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Abstract

In this paper, we explore the role of topic
information in student essays from an argu-
ment mining perspective. We cluster a recently
released corpus through topic modeling into
prompts and train argument identification mod-
els on various data settings. Results show that,
given the same amount of training data, prompt-
specific training performs better than cross-
prompt training. However, the advantage can
be overcome by introducing large amounts of
cross-prompt training data.

1 Introduction

Argumentative essays are among the most com-
mon essay types students are assigned to write in
higher education contexts (Wingate, 2012). In such
an essay, students have to state and justify their
opinion on a certain topic elicited by a specific
writing prompt. In order to score argumentative es-
says and give formative feedback automatically, the
automatic identification and classification of com-
ponents in the argumentative structure is important
(Scheuer et al., 2010). While their holistic scoring
can be seen as one variant of automatic essay scor-
ing, identifying the argumentative structure within
an essay is a Natural Language Processing (NLP)
task known as argument mining.

Argument mining is the automatic identification
and extraction of the structure of inference and rea-
soning expressed as arguments presented in natural
language (Lawrence and Reed, 2020). The recent
Kaggle competition “Feedback Prize - Evaluating
Student Writing”1 can be seen as an argument min-
ing task in an educational scenario, which called
on participants to identify argumentative elements
in English essays written by U.S. students. Figure
1 shows an example from the dataset for an essay
where students have been asked to express their

1https://www.kaggle.com/c/
feedback-prize-2021

attitude towards driverless cars. Individual argu-
mentative elements such as Position, Evidence or
Concluding Statement are highlighted in the text.

The argument mining task is not restricted to
a certain domain or topic. For example, previ-
ous work considered legal (Mochales and Ieven,
2009), political (Walker et al., 2012) or educational
(Stab and Gurevych, 2017) data. However, it is
an open question to what extent argument mining
algorithms pick up on topical words indicative not
for, e.g., a conclusion in general, but for a conclu-
sion within a specific topic. The Feedback Prize
data mentioned above with its large amount of an-
notated student essays on various topics offers an
ideal opportunity for first steps towards closing this
gap.

In the data, we notice that very similar sentences
can receive different argumentative labels depend-
ing on the topic and the context of an essay. For
example, the sentence “exercise is really good for
your health” was annotated as a claim in an essay
on the topic “Limiting Car Usage” while the sen-
tence “(. . . ) running is good for your body” was
marked as evidence for the topic “No Sports at
Grade C”. Such examples highlight the relevance
of topic and context information for the argument
mining task and give rise to research questions like:

• In how far is the task of argument mining
prompt-dependent, i.e., how does prompt-
specific vs. cross-prompt training affect clas-
sification performance?

• What kind of information is learned by an
automatic argument classifier? Are algorithms
more susceptible to prompt-specific words, or
do they learn the general structure of an essay?

To address these questions, we present in this
paper experimental studies to investigate the in-
fluence of the prompt in an educational argument
identifying task using the example of the newly
released Kaggle Feedback Prize dataset.
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4EC4E3EFD09A.txt

Lead Position Claim Counterclaim Rebuttal Evidence Concluding Statement

Driverless cars have been a big topic lately. In some ways driverless cars sound cool but they also seem a little scary. I think
that diverless cars shouldn’t be allowed on public roads because they are not safe.

Some think being able to have your car drive itself sounds nice. You could just sit in your car and listen to music while you
wait to arive to your desination. Driverless cars would allow you to sit in your seat, hands on the wheel, but not acually
driving. This idea does sound nice but as all other technology such as computers and phones, technology is not always reliable.

A driverless car could cause a marjor or even fatal crash. While most driverless cars require you to have hands on the wheel
this does not mean you will be paying attention if somthing is about to happen. All it would take is for somthing in the car to
mess up and people could be very seriously hurt.

I think that people driverless cars are not safe and they should not be allowed on public roads.

Figure 1: An example essay with different argumentative elements from the Kaggle competition “Feedback Prize -
Evaluating Student Writing”.

We find that argument mining benefits from
within-prompt training data, but the same perfor-
mance can be reached by using larger amounts
of cross-prompt data. The argumentative ele-
ments lead and conclusion can be best identified
because of their relatively fixed position within
the essay. In an analysis of our models trained
and tested with either topic or structure words
masked, we find a tendency that within-prompt
training benefits more from topic information while
cross-prompt training rather picks up on struc-
ture words. We have made our experimental
code, together with the automatic clustering results,
publicly available at https://github.com/
yuningDING/BEA-NAACL-2022-38.

2 Related Work

In the following, we discuss related work perform-
ing argument mining in the educational domain and
work addressing the relevance of topic information.

Early work treated sentence boundaries as the
natural separator of components in an essay. In
such a scenario, the identification of argumentative
elements boils down to a sentence classification
task. For example, Burstein et al. (2003) classi-
fied sentences as introductory material, position,
main/supporting idea, conclusion, title and irrel-
evant automatically, using features derived from
Rhetorical Structure Theory trees and the occur-
rence of discourse markers. Ong et al. (2014) de-
veloped a rule-based algorithm to label each sen-
tence in a student essay into one out of four types
(current study, hypothesis, claim, citation).

We experimented with sentence classification ap-
proaches on the Kaggle dataset mentioned above,

but found them unsuitable as they do not reflect the
gold standard units well. As shown in Figure 2, one
sentence can contain multiple argumentative ele-
ments, while one argumentative element can span
sentences like the lead, counterclaim and evidence
annotations in Figure 1. Our sentence classifica-
tion experiments using a support vector machine
reached an F1-Score of only 0.2. We thus did not
further proceed with sentence classification on this
dataset.

However, driverless cars should be looked at as useful
and a positive alternative to everyday cars as they are
aware and self-sufficient for their owner’s benefit.

Figure 2: An example sentence with multiple argumenta-
tive elements from essay 03EA9F90F814 in the Kaggle
dataset.

Based on a modification of the Toulmin argu-
ment model (Toulmin, 1958), Stab and Gurevych
(2014b) proposed a model of argument components
in scientific articles and persuasive essays at the
clause-level using four label types - major claim,
claim, premise and non-argumentative. Their an-
notation guidelines yielded substantial agreement
in an annotation study on 90 persuasive essays in
English (Stab and Gurevych, 2014a). Following
this schema, the International Corpus of Learner
English (Granger et al., 2009) was annotated by
Persing and Ng (2015). They trained classification
models to identify argument components and used
them as features to predict argumentative scores in
essays (Persing and Ng, 2016).

In recent research, the granularity of argumenta-
tive components was further increased to the token
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level. In this case, the identification of argumenta-
tive elements corresponds to assigning an argument
label to each word. In this paradigm, sequence la-
beling techniques like Conditional Random Fields
or pretrained BERT models started contributing to
argument mining (Trautmann et al., 2020). The
Kaggle competition “Feedback Prize - Evaluating
Student Writing” can also be seen as a token label-
ing task as suggested by the organizers2.

Most studies on argument mining mentioned
above do not take the topic of the essay into consid-
eration, assuming that arguments can be classified
independently of a topic. However, as shown in
studies like Daxenberger et al. (2017), argument
mining models did not generalize well on cross-
domain data. Subsequently, the importance of topic
information has drawn more and more attention in
the general argument mining task recently: Stab
et al. (2018) found that a topic-general model could
achieve comparable performance to a topic-specific
model by adding limited amounts of topic-specific
data. Fromm et al. (2019) proved that topic infor-
mation connected with large pretrained language
models like BERT provides a significant perfor-
mance boost in argument mining.

However, the effect of topic information has not
been fully examined in educational argument min-
ing. The data released by the Kaggle competition
gives us a chance to investigate this research gap,
because it not only contains large amounts of stu-
dent essays with gold standard annotation of differ-
ent argumentative elements, but also covers essays
from a variety of different writing prompts which,
while not being annotated in the dataset, can be
automatically inferred.

3 Data

As mentioned before, we use the dataset provided
as part of the Kaggle competition “Feedback Prize
- Evaluating Student Writing”. The dataset consists
of 15,594 argumentative students essays written
by U.S. students from grades 6 to 12. Essays con-
tain annotations for the following argumentative
labels:3

• Lead: an introduction that begins with a statis-
tic, a quotation, a description, or some other

2https://www.kaggle.com/competitions/
feedback-prize-2021/discussion/296010

3Explanations for the labels are directly taken from
the competition webpage: https://www.kaggle.com/
competitions/feedback-prize-2021/data

device to grab the reader’s attention and point
toward the thesis.

• Position: an opinion or conclusion on the
main question.

• Claim: a claim that supports the position.

• Counterclaim: a claim that refutes another
claim or gives an opposing reason to the posi-
tion.

• Rebuttal: a claim that refutes a counterclaim.

• Evidence: ideas or examples that support
claims, counterclaims, or rebuttals.

• Concluding Statement: a concluding state-
ment that restates the claims.

Argumentative units have been annotated with an
overall inter-rater reliability of .73. The lowest
reliability was reported for counterclaims and re-
buttals (which were often labeled as claims). The
highest reliability was found for concluding state-
ments. All disagreements were adjudicated by an
expert rater.4

Figure 3 shows the frequency and average num-
ber of tokens per span for each label in the dataset.
We notice that the argumentative components are
very unevenly distributed. Claim and evidence oc-
cur substantially more frequently than the other
labels, with counterclaims and rebuttals being par-
ticularly rare.

In terms of the length of the underlying span for
a label, instances of the types evidence, concluding
statement and lead correspond to the longest spans.
The average length of all essays is 429 words, while
the average length of evidence is 77 words, which
means that, given the frequency of the label, evi-
dence is the majority class on the token level. In
contrast, position and claim have the shortest aver-
age length.

3.1 Clustering the Data into Underlying
Prompts

The dataset is not annotated with prompt informa-
tion. To obtain the individual prompts, we first use
a topic modeling approach (Angelov, 2020), which
resulted in a total of 11 clusters of essays. Man-
ual inspection of a random sample of 25 essays
per cluster finds two clusters to be a mixture of
either 2 or 4 different prompts. We used a k-means
clustering approach on tf-idf vectors per essay to

4https://www.kaggle.com/c/
feedback-prize-2021/discussion/297688
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Figure 3: Frequency and token count of labels in the Kaggle Feedback Prize dataset.

further split those clusters into 2 and 4 sub-clusters
respectively. The resulting 15 clusters each contain
between 689 and 1826 individual essays.

To check the quality of the clusters, we manu-
ally annotated 100 instances per cluster and found
cluster purity (Manning et al., 2010) to be between
0.78 and 1. Table 1 shows the detected topics and
cluster evaluation numbers.

We consider this clustering to be good enough to
be used for a topic-based modeling approach with-
out time-intensive manual adjudication of clusters.
However, it should be noted that especially for the

“Extracurricular Activities” cluster with an outlier
purity of .78 only, artifacts introduced by impure
clustering might occur.

prompt #essays purity

Exploring Venus 930 1.00
Face on Mars 817 1.00
Electoral College 1826 1.00
Phones and Driving 705 .90
Driverless Car 1390 .99
Getting Advice 1414 .99
Phones in School 841 .96
Seagoing Cowboys 689 .97
Summer Projects 860 .98
Facial Action Coding 1055 .99
Community Center 712 1.00
Limiting Car Usage 991 .96
Extracurricular Activities 1146 .78
Online Classes 1457 1.00
No Sports at Grade C 761 1.00

Table 1: Topics detected in the dataset, number of essays
per topic and purity of the detected cluster.

4 Experimental Study 1 - The Influence of
Prompt Information

In this study, we train argument mining models
with different combinations of prompt-specific and
cross-prompt data and compare their performance
on the same test datasets, in order to investigate
our first research question: in how far is argument
mining prompt-dependent? Furthermore, we ana-
lyze the performance difference among argument
labels.

4.1 Experimental Setup

As our base model, we adopt a neural architec-
ture developed for the structurally similar sequence
labelling task of Named Entity Recognition (Gr-
ishman and Sundheim, 1996). As almost one third
of all essays contains more than 512 tokens, we
exchange the pretrained BERT token classification
model (Devlin et al., 2018) for a pretrained Long-
former model (Beltagy et al., 2020) where the atten-
tion mechanism scales linearly instead of quadrat-
ically with input length. The experiment pipeline
is shown in Figure 4. We pre-process the anno-
tated training data into tokens with Inside-Outside-
Beginning (IOB) tags and use them as the input to
the pretrained Longformer model for token classi-
fication (longformer-large-4096). After 10 epochs
of training with a maximal length of 1536 tokens,
the IOB-Tags of tokens are transformed into pre-
dictions for different argumentative elements in the
post-processing.

We compare several configurations for the train-
ing data: In the all prompts condition, we train on
the complete dataset with all 15 prompts. In the
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Figure 4: Training pipeline of baseline model.

same prompt condition, we only train on essays
from the same prompt as the test data. To create a
more controlled setting not influenced by the frac-
tion of essays from the same prompt, we exclude
them explicitly in the other prompts condition, us-
ing 12 of the 14 other prompts for training and 2 for
validation. Some prompts in the dataset are closer
to each other, as can be seen by the fact that they
were confused by our topic clustering approach. To
see whether using a related prompt is beneficial,
we evaluate each of the three prompts “Driverless
Car”, “Phones and Driving” and “Limiting Car
Usage” under a model trained for either one of the
other two prompts.

We split each prompt into 80% training data,
10% evaluation data and 10% test data. To make re-
sults across settings comparable, we make sure that
we always test on the test data portion only (even
for the setting other prompts where the whole
dataset in a prompt would be available for test-
ing). In order to get comparable models trained
on similar amounts of data, we produce another
version of the all prompts and other prompts
conditions, where we sample down to the same av-
erage amount of training data as used in the same
prompt condition, called all prompts – small and
other prompts – small.

Following the evaluation scheme proposed by
Kaggle, we evaluate based on the overlap between
predicted spans and gold standard spans. A pre-
diction is considered a true positive (TP) if the
overlap between the prediction and the gold stan-
dard is greater than 50% in both directions. Any
unmatched ground truths are false negatives (FN),
and any unmatched predictions are false positives
(FP). The final score is arrived at by calculating
TP/FP/FN for each class, then taking the macro
F1 score across all classes. Predictions of non-

argument text are excluded from the evaluation.

4.2 Experiment 1a - Comparison between
Different Training Setups

In our first experiment, we compare the overall
performances of the different training setups av-
eraged across all prompts. We cannot use the re-
lated prompt condition here, as we cannot use all
prompts in this condition (simply because not every
prompt has a similar other prompt).

Avg. Amount
Training Data Training Data F1

same prompt 833 .53
other prompts – small 833 .49
all prompts – small 833 .52
other prompts 9983 .52
all prompts 12481 .55

Table 2: Results for Experiment 1a, F1 score averaged
over all prompts.

According to the results shown in Table 2, using
data from the same prompt condition for training
brings benefits compared to a setup with the same
size of training data drawn from other prompts
(other prompts – small). Other prompts and all
prompts, in comparison, show the performance
on more than 10 times the amount of training data.
We observe that using more cross-prompt data (i.e.
other prompts) provides no advantage compared
to fewer data from within the same prompt. How-
ever, if some amount of within-prompt data is avail-
able, as in all prompts, the model benefits from
more data. Note that all prompts contains all train-
ing items from the same prompt condition plus
material from other prompts. This implies that a
prompt-specific model can be slightly improved by
adding extra generic data.

4.3 Experiment 1b - Training on Related
Prompts

We have seen in Experiment 1a that, given a fixed
amount of training data, within-prompt training
data from the same prompt is beneficial. However,
this can be impractical in a real-life setting, as it
might be expensive to obtain new training material
for every new essay prompt. Therefore, we investi-
gate in the following experiment whether training
on a topic-wise related prompt already helps.

We select three prompts centered around cars
and driving: “Driverless Cars”, “Phones and Driv-
ing” and “Limited Car Usage”. The fact that these

128



three prompts were often confused during topic
clustering shows their relatedness on the lexical
level.

Results in Table 3 show that models trained on
topic-related data do not have quite the same per-
formance as those trained on data from the same
topic or trained on all prompts. The other prompts
– small, all prompts – small and same prompt
models are the same as in Experiment 1a (but of
course only averages over 3 prompts are reported).

Avg. Amount
Training Data Training Data F1

same prompt 823 .48
other prompts – small 833 .46
all prompts – small 833 .49
related prompt 823 .46

Table 3: Results for Experiment 1b, F1 score averaged
over prompts Driverless Car, Phones and Driving and
Limiting Car Usage.

4.4 Experiment 2 - Performance Analysis for
Individual Argument Labels

As we have seen in Section 3, the dataset is very
skewed in terms of the distribution of individual
labels. Therefore, we expect the performance of
labels with a low frequency a) to be worse than that
of more frequent labels and b) to benefit more from
larger amounts of training data than the frequent
labels.

Results shown in Figure 5 only partially con-
firm these expectations. We see that performance
varies a lot for individual label types, but does not
directly reflect the label distribution. While the
most infrequent rebuttal label also shows the worst
classification performance, the labels with the best
performance are lead and concluding statement.
Contrary to what we expected, the much more fre-
quent claim and evidence can be found less pre-
cisely, with especially the label claim exhibiting
the second-lowest performance of all labels.

We speculate that several factors contribute to
this behavior. The two argumentation labels with
the highest performance are those who potentially
benefit most from positional information that a clas-
sifier might learn. In the gold standard, 49% of all
texts indeed start with a lead annotation. If a lead
is present in an essay, in 82% of all instances it
occurs right in the beginning. Similarly, 70% of all
essays end with a concluding statement and among
all concluding statements, 81% are right at the end

of a text. Claims, although very frequent, do not
appear at a specific position in the text and are of-
ten not clearly marked by discourse markers. We
checked the occurrence of a list of about 200 com-
mon discourse connectives and discourse markers
such as because, although or additionally (Sileo
et al., 2019) and found that counterclaims and re-
buttals were most strongly marked by such words -
a possible reason why their performance, although
these labels are infrequent, is not far below that of
claims.

We checked common confusions between labels
in our classification results. Table 4 shows that the
majority of all confusions occurs between a label
and no assigned span, indicating that the assign-
ment of correct argumentation unit boundaries is
a problem, which leads to numerous spans with
no counterpart with a sufficient overlap. When
comparing the number of unmatched gold standard
labels (3521) with that of unmatched predicted la-
bels (5781), we see our algorithm tends to assign a
label rather than not assign anything. Among the
actual confusions between two labels, we observe
some confusions also reported for humans, such as
counterclaims often being mislabelled as claims.

5 Experimental Study 2 - What do we
actually Learn?

Aiming to answer our second research question
of whether the algorithms are more susceptible to
prompt-specific or general information, we now
transform the original data into topic-only and
structure-only versions.

5.1 Experimental Setup

Experimental Study 1 indicated that the identifi-
cation of argumentative elements benefits from
prompt-specific information. However, it remains
unclear whether we actually learn to detect topic
words constituting, e.g., a typical claim for a cer-
tain Topic X or structural elements of a claim in
Topic X, which could also be found in other topics.
To disentangle the two effects from each other, we
perform an additional set of analyses, as detailed
in the following.

We filter the vocabulary according to how often
it appears within a specific prompt and in the over-
all dataset. Similar to a tf-idf approach (Ramos
et al., 2003), we consider vocabulary prompt-
specific if it appears often within the essays of one
prompt, but infrequently within the essays of other
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Figure 5: Results for Experiment 2, F1 scores of each label in different settings

Lead Position Claim Counter- Rebuttal Evidence Conclu. None
claim Statem.

Lead 715 35 2 0 0 17 0 135
Position 38 765 12 6 2 11 2 578

Claim 8 75 1659 4 17 153 4 2912
Conterclaim 2 6 33 264 2 19 1 268

Rebuttal 0 4 19 4 149 23 2 234
Evidence 22 17 242 39 66 2934 29 1449

Conclu. Statem. 0 39 21 4 4 42 1098 205
None 147 245 1145 157 144 1388 302 N.A.

Table 4: Confusion matrix between gold standard (columns) and results in the same prompt setting (rows)

prompts. For example, the word Mars appears 7851
times in the “Face on Mars” prompt, but only 448
times in all other prompts. We rank word types in
each prompt by their tf-idf value and consider the
top 1000 types as the topic words of each prompt.

We then produce 4 versions of the data. In
the structure-only versions, topic words in each
prompt are replaced by the mask word “dummy”
(structure-only-dummy) or their part-of-speech
(POS) tags (structure-only-pos). The usage of
POS tags is intended to keep the syntactic struc-
ture intact. In the complementary topic-only ver-
sions, every occurrence of any non-topical words
as well as every function word is replaced by the
dummy word (topic-only-dummy) or its POS tag
(topic-only-pos). Table 5 shows an example for
the resulting sentences.

We now perform scoring experiments compa-
rable to those from Experimental Study 1 on the
modified data. Similar to a feature ablation test,
we want to examine how masking some part of the

information present in an essay affects the classifi-
cation outcome.

5.2 Experiment 3a - Modified Test Data

In this experiment, we use the method described
above to modify only the test data (the same 10%
test data used in Experiment 1). We compare the
prediction of models from Experimental Study 1
trained in the settings same prompt and other
prompts – small on the modified data in order
to test what kind of information the models have
learned. We hypothesize that the same prompt
model learns both prompt-related and generic struc-
tural information, while other prompts – small - in
the absence of prompt-specific information - learns
only general structure as predictor for argumenta-
tive elements.

The results shown as orange bars in Figure 6 re-
veal that, unsurprisingly, the general performance
of models is much lower than the performance
on the original test data. Nevertheless, we see
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Version Sentence

Original The Face on Mars is a natural landform
Structure-Only-Dummy The dummy on dummy is a dummy dummy
Structure-Only-Pos The [NNP] on [NNP] is a [JJ] [NN]
Topic-Only-Dummy dummy Face dummy Mars dummy dummy natural landform
Topic-Only-Pos [DT] Face [IN] Mars [VBZ] [DT] natural landform

Table 5: Four versions of one sentence generated according to our four individual conditions.

Stru
ctu

re-
Only

Dum
my

Stru
ctu

re-
Only

Pos

Top
ic-

Only

Dum
my

Top
ic-

Only
Pos

Stru
ctu

re-
Only

Dum
my

Stru
ctu

re-
Only

Pos

Top
ic-

Only

Dum
my

Top
ic-

Only
Pos

0.1

0.2

0.3

0.4

.12

.07

.20

.09
.12

.06
.03

.05

.21
.17 .16

.25

.15
.12 .13

.17

.31
.28 .27

.34

.21
.23 .22

.25

Same Prompt Other prompts – small

F1

Test Modified Train Modified Train+Test Modified

Figure 6: Performance of using the model trained on original data to evaluate modified testing data (test modified),
training a model on modified data and testing it on the original testing data (train modified), or both training and
testing on modified data.

that the models trained on the same prompt per-
form better on topic-only data than structure-only
data. In the other prompts – small setting, in
contrast, structure-only training data works better
than topic-only data, indicating that those models
indeed mainly learn structural information.

5.3 Experiment 3b - Modified Training Data

Similar to the same prompt and other prompts
– small settings in Experimental Study 1, we train
two models for each prompt on each of the four
modified versions of the data. By applying these
models to the original test data, we get the results
shown as green bars in Figure 6.

Among all models, we expect models trained
on topic-only data from other prompts – small to
have the worst performance, since the predictors
learned in these models are theoretically only con-
tent words related to other topics. However, the
models trained on topic-only data have comparable
performance to other models in the other prompts
– small setting, a fact that needs further investiga-
tion and that might be due to either impure clusters
or content word filtering (such that the training data
still contains some usable lexical information), or

to the fact that positional information is a strong
predictor present in all our modified data variants.

In the same prompt setting, models trained on
topic-only-pos data also have the best performance.
But once the POS-tags are changed into “dummy”
(i.e. topic-only-dummy), the models cannot beat
those trained on structure-only data.

5.4 Experiment 3c - Modified Training and
Test Data

Finally, we use the models trained in Experiment
3b on modified data and test on modified test data
as well. Results are shown in Figure 6 as blue
bars. Unsurprisingly, these models with train and
test data modified in the same way yield better per-
formance compared to those where only the train
or the test data was modified and, similar to the
results above, models trained on data from same-
prompt perform better than those trained on data
from other prompts – small in general. They still
perform far below the level of the original experi-
ments, indicating that in both conditions, models
benefit from both structural and topical information.
However, the loss is larger in the other conditions
than for same.
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Similar to the results in Experiment 3b, the mod-
els trained on topic-only-pos in the same-prompt
setting have the best performance, because not only
topic related information is kept in the training data,
but also limited structural information is included
by the POS-tags.

6 Conclusion

This work set out to investigate the importance of
topic information in educational argument mining
tasks. For this purpose, we first clustered a recently
published dataset of student essays into underlying
prompts. Secondly, we presented a study on the
effect of prompt-specific and cross-prompt training
material in the identification of argumentative ele-
ments. Results showed that within-prompt training
data is beneficial when a fixed limited amount of
training data is used. This advantage can be over-
come by larger amounts of additional cross-prompt
data. In the analysis of argumentative elements, we
found that lead and conclusion can be best iden-
tified in all settings, presumably because of their
relatively fixed position. Lastly, we separated topi-
cal from structural information in the essays. From
experiments with this modified data, we found that
argument mining benefits both from topic words
and structure words, i.e. the information is not
redundant, but that, unsurprisingly, topical infor-
mation has a tendency to be more important in
within-prompt classification while structure is more
relevant across prompts.

These findings provide the following insights
for future research: first, learning curve studies
could investigate an optimal trade-off between
topic-specific and generic training data. Second,
the argumentative elements identified in student
essays could be meaningful for the generation of
formative feedback directed towards students, such
as highlighting different argumentative elements.
Another research direction is the evaluation of argu-
ment quality through analyzing discourse relations
between these argument components in order to
generate feedback towards coherence and cohesion
aspects of student essays.
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