BART (Lewis et al., 2020a) ap-
ply the full transformer architecture, the encoder is
used for input sequence encoding and the decoder
is used for language generation. T5 and BART are
both pretrained by denoising the corrupted corpora.
Such models achieve many state-of-the-art results
on various NLG tasks and some NLU tasks.

2.2 Biomedical Domain Pretraining

Existing work has shown that pretraining the lan-
guage models on the domain-specific corpora can

'Our codes and pretrained checkpoints can be found at
https://github.com/GanjinZero/BioBART.
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bring better model transferability on the corre-
sponding downstream tasks (Gururangan et al.,
2020). There are endeavors to adapt language
models to the specific domain. BioBERT (Lee
et al., 2020) pretrained BERT model using biomed-
ical corpora from PubMed abstracts and PubMed
Central (PMC) full-text articles. BlueBERT (Peng
et al., 2020) and clinicalBERT (Alsentzer et al.,
2019) add electronic medical record (EMR) cor-
pora from MIMIC-III (Johnson et al., 2016) to
the pretraining data. Instead of continuous train-
ing from the general BERT checkpoint, SciBERT
(Beltagy et al., 2019) and PubMedBERT (Gu et al.,
2022) are trained from scratch using scientific pa-
pers from Semantic Scholar (Ammar et al., 2018)
and PubMed articles respectively. (Shin et al.,
2020) releases BioMegatron, a larger-size BERT-
style language model pretrained on PubMed ab-
stracts, PMC and MIMIC-III. The aforementioned
work all use the model architecture of BERT. Other
researchers are exploring different language mod-
els.

BioELMo (Jin et al., 2019) is pretrained on
biomedical corpora based on stacked bidirectional
LSTM language model ELMo (Peters et al., 2018).
BioELECTRA (Kanakarajan et al., 2021) applies
an adversarial training scheme consisting of a dis-
criminator and a generator. They use PubMed ab-
stracts and PMC articles as in-domain pretraining
corpora. BioMed-RoBERTa (Gururangan et al.,
2020) is initialized from RoBERTa (Liu et al.,
2019), with additional training on the scientific pa-
pers from Semantic Scholar. Bio-Im (Lewis et al.,
2020b) is pretrained on data from PubMed, PMC,
and MIMIC-III based on the RoOBERTa model. Ke-
BioLLM (Yuan et al., 2021) uses Entity as Experts
(Févry et al., 2020) model to inject biomedical en-
tity knowledge into the language model, starting
from the weights of PubMedBERT. Coder (Yuan
et al., 2022b) and SapBERT (Liu et al., 2021) take
advantage of the synonyms resource from biomed-
ical knowledge base UMLS (Bodenreider, 2004)
and enhance the model with entity knowledge by
contrastive pretraining.

Due to the nature of model architecture, encoder-
only language models have limited performance on
the NLG tasks, such as summarization and question
answering. In recent research, SciFive (Phan et al.,
2021) is proposed for biomedical NLP tasks. Sci-
Five is pretrained on PubMed abstracts and PMC
articles based on TS5 architecture. While T5 is avail-



able for NLG tasks, SciFive is focused on evaluat-
ing NLU tasks. Compared to SciFive, we choose
to use BART as our model backbone and evalu-
ate more on NLG tasks to leverage the power of
decoders.

2.3 Biomedical Natural Language Generation

In the biomedical domain, most of the NLP tasks
are natural language understanding (NLU) tasks.
There are well-archived benchmarks for the evalua-
tion of biomedical NLU, such as BLUE (Gu et al.,
2022) and CBLUE (Zhang et al., 2021). NLG tasks
are relatively less studied. (Ju et al., 2020) collects
the patients and doctors’ dialogues and forms a
benchmark for Covid-19 related dialogue system.
(Ben Abacha et al., 2021) is an annual biomedical
NLP competition containing NLG tasks such as
medical question (or answer) summarization and
figure captions.

Moreover, with the success of GPT-3, there is a
novel trend that unifies all the NLP tasks as NLG
tasks (McCann et al., 2018; Brown et al., 2020).
The traditional NLU tasks can be approached by
constrained language generation. Much attention
is paid on the NLG methods recently. In the
biomedical domain, entities are of primary concern.
GENRE (Cao et al., 2021), Yuan et al. (2022a) and
BARTNER (Yan et al., 2021) reach the new state-
of-the-art by auto-regressive language model on
entity linking and named entity recognition tasks.
Such methods can be adapted to the biomedical
domain.

3 Biomedical Domain Pretraining

BART is a sequence-to-sequence model with a
bi-directional encoder and a left-to-right auto-
regressive decoder. The model architecture is con-
sistent with the Transformers (Vaswani et al., 2017)
except for changing the ReLLU activation functions
to GeLUs (Hendrycks and Gimpel, 2016). BART
is pretrained by denoising the corrupted input doc-
uments. The work ablates five different types of
corruption noise: text masking, text deletion, text
infilling, sentence permutation, and document ro-
tation. As a result, the pretraining documents are
corrupted in two ways: 1) Text Infilling: For each
document, a number of token spans are sampled,
and each sample span is replaced with a single
mask token. 2) Sentence Permutation: A docu-
ment is split into sentences and sentences are shuf-
fled in random orders. The pretraining objective
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is to minimize the negative log-likelihood of the
original documents.

Prior work has shown that continuous-pretrained
models can get competitive results compared with
those trained from scratch (Gu et al., 2022). In
our work, we continuously pretrain BART on the
biomedical domain corpora. We revisit the methods
to corrupt input texts. BART keeps the sentence
permutation noise because of the significant perfor-
mance gain on the summarization task, although
this noise may lead to slight degradation on other
tasks. We run further ablation studies on various
biomedical NLG tasks. We show that the model
pretrained without sentence permutation has better
performance. Further details are listed in Section
5.5. Therefore we only implement the text infilling
task to corrupt input texts for pretraining BioBART.

4 Generative Downstream Task

In this section, we introduce the generative down-
stream tasks in the biomedical domain. We will
conduct experiments on these tasks to illustrate the
performance of the domain-specific BioBART.

4.1 Dialogue System

A medical dialogue system aims to imitate the hu-
man doctor to communicate with human patients in
a natural way. Based on the BART-style model, the
patients’ primitive descriptions and dialogue histo-
ries are used as inputs to the model, then the model
auto-regressively generates the replies as outputs.
The task is trained and evaluated in a sequence-to-
sequence fashion.

4.2 Abstractive Summarization

Summarization is a classical NLP task. It is
important for healthcare to concisely summarize
knowledge-rich biomedical documents. Tech-
nically, there are abstractive and extractive ap-
proaches to generate better summaries. With the
help of large pretrained language models, abstrac-
tive summarization methods outperform extractive
methods in summary diversity and conciseness
(Zhang et al., 2020a; Dou et al., 2021). The ab-
stractive summarization is naturally an NLG task.
We follow the BART (Lewis et al., 2020a) work
and evaluate our BioBART on the biomedical sum-
marization tasks in the same fashion. The input
documents are encoded by the model encoder and
the summaries are generated by the decoder auto-
regressively.



4.3 Entity Linking

Entity linking is a task that maps entity mentions in
texts to its standard entity concepts. Traditional en-
tity linking methods use language models to encode
entity concepts from knowledge bases(e.g. UMLYS)
and mentions into the same dense space and disam-
biguate mentions by vector similarity. The large
memory footprint requirements and difficult model
training hinder the development of such methods.
Cao et al. (2021) proposes GENRE which uses
generative language models to disambiguate en-
tity mentions by auto-regressively generating the
standard concept names conditioned on the inputs.
(Yuan et al., 2022a) achieves state-of-the-art entity
linking performance on various biomedical entity
linking datasets by generative methods. We include
this leading-edge method to show the superior per-
formance of BioBART.

4.4 Named Entity Recognition

Named entity recognition (NER) is a critical task
in the biomedical NLP community which extracts
biomedical-related entities from texts. Nested and
discontinuous entities widely exist in biomedical
papers and EMR due to the multi-granularity se-
mantic meanings and complex syntax structures
(Yuan et al., 2020). Well-used sequential labelling
framework in NER (Lample et al., 2016) is not
directly fitted for nested and discontinuous NER
(Finkel and Manning, 2009). Yan et al. (2021)
propose BARTNER to model nested and discontin-
uous NER into seq2seq task by inputting sentences
and outputting entities with their entity types one
by one. The generative approach of BARTNER
achieves state-of-the-art performance on nested and
discontinuous NER datasets, and we will use it to
evaluate our proposed BioBART can further en-
hance the performance.

5 Experiments

5.1 Pretraining

Pretraining Corpora There are two main
sources of biomedical corpora: PubMed abstracts,
PMC articles. In the prior work (Gu et al., 2022),
training on both corpora surprisingly leads to a
slight degradation in performance compared to
solely training on PubMed abstracts. Therefore, we
only use PubMed abstracts as the pretraining cor-
pora. The corpora contain about 41 GB of biomed-
ical research paper abstracts on PubMed.

Pretraining Setup We continuously pretrain
both large and base versions of BART for 120k
steps with a batch size of 2560. We use the same
vocabulary as BART to tokenize the texts. Al-
though the input length limitation of BART is 1024,
the tokenized PubMed abstracts rarely exceed 512.
Therefore, for the sake of training efficiency, we
truncate all the input texts to 512 maximum length.
We mask 30% of the input tokens and the masked
span length is determined by sampling from a Pois-
son distribution (A = 3) as used in BART. We use
a learning rate scheduler of 0.02 warm-up ratio
and linear decay. The learning rate is set to le-4.
We train the base version of BioBART on 2 DGX
with 16 40GB A100 GPUs for about 100 hours and
the large version of BioBART on the same devices
for 168 hours with the help of the open-resource
framework DeepSpeed (Rajbhandari et al., 2020).

5.2 Dataset for Downstream Task

5.2.1 Dialogue System

CovidDialog (Ju et al., 2020) Concerning the
widespread Coronavirus disease 2019 (COVID-19)
pandemic, the CovidDialog dataset is proposed to
facilitate the development of dialogue system pro-
viding COVID-related consultations to people. The
dataset is collected from online healthcare forums.
It contains 603 consultations about COVID-19 and
other related pneumonia, having 1232 utterances in
total. Each consultation starts with a description re-
lated to patients’ medical conditions, then followed
the conversation between a doctor and a patient.

5.2.2 Abstractive Summarization

iCliniq, HealthCareMagic Both datasets are
extracted from MedDialog (Zeng et al., 2020)
dataset, collected from the online healthcare plat-
form. iCliniq contains 31,062 samples and Health-
CareMagic contains 226,405 samples. Each sam-
ple is comprised of a summary and corresponding
dialogues between a patient and a doctor. Health-
CareMagic’s summaries are more abstractive and
are written in a formal style, unlike iCliniq’s
patient-written summaries. We follow the previous
work (Mrini et al., 2021) for training, developing,
and testing data separations of both datasets.

MeQSum (Ben Abacha and Demner-Fushman,
2019) The dataset is created for better medical ques-
tion summarization because the original patients’
questions are verbose, causing difficulty for the
question-answering system. The dataset contains

100



Task Dataset Train Dev Test Dataset Train Dev Test Metric
. e Rouge,BERTscore,
| Dalogee - Covidbislog - 40 e o0 BLEU __
MeQSum 500 500 MEDIQA-ANS 38,166 174 552
Summarization  iCliniq 24,851 3,105 3,108 MEDIQA-QS 1,000 50 100 Rouge, BERTscore
HealthCareMagic 181,122 22,641 22,642 MEDIQA-MAS 1,104 50 80
MedMentions 122,241 40,884 40,157 NCBI 5,784 787 960
Entity Linking BCS5CDR 9,285 9,515 9,654 COMETA 13,489 2,176 4,350 Recall@1,@5
AskAPatients 16,826 1,663 1,712
ShARel3 5,146 669 5,333 ShARel4 10,380 771 7,922 .
NER CADEC 4430 898 990  GENIA 50509 - 5506 Entity-level Fl score

Table 1: The statistics of the datasets for biomedical

generative tasks. The counts for NER are entity counts.

Covid19-Dialogue

Model Rouge-1 Rouge-2 Rouge-L BLEU BERTSscore
BART BASE 27.24 12.31 25.66 10.36 0.852
BioBART BASE 28.14 12.77 26.32 11.40 0.849
"BARTLARGE ~ 29.02 1208 2693 1096 0852
BioBART LARGE 28.81 13.79 26.96 12.05 0.850
 State-of-the-art - - 760 -
Source - - - (Zhou et al., 2021) -

Table 2: The main results on Dialogue System task.

1000 patients’ health questions selected from a col-
lection distributed by the U.S. National Library of
Medicine (Kilicoglu et al., 2018). Each question is
annotated with a question summarization by medi-
cal experts.

MEDIQA-ANS (Savery et al., 2020) When feel-
ing discomfort, people may turn to the internet for
the answers to their medical questions. The raw
searching result may be obscure for even medical
experts. The dataset is proposed to emphasize the
need for a medical answer summarization system
in aid of better understanding biomedical materials.
It consists of 156 health questions, corresponding
answers to these questions, and expert-created sum-
maries (both abstractive and extractive) of these
answers. Following the paper, we use BioASQ
(Tsatsaronis et al., 2015) to construct training data,
MedInfo (Abacha et al., 2019) for validation, and
the whole MEDIQA-ANS dataset for testing.

MEDIQA-QS, MEDIQA-MAS Both datasets
are derived from the MEDIQA 2021 Tasks
(Ben Abacha et al., 2021). MEDIQA-QS dataset
aims to incentivize the development of new sum-
marization approaches that address specifically the
challenges of long and complex health questions.
The dataset provides the validation and test sets,
and MeQSum dataset is used as the training set.
MEDIQA-MAS aims to prompt research that si-
multaneously aggregates and summarize the differ-
ent relevant answers to a medical question. This

dataset provides the validation and test sets, and
MEDIQA-ANS dataset comprises the training set.

5.2.3 Entity Linking

MedMentions (Mohan and Li, 2019) MedMen-
tions is a large-scale biomedical entity recognition
dataset. The commonly used St21pv subset con-
tains 4,392 PubMed abstracts, and over 350,000
mentions are linked to concepts of 21 selected se-
mantic types in UMLS (Bodenreider, 2004).

BCS5CDR (Lietal., 2016) BC5CDR is a bench-
mark for biomedical entity linking. 1500 PubMed
article abstracts are annotated with 4409 chemicals,
5818 diseases entities, and 3116 chemical-disease
interactions. MeSH ontology, a subset of UMLS
is used to annotate entities. We follow most recent
work (Angell et al., 2021; Varma et al., 2021) for
data pre-processing.

NCBI (Dogan et al., 2014) The dataset is built
from 793 PubMed abstracts. It consists of 6892
annotated disease mentions of 790 unique disease
concepts. The annotators label all the mentions to
concepts in MEDIC ontology (Davis et al., 2012).
MEDIC is a medical dictionary that merges the
diseases concepts, synonyms, and definitions in
MeSH and OMIM and is composed of 9700 unique
diseases. We follow BioSyn (Sung et al., 2020) to
process data and construct dataset splits.

COMETA (Basaldella et al., 2020) COMETA
is derived from the online publicly available and
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iCliniq HealthCareMagic MEDIQA-QS

Model Rouge-1/2/L BERTscore Rouge-1/2/L BERTSscore Rouge-1/2/L BERTSscore
BART BASE 61.43/48.68/59.71 0.941 46.81/26.19/44.34 0918 28.82/10.99/26.99 0.896
BioBART BASE 61.07/48.47/59.42 0.941 46.67/26.03/44.11 0918 30.12/11.28/27.44 0.898

" BARTLARGE  59.87/47.01/58.12 0938  47.24/26.54/44.68 0919  2997/10.64/2841 0901
BioBART LARGE  60.32/47.98/58.69 0.940 46.54/26.14/44.23 0.919 31.97/12.39/29.70 0.903

* State-of-the-art  62.3/48.7/585 - 46.9/24.8/432 - 35.14/16.08/31.31 -
Source (Mrini et al., 2021) (Mrini et al., 2021) (Ben Abacha et al., 2021)

MEDIQA-MAS MEDIQA-ANS(Pages) MeQSum

Model Rouge-1/2/L. BERTscore Rouge-1/2/L. BERTSscore Rouge-1/2/L. BERTSscore
BART BASE 31.63/9.98/27.85 0.859 19.10/6.77/16.90 0.851 52.93/35.79/50.46 0.927
BioBART BASE 32.90/11.28/29.26 0.861 18.97/7.46/16.77 0.850 53.75/36.50/51.27 0.929

" BARTLARGE  29.32/9.00/26.14 0857  21.52/931/19.15  0.853  53.68/36.80/51.05 0928
BioBART LARGE  30.60/10.37/27.04 0.861 21.58/9.34/19.18 0.857 55.61/38.11/53.15 0.933

* State-of-the-art  32.15/16.21/19.10 - 23.07/5411535 - 54.537.9/502 -
Source (Ben Abacha et al., 2021) (Laskar et al., 2021) (Mrini et al., 2021)

Table 3: The main results on Summarization tasks.
MedMentions BC5CDR NCBI COMETA AAP
Model Recall@1/@5 Recall@1/@5 Recall@1/@5 Recall@1/@5 Recall@1/@5
BART BASE 69.77/84.59 91.56/94.89 88.54/95.31 78.34/87.40 86.37/94.29
BioBART BASE 71.15/86.22 93.01/95.59 89.27/95.31 79.63/88.64 87.51/94.92
BART LARGE 71.49/84.95 92.48/95.26 90.21/95.52 80.70/88.65 88.79/96.59
BioBART LARGE 71.78/85.42 93.26/95.74 89.90/95.63 81.77/88.87 89.40/95.76
State-of-the-art 74.6/ - 91.9/ - 92.4/ - 80.1/ - 89.0/ -
Source (Varmaet al., 2021)  (Varmaet al., 2021) (Laietal.,2021) (Laietal.,2021) (Liuetal., 2021)
Table 4: The main results on Entity Linking tasks.
ShARel3 ShARel4 CADEC GENIA . ogs

Model Fl Fl Fl il 5.2.4 Named Entity Recognition
BART BASE 76.63 71.87 68.37 78.06 ShARel3, ShAReld4, CADEC These three
BioBART BASE 78.78 79.17 68.39 78.43 d di . d d
BART LARGE 7960 030 2064 5.3 atasets én'notate lsc.ontlr'luous a Yerse rug
BioBART LARGE 8075 80.41 70.53 79.93 events entities. The main difference is the anno-
State-of-the-art 8252 81.75 73.21 81.39 tated data of ShARe tasks (Pradhan et al., 2013;

Source (Li et al., 2021)

Table 5: The main result on NER tasks.

anonymous health discussion on Reddit. It consists
of 20k English biomedical entity mentions expert-
annotated with concepts from SNOMED CT. We
use the “stratified (general)” split and follow the
training and evaluation procedures of SapBert (Liu
et al., 2021) and ResCNN (Lai et al., 2021).

AskAPatient (Limsopatham and Collier, 2016)
It contains 8,662 phrases from social media. Each
phrase can be mapped to one of the 1,036 medical
concepts from SNOMED-CT and AMT (the Aus-
tralian Medicines Terminology). The samples in
AskAPatient do not include contextual information.
We follow Sung et al. (2020) and Limsopatham and
Collier (2016) for data pre-processing and apply
the 10-fold evaluation protocol.

Mowery et al., 2014) comes from MIMIC-II, and
CADEC (Karimi et al., 2015) comes from social
media. There is only one entity type for these
datasets. We follow Yan et al. (2021) for dataset
preprocess.

GENIA (Kim et al., 2003) GENIA annotates
2000 MEDLINE abstracts with biological entities.
Entities can be nested with others. We follow (Lin
et al., 2019) to combine fine-grained entity types
into 5 coarse-grained entity types and to construct
dataset splits.

All the aforementioned datasets are in English.
The statistical overview of the aforementioned
datasets is listed in Table 1.

5.3 Fine-tuning details

Dialogue We use BioBART as the dialogue sys-
tem model. The dialogue history is fed into the en-
coder and the decoder generates the response auto-
regressively. We apply the negative log-likelihood
function as the training objective with respect to
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the reference dialogue response. We fine-tune the
model with learning rate Se-5 for the base version
and le-5 for the large version for 20 epochs. We
run evaluations on the validation set at the end of
each epoch and use the checkpoint with the best
validation performance for testing. During infer-
ence, we use beam search of size 5 to sample re-
sponses from the model’s outputs. We use Rouge-
1/2/L. (Lin, 2004), BLEU (Papineni et al., 2002)
and BERTscore (Zhang et al., 2020b) as our evalu-
ation metrics. ROBERTa-large (Liu et al., 2019) is
used as scorer in BERTscore.

Summarization Similarly, for summarization,
the encoder takes the documents as input, and the
decoder generates the corresponding summariza-
tions. We minimize the log-likelihood objective
to fine-tune the model and apply beam search for
inference. Across different summarization datasets,
the beam size is set to 5 and we use no length
penalty. We fine-tune the model with learning rate
Se-5 for the base version and le-5 for the large
version for 6 epochs. We run evaluations on the
validation set at the end of each epoch and use the
checkpoint with the best validation performance
for testing. We apply the commonly used Rouge-
1/2/L. and BERTSscore for evaluation metrics. The
large version of ROBERTa is used as the scorer in
BERTscore.

Entity Linking We follow the method and ex-
perimental settings in Yuan et al. (2022a) to imple-
ment the generative model for biomedical entity
linking tasks. Knowledge-base guided pre-training
in Yuan et al. (2022a) has not been applied. The
documents with the positions of mentions marked
are fed into the encoder and the decoder outputs
the corresponding synonyms in the knowledge base
directly. We use the top1 and top5 recall (Recall@1
and Recall @5) as the evaluation metrics.

NER We use BARTNER (Yan et al., 2021) as
our model. The target type for BARTNER is word
(i.e. output first BPE of each word in entities). We
use the parameters selected by Yan et al. (2021) for
all pretrained models and fine-tune for 30 epochs.
Entity-level F1 is used as the metric.

5.4 Main Result

In this section, we present the base and large ver-
sion of BioBART on various generation tasks. We
compare our in-domain BioBART with BART to
illustrate the effectiveness of domain adaption. We

also compare with the existing state-of-the-art re-
sults on each dataset to shed light on the superior
performance of BioBART. The experimental re-
sults are shown in Table 2-5. The best and the
second-best scores are highlighted with bold num-
bers and underlines respectively.

Dialogue We evaluate biomedical dialogue re-
sponse generation on CovidDialog. For both base
and large version, BioBART shows improvement
on the automatic metric Rouge. The large Bio-
BART outperforms BART by 1.71 on Rouge-2 and
0.03 on Rouge-L . Our evaluations surpasses the
current state-of-the-art on BLEU score by 4.45.

Summarization We present broad experimen-
tal results on biomedical summarization datasets.
From Table 3, BioBART has competitive or even
superior performance on the task. Except for
iCliniq and HealthCareMagic, we see consistent
improvement on different datasets for both sizes of
BioBART. For MeQSum, BioBART large exceeds
BART large for 1.93/1.31/2.1 on Rouge-1/2/L and
even outperforms the current state-of-the-art. The
possible reason that biomedical in-domain pretrain-
ing fails on iCliniq and HealthCareMagic is that
both datasets are built upon a clinical corpus. There
still exists a domain-shifting problem for BioBART
pretrained on biomedical scientific articles from
PubMed.

On dialogue and summarization tasks, there are
minor changes in BERTscore for different models.
This is possible because the metric is calculated
by other pretranined language models. The im-
plemented RoBERTa may suffer from biomedical
domain-shifting and cannot quantify the model per-
formance accurately.

Entity Linking The results on biomedical en-
tity linking tasks are shown in Table 4. For all
the tasks, models finetuned based on BioBART
have better performance. On AAP, BCSCDR, and
COMETA, our results outperform the current dis-
criminative state-of-the-art methods by 0.4, 1.67,
and 1.36 points of Recall@1 respectively.

NER The performance improvement of Bio-
BART on ShARel3, ShARe14, and GENIA is sig-
nificant, while the increase on CADEC is mediocre.
For the large models, BioBART improves entity-
level F1 scores for 1.06 and 1 on ShARel3 and
GENIA datasets. There are promising results for
generative biomedical NER methods, while the gap
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CovidDialogue MeQSum MEDIQA-MAS
Rouge-2/L BLEU Rouge-2/LL  BERTSscore Rouge-2/.  BERTSscore
BART BASE  12.31/25.66 10.36 35.79/50.46 0.927 9.98/27.85 0.859
w/ TI & SP 10.90/25.46 10.46 34.93/49.28 0.926 9.04/27.43 0.859
w/ TI 11.81/25.79 12.79 37.14/51.71 0.929 10.66/27.65 0.862
MedMentions COMETA ShARel3 CADEC
Recall@l  Recall@5 Recall@1 Recall@5 F1 F1
BART BASE 69.77 84.59 78.34 87.40 76.63 68.37
w/ TI & SP 70.76 85.69 79.31 87.93 77.01 67.98
w/ TI 70.82 85.68 79.43 88.28 78.03 69.22

Table 6: Ablation study for pretraining tasks. TI is short for Text Infilling and SP is short for Sentence Permutation.

Context(Document)

BART Response(Summary)

BioBART Response(Summary)

Description: I have type 1 diabetes that I try
hard to control, but i struggle with. Are my
chances high for poor outcomes with the virus?
I’'m in such a panic about it.

In brief: diabetes. Your risk of complications
with covid-19 is very low. If you are well con-
trolled your risk should not be elevated. If your
diabetes is uncontrolled you should not have a
particularly high risk.

Diabetes and Covid-19. If you are a type 1
diabetic, you are at high risk for poor outcomes
with the virus. Your risk is very high. You
should be aware of your risk factors and monitor
your glycemic control closely.

SUBJECT: treatment for dry mouth caused by
necessary medicine MESSAGE: My provider

What are the treatments for dry mouth caused
by sugar alcohols?

What are the treatments for dry mouth?

can’t help (I asked.) T am intolerant of all the
"sugar alcohols" such as maltilol, ...

Are there any new treatments for orthostatic
tremor? ... Deep brain stimulation is some-
times done when drugs cannot control a severe,
disabling tremor. Sometimes essential tremors
or tremors due to Parkinson disease or another
disorder require such treatment. ... There is
no cure for most forms of tremor, but there are
treatments to help manage symptoms. ...

There is no cure for tremor, but there are treat-
ments to help manage the symptoms.

There is no cure for tremor, but there are treat-
ments to help manage the symptoms. The most
common ... help relieve symptoms. Deep brain
stimulation is sometimes done when drugs can-
not control a severe, disabling tremor. Some-
times essential tremors or tremors due to Parkin-
son disease or another disorder require such
treatment.

Table 7: Example dialogue and summaries from the fine-tuned BART and BioBART model excepts of showing the
references. The key information and differences are highlighted with colors.

with the current state-of-the-art NER method (Li
et al., 2021) is still salient.

5.5 Ablation Study on Pretraining Task

In this section, we test on pretraining with or with-
out the sentence permutation task. We pretrain
BART base following the same pretraining settings
except for reducing the training step to 40k for effi-
ciency. We fine-tuned the pretrained models on the
downstream tasks. The ablation results are shown
in Table 6.

From the result, it is illustrated that the model
pretrained on isolated text infilling task performs
the best. The sentence permutation task down-
grades the model’s performance even for generative
summarization and dialogue system tasks.

5.6 Generated example

Here we demonstrate BioBART’s performance
qualitatively. In Table 7, we present three gen-
erative examples on CovidDialog, MeQSum, and
MEDIQA-ANS respectively. In the first example,

we can see that BART generates an erroneous in-
struction of the influence of diabetes. BioBART
injected with domain knowledge can correctly give
the response. In the second, BART misunderstands
the document where sugar alcohol is not the cause
of dry mouth. BioBART generates an accurate
and concise summary. In the final example, the
MEDIQA-ANS document is rather long and BART
fails to extract complete information (colored in
red). From the examples, we can conclude that
BioBART has improvements on biomedical com-
mon sense and documents understanding.

6 Conclusions

In this work, we pretrain the biomedical domain
generative language model BioBART. We also
collect various publicly available benchmarks for
biomedical generative tasks to prompt future re-
search. Our experimental results show that con-
tinuous pretraining on PubMed abstracts helps the
model with domain adaption. BioBART shows
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great improvements on different benchmarks and
achieves competitive or superior results over the
current state-of-the-art methods. We also release
our pretraining and fine-tuning codes to facilitate
future research for reproducibility.

We will explore pretraining generative language
models 1) on in-domain vocabularies and from
scratch, 2) and with clinical corpora such as EMRs
in MIMIC-IIT (Johnson et al., 2016) or PMC-
Patients (Zhao et al., 2022) in the future studies.
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Abstract

Medical dialogue systems have the potential to
assist doctors in expanding access to medical
care, improving the quality of patient experi-
ences, and lowering medical expenses. The
computational methods are still in their early
stages and are not ready for widespread ap-
plication despite their great potential. Exist-
ing transformer-based language models have
shown promising results but lack domain-
specific knowledge. However, to diagnose like
doctors, an automatic medical diagnosis ne-
cessitates more stringent requirements for the
rationality of the dialogue in the context of rel-
evant knowledge. In this study, we propose a
new method that addresses the challenges of
medical dialogue generation by incorporating
medical knowledge into transformer-based lan-
guage models. We present a method that lever-
ages an external medical knowledge graph and
injects triples as domain knowledge into the ut-
terances. Automatic and human evaluation on
a publicly available dataset demonstrates that
incorporating medical knowledge outperforms
several state-of-the-art baseline methods.

1 Introduction

Medical dialogue systems, which have gained in-
creasing attention, aim to communicate with pa-
tients to enquire about diseases beyond their self-
reported and make an automatic diagnosis (Wei
et al., 2018; Xu et al., 2019; Lin et al., 2019). It
has the potential to substantially automate the di-
agnostic process while also lowering the cost of
gathering information from patients (Kao et al.,
2018). In addition, preliminary diagnosis findings
that are generated by a medical dialogue system
may help doctors make a diagnosis more quickly.
Because of these advantages, researchers work on
addressing sub-problems in a medical dialogue sys-
tem, such as natural language understanding (Lin
et al., 2019; Shi et al., 2020).

However, the dialogue system for medical di-
agnosis, on the other hand, has specific require-

1 I'm a female of 26 heavy smoker E fh8||0***it might be pneumonia, E
1 and drink daily***i have had somer :bul you should do chest x-ray :
1 pains™*when i breath in and out 1""*let me know if i can assist""” .

1 "*everything i ve checked says ! Lomenn
| pneumonia***a little heavy! ! ﬂ

- (Pﬁéuﬁé\ﬁié - Er.eétﬁé‘l
| Hepatic Cyst— o 5tion L

e - ' 4~ \ Function]
L. Patient Doctor , Liver Lurg™ '

....................

Figure 1: An example of medical dialogue between a
patient (left) and a doctor (right).

ments for dialogue reasoning in the context of med-
ical knowledge. The diagnosis elicited by the dia-
logue system should be associated with the under-
lying medical condition and coherent with medical
knowledge. In the absence of medical knowledge,
traditional generative dialogue models frequently
use neural sequence modelling (Sutskever et al.,
2014; Vaswani et al., 2017) and cannot be directly
applied to the medical dialogue scenario.
Recently, transformer-based language mod-
els (LMs) (Devlin et al., 2019; Radford et al.,
2019; Song et al., 2019) are fine-tuned for med-
ical dialogue tasks. Zeng et al. (2020) col-
lected a MedDialog dataset and fine-tuned various
transformer-based LMs which includes a vanilla
transformer (Vaswani et al., 2017), GPT (Radford
et al., 2019) and BERT-GPT (Wu et al., 2020;
Lewis et al., 2020) for medical dialogue genera-
tion task. Yang et al. (2020), in another study,
presented a CovidDialog dataset and then train di-
alogue generation models based on Transformer,
GPT-based model, and BART (Lewis et al., 2020)
and BERT-GPT for medical dialogue generation
tasks. These LMs are trained on huge corpus but
may not provide a good representation of specific
domains (Miiller et al., 2020) and need an adequate
amount of task-specific data (Dou et al., 2019) in
order to establish correlations between diseases and
symptoms (see Figure 1). Instead of using publicly
available models, we can pre-train a model that
emphasizes domain-specificity. On the other hand,
pre-training is time-intensive and computationally
costly, making it unavailable for most users.
Furthermore, while it is possible to inject
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domain-specific knowledge into LMs during pre-
training, this method of acquiring knowledge can
be expensive and inefficient. For instance, pre-
training data must contain many occurrences of
the words "Panadol" and "headache" occurring to-
gether for the model to learn that "Panadol” can
treat headaches. What other options do we have to
make the model an expert in its field besides this
one? The knowledge graph (KG), also known as
an ontology, was a good solution in the early stages
of research. SNOMED-CT (Bodenreider, 2008), in
the medical field, and HowNet (Dong et al., 2010),
in the field of Chinese conception, are two exam-
ples of KGs developed as knowledge was distilled
into a structured form. If KG can be incorporated
into the LM, it will provide domain knowledge to
the computational method, enhancing its effective-
ness on domain-specific tasks while significantly
lowering the expense of pre-training. To address
the limitations mentioned above, this article de-
scribes a method for incorporating domain-specific
external knowledge into transformer-based LMs
for medical dialogue generation tasks. Our contri-
butions are as follows:

* We presented a new method that incorporates
medical knowledge to transformer-based lan-
guage models;

* The proposed method first injects knowledge
from a medical knowledge graph into an utter-
ance. Next, the embedding layer transforms the
utterance tree into an embedding that is fed to the
masked self-attention of a transformer, followed
by the decoder to generate the response.

* To evaluate the performance of the proposed
method, we performed both automatic and hu-
man evaluations. Our results demonstrated that
incorporating medical knowledge improves the
performance compared to several state-of-the-art
baselines on the MedDialog dataset.

2 Methodology

Problem Definition: Given a dialogue, we process
a patient-doctor dialogue as a set of pairs {(s;,%;)},
where source s; is the dialogue from a patient and
target ¢; is a doctor’s response. A dialogue genera-
tion model generates ¢ from s.

Overview of Architecture: As illustrated in Fig-
ure 2, the proposed method contains four mod-
ules, i.e., knowledge layer, embedding layer,

Medical
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Figure 2: Overall architecture of proposed method

masked transformer encoder, where we extend self-
attention to mask-self attention, and transformer de-
coder. Our knowledge layer injects relevant triples
into an input utterance (i.e., conversation) from a
KG, converting it to a knowledge-rich utterance
tree. Simultaneously, the utterance tree is fed into
the embedding layer for token-level representation.
The representation from an embedding layer is fed
to the masked transformer encoder and decoder to
generate a response. We will describe each of these
modules in detail in the following discussion.

2.1 Knowledge layer

The knowledge layer incorporates domain-specific
(medical) knowledge into utterances and trans-
forms them into utterance trees. The knowledge
layer generates an utterance tree given an input ut-
terance (s) and a KG. This method involves two
stages: query of medical knowledge, referred to as
K-Query, and injection of knowledge, referred to as
K-Inject. K-Query extracts all entity names from
the utterance s and queries their correlating triples
from knowledge k. K-Query can be expressed as
follows:

E = K_Query(s, KG), (1

Where E is a set of associating triples. K-Inject
then injects the queried E into the utterance s by
combining the triples in E to their corresponding
positions, resulting in an utterance tree . An ut-
terance tree can have different branches; however,
its depth is limited, indicating that entity names
in triples will not iteratively derive branches. The
formulation for K-Inject is as follows:

t =K _Inject(s, E) 2

Knowledge graph: To generate knowledge, we
use the medical knowledge graph released by Liu
et al. (2021), which is centered on organs and re-
lated disorders. A set of 52.6K triplets (head, re-
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lation, tail) containing medical information was
retrieved. The head and tail represent entities such
as organs or diseases. In contrast, the relation in-
dicates the relationship between entities, such as
function and treatment. In this study, we employed
the English language vocabulary, which has 2,603
triples in total.

2.2 Embedding layer

The embedding layer aims to transform the utter-
ance tree into embedded representations that can
be forwarded to the transformer’s encoder and then
decoder to generate the dialogue. Our embedding
layer consists of token, position, and segment em-
bedding layers. However, it differs in that the pro-
posed method’s embedding layer receives an ut-
terance tree rather than a token sequence as input.
Below, we discuss a method adopted to transform
an utterance tree into a sequence that retains its
structural information.

Token embedding: In our study, the token em-
bedding, including the vocabulary used, is consis-
tent with the original transformer-based LM (see
section 3.3). Each token in the expression tree is
transformed into a H dimensional embedding vec-
tor by a trainable lookup table. Token embeddings
made using the proposed method differ from those
made using the original LMs. The utterance tree
tokens must first be rearranged before embedding
can occur. After incorporating tokens in the branch,
we reverse the order of the tokens in the follow-
ing nodes. Even though this process is simple, it
makes the utterance hard to read and loses impor-
tant structural information that can be solved using
soft-position.

Soft-position embedding: Without position em-
bedding, encoders within a transformer will behave
similarly to a bag-of-words (BoWs) method, lead-
ing to a loss of structural information (i.e., the order
of tokens). The position embedding contains all
of the structural information in the encoder’s input
sentence, allowing us to reconstruct the unreadable
rearranged utterance. As an alternative to using
the transformer encoder’s self-attention score for
words that appear to be connected but are not, we
used masked self-attention (see section 2.3).

Segment embedding: Like the transformer en-
coder, the proposed method uses segmentation em-
bedding to detect utterances when multiple utter-
ances are included. For instance, when two utter-
ances are fed, [ SEP] is used to incorporate them.

A sequence of segment tags is used to denote the
combined utterance.

2.3 Transformer Encoder with Masked-Self
Attention

We present a mask-self-attention to avoid false se-
mantic changes, which is a self-attention extension.
Mask-self-attention is defined as follow:

Qi+1’ Ki+1, Vi+1 — hiWq, hZWk, thU (3)

) i+1Ki+1
St — softmaa:(iQ NG ) 4)
pitl — gitlyyitl 5)

where Wq, Wk, and Wv are model parameters
that can be trained. The hidden state of the ¢ — th
mask-self-attention blocks is hi. The scaling factor
is dk. This process improves the representation but
does not affect the original utterance’s meaning.

2.4 Transformer Decoder

The knowledge enriched representation from the
transformer encoder is fed to the decoder of an
original LM to generate a response. The working
process of the decoder layers is similar to that of
the vanilla transformer decoder layers.

3 Experiments

3.1 Datasets

In this study, we used the English version of Med-
Dialog (Zeng et al., 2020) dataset. Table 1 presents
statistics of the MedDialog dataset.

Table 1: Dataset Statistics

Dataset MedDialog-EN
# dialogues 257,332
# utterances 514,664
# tokens 44,527,872
#diseases 172
Avg. # of utterances 2
Max # of utterances 2
Min # of utterances 2
Avg. # of tokens 87
Max # of tokens 3,672
Min # tokens 1

3.2 Experimental Settings

We used five different LMs, and all configuration
and pre-training settings are consistent with the
original LMs used (see section3.3). Adam (Kingma
and Ba, 2014) optimizer is used to train our model
at le-6 initial learning rate. We used a batch size
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Table 2: Results: Automatic (BLEUy, BLEUy, METEOR, NIST — 4) and Human (5-point scale) evaluation

Automated Evaluation for MedDialog-EN H Human Evaluation

Model BLEU; BLEU; METEOR NIST-4 H Avg. Score
BERT-GPT (Wu et al., 2020) 572 4.82 0.28 0.42 3.70
BERT-GPT+Knowledge (Ours) 9.38 6.07 17.62 0.61 4.00
Performance Increase 3.661 1.251 17.341 0.191 ‘ ‘ 0.301
Transformer (Vaswani et al., 2017) 2.13 2.28 11.57 0.03 2.70
Transformer+Knowledge (Ours) 2.48 2.46 12.32 0.31 3.00
Performance Increase 0.35% 0.18% 0.75% 0.281 || 0.301
mT5 (Xue et al., 2020) 2.59 0.84 0.20 0.41 2.70
mT5+Knowledge (Ours) 7.32 3.63 1.11 0.94 3.00
Performance Increase 4.73% 2.791 0.911 0.531 || 0.801
BART (Lewis et al., 2020) 15.92 9.72 0.70 2.03 3.90
BART+Knowledge (Ours) 17.25 11.07 1.73 2.07 4.15
Performance Increase 1.331 1.351 1.031 0.041 || 0.2501
TS5 (Raffel et al., 2019) 7.05 1.79 0.95 1.05 3.50
T5+Knowledge (Ours) 15.20 8.96 1.73 1.78 4.00
Performance Increase 8.151 7171 0.781 0.731 || 0.501

of 64 for 50 epochs. We used grid-search optimiza-
tion to derive the optimal parameters. We divided
all datasets into training, validation, and test sets,
with an 80:10:10 ratio for all experiments. The
number of heads in multi-head attention is set to
12. The trained models were evaluated using auto-
matic metrics such as NIST-4 (Doddington, 2002),
BLEU,, BLEU, (Papineni et al., 2002), and ME-
TEOR (Lavie and Agarwal, 2007).

3.3 Baselines

We compared our results with state-of-the-art
LMs that are used in previous studies for med-
ical dialogue generation tasks. To be precise,
we used BERT-GPT (Wu et al., 2020), Trans-
former (Vaswani et al., 2017), mT5 (Xue et al.,
2020), BART (Lewis et al., 2020), and T5 (Raffel
et al., 2019) to compare the performance.

3.4 Results

Automated Evaluation: Table 2 demonstrates the
automatic evaluation results achieved by different
LMs, with and without knowledge. The results
show that adding medical knowledge to LMs im-
proves the performance across all evaluation met-
rics. For the MedDialogue-EN, we observed an
increase in BLEU; score ranging from 0.35% to
8.15%, for BLEU,, the improvement range is
0.18% to 7.17%, For METEOR, the increase is
from 0.91% to 17.34%, and finally, for NIST-4, the
increase in performance is in the range of 0.04%

to 0.73%. From the results in Table 2, we can con-
clude that adding medical knowledge to LMs is
beneficial and increases the performance of medi-
cal dialogue generation tasks.

Human Evaluation: We randomly selected 100 di-
alog examples for human evaluation. Five medical
doctors were asked to rate the generated responses
independently on a scale of 1 to 5. The greater the
score, the better. The final results are obtained by
averaging the ratings provided by various experts.
From the human evaluation scores (right column)
in Table 2, we deduce that incorporating medical
knowledge into LMs generates a more accurate,
clinically informative, and human-like response.

4 Conclusion

We present a method for enabling LMs with KGs
to achieve domain knowledge like doctors. The
proposed method transforms an utterance into a
knowledge-enriched utterance tree by injecting
medical knowledge from KG. The embedding layer
converts the utterance tree into an embedding fed
to the masked self-attention of a transformer, fol-
lowed by the decoder to generate the response us-
ing medical dialogue history. Experimental results
demonstrated that our method outperforms state-
of-the-art LMs trained on general data. Further,
through human evaluation, we conclude that gener-
ated responses are informative and doctor-like. In
future, we aim to expand this work to other tasks
and datasets.
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Abstract

Automatic generating the clinically accurate ra-
diology report from X-ray images is important
but challenging. The identification of multi-
grained abnormal regions in image and cor-
responding abnormalities is difficult for data-
driven neural models. In this work, we in-
troduce a Memory-aligned Knowledge Graph
(MaKG) of clinical abnormalities to better learn
the visual patterns of abnormalities and their
relationships by integrating it into a deep model
architecture for the report generation. We carry
out extensive experiments and show that the
proposed MaKG deep model can improve the
clinical accuracy of the generated reports.

1 Introduction

Medical images are complex and hard to under-
stand without specialized expertise. Given that
the volume of radiology images is large, automati-
cally generating the reports by the computer-aided
system can alleviate the radiologists from the time-
consuming reporting task. Recently, many deep
learning models are studied in the automated radi-
ology report generation (Han et al., 2018; Xie et al.,
2019; Yang et al., 2021; Chen et al., 2020).

The deep encoder-decoder architecture has been
commonly adopted in the report generation, where
visual features were extracted from the input med-
ical images using a convolutional neural network
and fed to a recurrent neural network to generate
the report. Different from image captioning which
inputs one image and output one sentence, the re-
port has much longer length while the correctness
of medical entities generated in the report is the
core requirement. More than the requirement of
detecting abnormalities accurately like classifica-
tion, the report is expected to provide the support
details of present abnormalities. Thus, generating
accurate report with readable and logical descrip-
tions by natural language generation model is the
key challenge in the report generation task.

Generating correct reports is impossible if the
pathology of abnormal regions and corresponding
abnormalities cannot be identified at first. Most
existing studies (Liu et al., 2021a; Chen et al., 2020,
2021; You et al., 2021) proposed the attention and
memory mechanism to enhance the identification
of abnormal regions. However, different status of
the same abnormality may have their specifics and
the correlations of these visual patterns are ignored.
In addition, identifying the actual abnormalities
from abnormal regions is also challenging since
the complex and rare abnormalities are hard to
determined without professional knowledge.

To incorporate the prior medical knowledge, sev-
eral research (Li et al., 2019; Zhang et al., 2020;
Liuetal., 2021b) applied medical knowledge graph
of certain abnormalities in the report generation
aiming to learn the abnormality relationships. The
corresponding representations, i.e., graph embed-
ding, are computed by graph neural network given
the input images. However, such representations
are affected by the inner-connections of abnormali-
ties for each input where the general characteristic
of abnormalities are missing. For example, the
representations of “Effusion”, computed as graph
embedding, are different when “Effusion” appears
with or without “Atelectasis”. But the general char-
acteristic of “Effusion” over all relevant observa-
tions, e.g., density or shapes, are only determined
by itself independently. This general but indepen-
dent characteristic is still missed to model by exist-
ing approaches which limits the effectiveness the
knowledge graph.

To alleviate the above challenges, in this work,
we propose to learn the memory-aligned graph
model, aiming to enhances the pathology identi-
fication and prior medical knowledge incorpora-
tion. The memory features of possible abnormal
regions are first aligned by the input visual feature
in an alternative manner, and concatenated with
a universal memory embedding before feeding to
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the graph attention network to compute the graph
embedding. The graph embedding are later learned
by the classification and fine-tuned in the report
generation. We evaluate the proposed approach
using two publicly accessible datasets. The eval-
uation results show the effectiveness of utilizing
memory-aligned knowledge graph in generating
the clinically accurate radiology report.

2 The Proposed Method

2.1 Problem Formulation

Given the radiology image with extracted visual
features as V, the model aims to generate a radi-
ology report R = {y1,¥2,...}. We introduce a
Memory-aligned Knowledge Graph (MaKG) to
explore multi-grained features of the abnormalities
and their relationships. The multi-grained memory
features M are first aligned from the memory slots
M by V, and concatenated with a meshed memory
embedding F to learn the abnormality graph em-
bedding G for generating radiology report R. This
process can be formulated as,

{(V,M} — M;{M,E} - G;G = R. (1)

Implementation. Following (Chen et al., 2020,
2021; Liu et al., 2021b), we adopt a memory slots
M € RMXD (o record the information of abnormal
regions which would indicate the potential abnor-
malities. The memory slots are initialized as plain
learnable vectors and updated together with other
modules. The M stands for the total number of
the knowledge corresponding to the abnormality
identification. We also adopt a £ € RN*P em-
bedding to model the universal features of each
abnormality. The N is equal to the number of the
abnormalities. We follow (Zhang et al., 2020) to
construct and initialize the abnormality knowledge
graph G = (V,€);|V| = N which is a universal
structure in the training. The nodes V cover the
common chest abnormalities and grouped by their
organ or body part appearances as edges £. The
graph embedding G € RN*P is computed by the
graph attention network. A overview of this frame-
work is shown in Fig. 1.

2.2 Memory-aligned Graph Embedding

To learn the visual patterns of possible abnor-
mal regions, we apply Multi-Head Attention
(MHA) (Vaswani et al., 2017) to query the re-
sponding memory features from the memory
slots M. The MHA computes the associated

weighted between different features which allows
the abnormality-related memory features to be dis-
tilled from original M. To align different level
of the alignment, we can perform the alignment
attention alternatively as,

71 = MHA(M;, V;);
i,-i-l = MHA( i,—‘,-la MZ)7

where Vo = V, My = M, V/ and M] denote
i-th step aligned visual and memory features, re-
spectively. As observed, the patterns of abnormal
regions should be learned in different fine-grained
ways due to their variable shapes and sizes. Thus,
we follow (You et al., 2021) to repeat the align-
ment K times and obtain multi-grained memory
features {M/} = {Mj, M}, ..., M. }. We then
aggregate the multi-grained memory features as
M = MHA(M., M), where M, = @, M!
and M € RMxD,

To model the prior knowledge on the global char-
acteristic of each abnormality which may not de-
pend on the current input V', we add an meshed
memory embedding E € RN*P of which each row
represent one particular abnormality. We compute
the graph embedding G € RN*P using graph at-
tentional layer GAT(-) (Velickovic et al., 2017) as,

2

G = GAT(FFN(MW© @ E)) 3)

where FFN(z) = ReLU(zWH + sy + pff,
Wi W ¢ RP*P and WG € RMXN are learn-
able parameters, b, bll are learnable bias vectors.
We learn G by adding a fully-connected layer with
Sigmoid activation for each node and serving it as
a binary classifier. Each node embedding is used
to predict the existence probability of correspond-
ing abnormality, and the classifier is trained using
weighted binary cross entropy loss. The details can

be found in (Zhang et al., 2020).

2.3 Report Generation by Graph embedding

For each decoding step ¢, the hidden stats h; is
encoded from the input word features z; by the
standard encoder from Transformer,

xr = wy + e; hy = MHA (24, 21.4), 4)

where w;y and e; are the word embedding and posi-
tional embedding, respectively. A L layers Trans-
former decoder is employed to generate the proper
report by the attending MaKG embeddings G as,

hy = MHA(hy, G);

5
y; ~ pt = Softmax(h,W +b). ©)
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Figure 1: The MaKG-based deep model architecture.

Both encoder and decoder are trained by min-
imizing the cross-entropy loss Lgen(f) =

- Zthl log(pt|p1:4—1)-
3 Experiments

3.1 Datasets, Metrics and Settings

We use two publicly available datasets IU X-
Ray (Demner-Fushman et al., 2016) and MIMIC
CXR (Johnson et al., 2019) for evaluating the
model performances. For the IU X-Ray dataset,
we collect 2,848 reports and 5,696 images contain-
ing both frontal and lateral chest X-rays. We parti-
tioned the data into train/validate/test set by 7:1:2
for cross validation. For MIMIC CXR dataset, we
follow original split set with train/validate/test size
as 222,705/ 1,807 / 3,269 and report the average
scores of three different runs.

For report quality, we adopt the language gen-
eration metrics including BLEU (Papineni et al.,
2002), METEOR (Banerjee and Lavie, 2005),
ROUGE (Lin, 2004) and CIDEr (Vedantam et al.,
2015). To measure the clinical accuracy, we adopt
the Clinical Efficacy (CE) (Chen et al., 2020) and
Clinical Metrics (CM) (Miura et al., 2021) for
common and critical observation accuracy, and
MIRQI (Zhang et al., 2020) to evaluate accuracy
of 14! observations and their associated attributes.
The micro-avg F1-measure scores are reports.

To compare with the proposed model
TRANS.+MAKG, we employ the basic vanilla

114 clincal observations includes: No finding, Enlarged
Cardiomediastinum, Cardiomegaly, Lung lesion, Lung opac-
ity, Edema, Consolidation, Pneumonia, Atelectasis, Pneu-
mothorax, Pleural effusion, Pleural other, Fracture, Support
devices

Transformer TRANS. with three layers, 8 heads
and 512 hidden state dimension, and an integration
knowledge graph used in (Zhang et al., 2020)
denoted as TRANS.+KG. We also compare
TRANS.+MAKG with several report generation
models, including WORDSAT (Xu et al., 2015),
ADAATTN (Lu et al., 2017), SENTSAT (Krause
et al., 2017), COATTN (Jing et al., 2018), SEN-
TKG (Zhang et al., 2020), M2TRANS (Cornia
et al., 2020), R2GEN (Chen et al., 2020) and
R2GEN-CMN (Chen et al., 2021).

We adopt DenseNet121 (Huang et al., 2017) to
extract the visual features. The dimensions of hid-
den state and number of heads in MHA are set as
512 and 8. K and M are set as 3 and 20. The
model is trained with the learning rate Se-5 in the
end-to-end manner.

3.2 Results on Multi-label Classification

For performance comparisons on image classifica-
tion, we evaluate the proposed MAKG with the
base DENSENET (Huang et al., 2017) and integrat-
ing with KG (Zhang et al., 2020) embedded with
different graph neural network. Higher or equiva-
lent scores are obtained for most of the classes as
shown in Table 1. A possible explanation is that
the alignment mechanism of MAKG enhances the
learning of the abnormality patterns by distilling
the irrelevant regions from the images.

3.3 Results on Report Generation

The main focus of this experiment is to evaluate
the effectiveness of applying memory alignment
knowledge graph (MaKG) in enhancing the clinical
accuracy of the report generation.
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Integration Module

Class - KG° KG MaKG
Normal/No Finding | 0.795 0.807 0.806  0.821
Cardiomegaly 0.866 0913 0.922  0.930
Scoliosis 0.664 0.663 0.671 0.687
FB. 0.695 0.671 0.686  0.727
Effusion 0.921 0942 0.950  0.962
Thickening 0.733 0.728 0.753  0.785
Pneumothorax 0.824 0.843 0.843  0.889
HH 0.860 0.884 0.857  0.870
Calcinosis 0.676 0.669 0.669  0.690
Emphysema 0.892 0.890 0.902 0.919
Pneumonia 0.844 0.863 0.835 0.861
Edema 0.897 0.931 0912  0.949
Atelectasis 0.788 0.833 0.823  0.838
Cicatrix 0.742 0734 0.745  0.774
Opacity 0.796 0.803 0.806  0.829
Lesion 0.597 0.643 0.630 0.647
Airspace Disease 0.830 0.857 0.823 0.846
Hypoinflation 0.768 0.775 0.767  0.791
Medical Device 0.775 0.805 0.798  0.825
Other 0.595 0.596 0.607 0.653
Average 0.778 0.792 0.867  0.879
Table 1: Performance on multi-label classification

(AUC) on IU XRay dataset. The best scores are in
bold face and the second best are underlined.

Clinical Accuray Metric As shown in Table 3,
TRANS.+MAKG achieves the first and second best
performances over all clinical accuracy related met-
rics, and outperforms TRANS+KG with signifi-
cantly improvement in MIRQI score which evalu-
ates the accuracy of both abnormalities and their
associated attributes. It indicates integrating MaKG
is able to enhance the generation of clinically ac-
curate report by providing correct attribute descrip-
tions in the fine-grained level. This observation
is important because the correctness of the asso-
ciated attributes is necessary for the correctness
of the abnormality descriptions. The incomplete
or incorrect attributes of the same abnormalities
would result different or even incorrect follow-up
treatments. Noted that TRANS.+MAKG does not
obtain the first best score in CE which measures the
accuracy of 13 clinical observations and normality
observation. However, the best scores of CM and
Hits are observed shows that TRANS.+MAKG is
able to identify the most critical abnormalities and
cover most of the abnormalities that are frequently
mentioned in the report repositories.

As observed from Table. 3, no model could
detect all evaluated abnormalities for IU XRay
dataset. Thus, we further study the detailed results
as shown in Table. 2. As observed, there are some
abnormalities of which appearance ratio is around
5% in the whole training set which is relatively rare.

The failed detection could be caused by different
reasons, such too few training data (e.g., “Frac-
ture”) or too hard to learning (e.g., “Pneumothorax”
which is also very hard for clinicians to determine).

Integration Module
Class (%) - KG__ MaKG
No Finding (31.72%) 0.603 0.500 0.456
Enlarged Cardio. (13.3%) | 0.000 0.000 0.034
Cardiomegaly (15.6%) 0.265 0392 0.341
Lung Lesion (5.2%) 0.000 0.000 0.054
Lung Opacity (21.3%) 0.181 0.209  0.278
Edema (4.7%) 0.000 0.000  0.160
Consolidation (5.2%) 0.000 0.038  0.073
Pneumonia (3.0%) 0.000 0.000  0.000
Atelectasis (8.1%) 0.000 0.087  0.227
Pneumothorax (6.6%) 0.000 0.000 0.000
Pleural Effusion (10.2%) | 0.089 0.172  0.278
Pleural Other (1.6%) 0.000 0.000  0.000
Fracture (2.9%) 0.000 0.000  0.000
Support Devices (3.9%) 0.091 0.114  0.242

Table 2: Detailed CE evaluation results (F1-measure) of
TRANSFORMER and integrating with KG and MAKG

in [U XRay dataset, respectively. The best scores are in
bold face

Natural Language Generation Metrics As the
experimental results show, the higher NLG scores
do not always indicate the clinically accurate re-
ports are generated. While the clinical accuracy
is a mission-critical requirement for radiology re-
port generation, the generated report is expected
to be clinically accurate using relatively readable
sentences. The TRANS.+MAKG achieves similar
NLG scores which indicates that the integration of
MaKG is able to generate more reasonable descrip-
tions of the abnormalities without decreasing the
informativeness from TRANS. much. More pow-
erful decoders (e.g., MemroyTrans. (Chen et al.,
2020) or AlignTrans. (You et al., 2021)) should be
able to enhance the overall performances.

Qualitative Results As shown in Fig. 2, two cases
of ground truth and generated reports are visual-
ized. The extracted clinical findings and the associ-
ated modifications are also attached. As observed,
TRANS.+MAKG is able to detect more correct ab-
normalities in such cases than TRANS.+KG. It is
believed to assistant clinicians to detect the abnor-
malities which are easy to ignored, thus increases
the usability of applying the MaKG in improving
the clinical accuracy in the report generation task.

119



Dataset | Model NLG Metrics Clinical Accuracy Metrics

B. M. R. C. CM CE MIRQI Hits (14)

WORDSAT (Xu et al., 2015) 0.262 0.383 0369 0.317 | 0.094 0.215 0.463 5.6

ADAATTN (Lu et al., 2017) 0.269 0.379 0367 0.358 | 0.240 0.338 0.474 6.6

SENTSAT (Krause et al., 2017) 0.274 0372 0365 0.318 | 0.106 0.241 0.451 4.8

COATTN (Jing et al., 2018) 0.256 0.367 0.357 0.307 | 0.061 0.245 0.438 52

U SENTKG (Zhang et al., 2020) 0.271 0.391 0367 0.304 | 0.067 0.242 0.490 4.8

XRay [ MZTRANS. (Cornia et al., 2020) 0.269 0.299 0363 0.367 | 0.104 0.253 0.481 5.6

R2GEN (Chen et al., 2020) 0.251 0.367 0342 0461 | 0.100 0.322 0.389 9.0

R2GEN-CMN (Chen et al., 2021) | 0.294 0.392 0.370 0.681 | 0.104 0.330 0.462 8.0

TRANS. (Vaswani et al., 2017) 0.264 0.390 0.357 0.587 | 0.147 0.394 0.486 5.0

TRANS.+KG 0.265 0.380 0.353 0.593 | 0.205 0.320 0.504 9.2

TRANS.+MAKG (ours) 0.265 0.378 0353 0.523 | 0.262 0.362 0.515 10.8

WORDSAT (Xu et al., 2015) 0.160 0.284 0.249 0.082 | 0.354 0.324 0.391 10.0

ADAATTN (Lu et al., 2017) 0.151 0301 0.248 0.096 | 0.384 0.366 0.438 12.0

SENTSAT (Krause et al., 2017) 0.182 0.236 0.252 0.073 | 0412 0.364 0411 11.3

MIMIC COATTN (Jing et al., 2018) 0.181 0.235 0.253 0.070 | 0.423 0.364 0.418 9.7

CXR MZ?TRANS. (Cornia et al., 2020) 0.165 0.299 0.249 0.102 | 0.458 0.469 0.518 13.7

R2GEN (Chen et al., 2020) 0.124  0.158 0.160 0.170 | 0.262 0.296 0.383 13.0

R2GEN-CMN (Chen et al., 2021) | 0.123 0.162 0.163 0.128 | 0.329 0.356 0.485 10.0

TRANS. (Vaswani et al., 2017) 0.126 0.160 0.164 0.167 | 0.286 0.288 0.368 13.0

TRANS.+KG 0.109 0.280 0.214 0.119 | 0.406 0.398 0.535 12.0

TRANS.+MAKG (ours) 0.137 0.284 0.228 0.120 | 0.455 0.469 0.572 14.0

Table 3: Performance comparison of report generation models. The best scores are in bold face and the second best
are underlined.“B.”, “M.” “R.” and “C.” stand for BLEU, METEOR, ROUGE and CIDEr scores, respectively. The
maximum number of “Hits” is 14 which is defined by CheXpert labeling toolkit.

The heart and mediastinal contours are stable. Aorta
is calcified and tortuous, compatible with
latherosclerotic disease. Since the prior study, there's
been interval development of left lower lobe
lairspace disease. The right lung is clear. 1. Interval
[development of left lower lobe airspace disease.
This may be due to atelectasis or infiltrate.

Ground Truth

['calcifi, 'Calcinosis', 'POSITIVE', 'aorta’]['airspace disease’, 'Airspace Disease’, 'POSITIVE', 'left/lobe’]

The heart size is moderately enlarged. There is evidence of
previous aortic valve replacement. XXXX sternotomy XXXX
are grossly intact. The pulmonary XXXX and mediastinum are
within normal limits. There is no pleural effusion or
pneumothorax. There are chronically increased interstitial lung
markings without superimposed focal airspace disease
identified. There are degenerative changes of the

spine. Cardiomegaly without superimposed acute disease noted. =
['degenera, 'Other Finding', 'POSITIVE', ‘changes'] [‘cardiomegaly’, 'Cardiomegaly’, 'POSITIVE', 'disease’]

is seen in the may be a thoracic <unk> deformity that is not <unk> . arthritic changes are seen .

£ [[contour, ‘Enlarged Cardiomediastinum', 'POSITIVE', 'heart] ['interstitial lung’, 'Airspace Opacity', 'POSITIVE', 'markings'] [the heart, 'Cardiomegaly', 'POSITIVE', 'size]
£ Iratherosclero’, ‘Other Finding’, 'POSITIVE', 'disease’] [valve', 'Support Devices', 'POSITIVE', I . "Enlarged Cardi . 'NEGATIVE', 'limits']
S [rinfiltrate’, 'Airspace Opacity’, 'UNCERTAIN', 'atelectasis'] [atelecta’, 'Atelectasis', "UNCERTAIN', 'infiltrate’] ['effusion’, ‘Pleural Effusion’, 'NEGATIVE', is/no/pleural/pneumothorax]
& i . . . i
S [[the heart, 'C , 'UNCERTAIN', 1 ['airspace disease', 'Airspace Disease', 'NEGATIVE', 'superimposed/focal’]
[ !, F !, 'NEGATIVE', ' ion’]
E 1 . probable small bilateral pleural effusions . 2 . possible lower thoracic <unk> deformity not well
% [<unk> on todays study . the lungs are clear . there appear to be small bilateral pleural effusions . stable cardiomegaly . no acute infiltrate or effusion . mildly enlarged . the cardiac silhouette and mediastinal
£ |the heart is not grossly enlarged . there are atherosclerotic changes of the aorta . increased kyphosis|contours are within normal limits . no pneumothorax or pleural effusion . clear .
=

['deformity’, 'Other Finding’, "UNCERTAIN', ‘possible/thoracic']

[kyphosis', ‘Other Finding', 'POSITIVE', 'increased’]

[atherosclero’, 'Other Finding', 'POSITIVE', ‘changes'] [the heart, 'Cardiomegaly’, 'NEGATIVE', "]
[effusion’, ‘Pleural Effusion’,'UNCERTAIN', ‘probable/smallbilateral/pleural’]

MIRQI
Results

['cardiomegaly', ‘Cardiomegaly', 'POSITIVE', 'stable'|'nfiltrate’, ‘Airspace Opacity', 'NEGATIVE', ‘acute/effusion’]
['effusion’, ‘Pleural Effusion’, 'NEGATIVE', "acute/infiltrate'] [cardiac silhouette', ‘Cardiomegaly’, 'NEGATIVE', ‘contours']

[ , P !, 'NEGATIVE', 'no/effi ']

['contour’, 'En\arged Cardiomediastinum', 'NEGATIVE', 'cardiac/silhouette/mediastinal/limits']

1. d elevation right b with right basilar atelectasis . left basilar airspace
disease and pleural effusion unchanged . 2 . interval removal of rightsided chest tube no pneumot-
lhorax . stable cardiomediastinal silhouette . there has been interval removal of the chest tube with
increased elevation of the right hemidi and 1 in the left basilar i

Trans.
+MaKG

1 . no acute cardiopulmonary disease . 2 . stable mild cardiomegaly . 3 . prominent central vasculature . pa and
lateral views of the chest were obtained . tracheostomy tube . probable mild cardiomegaly . prominence of the
central d.nop horax pleural effusion or focal air space consolidation .

[airspace disease’, ‘Airspace Opacity', POSITIVE', llefubasilar/unchanged’]

% |[effusion’, Pleural Effusion’, 'POSITIVE', ‘pleuraliunchanged [‘tube', 'Support Devices', 'NEGATIVE', ‘chest]
Z Iratelecta’, " is', 'POSITIVE!, 'rigt ilar]

€ |relevation’, ‘Other Finding, 'POSITIVE', ‘increased/hemidiaphragm

Z |(mediastinal silhouette’, ‘Enlarged Cardi ', "UNCERTAIN', jastinal’]

[cardiomegaly’, ‘Cardiomegaly’, 'POSITIVE', 'mild'] [prominen’, ‘Other Finding’, POSITIVE', 'vasculature’]
[tracheostomy', ‘Other Finding', 'POSITIVE', 'tube']'tube’, 'Support Devices','POSITIVE', 'racheostomy']

r idat, G ion', NEGATIVE', . 'NEGATIVE!, effusion’]
['effusion’, 'Pleural Effusion’, 'NEGATIVE', 'n

il

pr idation’]

Figure 2: Illustration of reports generated by TRANS.+KG and TRANS.+MAKG. The extracted medical entities by

t)

MIRQI evaluation toolkit are attached as [“keyphrase

4 Conclusions

In this work, we propose a memory-aligned knowl-
edge graph (MaKG) to enhance the clinically accu-

rate report generation by modeling the relationship

between abnormal regions and particular abnormal-

ities. The experiments prove the effectiveness of
integrating MaKG with the generation model is
able to generate descriptive report with both cor-
rect abnormalities and associated attributes. In ad-

bl

3 CL T3

category”,

ELINNT3

negation”, “attributes’].

dition, the proposed MaKG is not limited to the spe-
cific knowledge graph structure which give the op-
portunities on incorporating different professional
knowledge for specific medical applications.
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Abstract

Data augmentation is important in addressing
data sparsity and low resources in NLP. Un-
like data augmentation for other tasks such
as sentence-level and sentence-pair ones, data
augmentation for named entity recognition
(NER) requires preserving the semantic of en-
tities. To that end, in this paper we propose
a simple semantic-based data augmentation
method for biomedical NER. Our method lever-
ages semantic information from pre-trained
language models for both entity-level and
sentence-level. Experimental results on two
datasets: 12b2-2010 (English) and VietBioNER
(Vietnamese) showed that the proposed method
could improve NER performance.

1 Introduction

In machine learning and especially deep learning
approaches, performance of the trained models is
often proportional to the size of the training data.
Consequently, for a model to achieve acceptable
performance, we need a certain amount of labelled
data. This would be an issue for low-resource do-
main and low-resource languages since annotat-
ing labelled data is time-consuming and expensive.
To address the issue, data augmentation has been
proposed to increase the variety of training data
without directly collecting or annotating additional
data (Feng et al., 2021).

Intuitively, data augmentation for named entity
recognition (NER) task is more difficult to per-
form than for other sentence-level and sentence-
pair tasks. Simple operations used to augment a
sentence such as token swap, token deletion, and
token insertion (Wei and Zou, 2019) may not work
well in the case of NER, especially in the biomed-
ical domain. One of the reasons is that a named
entity can be composed by multiple tokens and
we have to preserve the semantic of entities after
applying those operations. For example, consider
the following sentence from the i2b2-2010 cor-
pus (Uzuner et al., 2011) with its entities:

She can be given prn [lasiX]7yeqtment for [weight
gain] pyopiem Or [shortness of breath] p,oprem -

If we randomly swap the °‘lasix’ token with
‘weight’, the sentence is not semantically correct.
Similarly, when the ‘weight’ token is deleted, the
remaining ‘gain’ token is no longer suitable for an
entity of Problem. For the insertion operation, if
we randomly insert a token into the sentence, the
semantic of the sentence will be changed and we
will not be able to assign a suitable entity label
for it. As a result, it is necessary to have different
augmentation methods specified for NER.

There are several model-based data augmenta-
tion methods for NER. Chen et al. (2020) pro-
posed Local Additivity-based Data Augmentation
(LADA) that can create virtual samples using in-
terpolation technique. Their exeperimental results
showed that LADA could help to produce state-of-
the-art (SOTA) on two NER benchmarks including
CoNLL 2013 (Tjong Kim Sang and De Meulder,
2003) and GermEval 2014 (Benikova et al., 2014).
Meanwhile, Nie et al. (2020) took advantages of the
rich semantic information in pre-trained word em-
beddings to create a semantic augmentation mod-
ule for NER models. They also reported SOTA
performance on some social media corpora.

Obviously, model-based methods can help to im-
prove NER performance, but they are often compli-
cated and difficult to implement. In contrast, rule-
based methods are simpler and more intepretable
than model-based ones, but still effective. Dai and
Adel (2020) adjusted simple operations such as
replacement and shuffle to preserve the semantic
of both entities and sentences. Specifically, they
proposed Synonym Replacement (SR) and Men-
tion Replacement (MR). SR replaces a word in a
sentence with a word of the same semantics taken
from WordNet. MR replaces the whole entity with
another random entity in the same entity type based
on the training data; the replacement action for each
entity is decided based on the binomial distribution.
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As a result, they could improve the NER perfor-
mance on both MaSciP and i2b2-2010 corpora.

We find two limitations in Dai and Adel (2020)’s
approach. Firstly, although the SR operation takes
into account the semantic aspect of tokens, it does
not consider the semantic at the entity level. Sec-
ondly, the MR operation is performed on the entity
level randomly, which may cause semantically in-
correct sentences. We hypothesise that if we some-
how control the semantics in entity and sentence
levels in augmentation operations, we could cre-
ate a meaningful augmented data, hence improving
the NER performance. To that end, we propose
Semantic Neighbour Replacement (SNR), a sim-
ple data augmentation method for biomedical NER
that considers the semantic aspects of both entity
and sentence levels.

Specifically, at the entity level, unlike MR (Dai
and Adel, 2020), we only replace a source entity
with a target one if the target entity is in the same
entity type and semantically related to the source
one. At the sentence level, we only retain sen-
tences that are semantically related to the original
sentence. The semantically related entities and sen-
tences are calculated by using pre-trained language
models.

We conducted experiments on two biomedi-
cal datasets: i2b2-2010 (Uzuner et al., 2011)—
an English corpus of clinical records and Viet-
BioNER (Phan et al., 2022)—a Vietnamese corpus
of biomedical texts. Experimental results indicate
that using SNR, we can improve NER performance
on low-resource settings as well as on full training
data. In particular, the F1-scores were increased by
0.52% for i2b2-2010 and 1.3% for VietBioNER.

2 Methodology

The core idea of SNR is to replace entities and to
control augmented sentences based on semantic
similarity. The method can be divided into three
consecutive phases: semantic neighbour extraction,
entity replacement, and sentence evaluation.
Semantic Neighbour Extraction: Initially, we
perform feature extraction for entities using pre-
trained language models. An entity embedding is
calculated by taking an average of word embed-
dings in it. Next, we generate sets of semantic
neighbors based on cosine similarity. An entity is a
semantic neighbor to another entity if both of them
belong to the same entity type and have a cosine
similarity greater than or equal to a threshold .

Entity Replacement: During this phase, we
generate new sentences by replacing an entity with
another random entity in its semantic neighbor set.
For each entity type, we just randomly replace one
entity of that type in a sentence. As a result, we
obtain a set of augmented sentences from original
ones.

Sentence Evaluation: Augmented sentences
generated in the previous phase are probably se-
mantically incorrect, which may affect the training
process. To alleviate the issue, we perform an au-
tomatic evaluation to remove augmented sentences
that are semantically different from their original
sentences. To that end, we firstly represent both
original and augmented sentences as vectors by us-
ing a pre-trained sentence-level language model.
We then use cosine similarity to estimate the se-
mantic similarity between two sentences. If the
cosine similarity of an augmented sentence and
its original sentence is less than a threshold 6, the
augmented sentence will be discarded.

In this paper, the two parameters o and 6 will
be in ranges of [0, 1]. The larger the «, the greater
the semantic similarity between entities, but the
smaller the number of neighbours. The 6 parame-
ter represents the degree of rigour in the automatic
evaluation phase. When 6 approximates to 1, only
sentences that are very close to the meaning of
the original sentence are retained. We therefore
can keep only a few of the augmented sentences.
In contrast, we can keep more sentences as 6 ap-
proximates to 0. When @ is set to 0, the sentence
evaluation phase will be disabled. At this point, we
do not discard any augmented sentences from the
second phase. We can fine-tune both o and 6 to
generate suitable augmented data.

3 Experiments

3.1 Datasets

We conduct experiments on the two datasets includ-
ing 12b2-2010 (English) (Uzuner et al., 2011) and
VietBioNER (Phan et al., 2022) (Vietnamese). The
12b2 corpus includes patient records annotated with
three named entity categories of Medical Problem,
Test, and Treatment. Meanwhile, VietBioNER is
constituted by biomedical grey literature specified
for tuberculosis. The corpus was annotated with
five named entity categories of Organisation, Lo-
cation, Date and Time, Symptom and Disease, and
Diagnostic Procedure. Some statistics of both cor-
pora are reported in Table 1.
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i2b2-2010 | VietBioNER
#Sentence 32894 1706
#Sentence in

Training set 9558 706

Development set 2389 300

Test set 20947 700
Avg. len. of sent. 13 31
#Entity type 3 5

Vocab size 24321 3548

Table 1: The summary statistic of the two datasets.

Following Dai and Adel (2020), to simulate a
low-resource setting, we create small, medium and
large sets with different numbers of sentences: 50,
150 and 500, respectively. These sentences are
randomly selected from the training part of each
dataset. It is noted that our small, medium and large
splits of the i2b2 dataset are different from those
by Dai and Adel (2020). Augmentation methods
are only applied on the training set, we use the
same development and test sets for all experiments.

3.2 Language Models

For semantic neighbour extraction, we use Clini-
calBERT (Alsentzer et al., 2019)—a pre-trained
language model on clinical text for the i2b2-
2010 dataset and PhoBERT (Nguyen and Nguyen,
2020)—a pre-trained language model on Viet-
namese Wikipedia and news for VietBioNER.

In sentence evaluation, we employ Sentence-
BERT (SBERT) (Reimers and Gurevych, 2019),
a sentence-level language model for sentence em-
beddings, to represent both original and augmented
sentences.

We use all the mentioned models with the ini-
tialised weights provided by Hugging Face'.

Regarding the NER task training, we also fine-
tune the aforementioned language models on the
two corpora.

3.3 Experiment Settings
To show the effectiveness of the proposed method,

we conducted the following experiments:

 Baseline: We only trained NER models on the
original training data.

» Baseline combined with augmented data: We
trained NER models on the original training

"https://huggingface.co/models,
https://huggingface.co/sentence-transformers

MR | ER | SNR

S| 17 | 19 | 12

. M| 67 | 90 | 61
i2b2-2010 1} 5y | 347 | 239
F | 4462 | 7308 | 4626

S | 21 9 7

. M| 76 | 13 | 13
VietBioNER L 256 36 34
F | 347 | 550 | 459

Table 2: Number of augmented sentences in each train-
ing set. Small, Medium, Large, and Full sets contain 50
sentences, 150 sentences, 500 sentences, and the com-
plete training set, respectively.

set and its augmented data created by the fol-
lowing three methods:

— Mention Replacement (MR): We fol-
lowed the MR method proposed by Dai
and Adel (2020).

— Entity Replacement (ER): We only per-
formed the first two phases of our pro-
posed method. The last phase, Sentence
Evaluation, was disabled by setting the
parameter 6 to 0.

— Semantic  Neighbour Replacement
(SNR): We performed all three phases
of our proposed method.

It is noted that since in this paper we focus
on biomedical entities, we only created an aug-
mented data for Symptom_and_Disease and Di-
agnosticProcedure entities in the case of Viet-
BioNER. We however report the NER performance
on all five NE categories.

3.4 Experimental Results

Based on the fine-tuning results on the develop-
ment sets, we selected o = 0.8 for all sets of 12b2-
2010; for VietBioNER, oo = 0.65 for the full set,
and o« = 0.85 for the other sets; and 8 = 0.9 for
all cases across the corpora. The number of aug-
mented sentences generated in each setting are re-
ported in Table 2. Since SNR discards augmented
sentences that are not semantically related to the
original ones, it is reasonable that the numbers of
augmented sentences by SNR is less than or equal
to those by MR and ER.

We trained NER models on a combination of
augmented and original sentences, and applied
them to the corresponding testing sets. The NER
performance in terms of Fl-scores on those sets
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1262-2010 VietBioNER
Method S M L F S M L F
Baseline 3713 6758 7553 8721|5921 7078 7948 79.60
+ MR 3956 6721 7635 8754 | 60.98 71.19 7931 79.00
+ER (our method) | 30.42 6836 7633 8737 | 5931 71.94 7951 80.09
+ SNR (our method) | 38.75 69.43 76.86 87.73 | 59.83 72.14 7934 80.90

Table 3: NER performance by different augmentation methods in terms of F1-score. Bold numbers indicate the best

performance in a specific setting.

Sentence
g Ori | Her speech was fluent with no [phasic or praxic problems] p,opiem, [dysarthric] propiem-
& | MR | Her speech was fluent with no [oral lesions] propiem. [1€ft coloboma] propierm -
& | SNR | Her speech was fluent with no [phasic or praxic problems] p,operm, [slurred speech] propierm-
Ori Tuy nhién, cdc xét nghiém té bao va vi tring trong chin doan [lao] Symptom& Disease €0 d0 nhay con thap.
5 (However, cytology and bacteria tests in the diagnosis‘)of [TB]symptoms& Disease have low sensitivity.)
E MR Tuy nhién, cic xét nghiém té bao va vi tring trong chan doan [ho khan]gymptome Disease €6 d0 nhay con thap.
E (However, cytology and bacteria tests in the diagnosis of [dry cough]symptoms Disease have low sensitivity.)
> SNR Tuy nhién, cdc xét nghiém té bao va vi tring trong chin doan [bénh lao] Symptom& Disease €0 d0 nhay con thap.
(However, cytology and bacteria tests in the diagnosis of [TB disease]symptom& Disease have low sensitivity.)

Table 4: Original sentences and their augmented sentences with different methods. Blue texts indicates entity

replacement.

are reported in Table 32. Generally, we can see that
the NER performance was improved when using
data augmentation methods on both English and
Vietnamese corpora. Detailed results of precision
and recall can be found in Appendix A.

Among the four sizes of the data, MR (Dai and
Adel, 2020) could obtain the best performance in
the small size setting, across the two corpora. This
can be explained by the fact that given only 50
sentences in the training, adding more sentences
will help the model overcome overfitting. With the
medium size sets, MR could improve the perfor-
mance on VietBioNER but not on i2b2-2010. In
contrast, MR could boost F1-scores on the large
and full sets on i12b2-2010, but not on VietBioNER.

Regarding SNR, we could have better F1-scores
in most settings of medium, large and full sets, on
both English and Vietnamese corpora. With the
12b2 English corpus, the proposed methods has
an average improvement of 1.23% of F1-scores
(SNR) and 0.58% (ER). Meanwhile, that number
by MR is 0.26%. For VietBioNER, the average
improvement is 0.84%, 0.63%, and -0.12% of F1-
scores for SNR, ER, and MR, respectively. It is
worth noting that even with a full training set, using
SNR to augment the data training could also boost
NER performance. In particular, F1-scores were
increased by 0.52% for i2b2-2010 and 1.3% for

2We use the TO tagging scheme.

VietBioNER.

Interestingly, while the number of augmented
sentences by SNR is lower than those by ER (as
shown in Table 2), the NER performance by SNR is
better than those by ER in most of the cases across
the corpora. This indicates that having augmented
sentences semantically related to the original ones
in the training data really improves the NER per-
formance, despite the fact that the total number
of sentence is not big. For instance, in the case
of i2b2-2010, SNR generated about 37% less sen-
tences than ER, but the NER performance by SNR
was still better than those by ER.

3.5 Analysis

Although using MR could help improve the NER
performance (as illustrated in Table 3), it is in-
evitable that MR could produce meaningless sen-
tences. We collected such examples and showed
them in Table 4. It can be seen that although MR
replaced entities in the same type with the original
ones, the resulting sentence is meaningless. Mean-
while, SNR controls the semantic at both entity
level and sentence level, hence producing a more
meaningful sentence close to the original meaning
than the one by MR.

Moreover, we observed that most of sentences
discarded by the sentence evaluation were semanti-
cally incorrect. We report some of discarded sen-
tences in Table 5. It is obvious that the entity re-
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Sentence
2b2-2010 Original He did not sleep at night before and was [extremely fatigued] p,opiem -
Augmented | He did not sleep at night before and was [some shortness of breath] p,opiem -
Original Hinh anh [X-quang phéil piagnosticProcedure chll yéu la tham nhi€m 44%...
VietBioNER g (The [chest X-ray] piagnosticProcedure image is mainly infiltrative 44%...)

Hinh anh [choc dd mang phdil piagnosticProcedure chll yeu 1a thdm nhiém 44%...
Augmented . . . e e

(The [thoracentesis] piagnosticProcedure iMage is mainly infiltrative 44%...)

Table 5: Examples of augmented sentences discarded by the Sentence Evaluation phase in SNR. Blue texts indicates

entity replacement.

placement altered the meaning of those sentences
and made them meaningless. As aforementioned,
by discarding those sentences, SNR could produce
better NER performance, indicating that it is use-
ful to filter augmented sentences based on their
semantic relatedness.

4 Conclusion

In this paper, we proposed a semantic-based data
augmentation method for the named entity recog-
nition task in the biomedical domain. Our method,
namely Semantic Neighbour Replacement (SNR),
simply generates more training sentences based on
semantics of entity and sentence. Experiments on
simulated low-resource settings show that using
the proposed method, we can improve F1 score in
both English (i2b2-2010) and Vietnamese (Viet-
BioNER) corpora, even on the full training set-
ting. Such results again confirm the importance of
semantics in data augmentation. We believe that
SNR can be applied to other domains and other
languages as long as we have corresponding pre-
trained language models.

Similar to previous work, our proposed method
only augments in-domain data. Therefore, a fol-
lowup work would be to study cross-domain aug-
mentation method (Chen et al., 2021), in which
we can leverage rich-resource data to enrich low-
resource ones.
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A Detailed Results

We report the detailed results of precision, recall
and F1-scores on i2b2-2010 in Table 6 and Viet-
BioNER in Table 7.

It is expected that NER performances in terms of
recall were mostly improved when using the data
augmentation methods. Meanwhile, in terms of
precision, the increase or decrease of NER perfor-
mance was dependent on the data augmentation
methods as well as the sizes of the training data.
Nevertheless, in the case of full training data, us-
ing the SNR method, we could improve the NER
performance in both recall and precision across
corpora.
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Small Medium Large Full
Method —p R Fl P R Fl P R Fl P R Fl
Baseline | 43.39 3245 37.13 | 66.54 68.65 67.58 | 74.00 77.13 7553 | 8624 8820 87.21
+MR | 4453 3559 39.56 | 6336 71.55 67.21 | 73.56 7935 7635 | 86.67 88.42 87.54
+ER 4244 3679 3942 | 6724 6952 6836 | 72.97 80.02 7633 | 8647 8829 87.37
+SNR | 4249 3562 3875 | 67.11 71.90 69.43 | 7437 7951 76.86 | 86.92 88.55 87.73

Table 6: NER performance on i2b2-2010 by different augmentation methods in terms of Precision, Recall and
F1-score. Bold numbers indicate the best performance in a specific setting.

Small Medium Large Full
Method - —5 R Fl | P R Fl | P R Fl | P R Fl
Bascline | 5692 61.60 5921 | 67.88 73.93 7078 | 77.12 81.99 7948 | 7749 81.83 79.60
TMR | 5891 63.19 60.98 | 67.79 7496 71.19 | 76.60 8223 7931 | 7685 81.28 79.00
YER | 5739 6137 5931 | 69.70 7433 71.94 | 7650 82.78 79.51 | 77.57 82.78 80.09
TSNR | 5887 6082 59.83 | 6892 75.67 72.14 | 7693 8191 7934 | 79.09 82.78 80.90

Table 7: NER performance on VietBioNER by different augmentation methods in terms of Precision, Recall and
F1-score. Bold numbers indicate the best performance in a specific setting.
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Abstract

Named entity recognition (NER) is one of the
core technologies for knowledge acquisition
from text and has been used for knowledge ex-
traction of chemicals and medicine. As one
of the NER improvement approaches, multi-
task learning that learns a model from multi-
ple training data has been used. Among multi-
task learning, an auxiliary learning method,
which uses training data of an auxiliary task
for improving its target task, has shown higher
NER performance than conventional multi-
task learning for improving all the tasks simul-
taneously. The conventional auxiliary learn-
ing method uses only one auxiliary training
dataset. We propose Multiple Utilization of
NER Corpora Helpful for Auxiliary BLESsing
(MUNCHABLES). MUNCHABLES utilizes
multiple training datasets as auxiliary training
data by the following methods : the first one is
to fine-tune the NER model of the target task
by sequentially performing auxiliary learning
for each auxiliary training dataset, and the
other is to use all training datasets in one aux-
iliary learning. We evaluate MUNCHABLES
on eight chemical/biomedical/scientific do-
main NER tasks, where seven training datasets
are used as auxiliary training data. The exper-
iment results show that our proposed methods
achieve higher NER performance than conven-
tional multi-task learning methods on average
and that NER performance can be improved by
using multiple auxiliary training data. Further-
more, the proposed models outperform state-
of-the-art models on the datasets.

1 Introduction

Named entity recognition (NER) is a fundamen-
tal natural language processing technology for ex-
tracting named entity (NE) and technical terms
from input texts and has been put to practical
use in various situations. For example, NER is
used as one of the core technologies for struc-
turing and accumulating information on interrela-
tionships among chemical substances and physical

properties of chemical substances, which are re-
ported daily in papers and patents, to develop new
materials and products.

NER has been actively studied for a long time,
and many NER methods have been proposed. In
recent years, neural network (NN)-based meth-
ods have become dominant, and a BILSTM-CRF
model (e.g., Huang et al. (2015)), composed of
two recurrent neural networks (RNNs) and con-
ditional random fields (CRF), and a Transformer-
based model (e.g., Lee et al. (2019)) have achieved
high performance in NER.

In addition, it has been reported that the per-
formance of an NER model is improved by
multi-task learning, which uses training data of
a task different from the target task and simulta-
neously learns features from multiple NER train-
ing datasets (Wang et al., 2019a; Crichton et al.,
2017a; Khan et al., 2020; Mehmood et al., 2020;
Wang et al., 2019b). Remarkably, Wang et al.
(2019a) have shown that, an NER in the biotech-
nology field (BioNER) with an auxiliary learning
method, which is a variant of multi-task learn-
ing, achieves higher performance in the target
task, compared to a standard multi-task learning
method. The auxiliary learning uses a task other
than the target task as an auxiliary task for im-
proving the target task performance, in contrast
the standard multi-task learning learns models for
multiple tasks to improve performance of the mul-
tiple tasks.

We propose a new auxiliary learning paradigm
that uses multiple NER datasets as auxiliary train-
ing data, Multiple Utilization of NER Corpora
Helpful for Auxiliary BLESsing (MUNCH-
ABLES), whereas existing auxiliary learning uses
only one type of auxiliary training data. Specif-
ically, we propose two types of multi-auxiliary
learning: the first one is to fine-tune the NER
model of the target task by sequentially perform-
ing auxiliary learning for each auxiliary training
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dataset (MUNCHABLES-stack model), and the
other is to use all types of training data in single
auxiliary learning. As for the latter, we propose
two models: one is to concatenate all the multiple
auxiliary training datasets and make a batch
by randomly selecting data from the auxiliary
training dataset (MUNCHABLES-concatenation
model), and the other is to change auxiliary
training datasets every epoch (MUNCHABLES-
iteration model).

We compare the proposed MUNCHABLES
models with standard multi-task learning and sin-
gle auxiliary learning on eight chemical/ biomed-
ical/ scientific domain NER tasks. As for our
proposed models, seven training datasets are used
as auxiliary training data in each task. The ex-
periment results show that the Fl-scores of the
proposed models are higher than those of the
baselines on average and NER performance can
be improved by using multiple auxiliary train-
ing datasets. In addition, the proposed mod-
els achieve state-of-the-art performance in chem-
ical/biomedical/scientific NER.

2 Existing Multi-Task Learning

This section describes existing multi-task learning
methods which use training data of a different task
other than the target task. We first outline the
NER model used as the base model, and then de-
scribe an extension of the NER model to multi-
task learning, where multiple tasks are trained si-
multaneously. In this multi-task learning, the tar-
get task and the other tasks are treated equally.
Then, we explain an existing auxiliary learning
model, which uses training data for a different task
from the target task as auxiliary training data.

2.1 Multi-Task Learning Model

In this study, we use the BILSTM-CRF model pro-
posed by Huang et al. (2015) as our baseline NER
model. The BiLSTM-CRF model is a sequence
labeling model composed of bi-directional LSTM
and CRFE.

The BiLSTM-CRM model first computes the in-
termediate representation of each word in an input
sentence using bidirectional LSTM. Let an input

sentence be w = wy, wo, - - -, wy and the embed-
ding vectors outputted by an embedding layer be
X = X1,X2,+,XN. The intermediate representa-

tion e; of the word w; is calculated as follows:

h; = LSTMY) (x;, hy_1), (1)

131

by = LSTM® (x4, hire), )
by = [h; By, 3)
ei = W, )

where — and < denote forward and back-
ward directions, respectively, and LSTM (/) and
LSTM® are forward and backward LSTMs, re-
spectively. “;” denotes the concatenation of vec-
tors. W(® e RFXd is a weight matrix, d is the
dimension of the hidden state vector h;, and & is
the number of labels to be identified.

Then, the intermediate representations e com-
puted by the bi-directional LSTM are fed to the
CRF layer to obtain a label sequence. The
score function for the label sequence y =
(y1,y2,- -+, yn) is defined by using the score ma-
trix P = (el,e2,---eN)T, which is converted
from the intermediate representations e, and the
transition score matrix A as follows:

N N
s(e,y) = Z Ayiyyi+1 + Z Piy: ®
1=0 i=1

where A; ; represents the transition score from the
label ¢ to the label j. The output label sequence y*
is obtained by finding y that maximizes the score
as follows:

(6)

y" = arg maxs(e,y),
¥€Yw
where Y, is the set of all possible label sequences
for the input sentence w.
Using the score function, the output probability
of the label sequence y is defined by the softmax
function as follows:

exp(s(e,y))
YEYw exp(s(e,¥))

p(ylw) = 5 (7

In training, the parameters that minimize the fol-
lowing loss function are obtained:

L=- > log(p@Flw)),

(w,y)eD

®)

where D is a training dataset.

Figure 1 shows an overview of the BiLSTM-
CRF model extended for multi-task learning. In
the model, the word embedding layer and BiL-
STM layer are shared by all the training datasets
and the weights of these layers are the same on all
the tasks. On the other hand, the CRF layer is pre-
pared for each dataset and the weights of the CRF
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Figure 1: Overview of a multi-task learning model

layer are not shared. The objective function of the
multi-task learning model is defined as follows:

1 M
Loss = i Zl L;, 9

where L; (i = 1,2,--- M) is the loss in the CRF
layer for each training dataset (see Eq. 8), and M
is the number of training datasets.

In the multi-task learning model, training data
for the target task and that for the other tasks are
treated equally, and thus an NER model common
to all the tasks is learned. Larger datasets require
more batches during training. In inference, NER is
performed by using the CRF layer corresponding
to the target task in the learned NER model.

2.2 Auxiliary Learning Model

Wang et al. (2019a) have proposed an auxiliary
learning method, which is a multi-task learning
method that distinguishes between training data
for the target task (main training data) and that for
the other task (auxiliary training data), and have
improved NER performance for the target task.
The auxiliary learning model is trained by using
a main batch composed of main training data and
an auxiliary batch composed of auxiliary training
data. In each iteration, the model parameters are
updated by the auxiliary batch first, and then by
the main batch. This alternating updates by the
main and auxiliary batches are repeated until the
loss on the main training data converges.
Algorithm 1 shows the algorithm for the aux-
iliary learning method. In Algorithm 1, the sub-
scripts denote the target task (main) and the
auxiliary task (auz). FEpoch and Iteration
are the number of epochs and the number of
iterations for the main task, respectively, and
BatchSize is the batch size. The number of it-
erations for each epoch is the total number of the
main training data divided by the batch size (i.e.,
Iteration = |Dyqain|/BatchSize). The extract

Algorithm 1 Algorithm of an existing auxiliary
learning method

Data: main training dataset Dinqin, auxiliary training
dataset Dy
1: fori=1to EPOCH do
2 for j = 1to ITERATION do
3 Batchmain = extract(Dmain, BatchSize)
4 Batchgue = extract(Dous, BatchSize)
5: train(Model, Batchauz)
6: train(Model, Batchmain )
7 end for
8 i5_convergemain(Model)
9:

end for

Algorithm 2 Algorithm of the MUNCHABLES-
concatenation model

Data: main training dataset Dp,qin, M auxiliary training
datasets Dfﬁ}z, Dﬁ)z, cee Dflﬁ[z)

1: Dauz = [D£217Dg1)17,D£11\flz)]

2: fori=1to EPOCH do

3: for j =1t0 ITERATION do

4: Batchmain = extract(Dmain, BatchSize)
5: Batchgue = extract(Dous, BatchSize)

6: train(Model, Batchauz)

7: train(Model, Batchmain )

8: end for

9: is_convergemain(Model)
10: end for

function in lines 4 and 5 creates a batch by extract-
ing Batchsize data from the training dataset, and
the train function in lines 6 and 7 updates the pa-
rameters of the NER model Model by using the
batch data. The ¢s_convergeqi, function in line
8 judges whether to stop training or not according
to the loss on the target task.

3 MUNCHABLES: Multi-Auxiliary
Learning

An existing auxiliary learning method uses
only one auxiliary training dataset. In this
section, we propose a new auxiliary learn-
ing paradigm, multi-auxiliary learning MUNCH-
ABLES, that utilizes multiple training datasets
as auxiliary training data. We first propose two
MUNCHABLES models that use multiple aux-
iliary training datasets in single auxiliary learn-
ing (MUNCHABLES-concatenation model and
MUNCHABLES-iteration model), and then pro-
pose a MUNCHABLES model that sequentially
fine-tunes a main model by auxiliary learning with
each auxiliary training dataset (MUNCHABLES-
stack model).

3.1 MUNCHABLES-Concatenation Model
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Algorithm 3 Algorithm of the MUNCHABLES-
iteration model

Algorithm 4 Algorithm of the MUNCHABLES-
stack model

Data: main training dataset Dp,qin, M auxiliary training
datasets D'y, DSy, - -+, DY)
1: fori=1to EPOCH do
for k = 1to M do
for j =1t0 ITERATION do

Batchmain = extract(Dmain, BatchSize)

Batchaue = eaztract(Dgf)gg7 BatchSize)
train(Model, Batchaus)
train(Model, Batchmain )
end for
end for
10: is_convergemain(Model)

11: end for

VRN AR

Data: main training dataset Dy,qin, M auxiliary training
datasets Dy, DS, - -+, DSVY
1: for k =1to M do
fori =1to EPOCH do
for j =1to ITERATION do
Batchmain = extract(Dmaqin, BatchSize)

2
3
4
5: Batchague = eastract(Dé@z, BatchSize)
6: train(Model, Batchaus)
7: train(Model, Batchmain)
8 end for
9: is_convergemain(Model)
10: end for
1:

11: end for

The MUNCHABLES-concatenation model is a
multi-auxiliary learning model that concatenates
all the multiple auxiliary training datasets and
treats the concatenated training data as one aux-
iliary training dataset in single auxiliary learn-
ing. Algorithm 2 shows the algorithm of the
MUNCHABLES-concatenation model. Just like
the existing single auxiliary learning model, the
MUNCHABLES-concatenation model creates a
main batch from the main training data and an aux-
iliary batch from the concatenated auxiliary train-
ing data. Then, the updates of model parameters
with the auxiliary batch and with the main batch
are repeated alternately until the loss on the main
training dataset converges. The difference from
the existing single auxiliary learning model is that
an auxiliary batch is created from the concatenated
data of multiple auxiliary training datasets, and
thus an auxiliary batch can contain multiple types
of auxiliary training data.

3.2 MUNCHABLES-Iteration Model

The MUNCHABLES-iteration model is a multi-
auxiliary learning model which changes train-
ing datasets used as an auxiliary training dataset
every epoch.  Algorithm 3 shows algorithm
of the MUNCHABLES-iteration model. The
MUNCHABLES-iteration model alternately re-
peats parameter updates with the main batch cre-
ated from the main training dataset and those with
the auxiliary batch created from an auxiliary train-
ing dataset until the loss on the main training
dataset converges as well as auxiliary learning
models described so far. The difference from the
MUNCHABLES-concatenation model is that an
auxiliary batch in the MUNCHABLES-iteration
model is created from a specific auxiliary training
dataset and the source auxiliary training dataset is

switched every epoch.

3.3 MUNCHABLES-Stack Model

The MUNCHABLES-stack model is a multi-
auxiliary learning model that fine-tunes a main
model as many as the number of auxiliary train-
ing datasets by sequential auxiliary learning with
each auxiliary training dataset. Each auxiliary
learning is performed by using a specific auxil-
iary training dataset as well as the existing sin-
gle auxiliary learning. When the loss on the
main training dataset converges, auxiliary data
is switched to a new auxiliary training dataset
and subsequently the main model is fine-tuned
using the new auxiliary training dataset. Al-
gorithm 4 shows the outline and algorithm of
the MUNCHABLES-stack model, respectively.
While, in the MUNCHABLES-concatenation
model and MUNCHABLES-iteration model, a
main model is trained only once (i.e., convergence
is only once), in the MUNCHABLES-stack model,
a main model is trained as many as the number of
auxiliary training datasets.

4 Experiment

4.1 Experiment Settings

We evaluated our proposed models on eight
chemical/biomedical/scientific domain NER tasks.
Table 1 shows each NER dataset. We compared
our three proposed models, the MUNCHABLES-
concatenation model (MUNCH.-Conc), the
MUNCHABLES-iteration model (MUNCH.-Iter),
and the MUNCHABLES-stack model (MUNCH.-
Stack), with three baseline models, the single
task learning model (SingleTask), the standard
multi-task learning model (MultiTask), and the ex-
isting single auxiliary learning model (SingleAux),
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which are described in Section 2. MultiTask learns
one NER model from all the eight datasets. Our
three MUNCHABLES models use all the datasets
other than the target task (i.e., seven datasets) as
auxiliary training data. SingleAux selected an
auxiliary training dataset on the development data
of the main task. Specifically, SingleAux used the
model that achieved the best performance (i.e.,
F1-score) on the development data among seven
models each of which is trained by single auxiliary
learning with a training dataset for a task other
than the target task, for testing. In MUNCH.-Iter
and MUNCH.-Stack, the seven auxiliary training
datasets were randomly sorted on condition that
auxiliary datasets with the same NE type are not
consecutive. We discuss the order of auxiliary
training datasets in Section 5.1.

We implemented each NER model by extending
the open framework FLAIR (Akbik et al., 2019).
For word embeddings, we used Contextual String
Embeddings (Akbik et al., 2018) and FastText (Bo-
janowski et al., 2017) provided by FLAIR, both
of which were trained from the PubMed abstracts,
a corpus of medical literature. The dimension of
the BILSTM layer was set to 256. We used the
SGD optimizer, where a learning rate was adjusted
by the following scheduling policy: the learning
rate was reduced by a factor of two when the loss
per epoch was not less than the minimum loss so
far for four consecutive epochs, and training was
terminated when the learning rate fell below le-4.
We used the model at the end of training for test-
ing. In hyperparameter tuning, we tried 0.1 and
0.05 as the initial learning rate and 16 and 32 as
the batch size. Four models with these hyperpa-
rameter combinations were evaluated on the de-
velopment data, and the hyperparameter set with
the best performance was selected. In testing, we
trained an NER model from the training data and
the development data, and we reported and com-
pared the performance on the test data. NER per-
formance was evaluated by F1-score.

4.2 Experiment Results

Table 2 shows the experiment results. As can
be seen in the table, SingleAux outperforms Sin-
gleTask and MultiTask on micro and macro aver-
age Fl-scores. This suggests that auxiliary learn-
ing is more effective than the multi-task learn-
ing method where the training data for the tar-
get task and the other training data are equally

treated. The observation is consistent with previ-
ously reported results. Table 2 also shows that
MUNCH.-Iter and MUNCH.-Stack achieve higher per-
formance than SingleAux on average and at least
one of the MUNCHABLES models is better than
SingleAux on all the tasks. These results experi-
mentally demonstrate that NER performance can
be improved by using multiple auxiliary training
datasets in auxiliary learning as in the proposed
models, which shows the effectiveness of the pro-
posed auxiliary learning paradigm for NER.

In MUNCH.-Iter and MUNCH.-Conc, the main
model only needs to be trained once, while
MUNCH.-Stack requires fine-tuning on each auxil-
iary training dataset individually, so the training
time for MUNCH.-Stack is longer than the other
two MUNCHABLES models. Table 2 shows that
MUNCH.-Stack achieves the best performance on
two out of the eight tasks and its micro and macro
average scores are the highest. This indicates the
necessity of MUNCH.-Stack on some NER tasks
even at longer training time.

5 Discussion

5.1 Discussion on the Order of Auxiliary
Training Datasets

The performance of MUNCH.-Iter and MUNCH.-
Stack might be affected by the order of auxiliary
training datasets (D&Bx, Dg)x, -+ in Algorithms 3
and 4). This section discusses the impact of the
order to NER performance.

In the experiments of Section 4, the auxiliary
datasets were randomly sorted on condition that
auxiliary datasets with the same NE type are not
consecutive, in MUNCH.-Iter and MUNCH.-Stack.
However, we conjecture that, in MUNCH.-Iter and
MUNCH.-Stack, the auxiliary training dataset closer
to the end of the training of the main model have a
larger impact. Based on the conjecture, we sort the
auxiliary training datasets in order of the degree of
contribution to the performance improvement of
the target task. Hereafter, the models are denoted
as MUNCH.-Iter (sort) and MUNCH.-Stack (sort).
Specifically, we first evaluated the performance on
the development data of the single auxiliary learn-
ing model with each auxiliary training dataset,
and then sorted the auxiliary training datasets in
ascending order of its single auxiliary learning
models’ performance and used the sorted training
datasets in MUNCH.-Iter and MUNCH.-Stack.

We describe the order of auxiliary train-
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Dataset T £ NE # of Sentences # of Words # of Annotations
atase ypeo Train Dev Test Train Dev Test Train Dev Test
NCBI Disease Disease | 5424 923 940 | 135701 23969 24497 | 5134 787 960
(Dogan et al., 2014)
.BCSCDR Disease 4,560 4,581 4,797 | 118,170 117,453 124,750 4,182 4,246 4,424
(Liet al., 2016)
BC5CDR
(Li et al., 2016) Drug/Chem 4,560 4,581 4,797 | 118,170 117,453 124,750 | 5,203 5347 5,385
C.HEMDNER Drug/Chem | 30,682 30,639 26,364 | 893,685 887,805 767,636 | 29,478 29,486 25,346
(Krallinger et al., 2015)
BC2GM .
. Gene/Protein | 12,574 2,519 5,038 | 355,405 71,042 143,465 | 15,197 3,061 6,325
(Smith et al., 2008)
. INLPBA Gene/Protein | 14,690 3,856 3,856 | 443,653 117,213 114,709 | 32,178 8,575 6,241
(Kim et al., 2004)
LINNAEUS .
(Gerner et al., 2010) Species 11,935 4,078 7,142 | 281,273 93,877 165,095 2,119 711 1,433
s800 .
(Pafilis et al., 2013) Species 5,733 830 1,630 | 147,291 22,217 42,298 | 2,557 384 767
Table 1: NER datasets
NCBI- | BC5CDR | BC5CDR | CHEMD | BC2GM | JNLPBA | LINN | s800 | MA. MIL
Disease | Disease Chem NER AEUS AVG. | AVG.
SingleTask 87.56 86.65 94.12 92.25 83.63 77.31 88.06 | 75.41 | 85.62 | 88.46
MultiTask 87.72 86.12 94.53 92.00 83.44 77.86 89.06 | 76.71 | 85.93 | 88.44
SingleAux 88.41 86.53 94.27 92.29 83.24 77.71 88.88 | 76.80 | 86.02 | 88.63
MUNCH.-Conc | 89.14 86.73 94.23 92.36 82.57 77.48 89.46 | 76.42 | 86.05 | 88.49
MUNCH.-Iter 88.33 86.85 94.52 92.18 82.90 77.78 88.98 | 77.20 | 86.09 | 88.52
MUNCH.-Stack | 87.69 86.98 94.33 92.32 83.80 77.62 89.42 | 76.65 | 86.10 | 88.67

Table 2: Experiment results (F1-score (%)). MA. AVG. and MI. AVG. indicate macro average and micro average,
respectively. Each bold font value indicates the best result of each task.

Batch Size 16 32

Learning Rate 0.05 0.1 0.05 0.1
NCBI-Disease 89.98 | 90.03 | 89.69 | 90.08
BCS5CDR Disease | 89.95 | 90.08 | 89.87 | 89.93
Single | BC5CDR Chem | 90.05 | 90.16 | 90.00 | 90.03
Aux BC2GM 89.95 | 89.92 | 89.88 | 89.91
JNLPBA 89.90 | 89.93 | 89.88 | 89.89
LINNAEUS 90.15 | 90.02 | 89.90 | 90.04
s800 89.88 | 90.01 | 89.89 | 89.94
MUNCH.-Iter (sort) 90.04 | 90.11 | 90.03 | 90.14
MUNCH.-Stack (sort) 90.24 | 90.07 | 89.75 | 90.14

Table 3: Tuning of hyperparameters and the order of
auxiliary training datasets of MUNCH.-Iter (sort) and
MUNCH.-Stack (sort) on the CHEMDNER task (i.e.,
F1-score (%) on the CHEMDNER development data).
In MUNCH.-Iter (sort) and MUNCH.-Stack (sort), the
best result is shown in bold font value.

ing datasets in MUNCH.-Iter (sort) and MUNCH.-
Stack (sort) for the CHEMDNER task as an ex-
ample. Table 3 shows the performance on the
CHEMDNER development data of SingleAux with
each auxiliary NER training dataset for all combi-
nation of hyperparameters. Note that each model
is trained from only training data to evaluate the
performance on development data. As for MUNCH.-
Iter (sort) and MUNCH.-Stack (sort), the auxiliary
training datasets are sorted on the basis of the per-
formance of SingleAux with the same hyperparam-

Model MUNCH.-Iter | MUNCH.-Stack

Sort w/o w/ w/o w/
NCBI-Disease 88.33 88.50 | 87.69 87.90
BC5CDR Disease | 86.85 86.85 | 86.98 86.86
BCS5CDR Chem | 94.52 94.33 | 94.33 94.47
CHEMDNER 92.18 92.39 | 9232 92.35
BC2GM 8290 83.59 | 83.80 83.84
JNLPBA 7778 77.28 | 77.62 77.21
LINNAEUS 88.98 88.82 | 89.42 88.87
s800 7720 76.36 | 76.65 76.46
MA. AVG. 86.09 86.02 | 86.10 86.00
MI. AVG. 88.52 88.64 | 88.67 88.64

Table 4: Impact of the order of auxiliary training
datasets. Each bold font value indicates the better re-
sult with or without sorting.

eter setting. From the table, for MUNCH.-Iter (sort),
the batch size and learning rate were set to 32 and
0.1, respectively, and the order of the auxiliary
training datasets was set to “JNLPBA — BC2GM
— BC5CDR-Disease — s800 — BC5CDR-Chem
— LINNAEUS — NCBI-Disease.” For MUNCH.-
Stack (sort), the batch size and learning rate were
set to 16 and 0.05, respectively, and the order of
the auxiliary training datasets was set to “s800
— JNLPBA — BCS5CDR-Disease — BC2GM
— NCBI-Disease — LINNAEUS — BC5CDR-
Chem.”

Table 4 shows the performance of MUNCH.-Iter,
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NCBI- | BC5SCDR | BC5CDR | CHEMDNER | BC2GM | JNLPBA | LINNAEUS | s800
Disease | Disease Chem
SingleAux (reimpl) 88.41 86.53 94.27 92.29 83.24 77.71 88.88 76.80
BioBERT 89.36 86.56 93.44 91.41 84.4 77.59 89.81 75.31
HanPaNE - - - 92.57 - - - -
SciBERT 88.57 - - - 77.28
BioMegatron 87.0 88.5 92.5 - - - -
SciFive 88.46 87.62 94.61 91.56 83.57 77.55 76.33
PubMedBERT (PubMed) | 87.82 85.62 93.33 - 84.52 79.10 -
PubMedBERT (+PMC) 88.04 85.76 93.34 - 84.37 79.16 - -
MUNCH.-Conc 89.14 86.73 94.23 92.36 82.57 77.48 89.46 76.42
MUNCH.-Iter 88.33 86.85 94.52 92.18 82.90 77.78 88.98 77.20
MUNCH.-Stack 87.69 86.98 94.33 92.32 83.80 77.62 89.42 76.65

Table 5: Comparison with previous results (F-measure (%)). These results are BioBERT (Lee et al., 2019), Han-

PaNE (Watanabe et al., 2019), SciBERT (Beltagy et al.,

2019), BioMegatron (Shin et al., 2020), SciFive (Phan

et al., 2021), and PubMedBERT (Gu et al., 2021). Each bold font value indicates the best result of each task.

MUNCH.-Iter (sort), MUNCH.-Stack, and MUNCH.-
Stack (sort) on each test data. Table 4 shows
that MUNCH.-Iter (sort) obtained a higher micro av-
erage than MUNCH.-Iter while the macro average
of MUNCH.-Iter (sort) and the micro and macro
averages of MUNCH.-Stack (sort) are worse than
those of MUNCH.-Iter and MUNCH.-Stack, respec-
tively. The results indicate that the performance of
MUNCH.-Iter and MUNCH.-Stack are affected by the
order of auxiliary training datasets and the perfor-
mance could be improved by reordering auxiliary
training datasets in ascending order of the perfor-
mance on the development data of SingleAux on
some NER tasks. We conjecture that sorting order
of auxiliary training datasets might be affected by
similarity of development data and test data. We
will leave its further analysis for future work.

6 Related Work

Previous Methods MUNCHABLES | common

v.s. Method MA. AVG. | [ter Stack tasks
BioBERT 85.99 86.09 | 86.10 8
HanPaNE 92.57 92.18 92.32 1
SciBERT 82.93 83.05 82.66 2
BioMegatron 89.33 89.90 | 89.67 3
SciFive 85.67 85.68 85.63 7
PubMedBERT (PubMed) 86.08 86.08 86.08 5
PubMedBERT (+PMC) 86.13 86.08 86.08 5

Table 6: Summary of macro average F-measure (%).
The common tasks indicates the number of tasks used
by both of our MUNCHABLES and previous methods.
We compared our MUNCHABLES methods with pre-
vious methods in terms of macro average F-measure
on the common tasks. The bold font indicates that a
MUNCHABLES model is better than the correspond-
ing previous result.

6.1 Comparison with Previous Results

We compared our MUNCHABLES models with
previous results! including state-of-the-art meth-
ods. Table 5 shows the results, and Table 6
shows a summary of the comparison, where we
report macro average F-measure on the common
tasks used by both of the MUNCHABLES and
previous methods. As can be seen in Tables 5
and 6, in general, our MUNCHABLES models
obtain competitive or better NER performance
than previous results. These results show that
our MUNCHABLES models achieve state-of-the-
art performance on chemical/biomedical/scientific
NER tasks. Another remarkable point is MUNCH-
ABLES can be combined with the previous work.
In other words, in order to improve the previous
work, we can use MUNCHABLES in the previous
work.

v.s. BioBERT BioBERT (Lee et al., 2019) is
a BERT-based pre-training model trained with
biomedical domain text. We compared BioBERT
v1.0 with PubMed + PMC for its pre-training with
our MUNCHABLES models. The macro aver-
age of BioBERT was 85.99 and those of MUNCH.-
Iter and MUNCH.-Stack are 86.09 and 86.10. Our
MUNCHABLES models obtained a higher perfor-
mance than BioBERT.

v.s. HanPaNE HanPaNE (Watanabe et al.,
2019) is a BILSTM-CRF NER model that jointly
learns an LSTM-based chemical compound para-
phrase model through multi-task learning. Han-
PaNE showed 92.57 F-measure on CHEMDNER,
which is the state-of-the-art performance on the

'Tf results obtained by different parameters were reported,
we listed the results of the model that showed the best macro
average F-measure on the NER datasets.
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dataset. MUNCH.-Stack and MUNCH.-Iter are worse
than HanPaNE. However, our MUNCHABLES
model is compatible with HanPaNE and the mod-
els must complement each other. Therefore, we ex-
pect higher performance by combining MUNCH-
ABLES with HanPaNE.

v.s. SciBERT SciBERT (Beltagy et al., 2019)
is a BERT-based pre-training model trained with
scientific domain text. SciBERT was evaluated on
NCBI-Diseases and JNLPBA, and the macro av-
erage was 82.93. MUNCH.-Iter obtained a higher
average (i.e., 83.05) than SciBERT.

v.s. BioMegatron BioMegatron (Shin et al.,
2020) is a biomedical adaptation of a transformer
model called Megatron-LLM (Shoeybi et al., 2020).
BioMegatron was evaluated on NCBI-Disease,
BC5CDR Disease, and BC5SCDR Chem. The
macro average of BioMegatron with a 50k biomed-
ical domain vocabularies and 345m parameters
was 89.33, whereas MUNCH.-Iter and MUNCH.-
Stack showed 89.90 and 89.67, which are higher
than BioMegatron.

v.s. SciFive SciFive (Phan et al., 2021) is
a domain-specific Text-to-Text Transfer Trans-
former (T5) (Raffel et al., 2020) model that has
been pre-trained on large biomedical corpora. Sci-
Five was evaluated on seven tasks out of the eight
tasks except for LINNAEUS. The macro aver-
age F-measure of SciFive with PMC pre-training
data was 85.67, whereas MUNCH.-Iter and MUNCH.-
Stack were 85.68 and 85.63.

v.s. PubMedBERT PubMedBERT (Gu et al.,
2021) is a BERT-based model trained with
biomedical domain text from scratch. PubMed-
BERT (PubMed) was trained with only PubMed
and PubMedBERT (+PMC) was trained with
PubMed and PMC and these two models were
evaluated on NCBI-Disease, BC5CDR Disease,
BCS5CDR Chem, BC2GM, and JNLPBA for NER.
The macro average of PubMedBER (PubMed) was
86.08 and that of PubMedBERT (+PMC) was
86.13. MUNCH.-Iter and MUNCH.-Stack show the
comparable accuracy as PubMedBERT (PubMed),
however they showed lower accuracy than Pub-
MedBERT (+PMC). We think that this differ-
ence was caused by the pretraining data size.
The MUNCHABLES models were pretrained only
with PubMed. Therefore, further improvement by
increasing the amount of pretraining data is ex-

pected. Furthermore, the MUNCHABLES can be
incorporated into PubMedBERT, therefore, we ex-
pect higher performance by enhancing PubMed-
BERT with MUNCHABLES.

6.2 Multi-Task Learning

Multi-task learning is employed to boost the per-
formance of NLP systems (Liu et al., 2015; Luong
et al., 2016; Dong et al., 2015; Hashimoto et al.,
2017), including NER (Liu et al., 2018). Multi-
task learning of sequence labeling with language
models was proposed (Rei, 2017). Aguilar et al.
(2018) and Cao et al. (2018) proposed multi-task
learning of NER with word segmentation. Peng
and Dredze (2017) proposed multi-task learning
that leverages the performance of domain adapta-
tion. Clark et al. (2018) proposed multi-task learn-
ing of NER with several NLP tasks such as POS
tagging and parsing. Crichton et al. (2017b) and
Wang et al. (2018) proposed multi-task learning
of several tasks of biomedical NLP to increase
NER performance. Watanabe et al. (2019) pro-
posed multi-task learning of NER with chemical
compound paraphrase.

Sampling methods for multi-task learning have
also been proposed. Guo et al. (2019) is a two-
stage mulit-task pipeline, where the first stage
automatically selects the most useful auxiliary
tasks via a Beta-Bernoulli multi-armed bandit with
Thompson Sampling and the second stage learns
the training mixing ratio of these selected auxil-
iary tasks. Kung et al. (2021) proposed a sampling
method for training samples of auxiliary tasks
based on the assumption that the more similar to
the target task is, the more benefit is obtained for
the target task.

7 Conclusion

This paper proposed a new auxiliary learning
paradigm for NER, MUNCHABLES, that uti-
lizes multiple training datasets as auxiliary train-
ing data for improving the performance of its
target task. The experiments on eight chem-
ical/biomedical/scientific domain NER datasets,
showed that our proposed models achieved higher
performance on average than conventional multi-
task learning methods and an auxiliary learn-
ing method using only one auxiliary train-
ing dataset. ~ Moreover, our proposed mod-
els achieved the state-of-the-art performance on
chemical/biomedical/scientific NER tasks.
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Abstract

Self-supervised pre-training methods have
brought remarkable breakthroughs in the un-
derstanding of text, image, and speech. Recent
developments in genomics has also adopted
these pre-training methods for genome un-
derstanding. However, they focus only on
understanding haploid sequences, which hin-
ders their applicability towards understanding
genetic variations, also known as single nu-
cleotide polymorphisms (SNPs), which is cru-
cial for genome-wide association study. In
this paper, we introduce SNP2Vec, a scalable
self-supervised pre-training approach for un-
derstanding SNP. We apply SNP2Vec to per-
form long-sequence genomics modeling, and
we evaluate the effectiveness of our approach
on predicting Alzheimer’s disease risk in a Chi-
nese cohort. Our approach significantly out-
performs existing polygenic risk score methods
and all other baselines, including the model
that is trained entirely with haploid sequences.
We release our code and dataset on https:
//github.com/HLTCHKUST/snp2vec.

1 Introduction

Self-supervised pre-training has become an indis-
pensable step for almost all natural language pro-
cessing (NLP) tasks (Devlin et al., 2019; Liu et al.,
2019; Yang et al., 2019). Pre-trained language mod-
els, thanks to the usage of massive text corpora,
are effective in handling data scarcity and gener-
alizing to unseen examples (Brown et al., 2020;

* These authors contributed equally.

Cahyawijaya et al., 2021; Wilie et al., 2020; Yu
et al., 2021; Liu et al., 2021; Winata et al., 2021).
Inspired by the success of pre-trained language
models, pre-trained genomic models have been pro-
posed to cope with genomic sequence prediction
tasks (Zaheer et al., 2020; Ji et al., 2021). How-
ever, these models only focus on modeling the four
nucleobases (i.e., A, T, C, and G), while ignoring
genomic variations in the pre-training stage. Al-
though they are effective in haploid pattern analy-
sis, such as promoter region and chromatin-profile
prediction, they fail to tackle more complex and
challenging tasks, such as genome-wide associa-
tion study (GWAS) (The Wellcome Trust Case Con-
trol Consortium, 2007; Corvin et al., 2010; Bush
and Moore, 2012), which require an in-depth un-
derstanding of long genomic sequences and the
genomic variation between a homologous chromo-
some pair.

To address these shortcomings, we introduce
a self-supervised pre-training approach called
SNP2Vec, which leverages the single-nucleotide
polymorphism (SNP, pronounced ‘snip’) informa-
tion gathered from a large-scale SNP database to
inject genomic variations in the pre-training stage.
SNP2Vec enables the model to learn the seman-
tics of a diploid sequence (genotype) pattern in
a diploid cell. We apply SNP2Vec to a linear-
attention model, Linformer (Wang et al., 2020), to
allow the model to encode long genomic sequences
for Alzheimer’s disease risk prediction in a Chinese
cohort. We compare SNP2Vec with non-pretrained
models, as well as an existing strong baseline poly-
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genic risk scoring (PRS) model, to demonstrate the
effectiveness of our approach.

Our contributions are summarized as follows:

* We are the first to introduce a scalable self-
supervised pre-training approach (SNP2Vec)
to learn genomic variations, which is popular
for genome-wide association study.

* We demonstrate a method for modeling long
diploid sequences with a length of >20,000
base pairs (bps) using an attention-based
model within a single forward pass.

¢ We demonstrate the effectiveness of SNP2Vec,
which significantly outperforms all the base-
lines, including a widely-used polygenic risk
scoring (PRS) method, by 5-7% accuracy and
AUROC for the Alzheimer’s disease predic-
tion task in a Chinese elderly cohort.

* We conduct comprehensive analyses to show
the effectiveness of SNP encoding and Byte
Pair Encoding (BPE) tokenization compared
to the other commonly used methods for ge-
nomics modeling.

2 Related Works

2.1 Genome-Wide Association Study

To this day, predicting the risk of hereditary dis-
eases from a given genotype is done through
genome-wide Associaction Study (GWAS) by ap-
plying a polygenic risk score (PRS). PRS utilizes
GWAS data to identify important single nucleotide
variations (SNVs) over a certain range from the
gene of interest. The SNVs are first filtered ac-
cording to a statistical measure to reduce the bias
towards a certain population and the filtered SNVs
are then used to build a classifier, which can be
applied to a new genotype to determine the like-
lihood of getting the disease. This method has
been applied by many works and has provided valu-
able insights for researchers to diseases including
heart attack, diabetes, and different types of can-
cer (Lello et al., 2019). Moreover, PRS model has
also been used in research and clinical practice for
Alzheimer’s disease (Zhou et al., 2021). Never-
theless, all these methods fail to incorporate the
patterns of the genomics sequence that determines
the actual function. This is likely to lead the model
towards non-representative bias, especially when
the experimental data is small.

2.2 Statistical Modeling for Genomics

Tokenization in Genomics k-mer (synonymous
to n-gram) tokenization is the most commonly used
tokenization method in existing genome modelling
works (Min et al., 2017; Shen et al., 2018). Gapped
k-mer tokenization (Ghandi et al., 2014; Shrikumar
et al., 2019) is a more efficient variant of k-mer
tokenization by introducing the gap parameter L,
which constitutes the stride between each k-mer
window. However, the gapped k-mer approach will
lead to the loss of some information when L is
larger than k. In recent years, subword tokeniza-
tion approaches (Sennrich et al., 2015; Kudo and
Richardson, 2018) have also been explored in ge-
nomics (Zaheer et al., 2020).

Machine Learning in Genomics The support
vector machine (SVM) is a traditional machine
learning approach used to quickly and accurately
interpret the nonlinear gapped k-mer (Shrikumar
et al., 2019). Hill et al. (2018) leverage a deep re-
current neural network (RNN) to discover complex
biological rules to decipher RNA protein-coding
potential. Zhuang et al. (2019) incorporate con-
volutional neural network (CNN) to predict en-
hancer—promoter interactions with DNA sequence
data. Shen et al. (2018) introduce a RNN to predict
transcription factor binding sites. They treat each
k-mer as a word and pre-train a word representation
model though word2vec algorithm (Mikolov et al.,
2013). Zaheer et al. (2020) propose BigBird and
pre-train it on the human reference genome and
improves the performance on downstream tasks.

2.3 Self-Supervised Pre-training

Recently, using self-supervised pre-training models
on large scale unlabeled data and then fine-tuning
them using a small amount of labeled data has be-
come the norm in machine learning. BERT (Devlin
et al., 2019) is a deep bidirectional transformer pre-
trained on BooksCorpus (Zhu et al., 2015) (800M
words) and English Wikipedia (2500M words) for
language understanding. Liu et al. (2019) intro-
duces Roberta, which has a similar architecture as
BERT but trained on a much larger corpus (160GB
of text) and consequently achieves better perfor-
mance. In recent years, pre-training generative
models (Radford et al., 2019; Raffel et al., 2019;
Lewis et al., 2019) has significantly improved the
performance of various language generation tasks
such as machine translation, question answering,
conversational Al, etc.
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Self-supervised learning approaches have also
been adopted in genomics (Zaheer et al., 2020;
Ji et al.,, 2021) and proteomics (Madani et al.,
2020; Elnaggar et al., 2021). These methods pre-
train models using large-scale unlabelled datasets
such as the human reference genome from the
Genome Reference Consortium (GRC) (Church
et al., 2011; Schneider et al., 2017) and protein
sequence databases such as SWISS-PROT and
TrEMBL (Boeckmann et al., 2003). In this paper,
we focus on genomics and conduct the human refer-
ence genome for pre-training. Genomics data does
not have the same structure as human languages; it
has no known syntax or grammatical rules and it
consists of very long sequences with only a number
of differences between each human subject.

3 SNP2Vec

Existing pre-training methods in genomics, such as
BigBird (Zaheer et al., 2020) and DNABERT (Ji
et al., 2021), are only optimized to understand the
pattern of a haploid sequence (haplotype) based
on the reference genome. This hinders the model
from learning genomic variations, which is essen-
tial for understanding traits in humans. In contrast
to prior works in genomics pre-training, we de-
velop SNP2Vec to enable pre-training for encoding
and understanding patterns of genomic variations
in a diploid sequence. Figure 1 depicts the overall
structure of the SNP2Vec pre-training method. We
elaborate on our SNP2Vec method in 3 subsections:
1) SNP Encoding, i.e., how we encode a diploid
sequence as a sequence of SNP tokens; 2) Self-
Supervised SNP Dataset, i.e., how we construct
a self-supervised dataset using the SNP token; 3)
Self-supervised SNP Pre-training, i.e., how we per-
form self-supervised pre-training for learning the
sequence pattern of SNP tokens.

3.1 Preliminaries

What are haploid and diploid sequences? A
diploid is a cell or organism that has paired chro-
mosomes, one from each parent . Human cells
are mostly diploid, except for the sex cells. In this
sense, a diploid sequence (genotype) refers to a pair
of homologous sequences (allele) inside the diploid
chromosome, while a haploid sequence (haplotype)
refers to the DNA sequence from the specific allele
of the diploid sequence. The haploid sequence is

"nttps://www.genome.gov/
genetics-glossary/Diploid

suitable for understanding the regulatory function
of a DNA pattern (Zhou and Troyanskaya, 2015;
Ouyang et al., 2008), such as determining a binding
site for a certain type of protein, as it provides the
representation of the actual nucleotides. A diploid
sequence, on the other hand, is more suitable for
understanding the phenotype (Levy et al., 2007;
Wang et al., 2008) over population since it allows
understanding of the genomic variations between
two homologous DNA sequences, which tells the
dosage information and the gene expression level
of a variation. These genomic variations are gath-
ered by comparing them to a genome reference
sequence, and they can be categorized based on its
dosage, i.e., wild-type (normal), heterozygous, or
homozygous, and based on their differences, i.e.,
substitution, insertion, and deletion. The depiction
of haploids and diploids along with their variations
is shown in Figure 2.

How do we get the haploid and diploid se-
quence? As most human cells are predominantly
diploid, performing genome sequencing on such
homologous chromosome pair will produce a
diploid sequence rather than a haploid sequence,
because the primer binds to both of the homol-
ogous regions from each chromosome (Ye et al.,
2012). Extracting haploid sequences from a diploid
sequence requires an additional step through an es-
timation process called phasing (Stephens et al.,
2001). Despite their effectiveness, the quality of
phasing methods (Browning and Browning, 2007,
2009; Patterson et al., 2014) is not perfect and tends
to decrease significantly especially when the gap
between the SNPs is large (Choi et al., 2018).

3.2 SNP Encoding

We first extend the nucleotide tokens from 5 to-
ken types ‘A’, ‘T, ‘C’, ‘G’, and ‘N’ into 11 tokens
by adding 6 insertion-deletion (indel) tokens ‘Al’,
‘T, ‘CI’, ‘GI’, ‘NI’, and ‘DEL’, where ‘XI’ to-
ken represents any insertion after the nucleotide
‘X’, and ‘DEL’ represents the nucleotide deletion.
There can be many different possibility for inser-
tion, e.g., a nucleotide ‘T’ can be inserted into
“TG”, “TGGG”, or “TAAA”; therefore we aggre-
gate all the insertions into a single token to reduce
the sparsity of the indel representaton as indel oc-
curs relatively rarely compared to substitution, with
an around 1:5 ratio (Chen et al., 2009). To encode
a diploid sequence, we construct all the combina-
tions with replacement (,,C:%) of the 11 haploid
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Figure 1: SNP2Vec Pre-training Pipeline. SNP2Vec merges information from reference genome and SNP database
to form a chromosome matrix which is then utilized to construst SNP pre-training dataset following the SNP
encoding’s token format. This pre-training dataset is employed to train a genome language model through the

masked language modeling task.
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Figure 2: Diploid sequence variations. The box on the
top-left shows the wild-type sequence, while others are
its variations. H1 and H2 denote the haploid sequence
for each parent allele. D represents the diploid sequence
of the two alleles.

and indel tokens with n = 11 and r = 2, produc-
ing a total of 66 types of SNP tokens consisting
of wild-type, heterozygous, and homozygous vari-
ation tokens. The resulting SNP tokens are rep-
resented as ‘X1/Xs”, where ‘X3’ and ‘X5’ denote
aligned nucleotide or indel tokens from the two
alleles ordered alphabetically. A depiction of the
SNP tokens is shown in Figure 3. To reduce the size
and facilitate more straightforward representation
for downstream processes such as pre-processing,
tokenization, and modeling, we map the SNP to-
kens into a single character representation. The
mapping of the SNP token into a single character
representation is shown in Appendix A.

By incorporating the SNP encoding, variant call-

ing information gathered from the DNA sequencing
machine can be directly converted into a sequence
of SNP tokens, that are then used for the model
fine-tuning and inference. However, this is not di-
rectly applicable for self-supervised pre-training
since DNA sequencing data is hard to obtain and
it is unethical to share publicly as it contains very
sensitive and personal information of the human
subject. In the next section, we discuss in detail
how we can construct an inexpensive and reliable
pre-training dataset to perform self-supervised pre-
training on the SNP tokens by utilizing publicly
available genomics data sources.

3.3 Self-Supervised SNP Dataset

Prior self-supervised pre-training approaches in ge-
nomics (Zaheer et al., 2020; Ji et al., 2021) only
utilize the human reference genome (Church et al.,
2011; Schneider et al., 2017) as the unlabelled data
for haploid genomics pre-training, the latter does
not capture any genomic variations. We extend
these haploid modeling techniques into a diploid
modeling method, which allows the model to learn
patterns of genomic variations by generating unla-
belled pre-training data for learning SNP tokens.
More specifically, we use the genome sequence
from the human reference genome and genome
variation from a large-scale SNP database, namely
dbSNP (Smigielski et al., 2000), to generate the
pre-training data.

Human reference genome The human reference
genome is a genome sequence derived from the
DNA collected from a number of people (Pollard
et al., 2017), which was first released in 2000
and is periodically updated. There are two most
commonly used versions of the human reference
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Insertion | A/AI| T/TI C/CI | G/GI

Heterozygous
Deletion | A/Del T/Del .| c/Del| G/Del
Homozygous Del/
indel |AVAL[ TITI[ . . . lcicl| By

Figure 3: SNP tokens consist of a total of 66 types
of token covering all possible variations in a diploid
sequence including wild-types, heterozygous variations,
and homozygous variations.

genome, namely GRCh37 (Church et al., 2011) 2
and GRCh38 (Schneider et al., 2017) 3. A human
reference genome consists of the genome sequence
information for all human chromosomes with ~3B
sequence length in total. Most of the positions are
mapped and represented as either ‘A’, ‘T’, ‘C’, or
‘G’, while the others are unmapped and flagged
with the unknown (‘N”) token.

dbSNP dbSNP (Smigielski et al., 2000) * is a
central public repository of human SNPs. dbSNP
covers a broad collection of simple genetic vari-
ations with a length of variation <50 bps long,
which includes single-base nucleotide substitutions,
small-scale multi-base deletions, and small-scale
multi-base insertions. A single SNP in the db-
SNP contains the following information: chromo-
some number, position in the chromosome, SNP
identifier, reference sequence (REF), alternative
sequence(s) (ALTS), probability of the REF and
ALTS, and other metadata. The REF is a single-
base or multi-base sequence that comes from the
human reference genome used for detecting the
SNPs. The ALTS can consist of one or more alter-
native variations and each can represent a substitu-
tion, a deletion, or an insertion.

Dataset Construction We construct a pre-
training dataset consisting of sequences of SNP to-

https://www.ncbi.nlm.nih.gov/
assembly/GCF_000001405.13/

*https://www.ncbi.nlm.nih.gov/
assembly/GCF_000001405.26/

*https://www.ncbi.nlm.nih.gov/
projects/SNP/snp_summary.cgi

kens by combining the sequence information from
the human reference genome and the genomic vari-
ations from the dbSNP. For each chromosome, we
generate an 11 x N matrix, where N is equal to the
length of the corresponding chromosome and 11
represents the probability of each nucleotide and
indel token. We name this matrix a chromosome
matrix. We fill the chromosome matrix using all
SNPs labelled as COMMON in the dbSNP by filling
the corresponding matrix position with the REF
and ALTS probability of the corresponding SNP
record. Since the SNPs from the dbSNP do not
cover all of the genome positions, we fill up all the
other gap positions with a probability of 1 to the
nucleotide token in the corresponding position on
the human reference genome.

For constructing the self-supervised pre-training
dataset, we closely follow the setup in the typi-
cal NLP pre-training dataset construction pipeline.
Specifically, we convert the chromosome matrix
into a set of segments .S where each segment s € S
comprises of a number of SNP tokens. To construct
the sentences S, we sample multiple sequences
from different positions of a chromosome. For
each position in the sequence, we apply a sampling
function F' to collect ‘X1’ and ‘X2’ (the nucleotide
or indel tokens on the corresponding position) and
construct the SNP token “X1/X2”. The dataset con-
struction method can be applied to all the chromo-
some pairs except for the sex chromosome, which
is always haploid. The details of our dataset con-
struction approach is shown in Algorithm 1.

3.4 Self-Supervised SNP Pre-training

Inspired by BERT (Devlin et al., 2019), SNP2Vec
is trained using the masked language model-
ing (MLM) objective using a transformer-based
model (Vaswani et al., 2017). The goal of MLM is
to predict the representations of the masked tokens
given their neighbouring sequence as the context.
As complex genomic tasks, such as disease risk
prediction, require the understanding long-genome
sequence (>1000 bps), we apply two methods to
process long input sequences. First, we apply a
transformer variant with a linear-attention mecha-
nism, which enables the model to reduce the com-
putational complexity from O(N?) to O(N). Sec-
ond, we apply a BPE tokenization (Sennrich et al.,
2015) to encode the sequence of SNP tokens to
compress the sequence via aggregation of neigh-
bouring tokens. Unlike k-mer (Min et al., 2017; Ji
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Algorithm 1 Self-Supervised Pre-training dataset
construction for diploid SNP Encoding
Require: C: chromosome matrix
Require: f: SNP sampling function
Require: T": number of iterations
Require: K: start position threshold
Require: L/: lower bound of segment length
Require: L*"P: upper bound of segment length
1: Initialize S = ()
2: P =sample T positions from range [0. .. K]
3: forallp € Pdo

4: while p < |C| do

5: I ~ UL L5wP)

6: z =segment from ptop+ L in C

7: s = Sample SNP tokens using f from
each position in z

8: S=SUs

9: p=p+I

10: end while

11: end for

et al., 2021) and gapped k-mer (Ghandi et al., 2014;
Shrikumar et al., 2019) tokenizations, BPE tok-
enization can merge dynamic-length tokens based
on their co-occurrences efficiently without losing
any information.

4 Experiment Settings

4.1 Dataset

For building the pre-training data, we utilize
GRCh37 as the human reference genome and db-
SNP version 153 3 as the SNP database. We utilize
a weighted random sampling based on the proba-
bility of SNPs on the corresponding position as the
sampling function f. For the downstream-task, we
construct a dataset of genome sequences for predict-
ing late-onset Alzheimer’s disease (LOAD) (Rabi-
novici, 2019) on a Chinese Cohort from 624 Hong
Kong elderly with a minimum age of 65. The sub-
jects are diagnosed with Alzheimer’s by a medical
professional through the Montreal Cognitive As-
sessment (MoCA) test (Nasreddine et al., 2005) ad-
justed for the demographic information. Out of 624
subjects, 384 are labelled as Alzheimer’s disease
carriers (ADs) and 240 are labelled as non-carriers
(NCs). For the genome sequence, we collect se-
quencing data from the APOE region located in
chromosome 19 from each subject, which is known

Shttps://ftp.ncbi.nih.gov/snp/archive/
b153/00readme.txt

to be highly correlated with Alzheimer’s disease in
the Chinese cohort (Zhou et al., 2019, 2020). We
use BWA-MEM (Li, 2013) assembler to align the
sequencing data with the human reference genome.

4.2 Training and Evaluation Setting

For our experiment, we build a BPE tokenizer with
a vocabulary size of 32,000 tokens. We pre-train a
6-layers linear-attention transformer-based model,
Linformer (Wang et al., 2020), using a maximum
sequence length of 4,096 tokens, a sequence pro-
jection length k of 128 tokens, and a model dimen-
sion size of 512. For simplicity, we refer to our
pre-trained SNP2Vec model as Dipformer. The
detail hyperparameters of the BPE tokenizer and
the Dipformer model are described in Appendix B.
We run MLM pre-training for 200,000 steps with a
15% token replacement rate, where we replace with
[MASK] 80% of the time, replace with a random
token 10% of the time, and keep the token as is
10% of the time. More detail about the pre-training
hyperparameter setting is shown in Appendix C.
For the fine-tuning, we apply SNP encoding to
the sequencing data, apply BPE tokenization, and
add a [CLS] token as the prefix of the sequence
to gather the sequence representation for predict-
ing the risk of having Alzheimer’s disease. We
apply fine-tuning for three input sequence length
settings, i.e., only APOE gene with 3,611 bps (
APOE only), APOE with additional 5,000 bps up-
stream and downstream (APOE+10k), and APOE
with additional 10,000 bps upstream and down-
stream (APOE + 20k). For each experiment, we
apply 10-fold cross validation to ensure the result is
significance. We evaluate the model performance
using three evaluation metrics: accuracy, area un-
der the ROC curve (AUROC), and area under the
precision-recall curve (AUPRC). More detail about
the fine-tuning setup is described in Appendix D.

4.3 Baselines

To evaluate the effectiveness of the SNP encoding,
we build two different deep learning models using
haploid token representation. First, we incorporate
DeepSEA (Zhou and Troyanskaya, 2015), a CNN-
based model develop for short sequence chromatin
profiling tasks (~200-1000 bps), and then we build
another Linformer model pre-trained with the hu-
man reference genome using haploid tokens, called
Hapformer. For the haploid token fine-tuning, we
generate the haploid sequence from the aligned
sequencing data. We generate the variant calling
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Models Acc AUROC AUPRC
DeepSEA 0.591 0.579 0.703
PLINK PRS 0.592 0.607 0.705
Hapformer 0.572 0.615 0.715
Dipformer 0.643 0.673 0.734

Table 1: Results of our model and baselines. We refer
the pre-trained SNP2Vec model as Dipformer.

data with GATK HaplotypeCaller (McKenna et al.,
2010; DePristo et al., 2011) and apply phasing
with Beagle (Browning and Browning, 2007, 2009).
During fine-tuning, we feed each haploid sequence
to the model and fuse the representation using a
linear transformation. We also incorporate a logis-
tic regression model from PLINK (Purcell et al.,
2007), which is a widely used approach for PRS.

5 Results

The results of our model and baselines are shown
in Table 1. We find that Dipformer is able to outper-
form existing strong baselines, such as DeepSEA
and PLINK PRS, by a large margin. This confirms
the effectiveness of our SNP2Vec pre-training, and
the ability of our Dipformer to capture relevant
features for AD prediction. Interestingly, Hap-
former, which leverages large amounts of genomic
sequences for pre-training, only performs compa-
rably to DeepSEA and PLINK PRS. Moreover, by
learning genomic variations in a diploid sequence
during the pre-training, Dipformer significantly out-
performs Hapformer with an around 5-7% improve-
ment in terms of accuracy and AUROC metrics.
This shows that simply using an enormous amount
of pre-training data might not necessarily improve
the AD prediction, and an effective genomics pre-
training approach is essential to guarantee full use
of the unlabelled genomics data. More detail on
our results is shown in Appendix E.

6 Discussion

6.1 Effect of Different Tokenization Methods
in Genomics

In this section, we study different tokenization
methods for genome modeling, and explore their
effectiveness in terms of capturing genomic pat-
terns and features. We compare BPE tokenization
with other common methods, such as k-mer and
gapped k-mer (gkm) with various gap parameters.
To achive this, we conduct experiments on the chro-
matin profiling dataset from DeepSEA, which con-

5-m:
0.85 .
bpe
o 0.80 gkm
S (7, 14) 3-mer
Y0.75 . gkm
' (5, 6)
gkm
6, 10 @
0.70 m ( ) 1-mer
(6, 14)
25 50 100 250 500 1000

Averaged Token Length (log scaled)

Figure 6: Performance efficiency trade-off of using dif-
ferent tokenization approaches. The score is averaged
over the three models (Linear, CNN, and Transformer).
The size of the dots represents the vocabulary size of
the tokenization method.

sists of 4,863,024 chromatin profiles (4,400,000
training, 8000 validation, and 455,024 test) with
919 labels (690 transcription factor (TF) binding
sites, 125 DNase marks, and 104 Histone marks).
Three different models are incorporated in this ex-
periment: a linear model with bag-of-word (BoW)
representation, a CNN-based model following the
DeepSEA architecture, and a transformer model.
The models need to predict the TF, DNase, and
Histone labels based on the input sequences us-
ing various tokenization methods. Hence, for the
same model, a more effective tokenization method
will lead to a higher prediction accuracy. Addition-
ally, we use the average length of the tokenized
sequences to measure the efficiency of different to-
kenization methods as it determines the input size
for the model.

Table 2 provides the effectiveness and averaged
token length of different tokenization methods in
genome modeling. We find that, on the Linear BoW
model, BPE significantly outperforms all other
methods except 5-mer. On the CNN model, BPE
remarkably surpasses all gapped k-mer methods ex-
cept for the gkm (5,6). On the Transformer model,
BPE performs similarly to 3-mer and gkm (5,6),
and significantly outperforms 1-mer and other gkm
methods. Moreover, in terms of the averaged score
across all three models, BPE performs comparably
well to 3-mer, and remarkably outperforms 1-mer
and all gkm methods.

Figure 6 illustrates the trade-off between the
performance and efficiency of different tokeniza-
tion methods. We can see that compared to k-mer
methods, BPE performs comparably to 3-mer and
slightly worse than 5-mer, but it is much more ef-
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Tokenization 1-mer 3-mer 5-mer gkm (5,6) gkm (6,10) gkm (6,14) gkm (7,14) BPE

Avg. Token Length 500 498 496 83 50 36 36 81.19
BoW Linear 0.499 0.698 0.817 0.771 0.759 0.749 0.753 0.783*
CNN (DeepSEA) 0.890 0.903 0.898 0.808 0.764 0.749 0.751 0.811*
Transformer 0.727 0.788 0.825 0.785 0.771 0.761 0.762 0.789*
Average 0.706 0.796 0.847 0.788 0.765 0.753 0.755 0.795*

Table 2: Comparison of different tokenization methods in genome modeling (numbers denote the accuracy score),
where gkm (k,l) denotes the gapped k-mer tokenization with the gap parameter / constituting the stride between

each k-mer window. * denotes that BPE significantly outperforms the underlined baselines with a p-value < 0.01.
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Sequence Length

Figure 4: 10-folds AUROC Performance of Dipformer
with and without pre-training on the Alzheimer’s disease
risk prediction over different sequence length input.

ficient due to a much shorter average length. In
addition, BPE remarkably outperforms gkm meth-
ods with comparable or slightly worse efficiency.
Furthermore, from the size of the dots, we can see
that BPE has a much larger vocabulary size com-
pared to other methods, which indicates that BPE
can potentially capture richer genomics patterns.

6.2 Effect of Pre-training for Disease Risk
Prediction

In this section, we focus on exploring the effec-
tiveness of pre-training for disease risk prediction.
Figure 4 illustrates the 10-fold AUROC results of
our Dipformer model with and without pre-training
on Alzheimer’s disease risk prediction. The dashes
in the figure represent the average AUROC for all
10-fold results. As shown in Figure 4, the aver-
age AUROC scores for pre-trained Dipformer sig-
nificantly outperform the Dipformer without pre-
training in all sequence length settings, APOE +
10k, and APOE + 20. Table 3 presents the quan-
titative results with additional metrics. The accu-
racy, AUROC, and AUPRC scores of pre-trained
Dipformer consistently outperform the non-pre-
trained Dipformer in all sequence length settings.
By increasing the sequence length, the non-pre-

Sequence Length

Figure 5: 10-folds AUROC performance of pre-trained
Hapformer and Dipformer on the Alzheimer’s disease risk
prediction over different sequence length input.

trained Dipformer performs slightly better, while
the pre-trained Dipformer improves by a large mar-
gin. This shows the importance of pre-training for
understanding long-sequence features.

6.3 Effect of the SNP Encoding in Genomics

To study the effect of the SNP encoding, we pre-
train and fine-tune a model with the same genomics
data but using haploid tokens called Hapformer, as
mentioned in the Section 4. Figure 5 shows the 10-
fold AUROC results of pre-trained Hapformer and
Dipformer on the AD risk prediction over different
sequence length inputs. Among all three sequence
length settings, Dipformer achieves better average
AUROC scores than Hapformer with a p-value of
0.046 for the APOE + 20k setting, which indicates
that the improvement of SNP encoding is signifi-
cant. Meanwhile, the results in Table 3 shows that
Dipformer also surpasses Hapformer in all other
evaluation metrics. In addition, we also observe
that both Hapformer and Dipformer achieve bet-
ter results when the input sequence is longer. This
shows that employing long sequence is essential for
handling complex genomics tasks such as disease
risk prediction.
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Model Accuracy AUROC AUPRC

Without Pre-training

Dipformer (APOE only) 0.567 0.532 0.667
Dipformer (APOE + 10k) 0.571 0.520 0.608
Dipformer (APOE + 20k) 0.588 0.551 0.668
With Pre-training
Hapformer (APOE only) 0.524 0.491 0.623
Hapformer (APOE + 10k) 0.565 0.591 0.705
Hapformer (APOE + 20k) 0.572 0.615 0.715
Dipformer (APOE only) 0.611 0.576 0.687
Dipformer (APOE + 10k) 0.574 0.612 0.710
Dipformer (APOE + 20k) 0.643 0.673 0.734

Table 3: Performance of Dipformer and Hapformer on
the Alzheimer’s disease risk prediction over different
lengths of the input sequences.

7 Conclusion

In this paper, we introduce SNP2Vec, a self-
supervised pre-training method for understanding
genomic variations in a diploid sequence. Unlike
prior methods in genomics, SNP2Vec represents
each genomics position with a SNP token which
allows the model to capture genomic variations
which is suitable for understanding complex ge-
nomics prediction tasks such as predicting pheno-
type. By utilizing SNP2Vec, we pre-train a Lin-
former model called Dipformer and evaluate it for
predicting late-onset Alzheimer’s disease risk in a
Chinese cohort. Experimental results suggest that
Dipformer significantly improves the prediction
quality by 5-7% Accuracy and AUROC over all
other baselines including the widely used polygenic
risk score model from PLINK, the haploid-variant
of Dipformer, and a CNN-based genomics model
called DeepSEA.

8 Future Work

For future works, we expect to focus on model
explainability by using multiple analysis methods,
such as analyzing the attention behaviour, analyz-
ing the gradient saliency map, etc, to gather and ver-
ify insights from the model. Evaluation on larger
scale dataset is also necessary to further demostrate
the effectiveness of SNP2Vec. Additionally, adop-
tion of SNP2Vec to other hereditary disorders and
other complex genomics tasks is also an essential
direction for future works.
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A Mapping of SNP Tokens

As our resulting SNP tokens are represented as
‘X1/X5”, to reduce the size and facilitate more
straightforward representation for the downstream
process in the NLP pipeline, such as pre-processing,
tokenization, and modeling, we map all SNP tokens
into a single character representation. The mapping
of the SNP tokens into a single character represen-
tation is shown in Table 4. We use non-alphabetical
characters as there are 66 SNP tokens in total, more
than the available alphabetical characters, which
consists of 52 characters (lower and upper case
from ‘A’ to ‘Z’) in total. Also note that, all the
SNP tokens related to the unkown token ‘N’ except
‘N/N’ (such as ‘A/N’, ‘G/NI’, ‘N/NI’, ‘NI/NI’, etc)
are never been used since there is no actual SNP
record corresponding to the unknown token ‘N’.
The combinations of all ‘N’ and ‘NI’ tokens are
listed on the table only for completion.

B Model Hyperparameters

We develop two Linformer (Wang et al., 2020)
models, i.e., Dipformer and Hapformer, which is
pre-trained using our proposed SNP tokens and
the original nucleotide tokens, respectively. The
two models have the same hyperparameter settings
resulting in an equal number of parameters. We
list all the hyperparameters of our Dipformer and
Hapformer models in Table 5.

C Pre-Training Setup

During the pre-training phase, we build the BPE
tokenizer with a vocab size of 32,000 for both the
SNP tokens and nucleotide tokens datasets. We
perform pre-training on both Dipformer and Hap-
former models for 200,000 steps using masked lan-
guage modeling with the cross entropy loss. During
the pre-training, we apply a masking strategy simi-
lar to BERT (Devlin et al., 2019) with a 15% token
replacement rate, where we replace with [MASK]
80% of the time, replace with a random token 10%
of the time, and keep the token as is 10% of the time.
We run the pre-training using 5 units of 2080Ti
GPUs and an Intel(R) Xeon(R) Silver 4210 CPU.
We use the same hyperparameter settings for pre-
training both the Dipformer and Hapformer models.
The hyperparameters of our pre-training are shown
in Table 6.

D Fine-Tuning Setup

We fine-tune all models on Alzheimer’s disease
risk prediction on a Chinese cohort consisting of
624 subjects in total, 384 of which are labelled
as Alzheimer’s disease carriers (ADs) while 240
others are non-carriers (NCs). For predicting
Alzheimer’s disease, we append a [CLS] token
as the prefix of the sequence. During the fine-
tuning, we take the output of the [CLS] token
and perform a linear transformation on it to get
the disease risk prediction. We evaluate the per-
formance of all models using accuracy, area un-
derthe ROC curve (AUROC), and area under the
precision-recall curve (AUPRC). We show all the
hyperparameters of the fine-tuning phase in Table 7.
We experiment with different learning rate for each
model and find that the best setting is achieved
when using a learning rate of 1e-4 for models that
are not pre-trained (non-pre-trained Dipformer and
DeepSEA) and a learning rate of 1e-5 for all pre-
trained models (Dipformer and Hapformer).

E Detailed Results

In this section, we show the distribution of the 10-
fold results from our experiment in the Alzheimer’s
disease risk prediction task for all models (Dip-
former, Hapformer, DeepSEA, and PLINK) on
each evaluation metric. Figure 7 shows the dis-
tribution of the best 10-folds accuracy performance
on the Alzheimer’s disease risk prediction task. Fig-
ure 8 shows the distribution of the best 10-folds
AUROC performance on the Alzheimer’s disease
risk prediction task. Figure 9 shows the distribution
of the best 10-folds AUPRC performance on the
Alzheimer’s disease risk prediction task.
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Mapping of SNP Tokens

>
v

A/A A|DEL/A  HE |A/C g | AT/C C/G B2l ci/c &
c/c C | DEL/ATI K | A/G fil | AT/CcTI M| c/N ¥ | c1/61 &
G/G G| DEL/C  FZ | A/N W | at/c J\|c/T | ci/n &
N/N N | DEL/CI ¥ |A/T ¥ |a1/cT % |c/c1 F |ci/NI 5B
T/T T|DEL/G M |a/aT A |aI/N B |c/GI K |ci/T &
AI/AI B |DEL/GI & |aA/cI {8 |AI/NI B |C/NI % |CI/TI %
CI/CI D|DEL/N % |a/cT & |A1/T f|c/TT1 H|G/cT &
GI/GI H|DEL/NI k& |A/NI % |A1/TI % |GI/N # |G/N %
NI/NI O|DEL/T f&|a/TI # |N/NI W |GI/NI & |c/NI &
TI/TI U |DEL/TI % |NI/T #8 |N/T W | cI/T  HF | G/T A
DEL/DEL X | T/TI | NI/TT R | N/TT BB | GI/TI & | G/TI &
Table 4: Mapping of SNP tokens into a single character representation.
Hyperparams Value Hyperparams Value Hyperparams Value
#layers 6 batch size 240 batch size 16
dim 512 optimizer AdamW optimizer AdamW
k 128 learning rate le-4 learning rate [le-4..1e-6]
dropout 0.1 scheduler A1 1 scheduler A1 1
num heads 8 scheduler A\2 0.999991 scheduler \2 0.999991
dim head 64 #steps 200,000 #epoch 30
num embeddings 32000 warmup step 1000 early stopping 3
single KV head False loss fn Cross Entropy loss fn Cross Entropy
shared KV False random seed 0 random seed 0

Table 5: Model Hyperparameters
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Figure 7: 10-folds accuracy performance of the best Dipformer, Hapformer, DeepSEA, and PLINK models on the
Alzheimer’s disease risk prediction.
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Figure 8: 10-folds AUROC performance of the best Dipformer, Hapformer, DeepSEA, and PLINK models on the
Alzheimer’s disease risk prediction.
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Figure 9: 10-folds AUPRC performance of the best Dipformer, Hapformer, DeepSEA, and PLINK models on the
Alzheimer’s disease risk prediction.
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Abstract

Biomedical Named Entity Recognition (BM-
NER) is one of the most important tasks in the
field of biomedical text mining. Most work
so far on this task has not focused on identi-
fication of discontinuous and overlapping en-
tities, even though they are present in signifi-
cant fractions in real-life biomedical datasets.
In this paper, we introduce a novel annotation
schema to capture complex entities, and ex-
plore the effects of distant supervision on our
deep-learning sequence labelling model. For
BMNER task, our annotation schema outper-
forms other BIO-based annotation schemes on
the same model. We also achieve higher F1-
scores than state-of-the-art models on multiple
corpora without fine-tuning embeddings, high-
lighting the efficacy of neural feature extraction
using our model.

1 Introduction

Named entity recognition (NER) consists of
identification and classification of named entities
in text. Biomedical NER (BMNER) is a crucial
problem in healthcare as it is the initial step in
solving various tasks, such as relation extraction,
semantic role labeling, and clinical decision mak-
ing (De Bruijn and Martin, 2002)(Hanisch et al.,
2003). As compared to NER in other domains, BM-
NER is a difficult task as labelled data in biomed-
ical domain is less in amount and expensive to
obtain, and it requires identification of complex
entities that are not common in other domains (Dai,
2018). Recently, deep learning approaches using
large unstructured data, such as Bi-LSTM with
CRF (Lietal., 2018) and BERT (Symeonidou et al.,
2019)(Yu et al., 2019) models have been used to
obtain state-of-the-art results on BMINER.

The most common annotation scheme for NER
is BIO tagging, where B is for Beginning of entity,
I for Inside of entity, and O for Outside of entity. A
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major assumption of BIO tagging is that an entity
is composed of continuous and non-overlapping
tokens. As complex entities that defy these assump-
tions frequently occur in biomedical records, a new
scheme is needed to capture them. For this purpose,
BIOHD (Tang et al., 2013) was introduced to rep-
resent discontinuous entities that may overlap with
four new tags : (BH,IH) as shared head tags and
(BD,ID) as non-shared non-head tags. However,
this scheme fails to capture discontinuous entities
that have more than two spans. In this paper, we
propose a novel annotation schema BIODT that
overcomes this limitation of BIOHD. Our schema
includes shared non-head tags and non-shared head
tags, and hence captures entities with more than
two spans, which BIOHD fails to do.

Distant supervision is a method to generate la-
belled data from unlabelled data using existing
knowledge (Mintz et al., 2009) that is particularly
useful to create data for supervised learning algo-
rithms which require large amounts of data. We
use this method for BMNER to compensate for the
lack of labelled data in the biomedical domain. As
we are using an RNN (Recurrent Neural Network)
which requires a large amount of training data, dis-
tant supervision helps in increasing the amount of
annotated records without human effort.

In summary, the main contributions of this paper
are as follows:

1. A novel systematic tagging schema to better
capture discontinuous entities, that is signifi-
cantly better(>2%) for prediction of discon-
tinuous entities than BIOHD.

. A distant supervision approach to biomedical
NER, that uses labelled data to generate la-
bels for unlabelled data, without the use of
external dictionaries. Our experiments show
that distant supervision methods boost the per-
formance of our model, and also outperform
state-of-the-art models.

Proceedings of the BioNLP 2022 workshop, Dublin, Ireland, pages 155-160
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2 Related Work

Existing solutions for BMNER include tradi-
tional NER methods such as dictionary or rule-
based approaches, as well as supervised machine
learning methods like Markov models (Pono-
mareva et al., 2007), Conditional Random Fields
(CRFs) (Ponomareva et al., 2007)(Sun et al.,
2006)(Settles, 2004) and Support Vector Machine
(SVM) (Ju et al., 2011)(Kazama et al., 2002).
Lately, deep learning approaches using large un-
structured data, such as Bi-LSTM with CRF (Li
et al., 2018) and BERT (Symeonidou et al.,
2019)(Yu et al., 2019) models have been used
to obtain state-of-the-art results on BMNER. To
deal with scarcity of token-level annotated data
required in deep-learning models, some weak-
supervision and distant-supervision solutions have
been proposed. For the task of BMNER, Mathew
et al. (Mathew et al., 2019) introduced a weakly-
supervised data augmentation approach for iden-
tification of proteins in BioCreative Challenge VI
Track 1 dataset(Arighi et al., 2018), using a ref-
erence set of entity names from knowledge bases
like UniProt (Consortium, 2018) to identify entity
mentions on unlabelled data. In 2016, Lee et al.
proposed a bagging-based approach using active
learning with distant supervision, that uses a semi-
automatically constructed dictionary of named en-
tities from Wikipedia (Lee et al., 2016) (Song and
Kim, 2015). To the best of our knowledge, no prior
work has been done to study the effects of distant
supervision on complex entities for NER.

To deal with annotation of complex entities,
many methods have been proposed. Annotation
schemes like BIOHD (Tang et al., 2013) and
BIOHD1234 (Tang et al., 2015) were proposed
with four and ten additional tags, respectively, to
the commonly used BIO schema. These schemes
gave near state-of-the-art results with simple ma-
chine learning models. Methods such as repre-
senting sentences as hypergraphs (Lu and Roth,
2015) (Muis and Lu, 2016), transition-based mod-
els that uses specialized actions and attention mech-
anisms (Dai et al., 2020), and representing NER
task as a structured multi-label classification prob-
lem (McDonald et al., 2005) have also been ex-
plored. Additionally, a two-stage approach that
first detects all continuous parts, then combines
them to form discontiguous entities using a classi-
fier (Wang and Lu, 2019) has also been proposed.

3 Annotation Schema

We introduce a new annotation schema called
BIODT, which consists of 11 tags: the traditional
BIO tags, and 8 additional tags as described below.

1. DB, DI are shared heads of the first term in a
discontinuous entity

2. DHB, DHI are shared non-head tags of the
subsequent terms in a discontinuous entity

3. TB, TI are non-shared heads of the first term
in a discontinuous entity

4. THB, THI are non-shared non-head tags of
the subsequent terms in a discontinuous entity

Preference is given to combine shared head tags
with shared non-head tags and, similarly, for non-
shared tags. For example, in sentence 1 (Figure
1), “aortic root”, “descending root” and “dilated”
are tagged with shared tags. Similarly, in Sentence
2, “mitral”, “leaflet” and “thickened” are tagged
with non-shared tags. There are a few cases where
shared and non-shared tags can co-occur in a sen-
tence. In Sentence 3 (Figure 1), “ABD” is a shared
head tag. If tagged according to BIOHD schema,
“tenderness” and “RUQ” would be shared non-head
tags, resulting in two entities, “ABD...tenderness”
and “ABD..RUQ”, which are wrong. In our
schema, we tag “tenderness” and “RUQ” with non-
shared non-head tags(TH{B,I}), which are com-
bined with the shared head tag(D{B,I}) to form
“ABD...tenderness...RUQ”. Hence, our schema cap-
tures entities that were not captured by the BIOHD
schema.

Extracting entities from BIODT tagged sen-
tence:

Discontinuous entities can be obtained from a
BIODT tagged sentence using the following simple
rules :

* For shared tags :

1. Each shared non-head tag (DH{B,I}) is
joined to each shared head tag (D{B,I})
in the sentence.

2. If no shared head tag is present, all
shared non-head tags in the sentence are
combined to form one joined entity.

* For non-shared tags :

1. All non-shared non-head tags (TH{B.,I})
are joined together.

2. If any non-shared head tag (T{B.I}) is
present, then the entity obtained from (1)
is joined to each non-shared head tag in
the sentence.
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3. If no non-shared head tag is present and
any shared head tag (D{B,1}) is present,
then the entity obtained from (1) is joined
to each shared head tag in the sentence.

4. If no head tags(shared/non-shared) are
present in the sentence, return entity ob-
tained from (1).

Sentence 1 [ The aortic root and descending aorta are moderately dilated

BIODT Tags [ o DB DI o DB DI 0 o DHB

L I I

dilated , dilated

Named

N aortic root ...
Entities

descending aorta ...

Sentence 2 [ The mitral valve leaflets are mildly thickened

o TB o THB o ] THE

BIODT Tags

Named

Entities leaflets ...

mitral .. thickened

mild distended , mild tenderness in RUQ

BIODT Tags DB O DHE O o DHB o o THB 0 THB

_ I

ABD ... soft , ABD ... distended , ABD ...

Named
Entities

Sentences[ ABD : soft ,

tenderness ... RUQ

Figure 1: BIODT Schema Examples

4 Approach and Architecture

We use a BILSTM-CREF network to assign labels
for NER, as presented in Figure 2. BILSTM-CRF
is an RNN (Recurrent Neural Network), and is
formed by the combination of a BiLSTM (Bidi-
rectional Long-Short Memory) and a CRF (Con-
ditional Network Field). For each sentence, the
BiLSTM forms a vector representation for each
word, preserving backward and forward context.
This vector representation is then used as the input
to the CRF, which predicts labels for the words of
the sentence.

The labels at the CRF output layer are decoded
using the Viterbi algorithm.

4.1 Features and Embeddings

We have used a combination of GloVe word
embeddings(Pennington et al., 2014), character
embeddings and BERT (Bio+Discharge Summary
BERT) embeddings (Alsentzer et al., 2019). Addi-
tionally, we have also experimented with part-of-
speech(POS) embeddings, case(lower/upper) em-
beddings, and suffix/prefix embeddings.

4.2 Distant Supervision

We use unlabelled data to generate a larger train-
ing set using distant supervision. We trained our
baseline model on manually annotated data, then
used the model to predict labels on additional unla-
belled data to expand our training set.

Input
Sentence |: WORD 1 WORD 2 WORD 3

' ' \

BERT , StanfordNLP , GLoVe

' | !
LSTH FORWARD

BiLSTM
’7 LSTM BACKWARD

LSTH FORWARD LSTM FORWARD
{ LSTH BACKWARD <
OUTPUT GELL L QUTPUT CELL L QUTPUT CELL

’7 LSTH BACKWARD

} 1 x
| l i

Output Tags [ TAG 1 TAG 2 TAG 3

Embeddings I:

Vector
Representation

Figure 2: Model Architecture

Our method is 1. train M on D1-train, 2. predict
labels on unlabelled dataset D2 and augment this
newly labelled dataset to D1-train, 3. train M on
D1-train and newly labelled D2, 4. finally, we test
M on DI-test.

Here, D1-train and D1-test are train and test
partitions of the labelled dataset respectively, D2 is
an unlabelled dataset of similar domain, and M is
our model.

5 Datasets

We experiment on two datasets from the biomed-
ical domain: ShARe 2013 (Forner et al., 2013)
and ShARe 2014 (Cappellato et al., 2014). The
datasets contain clinical free-text notes, which in-
clude discharge summaries, echo-reports, and ra-
diology reports. An annotated named entity can
contain any number of continuous spans, and it
maps to a concept in the disorder semantic group
of SNOMED-CT (Cornet and de Keizer, 2008).

Since a significant fraction(almost 10%) of the
mentions in these datasets are discontinuous(from
Table 1), an improvement in discontinuous entity
recognition will show noticeable improvement in
overall entity recognition.

ShARe 2013 ShARe 2014

#Records 298 433
#Sentences 18.7k 34.6k
#Total Mentions 11,161 19,131
#Disc. Mentions 1,090 1,710

% Disc. Mentions 9.7 8.9

Table 1: Dataset statistics for ShARe 2013 and ShARe
2014



6 Results and Analysis

For evaluation, we have used scripts provided in
ShARe tasks to calculate F-score (F) to evaluate
the efficiency of the models in our experimentation.

Our baseline model is a BILSTM-CRF that uses
the features and embeddings mentioned in 4.1, as
proposed by Yu et al. (Yu et al., 2019).

We faced a replication crisis while attempting to
reproduce the results presented in (Tang et al.,
2015) using the proposed BIOHD1234 schema.
Hence, we were unable to compare the perfor-
mance of our schema with that of BIOHD1234.

6.1 Model Evaluation

As can be seen from Table 2, our model outper-
forms the baseline in both annotation schemes by a
small margin. It also gives a better result than the
state-of-the-art by 1.6% and 1.1% for both datasets,
using BIODT and BIOHD schemes, respectively.
Evaluating for discontinuous entities, we find that
our model performance is similar to that of the
baseline task, with the BIOHD schema slightly un-
derperforming for the ShARe 2013 corpus.

Model Scheme ShARe 13 ShARe 14
SSVM

(Tang et al., 2013) BIOHD 750 -
SSVM

(Tang et al., 2015) BIOHD1234 78.3 -
Transition-based model

(Dai et al., 2020) HGB 777 796
Baseline BIOHD 78.4 79.7
Distant Supervision BIOHD 78.9 80.7
Baseline BIODT 79.0 80.4
Distant Supervision BIODT 79.9 80.5

Table 2: F1-Scores of other models compared to our
model; HGB stands for Hypergraph Based

Dataset Model BIOHD BIODT
(Tang et al., 2015) 48.7 -

ShARe 2013  Baseline 46.1 51.6
D. Supervision 45.6 52.8
Baseline 40.5 44.2

ShARe 2014 D. Supervision 41.9 44.5

Table 3: F1-Scores with BIOHD and BIODT for dis-
continuous entities

6.2 Evaluation of Annotation Schema

On entire datasets, BIODT performs simi-
lar(within 1%) to BIOHD for all models. The only
case where it is not an improvement over BIOHD
is when we use our model on ShARe 2014 dataset,
where it has a 0.2% less score. As is clear from
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Table 3, BIODT schema gives a significantly bet-
ter performance over BIOHD for discontinuous
entities(>3%), for all cases.

6.3 Analysis

From Table 2 and Table 3, it can be inferred
that while BIODT does not help much for NER in
entire datasets, it brings a noticeable improvement
compared to BIOHD for discontinuous entities. We
believe that for datasets with a higher fraction of
discontinuous entities, BIODT will perform better
than it has for these experiments.

From Table 2 and Table 3, it is also clear that
when used with BIODT schema, distant supervi-
sion enhances performance, both for entire datasets
and for discontinuous entities.

Limitations of BIODT
Due to the decoding rules of BIODT, some false
positives occur even on correctly predicted labels:

DB1 DI1 O O DB2 DI2 O O O
DHB1 DHI1 O O O DHB2 DHI2

Here, the original entities are :
(DB1 DI1 DHB1 DHI1) , (DB2 DI2 DHB2 DHI2)

Now, according to decoding rules, each shared non-
head term will combine to each shared head term,
hence the entities obtained will be :

DB1 DI1 DHB1 DHI1
DBl DI1 DHB2 DHI2
DB2 DI2 DHB1 DHI1
DB2 DI2 DHB2 DHI2

bl

Among these entities, (1) and (4) are correctly de-
coded, (2) and (3) are not. Even if our model pre-
dicts these labels correctly, they will be decoded
as false positives. We do not believe that this leads
to worse performance of BIODT as compared to
BIOHD, as BIOHD faces a similar problem.

7 Conclusion

In this paper, we introduced a novel annotation
schema to identify named entities in biomedical
data. We have also shown that for the same model,
our annotation scheme gives better performance
than other BIO-based complex annotation schemes
for discontinuous entities. We also explore the dis-
tant supervision paradigm to increase our training
set for BioNER. Using this, we have achieved state-
of-the-art results.
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Abstract

This paper proposes novel drug-protein rela-
tion extraction models that indirectly utilize
distant supervision data. Concretely, instead
of adding distant supervision data to the man-
ually annotated training data, our models in-
corporate distantly supervised models that are
relation extraction models trained with distant
supervision data. Distantly supervised learning
has been proposed to generate a large amount
of pseudo-training data at low cost. However,
there is still a problem of low prediction perfor-
mance due to the inclusion of mislabeled data.
Therefore, several methods have been proposed
to suppress the effects of noisy cases by uti-
lizing some manually annotated training data.
However, their performance is lower than that
of supervised learning on manually annotated
data because mislabeled data that cannot be
fully suppressed becomes noise when training
the model. To overcome this issue, our meth-
ods indirectly utilize distant supervision data
with manually annotated training data. The ex-
perimental results on the DrugProt corpus in
the BioCreative VII Track 1 showed that our
proposed model can consistently improve the
supervised models in different settings.

1 Introduction

Drug-protein relations are important for drug dis-
covery, metabolic, and drug response modeling,
and their textual evidence is important in the de-
velopment of evidence-based medicine. However,
since drug-protein interactions are reported in the
literature and the number of relevant articles is
rapidly increasing (Coordinators, 2016), it is diffi-
cult for pharmacologists to read every single article
to determine the interactions. Therefore, automatic
interaction extraction from text has attracted much
attention. The related shared tasks (Krallinger et al.,
2021, 2017) are being conducted at BioCreative, an
international workshop that aims to evaluate text
mining and information extraction in the biological
domain.

yutaka.sasaki}@toyota-ti.ac.Jp

For drug-protein relation extraction, models us-
ing deep learning have achieved high performance.
A typical deep learning model takes as input a sen-
tence and the drug and protein mentions in the
sentence, and predicts the relationship between the
drug and the protein as expressed in the sentence.
Gu et al. (2022) extracted the relationships using a
large neural network model pretrained on a large
biomedical literature (PubMedBERT). Deep learn-
ing models suffer from the problem of the huge
cost of manually annotated training data.

A distantly supervised learning method has been
proposed by Mints et al. (2009). The method en-
ables the creation of a large amount of training data
at low cost. However, this method still has the prob-
lem of producing data with incorrect labels, which
become noise during training. Several methods
have been proposed to mitigate the effects of such
noisy examples. One of the most commonly-used
methods is multi-instance learning (Riedel et al.,
2010), where the distant supervision data is treated
as a bag of instances corresponding to pairs in the
database. Zeng et al. (2015) proposed a method
to train instances with the representation with the
highest prediction probability of the target label
in the bag. Ji et al. (2017) proposed a method to
weight instances in the bag so that correctly la-
beled instances will have large weights while noisy
cases have small weights. Beltagy et al. (2019a)
proposed a method of learning with distant supervi-
sion data by utilizing some of manually annotated
training data to learn the weights. Although such
methods show performance improvement in the dis-
tantly supervised training setting, the performance
is still lower than that of the methods trained on
manually annotated training data.

This study proposes a novel method of using dis-
tantly supervised relation extraction models for su-
pervised drug-protein relation extraction. By using
the model trained over the easy-to-create distant su-
pervision data, we aim to improve the performance
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of supervised drug-protein relation extraction while
reducing the cost of building additional manually
annotated data and the effect of noisy instances in
the distant supervision data.

Our contributions are as follows:

1. We generate distant supervision data for
drug-protein relation extraction from domain
databases. By utilizing four databases, we cre-
ate distant supervision data of the same scale
as that of general domain distant supervision
data.

2. We propose to utilizing representations ob-
tained from a distantly supervised model
for ordinary supervised training. The per-
formance in extracting relations between
drugs and proteins was consistently improved
for two models (i.e., PubMedBERT and
BioRoBERTa-large (Lewis et al., 2020)) with
different parameter sizes.

3. The proposed method showed consistent per-
formance improvement regardless of the data
size of the manually annotated training data,
indicating that it is effective for utilizing dis-
tantly supervised model to improve the extrac-
tion performance.

2 Methods

We propose a novel method for extracting drug-
protein relations from manually annotated training
data. The method uses a model trained on dis-
tant supervision data, which we call a distantly
supervised model. By utilizing the distantly su-
pervised model, we aim to improve the extraction
performance while reducing the influence of noisy
instances included in the distant supervision data.
In the following sections, we will explain the
baseline relation extraction model in Section 2.1,
the construction of distant supervision data from
databases in Section 2.2, and the methods for utiliz-
ing the distantly supervised model in Section 2.3.

2.1 Relation Extraction Model

We describe a supervised relation extraction model
that is used as the baseline in this research. The
model predicts the relation for a given entity pair
from the input sentence.

First, the mentions of target drug and protein in
the input sentence are masked with “DRUG” and
“PROTEIN”, respectively. Table 1 shows an exam-
ple of this preprocessing. The sentence contains

three drug mentions (androstenedione, oestrone,
oestrone) and one protein mention (aromatase), SO
three drug-protein pairs are created and their men-
tions are replaced.

Next, the input sentence with the target protein
and drug entities is encoded with BERT (Devlin
et al., 2019) to generate a feature representation
vector h that represents the input sentence. For
this vector, we use the representation vector of
the [CLS] token since it contains the features of
the whole sentence in BERT. Finally, based on
the feature representation vector, the model then
generates a prediction vector that represents the
prediction probability for each relation by using
one fully-connected layer and the softmax func-
tion. The model predicts the relation that has the
maximum prediction probability. The optimizer is
Adam (Kingma and Ba, 2015), and the model is
trained to minimize the cross-entropy loss.

2.2 Building Distant Supervision Data

An overview of the process of building distant su-
pervision data is shown in Figure 1. In this method,
we use a medical literature database PubMed (Co-
ordinators, 2016), a drug database DrugBank (DS
et al., 2018), a protein database UniProt (Consor-
tium, 2020), and a chemical substance database
Comparative Toxicogenomics Database (CTD)
(Davis et al., 2020). From these databases, we
extract about 33 million articles, about 500 thou-
sand drug entries, and about 570 thousand protein
entries to create distant supervision data. In the fol-
lowing, we explain the process of building distant
supervision data using these databases.

First, drug and protein entities are extracted from
the medical literature in PubMed, as shown in Fig-
ure 1-(i). Sentence segmentation and entity extrac-
tion modules in SciSpacy (Neumann et al., 2019),
a tool specialized for processing biomedical and
scientific literature, are used to analyze the medi-
cal literature and extract drug entities and protein
entities as named entities in the literature.

Next, we create relational triples as shown in
Figure 1-(ii). ID relation triples are extracted from
DrugBank. Here, an ID relation triple is a triple
of drug ID, relation name, and protein ID. We cre-
ate relation triples from the ID relation triples by
mapping the IDs to their names using drug and
protein name dictionaries. The drug name dictio-
nary is created by mapping drug IDs to drug names
and its synonyms on the information in DrugBank
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Target drug Target protein

Preprocessed input sentence

androstenedione  aromatase The PROTEIN enzyme, which converts DRUG to oestrone, regulates the availability
of oestrogen so support the growth of hormone-dependent beast tumours.

oestrone aromatase The PROTEIN enzyme, which converts androstenedione to DRUG, regulates the
availability of oestrogen so support the growth of hormone-dependent beast tumours.

oestrogen aromatase The PROTEIN enzyme, which converts androstenedione to oestrone, regulates the

availability of DRUG so support the growth of hormone-dependent beast tumours.

Table 1: Examples of preprocessing of drug-protein pairs in the sentence The aromatase enzyme, which converts
androstenedione to oestrone, regulates the availability of oestrogen so support the growth of hormone-dependent

beast tumours. (PMID:15341993)

DrugBank

ligand, binder, binding
partial agonist

inverse agonist

DrugProt

DIRECT-REGULATOR
AGONIST-ACTIVATOR
AGONIST-INHIBITOR

blocker, partial antagonist ANTAGONIST
inducer, stimulator INDIRECT
-UPREGULATOR
product of PRODUCT-OF
activator ACTIVATOR
inhibitor INHIBITOR
agonist AGONIST
antagonist ANTAGONIST
substrate SUBSTRATE

Table 2: Mapping of relationships

and CTD. Similarly, a protein name dictionary is
created from UniProt and CTD.

Then, as shown in Figure 1-(iii), the distant super-
vision data is created by strict matching the named
entities extracted from the PubMed literature with
drug and protein names in the relation triples after
lowercasing the entities and names.

Finally, as shown in Figure 1-(iv), we map the
relation types in DrugBank, which are the original
labels of the distant supervision data, to the relation
types in the DrugProt task (Krallinger et al., 2021)
using a mapping dictionary as shown in Table 2.
We manually build the mapping dictionary based
on the relation annotation guideline (Rabal et al.,
2021) in the DrugProt corpus.

2.3 Relation Extraction Using Distantly
Supervised Models

We propose two alternatives to utilize the dis-
tantly supervised model. One is the ini-
tialization approach that initializes the super-
vised model with the distantly supervised model
(Initialization), and the other is the mixture
approach that combines representations obtained
from a fixed distantly supervised model and rep-
resentations obtained from a supervised model in
training the supervised model (Mixture).

2.3.1 Initialization

In the task of natural language processing, pre-
training on datasets close to the domain sometimes
improves the performance of the model on the tar-
get dataset. (Beltagy et al., 2019b) Following this
line, for Initialization, we perform pretrain-
ing using distant supervision data to initialize the
model for supervised learning. Specifically, we
first train the relation extraction model described in
Section 2.1 using the distant supervision data, use
the model parameters to initialize another relation
extraction model for supervised learning, and then
train the relation extraction model using manually
annotated training data.

2.3.2 Mixture

For Mixture, we pretrain a relation extraction
model explained in Section 2.1 using distant su-
pervision data to extract additional features from
the input. Similarly, another relation extraction
model is pretrained with manually annotated train-
ing data'. The two pretrained feature extraction
models, i.e., BERT, are used to mix the feature
representations. In training, the feature extraction
model pretrained on the distant supervision data is
fixed, while the feature extraction model trained on
the manually annotated training data is not fixed
and further fine-tuned?.

Predictions are made by mixing representations
obtained from the model pretrained with distant
supervision data and representations obtained from
the model that is specific to supervised training
with manually annotated training data as shown in
Figure 2. We propose two mixing methods that
use the importance weights of the representations,
which mix the representations obtained from dis-

'"We find this pretraining can improve the performance in
our preliminary experiments.

%In our preliminary experiments, we tried to fine-tune the
feature extraction model pretrained on the distant supervision
data, but the performance with the model was lower than one
with fixed parameters.
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Number of
Medical literature documents:
database 33 million

Drugs: 500 thousand

Drugs and proteins Proteins: 570 thousand
database

(i ) Extract technical terms

* (i) Create relation triples

and partial agonist activity (PAA).

|
[ [
Acebutolol possesses both ADRB1 selectivity Drug : Acebutolol
Protein : ADRB1

Dictionary

Relation : Partial agonist
iii ) Match

1

I

Acebutolol possesses both ADRB1 selectivity u
and partial agonist activity (PAA).

; . (iv) Map
partial agonist =——— AGONIST-ACTIVATOR

DrugProt
DIRECT-REGULATOR
ANTAGONIST
AGONIST-ACTIVATOR

DrugBank
ligand, binder, binding
blocker, partial antagonist

partial agonist

Figure 1: Overview of the creation of distant supervision data

tant supervision data with those obtained from man-
ually annotated training data.

First, as shown in Figure 2-(i), the representa-
tions hg4s obtained from the fixed BERT model
in the fixed pre-trained distantly supervised model
are mixed with the representations hg, from the
BERT model in another relation extraction model
that is pre-trained on the manually annotated train-
ing data. Next, as shown in Figure 2-(ii), we mix
the representations hgs, hgy. In mixing the repre-
sentations, we propose two mixing methods, Add
and Concat, which are defined as follows:

ahgs + fhsy (D
[Oéhds§ /Bhsv] 2)

hAdd

hC oncat

[-; -] denotes the concatenation of vectors. v and 3
are the importance weights of each feature, which
are scalar-valued parameters that are trained during
training. Here, Add, as shown in Eq. (1), sums hgs
and h g, after multipying the corresponding weight,
which indicate the importance, to each representa-
tion. Concat is mixed by concatenating h4s and
h s, after multiplying weights to the parameters, as
shown in Eq. (2).

Finally, as shown in Figure 2-(iii), the obtained
representations, i.e., hpqq Or Rconcat, are used to
predict the relation between the drug and the pro-
tein with one fully connected layer (FC) and the
softmax function. The model is trained on the
manually annotated training data to minimize the
cross-entropy loss.

3 Experimental Settings

In this section, we explain the settings for the data
sets, tasks and hyper-parameter tuning.

(iii) Predict by mixed
representation

Prediction : AGONIST
FC+ Softmax

(i ) Mix representations
Weighting by

importance Xa

(i) Extract Representation hyg hg,
representations from T LI T-TT O T T LI 11
pretrained feature 4

extraction models BERT BERT

\/Pretrained with

manuallyannotated
trainingdataand
not fixed

Pretrained with
distant supervision

data and fixed manually annotated

training data

Figure 2: Overview of the Mixture of the representa-
tions

We used the data set from the BioCreative VII
Track 1 - Text mining drug and chemical-protein
interactions (DrugProt) (Krallinger et al., 2021)
for the evaluation. This data set is composed of
documents annotated with drug mentions, protein
mentions, and their relations. The DrugProt corpus
consists of train, develop, and test. Since the anno-
tations for the test data are not publicly available,
this study evaluates the model on the development
data. In addition, the distant supervision data built
by the method in Section 2.2 were used to train the
model. The number of instances per relation in the
DrugProt corpus and the distant supervision data
are shown in Table 3. We followed the task setting
of DrugProt. The task is to classify a given pair of
a drug and a protein into 13 relation types or no
relation. We evaluated the performance with the F-
score on each relation type and the micro-averaged
F-score on all relation types. Micro-averaged F-
score is also shown for reference. We used the
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DrugProt Distant
train develop supervision
data
ANTAGONIST 972 218 69,234
AGONIST 659 131 89,704
AGONIST 29 10 875
-ACTIVATOR
AGONIST 13 2 1,107
-INHIBITOR
DIRECT 2,250 458 18,945
-REGULATOR
ACTIVATOR 1,429 246 31,745
INHIBITOR 5,392 1,152 173,400
INDIRECT-DOWN- 1,330 332 0
REGULATOR
INDIRECT-UP- 1,379 302 11,981
REGULATOR
PART-OF 88 625 0
PRODUCT-OF 921 158 1,565
SUBSTRATE 2,003 495 2,311
SUBSTRATE 25 3 0
_PRODUCT-OF
Total 17,288 3,765 400,867

Table 3: The number of instances per relation in the
DrugProt corpus and the distant supervision data

official evaluation script® provided by the task or-
ganizers.

We used the Successive Halving Algorithm from
the open-source hyper-parameter auto-optimization
framework Optuna (Akiba et al., 2019) for hyper-
parameter tuning. We chose the dropout rate from
the region of [0.0, 0.5], the learning rate of Adam
from the region of [1e-6, 1e-4], the weight decay
of Adam from the region of [1e-10, 1e-3]. Hyper-
parameters are determined by a parameter search
to maximize the micro-averaged F-score on the
development data of the DrugProt corpus®.

4 Results

To evaluate the proposed method, we conducted
three experiments: evaluation of the performance
of extracting drug-protein relations, analysis of pre-
diction results, and comparison of extraction perfor-
mance on small-scale manually annotated training
data. In this section, we describe these three exper-
iments.

4.1 Drug-Protein Relation Extraction

We conducted experiments to compare the extrac-
tion performance of the proposed method with a

*https://github.com/tonifuc3m/
drugprot-evaluation-library

“This setting can cause overfitting to the development data
sets, but since this is an official development set, we decided
to report the best score to make the scores comparable to other
methods in the shared task.

baseline trained only on manually annotated train-
ing data. As the baselines, we trained relation
extraction models based on PubMedBERT and
BioRoBERTa-large, both of which were pretrained
in a domain close to the dataset, with manually an-
notated training data. BloRoBERTa-large is a large-
scale pretrained model with a parameter size ap-
proximately three times larger than PubMedBERT.
The baseline model with BioRoBERTa-large is
the same as the model by Yoon et al. (2021) that
achieved the high performance of 77.46% on the
development data without external knowledge. >
The results are shown in Table 4. First, we
focus on the performance of the proposed meth-
ods when they are applied to the PubMedBERT
baseline model. For all the proposed methods,
the prediction performance for AGONISTand
PRODUCT-OF, which have less manually an-
notated training data, is greatly improved. This
is because the representations obtained from the
distantly supervised model can compensate for
the lack of manually annotated data. Besides,
the performance of AGONIST-ACTIVATORand
AGONIST-INHIBITOR, which have particularly
less manually annotated training data, was signifi-
cantly improved by Initialization, but not
by Mixture. This shows that the representations
obtained from the distantly supervised model with
Initializationmore directly influenced the
performance than those with Mixture. In addi-
tion, Add and Concat, which mixed the represen-
tations from the distantly supervised model data
with the representations specific to the supervised
model, improved the micro-averaged F scores by
0.6 and 0.8 points, respectively. This indicates that
Mixture is a more effective way to use distantly
supervised model than Tnitialization.
Next, we discuss the performance of the pro-
posed method for the BioRoBERTa baseline. Over-
all, the proposed method improves the micro-
averaged F-score by 0.5 points. Furthermore, when
we compare the F-score of each relation, the per-
formance of all relations except ACTIVATOR,
ANTAGONIST, and SUBSTRATE is improved
or maintained. From these results with two dif-
ferent BERT models, we show that the proposed

SWeger et al. (Weber et al., 2021) showed a slightly better
performance with 78.3% on the development data by adding
input start and end markers for target entities in the sentences,
instead of masking the target entities like us. Since our main
focus is not investigating a better baseline model, we leave
investigating the representation of target entities for future
work.
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method can improve the performance regardless of
the parameter size of the model.

4.2 Analysis of Prediction Results

We show the confusion matrices between gold la-
bels and predicted labels by the baseline and the
proposed method to analyze the prediction ten-
dency of the two methods, and visually check the
prediction cases. The confusion matrix is a table
that visualizes the differences in two different sets
of labels for instances. It has gold labels in the
row direction and predicted labels in the column di-
rection, and each element has the number of cases
for the pair of gold and predicted labels. For the
proposed method, we used a model that employs
Mixture with Concat, which showed the best
performance improvement from the baseline in the
approach to utilize the distantly supervised model
as shown in Section 4.1, based on PubMedBERT.
The confusion matrices of the baseline and the pro-
posed method are shown in Figure 3. The left and
right confusion matrices are for the baseline and
the proposed method, respectively.

First, we focus on the cases of different predic-
tions in relation types. We can see that the number
of cases that the proposed method mistakenly pre-
dicts INHIBITOR for DIRECT-REGULATOR
is reduced from 14 to 2. Some example cases,
where the predictions are improved by the proposed
method, are shown in Table 5. The reason for the in-
correct prediction by the baseline model is that the
sentence contains “inhibit”, “inhibited”, and “inhi-
bition”, which are important for predicting the IN-
HIBITOR type. For these cases, the baseline may
predict the relations as INHIBITOR even though
the sentence indicated DIRECT-REGULATOR
between DRUG and PROTEIN entities. The rea-
son why the proposed method was able to correctly
predict such cases may be that the proposed method
uses representation obtained from distantly super-
vised models that are trained on large-scale distant
supervision data, and thus places more emphasis
on the context than on word-level expressions.

Conversely, the number of cases in which
the proposed method predicted INHIBITOR
for the instances with the gold INDIRECT-
DOWNREGULATOR type has increased from 19
to 25. The cases where the baseline made a correct
prediction and the proposed method made a wrong
prediction are shown in Table 6. The reason why
the proposed method made such incorrect predic-

tions in these cases may also be due to the existence
of inhibit, inhibited, and inhibition in the sentences,
which are important for predicting INHIBITOR,
similarly to the baseline’s wrong predictions for the
cases in Table 5. This is because the sentence con-
tains “inhibit”, “inhibited”, and “inhibition”, which
are important for predicting both INHIBITOR
and INDIRECT-DOWNREGULATOR. Further-
more, the context of the cases is similar because
these types are both related to the cases that drugs
inhibit proteins. Therefore, the proposed method
is likely to make INHIBITOR predictions based
on such keywords for cases that the prediction is
difficult with the context, without much consider-
ation on the differences in the actions of drugs on
proteins.

Then, we focus on the cases where the miss pre-
diction is made between a relation type and a neg-
ative type. We can see that the proposed method
reduces the number of cases in which the nega-
tive examples are mistakenly predicted as the IN-
HIBITOR type from 204 to 178, the number of
cases in which the negative examples are mistak-
enly predicted as PRODUCT-OF from 70 to 44,
and the number of cases in which the negative ex-
amples are mistakenly predicted as SUBSTRATE
from 142 to 86. The cases, where the baseline incor-
rectly predicted the negative cases as PRODUCT-
OF while the proposed method correctly predicted
them, are shown in Table 7. The numbers of im-
proved cases and example cases suggest that the
proposed method is more context-sensitive in its
prediction than the baseline model.

These results suggest that the proposed method
places more emphasis on contextual expression
than on word expressions in making predictions
compared to the baseline models. However, for
cases where it is difficult to make predictions based
on context, we found that the proposed method
made incorrect predictions.

4.3 Performance Comparison with
Small-Scale Manually Annotated Training
Data

This section examines the effectiveness of the pro-
posed method in training with small-scale manu-
ally annotated training data. We aim to improve the
performance of drug-protein interaction extraction
while reducing the cost of creating additional man-
ually annotated training data by utilizing distant
supervision data that have low creation costs. In
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PubMedBERT BioRoBERTa #Manually-
Manual Distant +Init + Mix + Mix | Manual + Mix annotated
data data (Add) (Concat) data  (Concat) instances
INDIRECT 76.7 0.0 74.6 77.7 78.7 79.3 79.9 1,330
-DOWNREGULATOR
INDIRECT-UPREGULATOR 73.3 1.9 75.1 73.7 73.6 75.6 76.2 1,379
DIRECT-REGULATOR 65.9 6.1 62.1 66.9 67.7 66.9 69.4 2,250
ACTIVATOR 71.3 5.2 70.6 77.5 76.7 75.7 73.8 1,429
INHIBITOR 84.2 29.4 84.7 84.6 84.3 85.1 86.1 5,392
AGONIST 75.5 6.7 79.7 78.2 77.0 76.1 77.2 659
AGONIST-ACTIVATOR 0.0 0.0 46.2 0.0 0.0 0.0 0.0 29
AGONIST-INHIBITOR 0.0 0.0 80.0 0.0 0.0 0.0 0.0 13
ANTAGONIST 90.6 26.0 89.6 92.2 91.8 91.7 90.2 972
PRODUCT-OF 59.0 10.6 63.7 62.9 62.5 61.2 62.0 921
SUBSTRATE 69.5 13.1 69.1 68.4 69.9 72.7 71.8 2,003
SUBSTRATE_PRODUCT-OF 0.0 0.0 0.0 0.0 0.0 0.0 0.0 25
PART-OF 71.7 0.0 70.6 72.2 71.7 72.8 74.4 886
Macro-averaged F-score 57.2 7.6 66.6 58.0 58.0 58.2 58.5 —
Micro-averaged F-score 76.2 16.6 75.6 76.8 77.0 71.5 78.0 —

Table 4: Relation extraction performance on the development data set. +Init, +Mix (Add), and +Mix (Concat)
denote Initialization, Add of Mixture, and Concat of Mixture, respectively

DRUG inhibit ( 125 ) i - PROTEIN binding to recombinant rat eta receptors.

N - ( diphenylmethyl ) - 2 - phenyl - 4 - quinazolinamine ( DRUG ), n - ( 2, 2 - diphenylethyl )
- 2 - phenyl - 4 - quinazolinamine ( sori - 20040 ), and n - ( 3, 3 - diphenylpropyl ) - 2 - phenyl
- 4 - quinazolinamine ( sori - 20041 ) partially inhibited [ ( 125 )i ] 3beta - ( 4’- iodophenyl )
tropan - 2beta - carboxylic acid methyl ester ( rti - 55 ) binding, slowed the dissociation rate
of [ (125 )i ] rti - 55 from the PROTEIN, and partially inhibited [ ( 3 ) h ] dopamine uptake.

DRUG ( parent compound ), has moderate affinity for the PROTEIN ( competitive inhibition ).

Table 5: Improved cases with wrong predictions by the baseline model. The baseline model mistakenly predicted
INHIBITOR for DIRECT-REGULATOR for the DRUG and PROTEIN pairs.

Section 4.1, we trained models using all manually
annotated training data and confirmed that the pro-
posed method can improve the performance of the
baseline models. To verify the effectiveness of the
proposed method in training with a small amount
of manually annotated training data, we trained
with only a small portion of the manually anno-
tated training data and compared the performance
of relation extraction between the PubMedBERT
baseline model and the model with the proposed
method. We checked the performance of the pro-
posed method on the development data when the
model was trained with the small number of cases,
we chose the number from [3, 5, 7, 10, 20, 50, 100,
200, 500, 1,000], for each relation in the manually
annotated training data. For the proposed method,
we used a model that mixes feature representations
with Concat, which showed the best performance
improvement from the baseline with Section 4.1.

The results are shown in Figure 4. As in the case
of Section 4.1, we did not obtain a significant per-
formance improvement over the baseline as we saw
when training with all manually annotated training

data, but the performance consistently improved
for all the cases. This indicates that the proposed
method can improve performance by using repre-
sentations obtained from the distantly supervised
model, regardless of the number of cases of manu-
ally annotated training data.

5 Conclusions

We aimed to improve the performance of drug-
protein relation extraction by creating distant su-
pervision data at low cost and utilizing the model
pre-trained on the data while reducing the noise
contained in the distant supervision data. We pro-
posed two methods of utilizing distant supervision
data. Both methods improved the prediction perfor-
mance from the baseline for relation types with less
manually annotated training data. In addition, the
method that mixes representations also improved
the F-scores for many relation types, some of them
have a large amount of manually annotated training
data, as well as the micro-averaged F-score, demon-
strating the effectiveness of the proposed method.
In addition, we showed that the performance im-
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The upregulation of calpain, PROTEIN and caspase - 3 activity were further inhibited
by treatment with DRUG in the presence of ald.

The mechanism of action of DRUG was related to the inhibition of the cleavage of pro
- caspase - 1, PROTEIN and pro - il - 18 which in turn suppressed the activation of

nlrp3 inflammasome.

Table 6: Deteriorated cases with wrong predictions by the proposed model. The model wrongly predicted
INHIBITOR, instead of INDIRECT-DOWNREGULATOR, for the DRUG and PROTEIN pairs.

77.0976.2
70
63.2
60 59.4+<7T9.3 624
54.1 £ 4
< 50 :
) 4935 4s s
% 40 4157414
.§ 30 33.4,733.2
25.2
213 20.8
20 17.2 .
10 13.4 177 Baseline
74 Proposed method
0 2.0
3 5 7 10 20 50 100 200 500 1000 All data

The number of cases for each relation in the manually
annotated training data

Figure 4: Micro-averaged F-scores for the number of
manually annotated training instances for each relation

type

provement was independent of the parameter size
of the model and the number of cases of manually
annotated training data.

To improve the extraction performance, we plan
to investigate the Mixture method for its way of
mixing representations and pretraing.

Acknowledgements

This work was supported by JSPS Grant-in-Aid for
Scientific Research JP20K11962.

References

Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru
Ohta, and Masanori Koyama. 2019. Optuna: A next-
generation hyperparameter optimization framework.
In Proceedings of the 25rd ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data
Mining.

1z Beltagy, Kyle Lo, and Waleed Ammar. 2019a. Com-
bining distant and direct supervision for neural re-
lation extraction. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Pa-
pers), pages 1858—1867, Minneapolis, Minnesota.
Association for Computational Linguistics.

Iz Beltagy, Kyle Lo, and Arman Cohan. 2019b. Scib-
ert: Pretrained language model for scientific text. In
EMNLP.

168



The structures solved after the diffusion of oligosaccharides ( either maltotetraose, g4 or
maltopentaose, g5 ) into PROTEIN / glc1p crystals show the formation of DRUG and

elongation of the oligosaccharide chain

DRUG biosynthesis in plants : molecular and functional characterization of PROTEIN
and three isoforms of folylpolyglutamate synthetase in arabidopsis thaliana.

Knockdown of nadph oxidase, nox5 - s, a variant lacking calcium - binding domains,
by noxS5 sirna significantly inhibited acid - induced increase in PROTEIN expression,
thymidine incorporation, and DRUG production.

Table 7: Improved cases with wrong predictions by the baseline model. The baseline model mistakenly predicted
PRODUCT-PRODUCT-OF for the negative DRUG and PROTEIN pairs.

The UniProt Consortium. 2020. UniProt: the univer-
sal protein knowledgebase in 2021. Nucleic Acids
Research, 49(D1):D480-D489.

NCBI Resource Coordinators. 2016. Database re-
sources of the national center for biotechnology in-
formation. Nucleic Acids Res.

Allan Peter Davis, Cynthia J Grondin, Robin J Johnson,
Daniela Sciaky, Jolene Wiegers, Thomas C Wiegers,
and Carolyn J Mattingly. 2020. Comparative Toxi-
cogenomics Database (CTD): update 2021. Nucleic
Acids Research, 49(D1):D1138-D1143.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing.

Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A,
Grant JR, Sajed T, Johnson D, Li C, Sayeeda Z, As-
sempour N, Iynkkaran I, Liu Y, Maciejewski A, Gale
N, Wilson A, Chin L, Cummings R, Le D, Pon A,
Knox C, and Wilson M. 2018. Drugbank 5.0: a major
update to the drugbank database for 2018. Nucleic
Acids Res.

Yu Gu, Robert Tinn, Hao Cheng, Michael Lucas, Naoto
Usuyama, Xiaodong Liu, Tristan Naumann, Jianfeng
Gao, and Hoifung Poon. 2022. Domain-specific lan-
guage model pretraining for biomedical natural lan-
guage processing. ACM Transactions on Computing
for Healthcare, 3(1):1-23.

Guoliang Ji, Kang Liu, Shizhu He, and Jun Zhao.
2017. Distant supervision for relation extraction
with sentence-level attention and entity descriptions.
Proceedings of the AAAI Conference on Artificial
Intelligence, 31(1).

Diederik Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In Proceedings
of the 3rd International Conference for Learning Rep-
resentations.

Martin Krallinger, Obdulia Rabal, Saber Ahmad
Akhondi, Martin Pérez Pérez, Jesus Santamaria,
Gael Pérez Rodriguez, Georgios Tsatsaronis, Ander
Intxaurrondo, José Antonio Baso Lépez, Umesh K.
Nandal, Erin M. van Buel, Anjana Chandrasekhar,

Marleen Rodenburg, Astrid Lagreid, Marius A.
Doornenbal, Julen Oyarzédbal, Andlia Lourengo, and
Alfonso Valencia. 2017. Overview of the biocreative
vi chemical-protein interaction track.

Martin Krallinger, Obdulia Rabal, Antonio Miranda-
Escalada, and Alfonso Valencia. 2021. DrugProt
corpus: Biocreative VII Track 1 - Text mining drug
and chemical-protein interactions.

Patrick Lewis, Myle Ott, Jingfei Du, and Veselin Stoy-
anov. 2020. Pretrained language models for biomedi-
cal and clinical tasks: Understanding and extending
the state-of-the-art. In Proceedings of the 3rd Clini-
cal Natural Language Processing Workshop, pages
146-157, Online. Association for Computational Lin-
guistics.

Mike Mintz, Steven Bills, Rion Snow, and Daniel Ju-
rafsky. 2009. Distant supervision for relation ex-
traction without labeled data. In Proceedings of the
Joint Conference of the 47th Annual Meeting of the
ACL and the 4th International Joint Conference on
Natural Language Processing of the AFNLP, pages
1003-1011, Suntec, Singapore. Association for Com-
putational Linguistics.

Mark Neumann, Daniel King, 1z Beltagy, and Waleed
Ammar. 2019. ScispaCy: Fast and Robust Models
for Biomedical Natural Language Processing. In Pro-
ceedings of the 18th BioNLP Workshop and Shared
Task, pages 319-327, Florence, Italy. Association for
Computational Linguistics.

Obdulia Rabal, Jose Antonio Lopez, Astrid Lagreid, and
Martin Krallinger. 2021. DrugProt corpus relation
annotation guidelines [ChemProt - Biocreative VI].

Sebastian Riedel, Limin Yao, and Andrew McCallum.
2010. Modeling relations and their mentions without
labeled text. In Machine Learning and Knowledge
Discovery in Databases, pages 148—163, Berlin, Hei-
delberg. Springer Berlin Heidelberg.

Leon Weber, Mario Singer, Samuele Garda, Fabio
Barth, Christoph Alt, and Ulf Leser. 2021. Hum-
boldt@ drugprot: Chemical-protein relation extrac-
tion with pretrained transformers and entity descrip-
tions. In Proceedings of the BioCreative VII Chal-
lenge Evaluation Workshop.

169



Wonjin Yoon, Sean Yi, Richard Jackson, Hyunjae Kim,
Sunkyu Kim, and Jaewoo Kang. 2021. Using knowl-
edge base to refine data augmentation for biomedical
relation extraction. In Proceedings of the BioCreative
VII Challenge Evaluation Workshop.

Daojian Zeng, Kang Liu, Yubo Chen, and Jun Zhao.
2015. Distant supervision for relation extraction via
piecewise convolutional neural networks. In Proceed-
ings of the 2015 Conference on Empirical Methods
in Natural Language Processing, pages 1753-1762,
Lisbon, Portugal. Association for Computational Lin-
guistics.

170



Named Entity Recognition for Cancer Immunology Research
Using Distant Supervision

Hai-Long Trieu 3, Makoto Miwa ? and Sophia Ananiadou 3
! Artificial Intelligence Research Center (AIRC),
National Institute of Advanced Industrial Science and Technology (AIST), Japan
2Toyota Technological Institute, Japan
3National Centre for Text Mining, University of Manchester, United Kingdom
long.trieu@aist.go. jp, makoto—-miwa@toyota-ti.ac. jp,
sophia.ananiadou@manchester.ac.uk

Abstract

Cancer immunology research involves several
important cell and protein factors. Extract-
ing the information of such cells and proteins
and the interactions between them from text
are crucial in text mining for cancer immunol-
ogy research. However, there are few avail-
able datasets for these entities, and the amount
of annotated documents is not sufficient com-
pared with other major named entity types. In
this work, we introduce our automatically anno-
tated dataset of key named entities, i.e., T-cells,
cytokines, and transcription factors, which en-
gages the recent cancer immunotherapy. The
entities are annotated based on the UniProtKB
knowledge base using dictionary matching. We
build a neural named entity recognition (NER)
model to be trained on this dataset and evaluate
it on a manually-annotated data. Experimen-
tal results show that we can achieve a promis-
ing NER performance even though our data is
automatically annotated. Our dataset also en-
hances the NER performance when combined
with existing data, especially gaining improve-
ment in yet investigated named entities such as
cytokines and transcription factors.

1 Introduction

Cancer immunology research has a central focus on
T lymphocytes (T-cells), which engage the immune
system in fighting against cancer (Luckheeram
etal., 2012; Waldman et al., 2020; Kim et al., 2021).
The development of T-cells can be guided by cy-
tokines and transcription factors (Hosokawa and
Rothenberg, 2018). Transcription factors (TF) are
nuclear proteins that bind specific gene sequences
and involved in decision-making processes dur-
ing T-cell differentiation (Naito et al., 2011; Xia
et al.,, 2019). Meanwhile, cyrokines are signal-
ing molecules secreted and sensed by immune and
other cell types (Kveler et al., 2018). Extracting
T-cell, cytokine, and TF entities and the interac-
tions between them can be crucial for text mining
in cancer immunology research.
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However, there are few existing datasets contain-
ing these entities to train text mining models. At the
core of text mining tasks, the named entity recogni-
tion (NER) task also lacks such datasets for training
NER models to detect these named entities, which
may limit the development of text mining systems
in this cancer immunology research field. There
is an existing T-cell related named entity dataset
called TCRE (Czech and Hammerbacher, 2019),
but the amount of annotated data is also limited
to only 89 documents. Several knowledge bases
related to immune system have been proposed such
as immuneXpresso (Kveler et al., 2018) and DES-
Tcell (AlSaieedi et al., 2021), which contain cell
type and cytokine information, but they lack utiliz-
ing and evaluating with modern NER models on
these named entities.

In this paper, as a step to fill these gaps and
promote the development of text mining systems
on these named entities in cancer immunology re-
search articles, we present our automatically anno-
tated dataset containing named entities of T-cell,
cytokine and TF, which are important for mining
and understanding cancer immunology research
articles. The entities in the dataset are automati-
cally annotated using dictionary matching based
on the UniProtKB (UniProt-Consortium, 2021),
a knowledgebase of protein sequences with func-
tional information.! From the annotations of cy-
tokine and TF entries in UniProtKB, a dictionary
is constructed to annotate cytokine and TF named
entities in their referenced PubMed articles. Addi-
tionally, we utilized the existing JNLPBA corpus,
which contains manually annotated protein named
entities, to annotate cytokine and TF entities. We
build a NER model based on the span-based model
with pre-trained BERT. We trained the NER model
on our automatically annotated dataset and evalu-
ated the model on an existing manually annotated
T-cell related named entity TCRE dataset (Czech

"https://www.uniprot.org/uniprot/
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Item cytokine TF Data #Docs. #Entities

# UniProtKB entries 1,001 3,418 CT CY TF

# Dictionary size 6,859 20,055 KB-T-cell 386 340 744 2,891

# Collected articles 585 1,903 Dic-T-cell 761 | 2,686 1,752 2,686
TCRE 89 | 1,006 235 114

Table 1: UniProtKB entries and annotated data

and Hammerbacher, 2019). We achieve a promis-
ing result that the NER model trained on our au-
tomatically annotated data gains a slightly lower
performance than a supervised NER model trained
on a manually annotated data, although our data
is automatically annotated. Furthermore, our data
enhances NER performance when combined with
the existing manually annotated data.

2 Approach

We present our datasets containing three named
entity types: cell_type, cytokine, and transcription
factor (TF). The datasets are automatically anno-
tated using dictionary matching with the entries in
the UniProtKB in two different ways.

2.1 UniProtKB

Cytokine and TF queries From the UniProtKB,
we obtain entries by querying cytokine. We fil-
tered the options to keep only Reviewed annotations
(manually annotated, added by expert biocuration
team) and for Human organism. Similarly, we con-
ducted for transcription factor. They are equivalent
to the following queries.

* cytokine AND reviewed:yes AND organ-
ism:"Homo sapiens (Human) [9606]".

* transcription factor AND reviewed:yes AND
organism:"Homo sapiens (Human) [9606]"

UniProtKB entries We obtained 1,001 entries
for cytokine and 3,418 entries for TF from UniPro-
tKB. Each entry contains protein names, gene
names, and referenced PubMed articles, etc.

UniProtKB-dictionary We built a dictionary
containing protein and gene names of the cytokine
and TF entries in UniProtKB, which we named
UniProtKB-dictionary.

Collecting PubMed references For each UniPro-
tKB entry, there is a list of referenced PubMed ar-
ticles. We collect the referenced articles’ abstract
texts from PubMed for each entry. Since there is
a large number of references, we only collect the

Table 2: Statistics of the datasets (Docs: documents;
CT (cell type), CY (cytokine), TF (transcription factor))

abstracts that contain a large number (> k) of cy-
tokine/TF protein and gene names (we set k = 20,
which we based on several preliminary experiments
to remove abstracts containing few annotations).
We present the statistics of UniProtKB entries and
related annotated data in Table 1.

2.2 Automatically Annotated Datasets

We constructed two automatically annotated
datasets using the UniProtKB-dictionary. The
statistics for automatically annotated datasets are
presented in Table 2.

2.2.1 Knowledge-based Annotation
(KB-T-cell)

Annotating cytokine and TF From the UniPro-
tKB dictionary, we identify the position of each
name in the collected articles by strict text match-
ing to annotate cytokine and TF named entities.

Annotating  cell_type We  found that
JNLPBA (Collier and Kim, 2004) is a large
manually annotated dataset for NER, which
contains named entities of cell_type, protein, etc.
Therefore, we utilized the JINLPBA data to train
a NER model to predict cell_type named entities
in the collected articles. We build a neural-based
NER method with span-based and pre-trained
BERT model, which we present in §3. These
cell_type entities are combined with the cytokine
and TF named entities, and we named KB-T-cell.

2.2.2 Dictionary-based Re-annotation
(Dic-T-cell)

Since the INLPBA dataset contains protein enti-
ties while CT and TF are proteins, we utilized the
annotated protein names in the JNLPBA to anno-
tate cytokine and TF entities. Specifically, if an
annotated protein name in the JNLPBA is included
in the UniProtKB-dictionary, we re-annotate it as
cytokine or TF, correspondingly. We ignored doc-
uments which do not contain any matched CT/TF
entity. We named this dataset as Dic-T-cell.
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3 NER model

We explain the NER model to be trained on the an-
notated datasets. We build a neural-based NER
model using a span-based method (Lee et al.,
2017; Luan et al., 2018) and finetuned pre-trained
BERT (Devlin et al., 2019). Specifically, each sen-
tence is split into sub-word sequences, which are
passed through the BERT layer for contextual rep-
resentations. Then, for each span (i.e., a sequence
of continuous words in a sentence), its representa-
tion is calculated by concatenating the representa-
tions of the first, last, and averaged sub-words of
the span, which follows (Sohrab and Miwa, 2018a;
Trieu et al., 2020). Finally, each span representa-
tion is passed to classifiers to predict named entity
types for each span.

4 Experiments

4.1 Data

We used our datasets KB-T-cell and Dic-T-cell to
train NER models using the NER model introduced
in §3 and evaluated NER performance.

TCRE For evaluation data, we employed the
TCRE (Czech and Hammerbacher, 2019), an ex-
isting manually annotated data which contains 89
documents of cell_type, cytokine, and TF named
entities. We utilized this data for training super-
vised NER models and for evaluation. The original
TCRE dataset contains a mixture of both abstract
and full-text documents. For the scope of this pa-
per, we aim at utilizing only abstracts from both
UniProtKB’s references and JNLPBA data. There-
fore, we used only the abstract documents and the
abstract section of full-text documents from the
TCRE data.

The data statistics of the datasets are presented
in Table 2.

4.2 Settings

Cross validation We conducted k-fold cross val-
idation evaluation on the TCRE dataset. Since the
TCRE data size is quite small, we set k = 3 to
ensure a reasonable amount of data in the test set.
For each fold, we further randomly split the train-
ing set into train/development sets so that we can
tune hyper-parameters to get the best models on the
development set. Finally, all of our reported results
are based on the TCRE test set in each fold.

NER training settings Our model was imple-
mented on PyTorch (Paszke et al., 2017). We

used the BERT model from the PyTorch Pretrained
BERT repository? as our BERT layer. We em-
ployed the pre-trained SciBERT model (Beltagy
et al., 2019) trained on large-scale biomedical texts.
The model is trained on multiple GPUs in the
Al Bridging Cloud Infrastructure (ABCI)3. We
train the model with the Adam optimizer (Kingma
and Ba, 2015), gradient clipping, dropout, and L.2
regularization. The model is trained with early-
stopping, and the training mini-batch size is set as
16.

Evaluation settings We compared the following
NER models, which mostly differ in the training
data settings.

1. Matching-NER: we created a baseline using
dictionary matching. The dictionary is built
from the entity’s texts of the JNLPBA train-
ing data (for cell_type) and the UniProtKB-
dictionary for cytokine and TF.

2. Supervised-NER: we used the training set of
the TCRE data to train the NER model.

3. KB-NER, Dic-NER, KB-Dic-NER: we train
the NER models on our annotated datasets:
KB-T-cell, Dic-T-cell, and merged the KB-T-
cell and Dic-T-cell, respectively.

4. Enhanced-KB-NER, Enhanced-Dic-NER,
Enhanced-KB-Dic-NER: we merge the train-
ing set of the TCRE with the KB-T-cell, Dic-
T-cell, and merged KB-T-cell and Dic-T-cell,
respectively, to train NER models.

The results are reported based on the commonly
used micro-averaged precision (P), recall (R), and
F-score (F) metrics at entity level.

4.3 Results

We compare the results of different NER models
on each data fold in Table 3.

Enhancement Using our automatically anno-
tated dataset, we achieved the best perfor-
mance with 2-5% point improvements in F-
score (Enhanced-KB-NER) in comparison with the
Supervised-NER in all of the data folds.

https://github.com/huggingface/
pytorch-pretrained-BERT/tree/34cf67fdo6e
*https://abci.ai/
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Fold-1 Fold-2 Fold-3
Model P R F P R F P R F
Matching-NER 3088 66.16 49.76 | 39.54 68.63 50.17 | 38.05 6927 49.12
Supervised-NER 68.67 6692 67.78 | 7092 7075 70.84 | 73.36 7423 73.80
KB-NER 6455 6209 6329 | 7134 5401 6148 | 63.85 5721 6035
Dic-NER 63.19 61.58 62.37 | 66.67 6038 63.37 | 67.00 6430 65.62
KB-Dic-NER 6533 66.16 6574 | 71.74 6226 66.67 | 67.07 6548 6627
Enhanced-KB-NER 72.98 73.54 7326 | 75.12 76.89 75.99 | 75.71 75.89 75.80
Enhanced-Dic-NER 7111 7202 7155 | 7014 73.11 71.59 | 7323 75.65 74.42
Enhanced-KB-Dic-NER | 72.18 7328 7273 | 72.86 72.17 7251 | 7413 75.18 74.65

Table 3: Comparison NER results of the models (the best scores are in bold)

Model Fold-1 Fold-2 Fold-3
CT CY TF CT CY TF CT CY TF

Matching-NER 65.18 145 15.07 | 6642 6.00 18.44 | 6596 6.86 597
Supervised-NER 71.22 56.64 41.18 | 76.36 5636 32.14 | 76.15 6545 57.78
KB-NER 69.57 3146 5238 7370 1895 0.00 | 70.79 20.95 8.00
Dic-NER 7281 333 0.00 | 79.50 5,56 3.03 | 76.00 13.19 0.00
KB-Dic-NER 73.62 2254 3529 |79.21 833 0.00 | 78.06 18.69 8.00
Enhanced-KB-NER 7632 62.50 63.77 | 82.16 60.66 43.48 | 80.65 6891 21.74
Enhanced-Dic-NER 7749 5532 18.18 | 81.61 36.51 39.44 | 79.21 60.34 27.03
Enhanced-KB-Dic-NER | 77.55 64.08 30.77 | 81.33 41.44 37.68 | 80.06 63.64 15.79

Table 4: Results on each entity type in F-score (%). The underline scores are higher than the Supervised-NER’s.

Supervised vs. unsupervised When training
NER models on our automatically annotated
datasets (KB-NER, Dic-NER, KB-Dic-NER), the
performance is lower than the Supervised-NER,
which is trained on a time-consuming manually an-
notated data. The degraded performance is about
5-7% points in F-score, which are acceptable con-
sidering that our datasets are automatically anno-
tated. We can further improve the quality of our
datasets in future work, such as filtering noisy an-
notations.

Dictionary matching Since our automatically
annotated data is based on the dictionary built from
the UniProtKB and INLPBA, we may raise a ques-
tion whether using only the dictionary with the
same vocabulary is still enough. The results of
KB-NER and Dic-NER show that our automati-
cally annotated data can improve from 11-15% in
comparison with the Matching-NER.

KB vs Dic Table 3 also shows that the NER mod-
els based on the KB-T-cell (KB-NER, Enhanced-
KB-NER) obtain higher performance than those
based on the Dic-T-cell (Dic-NER, Enhanced-Dic-
NER). When combining these two datasets, the
performance decreased even though the data size

of the Dic-T-cell is mostly double of the KB-T-cell,
which indicates that we need to investigate a better
combination. Another possible direction can be
filtering noisy annotations of the Dic-T-cell.

4.4 Analyses and Discussions

We further investigate the detailed performance on
each entity type: cell_type, cytokine, and TF. The
results from Table 4 show that the Enhanced-KB-
NER achieves improvements on all entity types
except for the TF entity type in Fold-3.

Comparing the performance among the entity
types