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Abstract

This paper introduces a novel tool to support
and engage English language learners with
feedback on the quality of their argument struc-
tures. We present an approach which automati-
cally detects claim-premise structures and pro-
vides visual feedback to the learner to prompt
them to repair any broken argumentation struc-
tures. To investigate, if our persuasive feedback
on language learners’ essay writing tasks en-
gages and supports them in learning better En-
glish language, we designed the ALEN app (Ar-
gumentation for Learning English). We lever-
age an argumentation mining model trained on
texts written by students and embed it in a writ-
ing support tool which provides students with
feedback in their essay writing process. We
evaluated our tool in two field-studies with a
total of 28 students from a German high school
to investigate the effects of adaptive argumen-
tation feedback on their learning of English.
The quantitative results suggest that using the
ALEN app leads to a high self-efficacy, ease-of-
use, intention to use and perceived usefulness
for students in their English language learning
process. Moreover, the qualitative answers in-
dicate the potential benefits of combining gram-
mar feedback with discourse level argumenta-
tion mining.

1 Introduction

Novel advances from Natural Language Processing
(NLP) and Machine Learning (ML) are increas-
ingly utilized and embedded in learner-centered
writing support tools (e.g., Lauscher et al. (2019);
Wang et al. (2020); Wambsganss et al. (2020a)).
For example, researchers have successfully embed-
ded novel argumentation mining models to identify
persuasive components and their relations in or-
der to provide students adaptive writing feedback
(Lawrence and Reed, 2019; Wambsganss et al.,
2020a). As Jonassen and Kim (2010) highlighted
argumentation learning consists of at least two
different dimensions: a) to train argumentation

skills (learning to argue) and b) to use argumenta-
tion as a dialectical method to achieve other learn-
ing outcomes (arguing to learn), such as critical
thinking, problem-solving or factual knowledge
(Kuhn, 1992; Jonassen and Kim, 2010; Asterhan
and Schwarz, 2016). While the former dimension
of argumentation is steadily investigated in the
context of NLP-based feedback with argumenta-
tion mining on students’ learning processes (e.g.,
Lawrence and Reed (2019); Pardo et al. (2018)),
the latter described learning context bears still
promising potential for NLP-based argumentation
feedback opportunities to foster other learning out-
comes of students (Roz, 2004).

In this vein, Putra et al. (2021) has suggested
that providing English language learners with feed-
back on their essays from a discourse perspective
can enhance text coherence and comprehension.
Nevertheless, little work exists which demonstrates
the embedding of argumentation mining in writing
support tools to investigate the effects of "arguing
to learn”, e.g., to engage and foster secondary lan-
guage learning (Lawrence and Reed, 2019). In fact,
different methods from NLP and ML have been
used to provide students feedback on their gram-
matical errors or syntactical sentence structures
to foster language learning (e.g., White and Ro-
zovskaya (2020); Katinskaia and Yangarber (2021);
Kerz et al. (2021)), but insights on the effects and
concepts of discourse level feedback based on argu-
mentation modelling on students learning process
are few and far between.

Hence, in this paper, we demonstrate the ALEN
app. The learning application provides English lan-
guage learners with discourse level feedback in per-
suasive writing exercises. The underlying model is
trained on a corpus of 1000 student-written texts
to detect claims and premises as well as their rela-
tions (Wambsganss et al., 2020b). To investigate,
if persuasive feedback on language learners’ essay
writing tasks engages and supports them in learning
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Figure 1: Screenshot of the ALEN interface based on the design of Wambsganss et al. (2020a). A English language
learner is conducting a essay exercises and receives visual feedback to repair any broken argumentation structures.

better English language, we evaluated our tool in
two field-studies with 28 students from a German
high school. Our objective is to conduct a proof-of-
concept study to explore the impact of prompting
English language learners to repair any broken ar-
gumentation structure. Hence, we asked students
to conduct an Cambridge English Assessment task
for the language level B2 and use the ALEN app
to write and evaluate their text’s argumentation
level and persuasiveness. Based on the literature
stream of "arguing-to-learn” (e.g., (Jonassen and
Kim, 2010)), our hypothesis is that adaptive argu-
mentation feedback might engage students to eval-
uate their text, reflect about their discourse level
writing and thus learn better English. The results
from our small-scale evaluation provide first sug-
gestions that adaptive argumentation feedback in
English language learners essay writing task leads
to a high self-efficacy, ease-of-use, intention to use
and usefulness for students in their language learn-
ing process. Future work is needed to investigate
the effects of adaptive argumentation support in
large-scale field studies to measure the long-term
learning success on students language learning out-
comes.

2 Related Work

For the most part, NLP and ML have been used in
education technology for language learners in ways
which relate to word-level feedback and text scor-
ing. Popular mobile applications such as Duolingo
tend to focus on vocabulary and phrase learning,

a writing assistant such as Grammarly gives feed-
back on spelling and grammar, as does the essay
practice website Write & Improve whilst also pro-
viding essay scores pinned to the CEFR proficiency
scale (Settles et al., 2020; Nadejde and Tetreault,
2019; Yannakoudakis et al., 2018). At the same
time, there is now a growing interest in providing
automated feedback at the discourse level, and ef-
forts have been made to accumulate and analyse
the training materials needed for feedback on argu-
ment quality — namely with the GAQCorpus (Ng
et al., 2020; Lauscher et al., 2020).

Thus far only a few practical tools have been
developed to provide learners with argumentation
feedback. For instance, MARGOT is available as a
web application and processes a text that is input in
the corresponding editor field (Lippi and Torroni,
2016). The text is analyzed, claims are displayed in
bold font, whereas premises are displayed in italic
style. Or in TARGER a user can analyze the per-
suasive structure of an input text. Chernodub et al.
(2019) trained multiple models on three different
corpora along with three different pre-trained word
embeddings. Thus, the user not only puts in a text
to analyze, but different argumentation models may
be selected. The results are then presented below
the input, with claims being highlighted in red and
premises being marked in green.

Neither MARGOT nor TARGER are easy-to-use
in normal pedagogical scenarios, since the student
has to select from several different models (the nu-
ances of the choices may not be clear) and then
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Figure 2: Overview of our methodology for building the ALEN app.

copy her text into the input field. This excludes
students who are unsure about choosing from dif-
ferent models. Moreover, the models are not all
trained on text extracted from the educational do-
main and therefore, might not be applicable to ev-
ery pedagogical scenarios. Besides, argumentation
mining was successfully embedded in AL (short for
Argumentation Learning), a learner-centered tool
which improved students persuasive writing skills
with adaptive feedback (Wambsganss et al., 2020a).
Moreover, Wambsganss et al. (2021) presented Ar-
gueTutor, a dialogue-based argumentation learning
tool, which tutors students with adaptive scaffolds
and theory-explanation through a persuasive writ-
ing task. However, to the best of our knowledge
literature on the embedding and demonstration of
argumentation mining approach to foster language
learning through engaging students in persuasive
writing exercises are rather rare.

3 Design of ALEN

To build ALEN, we followed a three step methodol-
ogy (see Figure 2). First, we analyzed the current
state of argumentation learning and argumentation
mining achievements in literature. Therefore, we
reviewed multiple papers from the fields of Educa-
tional Technology, such as Pinkwart et al. (2009);
Osborne et al. (2016); Scheuer et al. (2010); Wamb-
sganss et al. (2020a); Wambsganss and Niklaus
(2022); Weber et al. (2021) and NLP, such as
Stab and Gurevych (2014, 2017); Wachsmuth et al.
(2017); Lawrence and Reed (2019); Lippi and
Torroni (2015); Landolt et al. (2021). Our goal
was to gain a broad overview of current systems
and approaches to support language learning with
discourse-level feedback. With these insights, we
guided our next research steps in building and de-
signing ALEN.

Second, we investigated different corpora and
trained models for argument detection and classi-
fication across multiple domains. We started by
searching the literature for a corpus that fulfilled

the following criteria: 1) the corpus contains anno-
tated persuasive student essays, 2) it has a sufficient
corpus size to be able to use the trained model in
a real-world scenario, and 3) the annotations are
based on a rigorous annotation guideline for guid-
ing the annotators towards a moderate agreement.
The business model peer review corpus published
in Wambsganss et al. (2020b) fulfilled all these re-
quirements. The corpus consists of 1000 business
model peer feedback essays written by students
extracted from a large-scale lecture scenario. We
used the algorithm of Wambsganss et al. (2020b),
to train a multi-class classifier on the sentence level
to detect the argument components and their rela-
tions. For argument component classification, a
Support Vector Machine (SVM) achieved the best
results, with an accuracy of 65.4% on the test set.
Regarding the persuasive relation classification, a
binary classification task, an SVM again achieved
the best results on the corpus, obtaining an accu-
racy of 72.1% on the test set. More information on
the model and the replicated features we used can
be found in (Wambsganss et al., 2020b,a).

Third, we designed and built an adaptive writing
support system that provides students with indi-
vidual feedback on their argumentation skill level
during an English essay writing task based on our
model. For the design of the tool, we followed
the design principles of Wambsganss et al. (2020a).
ALEN provides the user with a simple text input
field with a word count in which they can write
or copy a text (see Figure 1). Next to the text
input, the user can ask for feedback on the argu-
mentation structure of their text in a personal learn-
ing dashboard. The dashboard provides different
granularity levels of feedback, which enables the
user to control the amount of feedback information
displayed (Scheiter and Gerjets, 2007). A visual
graph-based representation of a text’s argumenta-
tion structure and three summarizing scores pro-
vide a first assessment of the text’s quality. To offer
the user with a visual representation of argument
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structures in their essay, the identified claims are
highlighted in green and the premises are high-
lighted in yellow in the written text. A visual
graph-based representation of text-based augmen-
tations has been found to be an effective element to
guide learners argumentation (i.e., representational
guidance theory (Suthers, 2003)). A more detailed
perspective of the argument’s discourse can be ob-
tained by clicking on the highlighted text fields or
the nodes in the graph. This displays whether a
claim is well-supported or if it is missing a premise.
Moreover, best practices and explanations about
argumentation and argumentation theory are pro-
vided by clicking on the "Explanation" or "Help"
button .

Three summarizing scores, calculated following
Wambsganss et al. (2020a) — readability, coherence
and persuasiveness — provide the student with an
assessment of their text to provide automatic profi-
ciency feedback. The methodology for computing
the scores, as well as actual tips, action steps, and
explanations on how the learner can improve her
score level, can be found by clicking on the scores
or on details.

4 Evaluating ALEN

Our objective was to empirically investigate the
effect of our adaptive argumentation feedback on
students’ English language learning and their per-
ception of usefulness in a real-world educational
writing scenario. Therefore, we created a field ex-
periment design in which language students were
instructed to complete a persuasive writing exercise
while receiving adaptive argumentation feedback
from ALEN.! The study was conduct in cooper-
ation with the English department of a German
speaking high-school. We conduct two different
studies based on a similar field-experimental de-
sign in two different English classes in the 12th
grade. In both studies, we asked students to con-
duct a persuasive English language writing tasks.
The only difference between study 1 and study 2
were the post-survey measurements (see following
paragraph). The experiments were both conducted
in the computer room of the high-school on desktop
devices. In total, 28 students participated in both
studies. The participants were on average 17.17
years old (SD = 0.5384); 11 were male, 11 were

!The study design was approved by the institutional ethics
board, the head of the high school we worked with and the
legal representative of the participants.

female, and 6 non-binary. The experiment design
was two-fold (see Figure 3): 1) a persuasive writing
task and 2) a post-survey.

1) Persuasive writing task: The students were
given a link to a survey in the tool unipark®. We
used unipark, since it is a standard tool for scientific
experiments which allowed us to embed ALEN in
scientific construct testing. Before receiving the ac-
tual writing tasks, the students were asked to watch
an introduction video about the usage of ALEN to
ensure that every participant is familiar with the in-
terface and the functionalities of our app. Next, the
students received one of three randomly assigned
writing tasks retrieved from Cambridge English
Assessment for the language level B23. For exam-
ple: "Every country in the world has problems with
pollution and damage to the environment. Do you
think these problems can be solved? Evaluate the
question within a 200-word text about the pros and
cons." We asked the participants to use the ALEN
app to write and evaluate their text’s argumentation
level and persuasiveness. During the task, students
could click the analyze button where they received
adaptive argumentation evaluation on their text.

2) Post-survey: In the post-survey of study
1 (ten participants), we measured the perceived
ease-of-use, the intention to use, and the perceived
usefulness for the participants following the tech-
nology acceptance model of Venkatesh and Bala
(2008). Example items for the three constructs
were: "The use of the argumentation tool enables
me to write better persuasive texts", "Imagining the
tool would be available in my next course, would 1
use it?", or "I would find the tool to be flexible to
interact with."

For study 2 (18 participants) our goal was to con-
trol for the self-efficacy of students for the task of
English language learning based on seven items fol-
lowing Bandura (1991) to control for self-regulated
learning. Exemplary items included, "Compared
to other students in this class, I expect to do well.",
or "I am confident that I will be able to solve the
problems and tasks set for me in this course.". All
constructs were measured on a Likert scale from 1
to 7 (1: totally disagree; 7: totally agree, with 4 be-
ing a neutral statement). Finally, we captured some
demographic information and asked three quali-
tative questions: "What did you particularly like
about the use of the argumentation tool?", "What

https://www.unipark.com/

‘https://www.cambridgeenglish.org/
exams—and-tests/first/
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Figure 3: Overview of our evaluation of ALEN in two field-studies.

else could be improved?" and "Do you have any
other ideas?".

Results

Study 1: The perceived ease-of-use of students
using ALEN in experiment one for the English lan-
guage task had a mean value of 5.77 (SD= 0.96,
normalized 0.82). The perceived usefulness for
ALEN was rated with a mean value of 5.60 (SD=
0.69, normalized 0.8) and the intention to use the
tool as a English learning tool continuously was
rated with 5.7 (SD= 0.79, normalized 0.81). All of
the results are positive when compared to the mid-
point scale of 4, indicating a positive technology
acceptance of ALEN (Venkatesh and Bala, 2008).

Study 2: For the second study we received 18
valid answer from 4 males, 6 non-binary, an 8
females. Participants of the study 2 rated their
self-efficacy for English language learning tasks
with a mean value of 5.02 (SD= 1.24, normalized
0.71). This might indicate that ALEN could in-
crease engagement and motivation when practising
and learning persuasive English essay writing (Ban-
dura, 1991). Finally, we analyzed the qualitative
answers of both experiments and clustered simi-
lar responses into categories. In conclusion, the
adaptive feedback based on in-text highlighting
and the graph overview in combination with dis-
course level feedback was noted favorably multiple
times. At the same time, students complained that
the persuasive elements were sometimes wrongly
highlighted. Moreover, many students asked for ad-
ditional grammar feedback, since sometimes they
were not sure if an argument was not persuasive or
only the grammar structure was erroneous.

5 Discussion and Conclusion

We have presented ALEN, a novel writing support
tool that provides students with persuasive feed-
back during an English language learning task.

We embedded the SVM model of (Wambsganss
etal., 2020b) to identify claim-premise structures in
learners’ texts and evaluated the proof-of-concept
in two field-studies with 28 students. Based on
the literature stream of "arguing-to-learn" (e.g.,
(Jonassen and Kim, 2010)), our hypothesis was
that adaptive argumentation feedback might en-
gage students to evaluate their text, reflect about
their discourse level writing and thus learn better
English. Our results suggest that the ALEN app
leads to a high self-efficacy in the task of English
essay writing and a high technology acceptance
(intention to use, perceived usefulness and ease-
of-use) for K12 language learners. Our study ex-
tends the current literature stream of NLP-based
learning tools for argumentation (e.g., Wambsganss
et al. (2020a); Afrin et al. (2021)) by adding a new
perspective to leverage NLP-based argumentation
feedback as a dialectical for other learning out-
comes (i.e., Jonassen and Kim (2010)).

For future work, we suggest to combine dis-
course level argumentation feedback with grammar
feedback for language learners to provide them
with more nuanced guidance in their language
learning process. Moreover, further studies are
needed which investigated the human-computer in-
teraction of discourse-level writing support tools
for language learners. Finally, future research is
needed to investigate the effects of adaptive argu-
mentation support in large-scale field studies to
measure the long-term learning success on students
language learning outcomes.
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