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Introduction

Welcome to the ACL 2022 Student Research Workshop!
The ACL 2022 Student Research Workshop (SRW) is a forum for student researchers in computational
linguistics and natural language processing. The workshop provides a great opportunity for student
participants to take part in a mentorship program, present their work and receive valuable feedback from
the international research community.
Following the tradition of the previous student research workshops, we have two tracks: research papers
and thesis proposals. The research paper track is a venue for students to describe completed work or
work-in-progress along with preliminary results. The thesis proposal track is offered for Ph.D. students
who have decided on a thesis topic and are interested in getting feedback on their proposal and ideas
about future directions for their work.
Mentoring is at the heart of the SRW. In keeping with previous years, we had a pre-submission mentoring
program before the submission deadline. Excluding 4 withdrawals and duplicates, a total of 29 papers
participated in the pre-submission mentoring program. This program offered students the opportunity to
receive feedback from a mentor to improve the writing style and presentation of their submissions.
This year, the student research workshop has again received wide attention. Excluding 7 withdrawals
and duplicates, we received 100 submissions including 91 research papers (56 long papers and 35 short
papers) and 9 thesis proposals. 3 submissions were desk rejected. 43 submissions (4 thesis proposals,
28 long papers and 11 short papers)were accepted. 1 long paper was withdrawn after acceptance. Ex-
cluding non-archival papers, 39 papers appear in these proceedings. All the accepted papers will be
presented in person and/or virtually in the poster sessions of the main conference. Some will also have
oral presentations.
We are deeply grateful to ACL for providing funds that covered registrations for part of the authors as
volunteer students. We thank our program committee members for their careful reviews of each paper
and all of our mentors for donating their time to provide feedback to our student authors. Thank you to
our faculty advisors, Cecile Paris, Siva Reddy and German Rigau, for their advice and to the ACL 2022
organizing committee for their support. Finally, thank you to our student participants!
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Abstract

This work presents two experiments with the
goal of replicating the transferability of de-
pendency parsers and POS taggers trained
on closely related languages within the low-
resource language family Tupían. The experi-
ments include both zero-shot settings as well
as multilingual models. Previous studies have
found that even a comparably small treebank
from a closely related language will improve
sequence labelling considerably in such cases.
Results from both POS tagging and depen-
dency parsing confirm previous evidence that
the closer the phylogenetic relation between
two languages, the better the predictions for
sequence labelling tasks get. In many cases,
the results are improved if multiple languages
from the same family are combined. This sug-
gests that in addition to leveraging similarity
between two related languages, the incorpora-
tion of multiple languages of the same family
might lead to better results in transfer learning
for NLP applications.

1 Introduction

For most of the 7000 languages of the world, no
NLP resources exist (Joshi et al., 2020; Mager
et al., 2018). As a response to this situation, more
and more initiatives emerged in recent years that
work on NLP applications for underrepresented and
low-resource languages (Orife et al., 2020; Nekoto
et al., 2020; Mager et al., 2021). Despite those
advances, access to tools like machine translation
still is hindered by a large language barrier. Most
of those languages do not have large text corpora,
which have been used for the recent advantages in
NLP like the building of large transformer models
(Vaswani et al., 2017). Annotated data and par-
allel corpora thus remain an important but scarce
tool for many of them. Yet, annotating this data
is a challenge itself, and might be aided through
the transfer of models from languages with more
available resources.

The idea to leverage existing databases and mod-
els for cross-lingual transfer is not new (Aufrant
et al., 2016; Duong et al., 2015; Lacroix et al., 2016;
Vania et al., 2019; Wang et al., 2019). However,
many studies even in this area remain within the en-
vironment of high-resource languages, and bench-
marks with a typological sample as representative
as possible - common nowadays in linguistic typol-
ogy - are rarely found (Bender, 2009; de Lhoneux,
2019; Ponti et al., 2019). The main goal of this con-
tribution is to replicate previous findings on cross-
lingual transfer in low-resource settings (Meechan-
Maddon and Nivre, 2019) within an underpresented
language family, Tupían.

2 Data and Hypotheses

The data used for this study is taken from the
Tupían Dependency Treebanks project (TuDeT,
Gerardi et al., 2021)1, which is openly available
under a CC-BY-SA-4.0 License and is already
partially present in the Universal Dependencies
database. The author is not part of the team that de-
veloped these treebanks. There are currently seven
languages in the dataset, which belong to different
branches of the Tupían family (Hammarström et al.,
2021). Except Tupinambá, which is extinct, the
languages are spoken in Brazilian territory. All lan-
guages but Guajajára have SOV word order, while
the former has VSO. The datasets are summarized
in Table 1. There are some important differences
with respect to the distribution of annotations data.
For example, adjectives are absent for nearly all
languages but Karo, either because they do not have
adjectives and use stative verbs instead like Gua-
jajára (Harrison, 2010), or because of low sample
size. There are some tags, like NUM and INTJ,
which are quite unevenly distributed between the
available treebanks for the respective languages.
As a consequence, this will result in low macro-f1

1https://github.com/tupian-language-resources/tudet
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Language Code Branch Word order Tokens Utterances Tokens per utterance
Akuntsu aqz Tuparic SOV 408 101 4.04

Guajajára gub Tupi-Guarani VSO 3571 497 7.18
Kaapor urb Tupi-Guarani SOV 366 83 4.41

Karo arr Ramarama SOV 2318 674 3.44
Makuráp mpu Tuparic SOV 146 31 4.71

Mundurukú myu Mundurukuic SOV 828 124 6.68
Tupinambá tpn Tupi-Guarani SOV 2576 353 7.30

Table 1: Treebanks used in the dataset

scores, making accuracy the more relevant measure
for this research question. A detailed description
of the distribution of UPOS-tags in the dataset is
given in Appendix A, the distribution of depen-
dency relations is given in Appendix B.

In this study, I primarily test the utility of cross-
lingual transfer for POS-taggers and dependency
parsers with special attention given to language
phylogeny. Language phylogeny can be seen as
a proxy to typological features, given that closely
related languages usually show many structural
similarities. Previous studies have shown that even
a comparably small treebank from a closely related
language will improve the results of annotation
considerably (Meechan-Maddon and Nivre, 2019).

Recent studies suggest to leverage phylogenetic
proximity in a more efficient way than simply com-
paring languages based on the language family
they belong to (Dehouck and Denis, 2019). Which
model generalizes best over the different treebanks
used in this sample, and what role does language
phylogeny play in this? In this study, ‘closeness’
of two languages is defined based on the proxim-
ity of their phylogenetic clades. This is used as a
proxy to their typological similarity. Especially for
languages which do not have extensive descriptive
material available, such similarities cannot easily
be computed from typological databases. Based
on phylolinguistic inferences about Tupían (Galu-
cio et al., 2015; Gerardi and Reichert, 2021), the
following explicit hypotheses are postulated:

1. Guajajára and Tupinambá should provide the
best results for the evaluation of Kaapor, given
that all three are part of the Tupi-Guarani
branch of the Tupían language family.

2. Despite belonging to three different branches,
the remaining four languages are quite close
to each other in networks of lexical similarity.
Here, Mundurukú is closer to Akuntsú than

to Makuráp, and Karo is closer to Makuráp
than to Akuntsú. The results should mirror
this relation.

3 Experiments

One of the challenges for NLP applications with
low-resource languages is the lack of language-
specific resources on which embeddings can be
trained on (Mager et al., 2018). Even though there
are useful pipelines which can sometimes be used
to crawl monolingual data from published sources
(Bustamante et al., 2020), those are not always
available or accessible. The embeddings used for
the experiments in this contributions are based on
the jw300-corpus (Agić and Vulić, 2019). This cor-
pus is derived specifically from 343 low-resource
languages and shows greater typological diversity
than most dominating multilingual models. The
embeddings are implemented in flair (Akbik et al.,
2018). They have been fine-tuned for the pooled
set of source languages. Transformer word embed-
dings mBERT (Devlin et al., 2019) and ROBERTA
(Conneau et al., 2020) were also evaluated for the
model, but rarely surpassed 40% accuracy for the
source languages and have thus been discarded
from further experiments for now. This results
further call into question the utility of such large
models for typologically diverse languages, and
strengthens previous findings that even the largest
multilingual transformer models do not show good
results when transferring to typologically differ-
ent languages (Ahmad et al., 2019; Lauscher et al.,
2020; Pires et al., 2019). However, the exact rea-
sons for their failure in this experiment are not
entirely clear and need further research with more
typologically diverse low-resource languages.

The experiments will be done for both POS tag-
ging and dependency parsing and include a zero-
shot setting. Also, models trained on individual
source languages will be compared against models
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trained on multiple datasets, with the evaluation
set being the remaining treebanks of the dataset.
Given the small amoung of training data and the
models chosen, all model runs combined did not
need more than three hours on CPU. The evalua-
tion was done within the provided utilities by flair
and SuPaR, respectively. All code is available on
OSF.2

3.1 POS-tagging

For all experiments, the datasets have been sep-
arated into source (Guajajára, Karo, Tupinambá)
and target languages (Akuntsu, Kaapor, Makuráp,
Mundurukú). The split has been made according to
the availability of data, and all treebanks with over
2000 annotated tokens have been used as source
language. The main reason for this is to assure that
the training sets have sufficient data for training
and evaluating the models. Every treebank in the
source set was further split into training, test and
dev data (80/10/10). Given the scarcity of the data,
all models were trained including the dev-set. The
model itself a BiLSTM-CRF sequence tagger im-
plemented using the flair-framework (Akbik et al.,
2019, Version 0.10),3 trained with a hidden size of
512. The following models were run:

1. training on the combined source set (tupi3)

2. training on the individual source languages
Guajajára (gub), Karo (arr) and Tupinambá
(tpn)

3. fine-tuning the tupi3 model for each Akuntsu
(tupi3-aqz) and Mundurukú (tupi3+myu) on
50% of of the respective data, with the remain-
ing part of the data used as evaluation

4. using a model pre-trained for 12 European UD
languages, implemented in flair (Akbik et al.,
2018).4 This model was trained on treebanks
from Czech, Danish, Dutch, English, Finnish,
French, German, Italian, Norwegian, Polish,
Spanish, and Swedish

The pre-trained model for European languages
was used in order to provide a baseline of transfer-
ability of models based on unrelated, high-resource
languages. All models were evaluated on each tar-
get language. Each model was run five times, and

2https://doi.org/10.17605/OSF.IO/ZHDMP
3https://github.com/flairNLP/flair, MIT License
4https://huggingface.co/flair/upos-multi

the average results are presented in Table 2. In
case of the fine-tuning experiment, training accu-
racy describes the result on the test set, while the
language-specific column gives the result for the
overall treebank. The evaluation column is a sum-
mary over the evaluation set, without considering
the source language. The best result for each of the
languages in the evaluation set is boldfaced.

Unsurprisingly, the experiment conditions with
fine-tuning for a specific language show the best
results for the respective language. In both cases,
the results for the other language were also im-
proved, confirming the hypothesis that the results of
Akuntsu and Mundurukú should be closely related.
This could motivate training a model on Akuntsu
and Mundurukú combined. The close relationship
between Akuntsu and Makuráp, on the other hand,
does not seem to lead to better results. The best
predictions for Makuráp are instead based on the
model trained for Karo, a relationship that was pre-
dicted by the second hypothesis, even though only
as the second strongest effect. Despite those re-
sults, it should be considered that Makuráp has by
far the smallest treebank available with only 146
annotated tokens, so no final evaluations should be
made. This also reflects in the low overall accuracy
in all settings for Makuráp, never surpassing 40%.

3.2 Dependency parsing

The experiment settings were mostly identical for
the dependency parsing experiment. The main
difference is that no pre-trained model for Euro-
pean languages is available for the dependency
parser that was used for the experiments. For the
same reason, no fine-tuning for the tupi3 setting
is implemented so far. Instead, a single model for
Mundurukú was added for further evaluation of
Hypothesis 2. As model architecture, an imple-
mentation of the deep biaffine dependency parser
(Dozat and Manning, 2017) from SuPar (Version
1.01) was used (Zhang et al., 2020).5 The results
are shown in Table 3. In case the language was the
source language, the evaluation score only reflects
the evaluation of the test split. This is the case for
the tupi3 setting as well as the individual languages.
All other languages in each row were evaluated
against the entire dataset. As the main evaluation
criteria, Labelled Attachment Scores (LAS) were
chosen.

5https://github.com/yzhangcs/parser, MIT License
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Model TrainAcc TrainF1 EvalAcc EvalF1 aqz mpu myu urb
arr 0.84 0.68 0.30 0.10 0.35 0.36 0.30 0.24
gub 0.91 0.76 0.44 0.19 0.45 0.29 0.48 0.41
tpn 0.87 0.81 0.42 0.17 0.43 0.25 0.49 0.34
tupi3 0.86 0.64 0.46 0.20 0.49 0.35 0.47 0.42
tupi3+aqz 0.56 0.31 0.48 0.19 0.52 0.32 0.51 0.40
tupi3+myu 0.55 0.22 0.48 0.19 0.51 0.34 0.53 0.39
multi 0.33 0.13 0.38 0.23 0.36 0.23

Table 2: Average training and evaluation accuracy and F1-scores over five runs of the POS tagging experiment

Model aqz arr gub mpu myu tpn urb
arr 0.00 64.10 0.00 25.00 0.00 0.00 0.00
gub 12.90 14.50 73.30 9.00 8.90 10.30 14.20
myu 19.09 14.98 10.65 7.64 65.28 7.85 13.89
tpn 13.30 0.00 20.90 14.30 0.00 46.40 15.80
tupi3 9.50 62.60 72.70 11.80 8.90 42.90 21.80

Table 3: Labelled Attachment Scores (LAS) of the dependency parsing experiment

4 Discussion

4.1 Discussing the POS tagging experiment

Against Hypothesis 1, the best result for Kaapor is
not achieved by Guajajára or Tupinambá, but by the
combined model trained on the pooled treebanks.
However, the model of Guajajára is only 0.01%
behind the pooled model and should be considerd
equal, as it is well within the standard deviation of
the average result (upos 0.02, gub 0.01). It should
also not be forgotten that two of the three languages
in the pooled set, including Guajajára itself, are
part of the Tupí-Guarani branch, which can be rea-
sonably postulated as part of the reason that tupi3
scores so high. Instead of a single language of that
branch, it might just be the combination of two
languages from the same branch that shows such
strong results.

This leads to another result that should be high-
lighted, namely the overall usefulness of the multi-
lingual Tupían model. While the European multi-
lingual model had, perhaps expectedly without any
fine-tuning, low results for most evaluations, the
Tupían model was competitive in most settings. For
both Makuráp and Kaapor it was basically equal
with the best individual model, for Akuntsu it was
second best behind the fine-tuned models, and even
for Mundurukú it showed good results, even though
it showed weaker predictions in this case. While
previous studies suggested that at least 200 anno-
tated utterances are sufficient to improve the results
of a multilingual model considerably (Meechan-

Maddon and Nivre, 2019), the results in this con-
tribution suggest that as few as 50 or 60 training
utterances could already provide a considerable im-
provement of the evaluation scores. These are only
approximate numbers, and definitely need more
experiments with other datasets in order to be con-
firmed.

All in all, the POS tagging experiment shows
that language phylogeny is a strong, but not a deter-
ministic predictor for the transferability of models.
Given the low amount of training data for the mod-
els even in the combined tupi3 setting, the zero-shot
transfer results are better than perhaps expected.

4.2 Discussing the Dependency Parsing
experiment

Overall, the transfer LAS are much lower than the
accuracy in the previous experiment. Given the
complexity of dependency parsing compared to
POS tagging, this is hardly surprising. This is also
true for the training scores, never surpassing 75%.
With regard to Hypothesis 1, we see again that both
Guajajára and Tupinambá show better results for
Kaapor than Karo and Mundurukú. The model
hugely improves in the tupi3 setting, indicating
again that both larger training treebanks and com-
bining different closely related languages might
show considerable effects to the evaluation of a
new language. This has already been the case for
the POS tagging, and will result in an additional
experiment in the next phase of this study.

Hypothesis 2 is also largely confirmed. Karo
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was hypothesized to achieve the best results for
the evaluation of Makuráp, and this predictions
is met strongly, with a LAS difference over 10%.
As Mundurukú outperforms the other languages
in the evaluation of Akuntsu, the second part of
the hypothesis is also confirmed. The results for
Mundurukú itself further show that even with a
small treebank of only ∼ 100 utterances, good pre-
dictions can be achieved.

At the current state of this paper, an important
gap is the missing detailed error analysis. One
important source of errors for the models is the un-
even distribution of dependency relations between
the treebanks, as shown in Table 5. Partially due
to the low amount of data and due to language-
specific differences, some tags are distributed un-
evenly among languages, or are not present at all
in some of them. However, even when accounting
for this differences, the exact factors that determine
failure and success of the transfer remain not fully
explained. For example, whether the overall suc-
cess of the combined model of various languages
(tupi3) is due to the higher amount of training data,
or whether there are other factors involved when
combining data from multiple languages that could
be leveraged for the development of NLP appli-
cations for low-resource languages, cannot be an-
swered by this contribution.

5 Conclusion

This study further confirms previous findings that
cross-lingual transfer of dependency parsers and
POS taggers is a viable option in low-resource
settings if a closely related language is available
(Vania et al., 2019; Meechan-Maddon and Nivre,
2019). This extends previous evidence for phylo-
genetically informed transfer from Indo-European
and Uralic (Dehouck and Denis, 2019) to Tupían.
Further experiments on other language families
should be conducted in order to confirm the exact
features that make successful transfer possible.

Further, this study provided further evidence for
extending the phylolinguistically informed com-
bination of source languages. In all experiment
settings of this study, the pooled source language
set had very good results, and a targeted combi-
nation will likely further improve the results. Fur-
ther follow-up experiments will consist of targeted
combinations of annotated data from different lan-
guages, including an incorporation of typological
features and delexicalized transfer. In preliminary

experiments, CRF2o dependency parsing (Zhang
et al., 2020) showed promising results for trans-
fer results as well. Especially in the dependency
parsing experiment the transfer scores were quite
low, and further improving the training data as well
as comparing different models should be a viable
solution for this challenge.
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A POS-tags used in the dataset

UPOS Akuntsu Guajajára Kaapor Karo Makuráp Mundurukú Tupinambá
1 ADJ 2 3 103 5
2 ADP 29 79 25 36 27 126 73
3 ADV 32 68 101 42 137 29 76
4 AUX 7 9 16 75 14 12 4
5 DET 49 24 8 41 5 20
6 INTJ 5 3 14 2 8
7 NOUN 429 250 240 244 219 408 338
8 NUM 15 1 2 2 4
9 PART 39 132 101 129 103 25 42

10 PRON 78 32 172 129 75 59 48
11 PROPN 42 41 55 5 4 34
12 PUNCT 88 176 16 1 14 115 209
13 VERB 184 181 246 222 329 179 140
14 CCONJ 2 11 27 2 1
15 SCONJ 2 5 10 23 1
16 X 2 4 1

Table 4: POS tags per 1.000 Tokens used in TuDeT
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B Dependency relations used in the dataset

deprel Akuntsu Guajajára Kaapor Karo Makuráp Mundurukú Tupinambá
1 advmod 39 65 101 80 137 25 62
2 amod 5 25 29 6 1
3 appos 15 6 2 10 24
4 aux 2 9 16 57 14 8 4
5 case 34 56 19 36 27 121 62
6 ccomp 2 16 5 3 4 5
7 conj 15 8 5 3 21 12 30
8 dep 17 11 29 116 25 24
9 discourse 39 139 87 26 89 14 42

10 dislocated 2 1
11 iobj 2 14 14 1
12 nmod 135 52 63 60 48 63 94
13 nsubj 150 91 202 127 62 95 45
14 nummod 12 0 2 1 4
15 obj 91 55 156 65 82 54 42
16 obl 59 113 22 31 27 175 99
17 parataxis 44 5 3 96 34 32
18 punct 88 176 16 1 14 115 209
19 root 248 139 227 291 212 150 137
20 advcl 16 8 1 14 41 54
21 compound 1 5 19 1
22 det 18 3 3 4 3
23 flat 1 1
24 list 2
25 mark 7 5 47 28 0
26 orphan 1
27 cc 11 21 1 2
28 csubj 5
29 xcomp 3 8 21 1 7
30 acl 2 4
31 clf 66 10
32 cop 9 1
33 goeswith 1
34 obl:obj 3
35 obl:subj 5
36 vocative 1

Table 5: Dependency relations per 1.000 tokens used in TuDeT
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Abstract

Joint relational triple extraction from unstruc-
tured text is an important task in information ex-
traction. However, most existing works either
ignore the semantic information of relations or
predict subjects and objects sequentially. To
address the issues, we introduce a new blank
filling paradigm for the task, and propose a
relation-first blank filling network (RFBFN).
Specifically, we first detect potential relations
maintained in the text to aid the following entity
pair extraction. Then, we transform relations
into relation templates with blanks which con-
tain the fine-grained semantic representation
of the relations. Finally, corresponding sub-
jects and objects are extracted simultaneously
by filling the blanks. We evaluate the proposed
model on public benchmark datasets. Exper-
imental results show our model outperforms
current state-of-the-art methods. The source
code of our work is available at: https:
//github.com/lizhe2016/RFBFN.

1 Introduction

Extracting pairs of entities with semantic relations
from unstructured texts is essential in knowledge
graph construction. Given a text, the aim of this
task is to detect triples, i.e., in the form of (subject,
relation, object) or (s, r, o). Traditional pipeline
methods (Chan and Roth, 2011; Lin et al., 2016)
first extract entity mentions and then perform re-
lation classification for each entity pair. However,
they suffer from error propagation and ignore the
interaction between the two tasks.

Different from the pipeline methods, joint learn-
ing methods (Yu et al., 2020; Zeng et al., 2020;
Zheng et al., 2021) aim to extract entities and rela-
tions simultaneously in an end-to-end way, which
achieve promising performance. They tend to de-
compose the task into several subtasks and solve

Model
Relation

Semantics
Relation-First

Prediction
Simultaneous

Subject-Object Extraction

Multi-Turn QA (Li et al., 2019) Yes No No

PRGC (Zheng et al., 2021) No Yes No

RFBFN (Ours) Yes Yes Yes

Table 1: Comparison of our RFBFN and previous meth-
ods.

the problem through a multi-task learning frame-
work (Miwa and Bansal, 2016; Wei et al., 2020;
Zheng et al., 2021).

Although previous works have achieved great
success, the semantic information of relations is
still underutilized. Most models (Miwa and Bansal,
2016; Zeng et al., 2018; Zhong and Chen, 2021)
treat the relation extraction as a classification task
which only replace the relation with a meaningless
class ID. To better capture the semantic informa-
tion, machine reading comprehension (MRC) mod-
els (Li et al., 2019; Zhao et al., 2020; Goswami
et al., 2020) are proposed to address the extrac-
tion task. Li et al. (2019) and Zhao et al. (2020)
transform the task into a multi-turn question an-
swering problem. The subjects are detected first by
answering entity-specific questions. Then, relation-
specific questions are generated to extract objects.
However, they predict subjects and objects sequen-
tially and separately, and thus question answering
is required to perform for multiple turns.

More recently, the relation-first methods have
shown promising performance in relational triple
extraction (Zheng et al., 2021; Ma et al., 2021),
which benefit from the fact that relations are usu-
ally triggered by the context rather than entities.
For example, the "creator" relation will be directly
detected from descriptions such as "was created
by". By predicting relations first, irrelevant rela-
tions are filtered out, which mitigates negative ef-
fects caused by useless relations and avoids the
data imbalance issue. However, the subject-object
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Two leaders of Italy, where Amatriciana sauce is found,  
are Matteo Renzi and Sergio Mattarella.

Text

(Italy, country, sauce), 
(Renzi, leaderName, Italy),  (Mattarella, leaderName, Italy)

Golden Triples

Relation Detection Module

Relations country , leaderName

Blank Filling Module

Templates

[MASK] is the country of [MASK]

[MASK] is the leader of [MASK]

Entity Pairs

(Italy, sauce)

(Renzi, Italy),  (Mattarella, Italy)

Figure 1: An illustration of the relational triple extrac-
tion in the proposed RFBFN. The relation templates
contain blanks for entity extraction.

alignment mechanism is needed to align subjects
and objects to form valid triples in these works. We
review and compare previous methods in Table 1.

We propose an end-to-end relation-first frame-
work for joint relational triple extraction, which can
not only capture the semantics of relations, but also
extract subjects and objects simultaneously. We for-
malize the task as a relation-first blank filling prob-
lem, inspired by the cloze task (Taylor, 1953). Our
RFBFN includes a relation detection module and
a blank filling module. For the relation detection
module, we first obtain a subset of most relevant re-
lations and filter out irrelevant ones. For the blank
filling module, we transform relations to relation
templates which contain significant semantics of
relations. As shown in Figure 1, the model needs to
fill the blanks in the templates like "[MASK] is
the country of [MASK]" and "[MASK]
is the leader of [MASK]" with the cor-
responding subjects and objects. Thus, entity pairs
in the text which have the corresponding relations
will be extracted by filling the blanks. Notably, our
model detects subjects and objects simultaneously
in a non-autoregressive decoder without aligning
them. Besides, entities are allowed to be assigned
with different relations, which naturally tackles the
overlapping cases. Experiments on public datasets
demonstrate that our proposed method outperforms
the state-of-the-art methods. The main contribu-
tions of this paper are as follows:

• We propose a novel end-to-end relation-first
blank filling network for relational triple ex-
traction, which first detects relations, and then
extracts subjects and objects simultaneously
in a non-autoregressive transformer decoder.

• We tackle the entity pair extraction from a
novel perspective which transforms the task to
a blank filling problem. This paradigm allows
the model to encode the prior knowledge of
the relations in the templates and make use of
semantic information of the relations.

• Extensive experiments on two public datasets
show that the proposed framework achieves
state-of-the-art results, especially for complex
scenarios of overlapping triples. Further ab-
lation studies and analyses confirm the effec-
tiveness of our model.

2 Related Work

Early works (Zelenko et al., 2003; Chan and Roth,
2011; Lin et al., 2016) treat the extraction as a
pipeline of two separate tasks: an entity model first
identifies entities and then a relation model extracts
the relations between the entity mentions. How-
ever, these methods ignore the correlation between
the two steps and suffer from the error propaga-
tion issue. To overcome these shortcomings, joint
models (Lin et al., 2020; Wang and Lu, 2020) are
proposed, which can extract entities and relations
simultaneously.

Traditional joint methods (Yu and Lam, 2010;
Li and Ji, 2014; Miwa and Sasaki, 2014; Ren et al.,
2017) are feature-based and heavily rely on fea-
ture engineering, which require intensive manual
efforts. To reduce manual work, recent studies have
investigated neural network models, which include
sequence tagging methods (Zheng et al., 2017; Dai
et al., 2019; Yu et al., 2020), sequence-to-sequence
methods (Zeng et al., 2018, 2020) and table-filling
methods (Gupta et al., 2016; Wang et al., 2021).

Although above models make great progress,
they still only treat the relation type as a meaning-
less class ID or a trainable embedding (Yuan et al.,
2020; Zheng et al., 2021) which is not enough to
capture the fine-grained semantic information of a
relation. Current works cast the task into a question
answering problem with machine reading models.
Goswami et al. (2020) perform unsupervised rela-
tion extraction without a fine-tuned extractive head.
However, they only extract objects from the given
contexts and subjects. To joint extract entities and
relations, Li et al. (2019); Zhao et al. (2020) first
predict subjects from the context by answering en-
tity questions. Then, the extracted subjects are
inserted to the slots to generate the relation ques-
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Figure 2: The overall architecture of RFBFN. Given a sentence X , RFBFN first predicts a subset of candidate
relations in the relation detection module. Then for each candidate relation, corresponding entity pairs are extracted
by filling the blanks of the transformed relation templates in the blank filling module. q1, q2, ..., q5 are learnable
embeddings to predict relations. L1 and L2 are the numbers of the decoder blocks.

tions and then objects can be extracted. Although
the well developed machine reading comprehen-
sion models can be exploited, they extract subjects
and objects sequentially and need multiple turns.

In this paper, we propose a joint relation-first
blank filling network to extract triples. Different
from previous works, we transform relations to
specific relation templates to make use of semantic
information of the relations. Moreover, we extract
subjects and objects at the same time in a non-
autoregressive decoder without aligning them.

3 Method

3.1 Overview
For relational triple extraction task, the input is a
sentence X = (x1, x2, ..., xn), which comprises n
tokens of the sentence with another special [CLS]
token xcls. LetR be the set of predefined relation
types. The task is to predict all possible triples as
T (X) = (ei, rij , ej), where ei, ej are sequences of
tokens denoting the subject and object respectively,
and rij ∈ R is the relation that holds between ei
and ej .

Figure 2 shows an overview architecture of the
proposed RFBFN. It consists of three main parts:
Span-Level Encoder, Relation Detection Module
and Blank Filling Module. First, the encoder pre-
processes the source text and extracts the span rep-
resentations. Then the relation detection module
predicts potential relations and filters out irrelevant
ones. Finally, the blank filling module takes a set

of relation templates as input and predicts the corre-
sponding entity pairs. We model relation extraction
as a blank filling task, which can not only capture
the semantics of a relation, but also extract subjects
and objects simultaneously.

3.2 Span-Level Encoder

The goal of this component is to obtain the contex-
tualized representation of each span in a sentence.
We utilize BERT (Devlin et al., 2019) as the feature
encoder due to its effectiveness in representation
learning. Let S = (s1, s2, ..., sns) be all possible
spans in X . Given a span si ∈ S, the span repre-
sentation he

i is defined as:

he
i = [xe

START(i);x
e
END(i);ϕ(xi)], (1)

where xe
START(i) and xe

START(i) are the context-
aware representations of the boundary tokens.
ϕ(xi) represents the feature vector denoting the
span length (Wadden et al., 2019; Zhong and Chen,
2021). Unlike the token-level models, overlap-
ping spans can be detected because each span is
independent of others. The output of the encoder
is the representation of spans, and is denoted as
He ∈ Rns×d, where ns is the number of spans and
d is embedding dimension.

Then He is fed into two separate Feed-Forward
Networks (FFN) to generate the features for the
Relation Detection Module and the Blank Filling
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Module respectively:

Hrel
e = WrelH

e + brel,

Hent
e = WentH

e + bent,
(2)

where Wrel,Went ∈ Rd×d are trainable weights
and brel,bent ∈ Rd are trainable biases.

3.3 Relation Detection Module
Different from previous works (Yuan et al., 2020;
Wei et al., 2020) which redundantly perform entity
extraction to every relation, we first predict a subset
of candidate relations in a sentence, then entities
only need to be extracted based on these target ones.
This module first predicts potential relations with
a non-autoregressive decoder, then irrelevant ones
are excluded with a binary classifier.

Potential Relation Extractor We predict
the relations with the transformer-based non-
autoregressive decoder (Vaswani et al., 2017), as
shown in Figure 2. The input of the decoder is ini-
tialized by nq learnable embeddings Q ∈ Rnq×d,
where nq is set to be the maximum number of
relations in a sentence. Different from the prior
token-level cross-attention, we exploit the span
representation Hrel

e as part of the input here. Given
the output embedding Hr ∈ Rnq×d, the predicted
relation type is obtained by:

pr
i = Softmax(Wrh

r
i + br), (3)

where Wr ∈ R|R|×d,br ∈ R|R| are learnable pa-
rameters and |R| is the total number of relation
types. We adopt the bipartite matching loss (Sui
et al., 2020) in the training process, which is invari-
ant to any permutation of predictions.

Candidate Relation Judgement After predict-
ing a subset of potential relations, we filter out
irrelevant ones to generate relation templates effec-
tively. Given the output representation matrix Hr

of the non-autoregressive decoder and the embed-
ding of [CLS], this component predicts a boolean
mask vector M from a binary classifier to guide
the candidate relation set:

M = σ(Ws[H
r;xe

cls] + bs), (4)

where Ws is the trainable weight, bs is the bias and
σ is the sigmoid activation function. The higher
the value, the higher the confidence level that the
relation contains in a sentence, and vice versa. In
this step, for each sentence, we filter out useless

relations and predict a subset Ri ∈ R to discard
most of the negative samples. If the text contains
the j-th relation type, it will be fed into blank filling
module to aid entity pair recognition.

3.4 Blank Filling Module
We propose a new blank filling paradigm for entity
pair extraction, i.e., the extraction of entity pairs
is transformed to the task of identifying answer
spans from the context to fill the blanks. We trans-
form each candidate relation type to a template
with blanks (denoted as [MASK] here), which are
then filled with the participating subjects and ob-
jects. In other words, if the context contains the
corresponding entity pairs of the relation, entity
spans will be extracted by filling the blanks.

Relation Template Generation Each relation
type is associated with a type-specific tem-
plate. A relation template is generated manu-
ally by combing the semantic information and
two blanks as shown in Figure 1. For example,
the relation "leaderName" corresponds to the
template like "[MASK] is the leader of
[MASK]". The relation template encodes the se-
mantic information for the relation which is impor-
tant for relational triple extraction. Formally, the
input relation template can be denoted as:

Tr = (mr
1, t

r
1, t

r
2, ..., t

r
nt
,mr

2), (5)

where mr
1 denotes the blank for the subject, mr

2 for
the object and tr1, t

r
2, ..., t

r
nt

are the relation tokens
of the relation r. Each relation template is copied
k times and then concatenated with the special
[SEP] token, where k is larger than the typical
triple number of the relation. Therefore, multiple
entity pairs with the same relation can be extracted
in one pass.

Entity Pair Extractor Given the relation tem-
plate and the span representation H̄ = [Hent

e ;xe
cls],

the goal of this component is to extract corre-
sponding entity pairs. We use a non-autoregressive
span-level transformer decoder as our entity pair
extractor, which is similar to the relation extrac-
tor. In each transformer layer, the multi-head
self-attention is to model the association between
blanks and relation semantics, and the multi-head
cross-attention is to fuse the information of the
spans. After the decoder, blanks are embedded into
Hblk

r ∈ R2k×d.
Next, the decoder copies subjects and objects

from possible spans in the source sentence as the
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Dataset #Relations
#Sentences Details of Test Set

Train Valid Test Normal EPO SEO N = 1 N > 1

NYT* 24 56195 4999 5000 3266 978 1297 3244 1756
WebNLG* 171 5019 500 703 246 26 457 266 437
NYT 24 56196 5000 5000 3071 1168 1273 3089 1911
WebNLG 216 5019 500 703 239 6 448 256 447

Table 2: Statistics of the datasets in experiments, where N is the number of triples in a sentence. EPO and SEO refer
to entity pair overlapping and single entity overlapping respectively (Zeng et al., 2018). Note that a sentence can
belong to both EPO and SEO patterns.

predictions of the blanks in parallel. To handle the
instances without corresponding entities, we set the
answer as the [CLS] token. We calculate the span
representations for each blank as:

hb
i,r = tanh(W1

bH̄+W2
bh

blk
i,r + bb), (6)

where W1
b,W

2
b ∈ Rd×d are the trainable weights

and bb ∈ Rd is the trainable bias.
Finally, we apply softmax to obtain the probabil-

ity distribution and select the span with the highest
probability as the predicted entity:

pb
i,r = Softmax(uT

b · hb
i,r), (7)

where ub ∈ Rd is the learnable parameter. We
use the span-based method to predict entity pairs,
so entities with multiple tokens can be extracted
simultaneously without the pointer network or the
sequence labeling scheme.

3.5 Joint Training

There are totally two tasks in our model: relation
detection and entity pair extraction. During opti-
mization, we train the model jointly in a multi-task
manner and share the parameters of the encoder.
To predict entity pairs, we sort them according to
their order in the text, and adopt cross-entropy loss
as the loss function for entity pair extraction:

Lent = −
nd∑

r=1

2k∑

i=1

logpb
i,r(y

b
i,r), (8)

where ybi,r is the ground truth entity span for re-
lation r and nd is the detected relation number.
However, for relation detection, there exists no
suitable way to sort the relations, thus we adopt bi-
partite matching loss (Sui et al., 2020) which does
not penalize small order shift. To find an optimal
matching between the ground truth relations and
predicted relations, we search for a permutation

strategy π∗ with the lowest cost:

π∗ = argmin
π∈Π(nq)

(−
nq∑

i=1

I(yri ) · pr
π(i)(y

r
i )), (9)

where Π(nq) is the space of all permutation strate-
gies, yri is the ground truth relation. I(yri ) is a
switching function: if yri ̸= ∅, I(yri ) = 1, other-
wise 0. We define the loss for relation detection as:

Lrel = −
nq∑

i=1

logpr
π∗(i)(y

r
i ) (10)

The total loss is the sum of two parts:

L = λLent + (1− λ)Lrel, (11)

where λ ∈ R is the parameter controlling the trade-
off between the two objectives. During the training
phase, the model learns to minimize L and opti-
mizes the parameters jointly.

4 Experiments

4.1 Experimental Settings
Datasets We evaluate our approach on two
benchmark datasets: NYT24 (Riedel et al., 2010)
and WebNLG (Gardent et al., 2017). Both of them
have two different versions. NYT* and WebNLG*
annotate the last word of entities, while NYT and
WebNLG annotate the whole entity span. We use
the datasets released by (Zheng et al., 2021), in
which the statistics of the datasets are shown in Ta-
ble 2. To further study the capability of RFBFN in
extracting overlapping and multiple relations, we
also split the test set by overlapping patterns (Zeng
et al., 2018) and triple numbers.

Baselines and Evaluation Metrics We compare
our model with eleven strong baseline models
including the state-of-the-art model GRTEBERT

(Ren et al., 2021). The experimental results of the
baseline models are from the original papers.
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Model
NYT* WebNLG* NYT WebNLG

Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

NovalTagging (Zheng et al., 2017) - - - - - - 32.8 30.6 31.7 52.5 19.3 28.3
CopyRE (Zeng et al., 2018) 61.0 56.6 58.7 37.7 36.4 37.1 - - - - - -
MutiHead (Bekoulis et al., 2018) - - - - - - 60.7 58.6 59.6 57.5 54.1 55.7
GraphRel (Fu et al., 2019) 63.9 60.0 61.9 44.7 41.1 42.9 - - - - - -
ETL-span (Yu et al., 2020) 84.9 72.3 78.1 84.0 91.5 87.6 85.5 71.7 78.0 84.3 82.0 83.1
CasRelBERT (Wei et al., 2020) 89.7 89.5 89.6 93.4 90.1 91.8 - - - - - -
TPLinkerBERT (Wang et al., 2020) 91.3 92.5 91.9 91.8 92.0 91.9 91.4 92.6 92.0 88.9 84.5 86.7
SPNBERT (Sui et al., 2020) 93.3 91.7 92.5 93.1 93.6 93.4 92.5 92.2 92.3 - - -
PRGCRandom (Zheng et al., 2021) 89.6 82.3 85.8 90.6 88.5 89.5 87.8 83.8 85.8 82.5 79.2 80.8
PRGCBERT (Zheng et al., 2021) 93.3 91.9 92.6 94.0 92.1 93.0 93.5 91.9 92.7 89.9 87.2 88.5
GRTEBERT (Ren et al., 2021) 92.9 93.1 93.0 93.7 94.2 93.9 93.4 93.5 93.4 92.3 87.9 90.0

RFBFNRandom 88.6 86.8 87.7 90.4 90.8 90.6 87.9 86.1 87.0 83.1 82.1 82.6
RFBFNBERT 93.4 93.2 93.3 93.9 94.1 94.0 93.7 93.6 93.6 91.5 89.4 90.4

Table 3: Comparison of the proposed RFBFN method with the prior works. Bold marks the highest score. The
subscript Random refers to a model with randomly initialized parameters.

In our experiments, to keep in line with previous
works (Sui et al., 2020; Zheng et al., 2021; Ren
et al., 2021), an extracted triple is regarded as cor-
rect only if it is an extract match with ground truth,
which means the last word of entities in NYT* and
WebNLG* or the whole entity span in NYT and
WebNLG of both subject and object and the rela-
tion are all correct. The standard micro precision,
recall, and F1 score are used to evaluate the results.

Implementation Details For fair comparison,
we use the BERT-Base-Cased English model1 as
our embedding layer. We train our model with
AdamW optimizer with batch size of 8 for 100
epochs. We set the learning rate 1e − 5 for the
pre-trained parameters, 5e− 5 for cross-attention
and 7e− 5 for others. The spans are up to 8 words
and λ = 0.5 for loss. The duplicate number k of
relation templates on NYT*, NYT, WebNLG* and
WebNLG is set to 6, 8, 3 and 3 respectively. The
learnable embedding number nq is set to 15/12 in
NYT(NYT*)/WebNLG(WebNLG*).

4.2 Main Results

The results of our model against other base-
line methods are shown in Table 3. Our RF-
BFN model outperforms them in respect of al-
most all evaluation metrics even if compared with
the recent strongest baseline (Ren et al., 2021).
We also implement RFBFNRandom where all pa-
rameters are randomly initialized. Especially,

1Available at https://huggingface.co/
bert-base-cased.

RFBFNRandom improves 1.9% F1 on NYT*, 1.1%
F1 on WebNLG*, 1.2% F1 on NYT and 1.8% F1 on
WebNLG over PRGCRandom. The performance of
RFBFNRandom demonstrates that our framework
still achieves better results than others which do
not take BERT as the pre-trained language model.

Our RFBFN outperforms the most competitive
GRTEBERT model in four F1 scores. There are
two main reasons behind this. First, the relation
detection module greatly reduces irrelevant rela-
tions compared to GRTEBERT which generates
a table feature for each relation. In other words,
filtering negative relations provides additional ben-
efits compared to the models which perform en-
tity extraction under every relation. Second, intro-
duction of semantic information of the relations
is significant for relational triple extraction. How-
ever, GRTEBERT only assigns trainable weights
for the relations, which can not fully explore the
semantic information of the relations. Moreover,
our model detects subjects and objects simultane-
ously in the non-autoregressive decoder. By con-
trast, PRGCBERT is a relation-first model, which
extracts subjects and objects in two separate se-
quence tagging operations and needs to check the
corresponding score in a global matrix for subject-
object alignment. We find that detects subjects and
objects simultaneously can achieve better results.

4.3 Detailed Results on Complex Scenarios

Following previous works (Sui et al., 2020; Zheng
et al., 2021; Ren et al., 2021), we conduct further
experiments on NYT* and WebNLG* to verify
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Model
NYT* WebNLG*

Normal SEO EPO N = 1 N = 2 N = 3 N = 4 N ≥ 5 Normal SEO EPO N = 1 N = 2 N = 3 N = 4 N ≥ 5

CasRel 87.3 91.4 92.0 88.2 90.3 91.9 94.2 83.7 89.4 92.2 94.7 89.3 90.8 94.2 92.4 90.9
TPLinker 90.1 93.4 94.0 90.0 92.8 93.1 96.1 90.0 87.9 92.5 95.3 88.0 90.1 94.6 93.3 91.6
SPN 90.8 94.0 94.1 90.9 93.4 94.2 95.5 90.6 89.5 94.1 90.8 89.5 91.3 96.4 94.7 93.8
PRGC 91.0 94.0 94.5 91.1 93.0 93.5 95.5 93.0 90.4 93.6 95.9 89.9 91.6 95.0 94.8 92.8
GRTE 91.1 94.4 95.0 90.8 93.7 94.4 96.2 93.4 90.6 94.5 96.0 90.6 92.5 96.5 95.5 94.4
RFBFN 91.2 95.2 95.6 91.4 93.8 94.8 96.4 93.9 91.0 94.6 96.5 90.8 92.6 96.6 94.7 94.5

Table 4: F1 score on sentences with different overlapping patterns and different triple numbers. N is the number of
triples in a sentence.

Subtask Prec. Rec. F1

N
Y

T
*

Potential Relation Extractor 96.8 96.0 96.4
Candidate Relation Judgement 97.7 95.4 96.5
Entity Pair Extractor 95.0 94.8 94.9
Combination of Above All 93.4 93.2 93.3

W
eb

N
L

G
* Potential Relation Extractor 95.8 95.9 95.9

Candidate Relation Judgement 96.9 94.9 95.9
Entity Pair Extractor 96.5 96.7 96.6
Combination of Above All 93.9 94.1 94.0

Table 5: Results of different subtasks on NYT* and
WebNLG* datasets. Relation performance after Poten-
tial Relation Extractor and Candidate Relation Judge-
ment. Entity performance after Entity Pair Extractor.

the capability of our model in handling different
overlapping patterns and sentences with different
numbers of triples. As shown in Table 4, we can
see that RFBFN achieves the best results on all
three overlapping patterns of both datasets. Be-
sides, the performance of our model is better than
others almost for all numbers of triples. In general,
these two further experiments adequately show the
advantages of our model in complex scenarios.

4.4 Results on Different Subtasks

To further verify the results of the subtasks, we
present more detailed evaluations on NYT* and
WebNLG* datasets which show the performance
after each component of our model in Table 5. Af-
ter the Candidate Relation Judgement component,
we get higher precision in relation detection to re-
duce negative relations and ensure most detected
relations are correct. In the Entity Pair Extractor
component, golden relation templates are taken as
input, which showcases the upper bound result that
our model can achieve for relational triple extrac-
tion. The result shows the proposed blank filling
module outperforms existing models by a large mar-
gin (up to 2.7%). This indicates that our method is

Model Prec. Rec. F1

RFBFN 93.9 94.1 94.0
– Relation Detection Module 81.7 89.0 85.2
– Candidate Relation Judgement 92.9 94.3 93.6
– Relation Template Generation 93.0 93.2 93.1
– Non-Autoregressive Entity Pair Extractor 88.8 88.2 88.5
– Joint Training 92.4 92.6 92.5

Table 6: Ablation study on WebNLG* dataset.

able to capture the sufficient semantic information
of relations which helps to extract entities.

For NYT*, we find that identifying relations is
somehow easier than identifying entities. In con-
trast to NYT*, for WebNLG*, it is more challeng-
ing to identify the relations than entities, as the
performance of the entity pair extractor is much
higher than the overall performance. We attribute
the difference to the different numbers of relations
in two datasets (24 in NYT* and 171 in WebNLG*),
which make identification of relations much harder
in WebNLG*.

5 Analysis

5.1 Ablation Study

We conduct ablation experiments to evaluate the
contributions of some main components in RFBFN.
We remove one component at a time to obtain its
impact on the experimental results, which is sum-
marized in Table 6.

(1) – Relation Detection Module denotes that
the model removes the Relation Detection Module
from RFBFN, and uses all relations to extract entity
pairs. It is not possible to enumerate all relations in
WebNLG* (171 in all), and thus we randomly add
30% negative ones. As shown in Table 6, the per-
formance significantly decreases without relation
detection. It is because that redundant relations
cause negative influence on entity pair extractor.
Meanwhile, with the increase of relation number,
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Texts Ground Truth Embeddings Relation Templates

Buzz Aldrin is a national of the 
United States whose leader is Joe 
Biden. He was born in Glen Ridge, 
Essex County, New Jersey.

( Jersey, birthPlace, Aldrin ) 
( States, nationality, Aldrin ) 

( Biden, leaderName, States )
( Jersey, isPartOf, Jersey )

( Jersey, birthPlace, Aldrin ) 
( States, nationality, Aldrin ) 

( Biden, leaderName, States )
( Jersey, isPartOf, Jersey )

( Jersey, birthPlace, Aldrin ) 
( States, nationality, Aldrin ) 

( Biden, leaderName, Jersey ) 
( Jersey, isPartOf, Jersey )

Acta Mathematica Hungarica is 
the publisher of Springer Science 
+ Business Media, founded by 
Julius Springer.

( Hungarica, publisher, Media ) 
( Springer, founder, Media )

( Hungarica, publisher, Media ) 
( Springer, founder, Media )

( Springer, publisher, Media ) 
( Springer, founder, Media )

Figure 3: Case study for ablation study of –Relation Template Generation. Examples are from WebNLG* dataset.
The correct entities are in bold, the correct relations are colored and the red cross marks bad cases.

it results in a heavy computational burden.
(2) – Candidate Relation Judgement denotes that

the model ablates the Candidate Relation Judge-
ment component from RFBFN, which ignores the
impact of negative relations. We note the perfor-
mance decreases in the result, which indicates that
this component contributes to reducing the noise
brought by unrelated relations. In other words,
filtering out irrelevant relations is helpful for rela-
tional triple extraction.

(3) – Relation Template Generation denotes that
the model replaces relation templates with trainable
embeddings. As shown in the results, the perfor-
mance drops significantly. Through the case study
in Figure 3, we observe that if the relation is only
represented by a trainable embedding, the model
cannot understand the underlying semantics of a
relation and predicts wrong entity pairs. Although
it has the ability to detect right entities, it ignores
their relation. However, our relation template can
capture fine-grained semantic information of the
relation, which is helpful for extracting entities.
We argue that the explicit semantic representation
of a relation plays an important role for relational
triple extraction which is ignored in most previous
works.

(4) – Non-Autoregressive Entity Pair Extractor
denotes that the decoder replaces the unmasked
self-attention with the casual mask and the entity
pair extractor starts with a detected relation. In
this way, subjects and objects are generated sequen-
tially. The results in Table 6 reveal that predicting
subjects and objects simultaneously in our non-
autoregressive decoder is reasonable.

(5) – Joint Training denotes that the relation
detection module and the blank filling module are
trained separately without parameter sharing. As
shown in Table 6, joint learning framework brings a
remarkable improvement (1.5%) in F1 score, which
demonstrates that our potential relation extractor

Figure 4: An illustration on how different blanks attend
to the words in the text. The attention score is averaged
over all attention heads in the last layer. The darker
color denotes the higher score.

and entity pair extractor actually work in a mutually
beneficial way.

5.2 Visualization

In order to validate that our model is able to fill
the blanks with related entities in the sentence, we
visualize the cross-attention score of the blank fill-
ing module in Figure 4. The source sentence con-
tains two triples, i.e. (Brom, club, Arnhem), (Brom,
club, Graafschap) and the input relation of the en-
tity pair extractor is club. As shown in Figure 4,
through span-level cross-attention, different blanks
can attend to corresponding entities with the spe-
cific relation. In the entity pair extractor, subjects
and objects with the same relation can be extracted
simultaneously rather than sequentially. Besides,
the extracting order is determined with the sorting
scheme, thus we do not extract repetitive entity
pairs. The visualization demonstrates the validity
of our model.

6 Conclusion

In this paper, we design a novel blank filling
paradigm for relational triple extraction, and
present a relation-first blank filling network. We
transform relations into relation templates with
blanks to fill which can capture important semantic
information of the relations. Meanwhile, subjects
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and objects are extracted simultaneously by filling
the blanks in the non-autoregressive decoder. To
the best of our knowledge, we are the first to cast
relational triple extraction as a blank filling prob-
lem, which may motivate new ideas and inspire
future research directions. The experiment results
on public datasets show that our model achieves
state-of-the-art performance.
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Abstract

In communication, a human would recognize
the emotion of an interlocutor and respond with
an appropriate emotion, such as empathy and
comfort. Toward developing a dialogue system
with such a human-like ability, we propose a
method to build a dialogue corpus annotated
with two kinds of emotions. We collect dia-
logues from Twitter and annotate each utter-
ance with the emotion that a speaker put into
the utterance (expressed emotion) and the emo-
tion that a listener felt after listening to the
utterance (experienced emotion). We built a
dialogue corpus in Japanese using this method,
and its statistical analysis revealed the differ-
ences between expressed and experienced emo-
tions. We conducted experiments on recogni-
tion of the two kinds of emotions. The experi-
mental results indicated the difficulty in recog-
nizing experienced emotions and the effective-
ness of multi-task learning of the two kinds of
emotions. We hope that the constructed corpus
will facilitate the study on emotion recognition
in a dialogue and emotion-aware dialogue re-
sponse generation.

1 Introduction

Text-based communication has become indispens-
able as society accelerates online. In natural lan-
guage processing, communication between humans
and machines has attracted attention, and the devel-
opment of dialogue systems has been a hot topic.
Through the invention of Transformer (Vaswani
et al., 2017) and the success of transfer learning
(e.g., Radford et al. (2018); Devlin et al. (2019)),
the performance of natural language understanding
models and dialogue systems continues to improve.
In recent years, there have been studies toward
building open-domain neural chatbots that can gen-
erate a human-like response (Zhou et al., 2020;
Adiwardana et al., 2020; Roller et al., 2021).

One of the keys to building more human-like
chatbots is to generate a response that takes into

Figure 1: An example dialogue with expressed and
experienced emotions.

account the emotion of the interlocutor. A human
would recognize the emotion of the interlocutor and
respond with an appropriate emotion, such as em-
pathy and comfort, or give a response that promotes
positive emotion of the interlocutor. Accordingly,
developing a chatbot with such a human-like ability
(Rashkin et al., 2019; Lubis et al., 2018, 2019) is
essential. Although several dialogue corpora with
emotion annotation have been proposed, an utter-
ance is annotated only with a speaker’s emotion
(Li et al., 2017; Hsu et al., 2018) or a dialogue as
a whole is annotated (Rashkin et al., 2019), all of
which are not appropriate for enabling the above
ability.

In this paper, we propose a method to build
an emotion-annotated multi-turn dialogue corpus,
which is necessary for developing a dialogue sys-
tem that can recognize the emotion of an interlocu-
tor and generate a response with an appropriate
emotion. We annotate each utterance in a dialogue
with an expressed emotion, which a speaker put
into the utterance, and an experienced emotion,
which a listener felt when listening to the utterance.

To construct a multi-turn dialogue corpus an-
notated with these emotions, we collect dialogues
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from Twitter and crowdsource their emotion an-
notation. As a dialogue corpus, we extract tweet
sequences where two people speak alternately. For
the emotion annotation, we adopt Plutchik’s wheel
of emotions (Plutchik, 1980) as emotion labels and
ask crowdworkers whether an utterance indicates
each emotion label for expressed and experienced
emotion categories. Each utterance is allowed to
have multiple emotion labels and has an intensity,
strong and weak, according to the number of crowd-
workers’ votes. We build a Japanese dialogue cor-
pus as a testbed in this paper, but our proposed
method can be applied to any language.

Using the above method, we constructed a
Japanese emotion-tagged dialogue corpus consist-
ing of 3,828 dialogues and 13,806 utterances.1

Statistical analysis of the constructed corpus re-
vealed the characteristics of words for each emotion
and the relationship between expressed and experi-
enced emotions. We further conducted experiments
to recognize expressed and experienced emotions
using BERT (Devlin et al., 2019). We defined the
task of emotion recognition as regression and eval-
uated BERT’s performance using correlation coeffi-
cients. The experimental results showed that it was
more difficult to infer experienced emotions than
expressed emotions, and that multi-task learning
of both emotion categories improved the overall
performance of emotion recognition. From these
results, we can see that expressed and experienced
emotions are different, and that it is meaningful to
annotate both. We expect that the constructed cor-
pus will facilitate the study on emotion recognition
in dialogue and emotion-aware response genera-
tion.

2 Related Work

2.1 Emotion-Tagged Corpora
Many non-dialogue corpora annotated with emo-
tions have been constructed. EmoBank (Buechel
and Hahn, 2017) is a corpus of social media or
reviews with emotion annotation. They annotate
sentences with the emotions of a person who read
them and a person who wrote them. WRIME (Ka-
jiwara et al., 2021) is an emotion-annotated corpus
in Japanese, where SNS posts are tagged with both
subjective and objective emotions. The concept
of this corpus is similar to EmoBank. However,
they emphasize the subjectivity of annotation and

1We will release our corpus and code at https://
github.com/nlp-waseda/expr-exper-emo.

ask writers to annotate their own sentences with
emotions. Furthermore, EmoInt (Mohammad and
Bravo-Marquez, 2017) aims at the task of detecting
emotion intensity. They annotate Twitter posts with
anger, fear, joy, and sadness and give each emotion
a real value between 0 and 1 as the intensity level.

Some corpora are tagged with non-emotional
factors, along with emotions. EmotionStimulus
(Ghazi et al., 2015) and GroundedEmotions (Liu
et al., 2017) are corpora that focus on the reason for
an expressed emotion. The former uses FrameNet
to detect a cause, while the latter treats weather and
news as external emotion factors. In terms of emo-
tion labels, the two corpora adopt seven emotions
(Ekman’s six emotions (Ekman, 1992) and shame)
and two emotions (only happiness and sadness), re-
spectively. In StoryCommonsense (Rashkin et al.,
2018), a series of sentences comprising of a short
story is tagged with motivation and emotional reac-
tion for each character. For emotion labels, they use
some theories of psychology, including Plutchik’s
wheel of emotions (Plutchik, 1980).

None of the above corpora, however, are relevant
to dialogue. StoryCommonsense is similar to ours
but differs in that characters in a story are annotated
instead of speakers’ utterances.

2.2 Dialogue Corpora

Several dialogue corpora annotated with emotions
are available. DailyDialog (Li et al., 2017) is one
collected from educational websites and tagged
with emotions and intentions. EmotionLines (Hsu
et al., 2018) is a multi-turn dialogue corpus with
annotation of emotions. Both of them use seven
labels for tagging: Ekman’s six emotions (Ekman,
1992) and an other/neutral emotion. MELD (Po-
ria et al., 2019) is an extension of EmotionLines,
tagged with not only emotions but also visual and
audio modalities. EmpatheticDialogues (Rashkin
et al., 2019) is a dialogue-level emotion-tagged cor-
pus, considering two participants as a speaker and
a listener, and tagged with the speaker’s emotion
and its context.

In EmpatheticDialogues, not each utterance but
each dialogue is annotated, which is not suitable
for recognizing emotional transition throughout a
dialogue. For Japanese, there is a Japanese ver-
sion of EmpatheticDialogues called JEmpathetic-
Dialogues (Sugiyama et al., 2021), which suffers
from the same problem. In this work, we con-
duct utterance-level annotation like DailyDialog
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Length # Dialogues # Utterances
2 1,330 2,660
3 1,071 3,213
4 509 2,036
5 310 1,550
6 225 1,350
7 158 1,106
8 134 1,072
9 91 819
2-9 3,828 13,806

Table 1: The statistics of dialogues and utterances.

Label Expressed Experienced
Strong Weak Strong Weak

Anger 430 1,349 124 870
Anticipation 1,906 4,229 1,215 4,068
Joy 1,629 3,672 1.553 4,549
Trust 247 1,732 520 3,455
Fear 252 942 123 846
Surprise 602 2,018 434 2,798
Sadness 1,227 2,936 889 3,037
Disgust 476 1,979 186 1,535
Any 6,371 12,215 4,705 12,515

Table 2: The statistics of utterances for each emotion
label.

and EmotionLines. Although these corpora contain
only the speaker’s emotion (expressed emotion),
we also annotate an utterance with the emotion of
a person who hears it (experienced emotion). Fur-
thermore, while an utterance has only one emotion
label in these corpora, we allow multiple emotion
labels to be tagged per utterance and also consider
their strength.

There are also some studies toward develop-
ing emotion-aware dialogue systems. Smith et al.
(2020) propose three skills for a human-like dia-
logue system: recognizing emotions, using knowl-
edge (Dinan et al., 2019), and considering person-
ality (Zhang et al., 2018). Furthermore, Roller et al.
(2021) build a dialogue system capable of blending
these three skills.

3 Corpus Building

3.1 Dialogue Collection

We collect dialogue texts from Twitter by consider-
ing the interaction between tweets and their replies
by two users as a dialogue. To improve the text
quality, we exclude tweets that contain images or

Figure 2: An example of the crowdsourced task. Check-
boxes allow crowdworkers to select multiple emotions
for an utterance.

hashtags and set the maximum number of utter-
ances included in a dialogue to nine. We also apply
several filters: excluding dialogues that contain
special symbols, emojis, repeated characters, and
utterances that are too short. Note that the reason
why we exclude emojis is that they are relatively
explicit emotional factors, and we intend to analyze
emotions implied from usual textual expressions.

We collected Japanese dialogues using this
method. The numbers of dialogues and utterances
are shown in Table 1. We obtained 3,828 dialogues
that correspond to 13,806 utterances in total. Re-
garding the length of dialogues, the number of di-
alogues tends to decrease as that of utterances per
dialogue increases.

3.2 Emotion Annotation
We adopt Plutchik’s wheel of emotions (Plutchik,
1980) as annotation labels.2 Specifically, our an-
notation labels consist of eight emotions: anger,
anticipation, joy, trust, fear, surprise, sadness, and
disgust. We annotate each utterance with two emo-
tion categories: an expressed emotion, which is
expressed by a speaker of the utterance, and an
experienced emotion, which is experienced by a
listener of the utterance. In other words, an utter-

2Ekman’s six emotions (Ekman, 1992) and Plutchik’s
wheel of emotions (Plutchik, 1980) are commonly used in
emotion-tagged corpora. Preliminary experiments by crowd-
sourcing showed that the latter is more appropriate for our
crawled dialogues. In this work, therefore, we use eight emo-
tions by Plutchik (1980).
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Utterance Expressed Experienced
A1: 来週、車で京都行く普通に観光してきます (I’m driv-
ing to Kyoto next week. We’ll just do some sightseeing.)

{Anticipation, Joy} {Anticipation}

B1: いいなぁ、京都 (I like Kyoto.) {Anticipation} {Anticipation, Joy}
A2: 楽しんできます (I’ll enjoy it.) {Anticipation, Joy} {Anticipation, Joy}
B2: 行ったことないから純粋に羨ましい (I’ve never been
there, so I’m genuinely jealous.)

{Anticipation} {Anticipation, Joy}

A3: ないんや意外 (I’m surprised you haven’t.) {Surprise} {Joy, Surprise}

Table 3: An example dialogue annotated with expressed and experienced emotions by crowdsourcing. The labels in
bold indicate strong emotions.

Label Expressed Experienced
Anger 糞,せる,マジだ (shit, force, serious) 糞,うるさい,居る (shit, noisy, exist)
Anticipation 教える,願う,待つ (teach, hope, wait) 待つ, 楽しみだ, 強い (wait, looking forward to,

strong)
Joy 楽しい,嬉しい,おもろい (joyful, glad, funny) 楽しい,嬉しい,おもろい (joyful, glad, funny)
Trust 全然,大丈夫だ,ちゃんと (at all, all right, prop-

erly)
やすみ,教える,大事だ (rest, teach, important)

Fear 怖い,やばい,どう (afraid, serious, how) 怖い,やばい,危険だ (afraid, serious, dangerous)
Surprise やばい,なんで,？ (serious, why, ?) 居る,ビックリ,年 (exist, surprise, year)
Sadness 泣く,痛い,悲しい (cry, hurt, sad) 泣く,辛い,痛い (cry, hard, hurt)
Disgust 悪い,嫌いだ,嫌だ (bad, hate, dislike) 悪い,気持ち,嫌だ (bad, surprise, dislike)

Table 4: Top-3 frequent words for each emotion label. An IDF filtering is applied to exclude common words.

ance is annotated with both subjective and objective
emotions, which is similar to EmoBank (Buechel
and Hahn, 2017) for non-dialogue texts. By anno-
tating expressed and experienced emotions, we can
trace the changes in the emotion surrounding both
an utterance and a participant in a dialogue.

As a crowdsourcing platform, we use Yahoo!
Crowdsourcing.3 By showing the target utterance
and its context, we ask seven workers whether
the target utterance has a specified emotion or not
about each emotion label for expressed and experi-
enced emotion categories. For the expressed emo-
tions, we ask which emotion a speaker expressed
when saying the utterance. For the experienced
emotions, we ask which emotion a listener expe-
rienced when hearing the utterance. Workers are
allowed to select multiple emotion labels or none
of them. An interface of the crowdsourcing task
for expressed emotions is shown in Figure 2.

Because a view of expressed and experienced
emotions can vary among annotators, we employ
many workers per an utterance and aggregate their
votes to obtain highly reliable annotations.4 We

3https://crowdsourcing.yahoo.co.jp/
4For the expressed emotion, we ask workers to annotate

the emotion of the speaker of an utterance. This annotation,
however, is not strictly what a speaker had in mind but what
the workers think a speaker would want to express, which can
be considered objective in some sense. Having truly subjec-
tive annotation as the expressed emotion, like Kajiwara et al.
(2021), is our future work.

consider strength for each emotion according to
the number of workers’ votes; emotions selected
by more than half of the workers are regarded as
strong, and ones selected by more than a quarter
are regarded as weak. Note that the set of strong
emotions is a subset of the set of weak ones. We
expect that providing the emotions with intensity
enables us to handle their granularity.

We applied the above emotion annotation
method to our dialogue corpus. The number of ut-
terances for each emotion is shown in Table 2. For
the expressed emotion, 46.15% and 88.48% of the
utterances are tagged with at least one strong and
weak emotion, respectively. For the experienced
emotion, the percentages are 34.08% and 90.65%,
respectively. Approximately 90% of the utterances
are accompanied by one or more emotion labels,
and thus our corpus is consequently suitable for
recognizing emotions in dialogues and analyzing
their changes. In contrast to ours, for example, less
than 20% of utterances are tagged with a specific
emotion in DailyDialog (Li et al., 2017). Hence it
is difficult to analyze emotion changes using such
corpora with a small amount of emotion annotation.
In addition, we can see a bias among the emotion la-
bels for both expressed and experienced emotions,
with more instances of anticipation and joy and
fewer instances of trust and fear. An example of a
dialogue with the annotation is shown in Table 3.

24



(a) Expressed and experienced emotions (for a certain
utterance).

(b) Experienced and next expressed emotions (for a certain
person).

Figure 3: The confusion matrices of the relationship between expressed and experienced emotions. In this analysis,
we focus on only the strong labels. Note that the matrices’ elements are normalized in the row direction.

4 Corpus Analysis

4.1 Frequent Words for Emotion Categories
and Labels

To investigate the characteristics of utterances with
different emotions, we count words for each strong
emotion label in our corpus. In this analysis, we
identify words by the Japanese morphological an-
alyzer Juman++ (Tolmachev et al., 2018). To ex-
clude common words likely to appear for all emo-
tions, we apply an IDF filtering. Specifically, words
with IDF less than half of the maximum are ig-
nored.

Top-3 words appearing for strong emotion labels
are shown in Table 4. The same words tend to
appear in the two emotion categories for joy and
sadness. In contrast, the frequent words in the two
categories are different for anticipation, trust, and
surprise.

4.2 Relationship Between Expressed and
Experienced Emotions

We annotated utterances with the expressed and
experienced emotions. Here, we focus on the re-
lationship between these two emotion categories.
Specifically, we investigate the following two rela-
tionships:

a. The expressed emotion and the experienced
emotion for the same utterance (different per-
sons).

b. The experienced emotion for an utterance and
the expressed emotion for the next utterance (the
same person).

The confusion matrices for the strong emotion
labels are shown in Figure 3, where the elements
are normalized in the row direction. First, diagonal
components of the two confusion matrices have
large values, indicating that the same emotions are
likely to occur both for the same utterance and for
the same person. Figure 3a shows that people are
likely to experience joy for an utterance of antici-
pation, trust, and surprise in addition to the same
emotion. People also tend to experience disgust
and sadness for anger and disgust, respectively. Fig-
ure 3b shows that after experiencing trust, people
are more likely to express joy than trust. For an
anger experience, people are more likely to express
disgust than anger. Figures 3a and 3b reveal that
the relationship of sadness is particularly different.
For a certain utterance, sadness makes the other per-
son feel sad in most cases, but for a certain person,
anticipation in addition to sadness can be expressed
after experiencing sadness. We speculate that when
a person experiences sadness from the interlocutor,
the person brings an utterance with anticipation to
comfort them.
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(a) Expressed emotions at the beginning and end of dia-
logue.

(b) Expressed emotions at the beginning and experienced
emotions at the end of dialogue.

Figure 4: The confusion matrices for the emotion labels at the beginning and end of dialogue. In this analysis, we
consider only the emotions of a person who begins a dialogue. Note that the targets are limited to the dialogues
containing six to nine utterances, and the elements are normalized in the row direction.

4.3 Emotions at the Beginning and End of a
Dialogue

To analyze the emotion changes through a dialogue,
we compare emotions at the beginning and end of a
dialogue. In other words, we see how the emotions
of a person who starts the dialogue change through
the dialogue. In this analysis, we focus on the
following two relationships:

a. The emotion expressed first and the emotion
expressed last by the same person.

b. The emotion expressed first and the emotion
experienced last by the same person.

The confusion matrices for the strong emotion
labels are shown in Figure 4. The targets are lim-
ited to dialogues containing six to nine utterances
to analyze the emotion changes in long dialogues.
Figure 4a shows that a speaker of the first utter-
ance is likely to finally express anticipation and
joy regardless of the first emotion. A speaker who
first expresses surprise can express sadness through
the dialogue. Figure 4b also shows that the first
speaker can experience anticipation at the end of a
dialogue. A person who first expresses anger and
disgust tends to finally experience trust. From these
two figures, we can see that a dialogue causes a
person who first expresses fear to finally feel either
a positive or negative emotion.

5 Experiments

5.1 Model Setup

We conduct experiments on expressed and experi-
enced emotion recognition using our corpus. We
solve a regression task of each emotion intensity for
an utterance with its context for the emotion recog-
nition task. We assign 0, 1, and 2 for none, weak,
and strong emotion labels, respectively, and let a
model regress these values for each emotion. As
such, we train two separate models for expressed
and experienced emotions with the mean squared
error loss:

L =
1

NK

N∑

i=1

K∑

j=1

(yij − tij)
2, (1)

where N is the number of samples and K is the
number of emotion labels. yij is the output from
the model for the jth label of the ith sample, and
tij is its gold label.

We adopt a Japanese pre-trained BERT model
and fine-tune it. We compare two pre-trained mod-
els from Kyoto University5 and one from NICT6.
We use the WWM and BPE versions for Kyoto Uni-
versity’s and NICT’s BERT models, respectively.

5https://nlp.ist.i.kyoto-u.ac.jp/?ku_
bert_japanese

6https://alaginrc.nict.go.jp/
nict-bert/index.html
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Model Expressed Experienced
Kyoto (base) 58.84/44.33 53.60/41.84
Kyoto (large) 60.85/45.16 55.09/42.94
NICT 61.50/46.05 56.23/43.88

Table 5: The results of regression for expressed and
experienced emotions. The metrics are Pearson’s and
Spearman’s correlation coefficients.

Label Expressed Experienced
Anger 50.21/33.80 38.11/23.80
Anticipation 62.76/55.55 57.46/51.22
Joy 67.25/55.22 61.92/54.47
Trust 41.15/36.69 43.91/40.48
Fear 59.09/31.47 49.60/24.90
Surprise 49.86/39.58 40.58/33.86
Sadness 63.70/51.50 55.48/43.88
Disgust 47.76/38.18 37.32/28.13

Table 6: The correlation coefficients for each emotion
label. The metrics are Pearson’s and Spearman’s corre-
lation coefficients. The scores are from the NICT model
that achieved the highest performance in Table 5.

Input utterances are segmented into words with
Juman++ (Tolmachev et al., 2018) and tokenized
into subwords by applying BPE. We join utterances
with [SEP] and append [CLS] and [SEP] to the
beginning and end, respectively. As there are two
participants in a dialogue, we give each utterance a
segment ID of 0 or 1. It provides the models with
the information about the speaker of an utterance.
Based on a series of utterances joined with [SEP],
we predict an emotion label for the last utterance.
The vector corresponding to [CLS] is passed to
a fully-connected layer, and an eight-dimensional
vector representing the eight emotions is obtained.
Each of the elements is supposed to regress the
intensity of each emotion.

Since we are dealing with a regression task, Pear-
son’s and Spearman’s correlation coefficients are
used as evaluation metrics. The dialogues in our
corpus are split into 8:1:1, corresponding to train-
ing, validation, and test sets. We fine-tune our
models for three epochs and evaluate them on the
test set. The implementation of the models is based
on HuggingFace Transformers7. The models are
trained using NVIDIA Tesla V100 SXM2 GPU.

5.2 Results

For the regression task defined in Section 5.1, the
correlation coefficients for each model are shown in
Table 5. In terms of performance, the NICT model
achieved the best score across all values. For the
values regarding expressed and experienced emo-
tions, the performance of the experienced emotion
is inferior to that of expressed emotion in all mod-
els. This result indicated that it is more difficult
to recognize the experienced emotion than the ex-
pressed emotion.

The correlation coefficients for each emotion in-
ferred by the NICT model are shown in Table 6.
For both the expressed and experienced emotions,
the highest scores were achieved for anticipation
and joy. In contrast, the emotions with lower val-
ues were trust and fear for the expressed emotion
and anger and disgust for the experienced emotion.
From Tables 6 and 2, we can see that the larger
the number of the samples for an emotion is, the
higher the correlation coefficient becomes. As a
case study, we show example dialogues and their
emotions predicted by the NICT model in Table 7.

5.3 Multi-Task Learning

Our analysis in Section 4.2 indicated that there is
a correlation between expressed and experienced
emotions. Therefore, we consider training a single
model for recognizing both the emotion categories.
The information for solving the two similar tasks
is expected to allow a model to improve the perfor-
mance of each other (Liu et al., 2019). We provide
a model with two separate fully-connected layers
for the tasks and train them simultaneously, where
the inputs are the same as those in Section 5.1.
Here, the mean of the losses for expressed and
experienced emotions is optimized:

Lmulti-task =
Lexpressed + Lexperienced

2
. (2)

Based on Figures 3a and 3b, we consider multi-task
learning of expressed and experienced emotions for
a certain utterance and a certain person. For the
relationship in a certain person, we use the experi-
enced emotion of an utterance and the expressed
emotion of the following utterance. We also con-
duct experiments on the cases where the training
and test sets are different from each other. In such
a case, for example, expressed emotions are used

7https://huggingface.co/transformers/
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Dialogue Predicted Gold
A1: ゲームの検証してる人が検証してほしいことあれば言ってください的な
こと言ってたから依頼したら無視されて悲しくなったのはいい思い出 (I have a
good memory of a guy who was verifying a game and said if there was anything he wanted
verified, please let him know, so I made a request and he ignored it, which made me sad.)
B1: それは悲しいね (That’s sad.)

Strong sad-
ness

Strong sad-
ness

A1: youtubeでバーのマスターが氷砕いてる動画見てボーッとしてる (I’ve been
watching videos of bar masters crushing ice on youtube and I’m in a daze.)
B1: なんかしてよ (Do something.)
A2: そのうちこういうときにツイキャスをしようかなと思っておる (One of these
days I’m going to do a tweak for this.)
B2: 天才の発想スマホでも見やすいから助かる (It’s a genius idea, and it’s easy to

watch on my phone.)

Weak antic-
ipation and
joy

Strong joy
and weak
trust

A1: 今、部活終わって帰るとこやけど雨やばいしかっぱ持ってきてないし最悪
(I’m on my way home after club activities, but it’s raining and I didn’t bring my hat, so
that sucks.)
B1: わたしも学校出た瞬間大雨降ってきた (I’m going back to school now, but it’s

raining really hard and I didn’t bring my jacket.)

Strong sur-
prise

Strong sad-
ness

Table 7: Example dialogues with predicted and gold expressed emotions. The predicted emotion labels are taken
from the predictions of the NICT model, which predicted an emotion label for the last utterance of each dialogue.

Train\Test Expressed Experienced
Expressed 61.50/46.05 52.89/40.91
Experienced 55.49/43.34 56.23/43.88
Multi-Task 62.20/46.63 57.35/45.01

Table 8: The results of multi-task learning with ex-
pressed and experienced emotions. The metrics are
Pearson’s and Spearman’s correlation coefficients.

Train\Test Experienced Next Expressed
Experienced 54.62/43.47 29.53/25.46
Next Expressed 43.32/35.27 33.91/28.31
Multi-Task 55.75/49.50 35.17/30.49

Table 9: The results of multi-task learning with expe-
rienced and next expressed emotions. The metrics are
Pearson’s and Spearman’s correlation coefficients.

for training, but experienced emotions are used for
testing.

The correlation coefficients for an utterance and
a speaker by multi-task learning are shown in Ta-
bles 8 and 9, respectively. First, the scores when
the training and test sets are different from each
other are lower than those when they are the same.
This gap indicates the significance of annotating ut-
terances with expressed and experienced emotions
separately. In all columns, the multi-task mod-
els achieved higher performance than the single-
task models. Especially, in Table 9, the multi-task
scores for both the two tasks are higher than the
single-task baselines by one point. In other words,
expressed, experienced, and next expressed emo-
tions have the information for helping the recogni-

tion of each other.

6 Conclusion

We proposed a method to build an emotion-tagged
multi-turn dialogue corpus to help machines recog-
nize emotional transition in a dialogue. Dialogues
between two speakers are collected from Twitter,
and each utterance is annotated with emotions by
crowdsourcing. In the annotation process, we con-
sider the emotions expressed by a speaker who said
the utterance and the emotion experienced by a
listener who heard the utterance. In addition, the la-
bels are provided with their intensity, representing
the granularity of emotions.

We built a Japanese emotion-tagged dialogue
corpus and analyzed it. The results showed the
characteristics of words for each emotion, the cor-
relation between the emotions about a certain utter-
ance and speaker, and the tendency for speakers to
become positive through a dialogue. We also devel-
oped emotion recognition models for expressed and
experienced emotions based on the Japanese pre-
trained BERT models. The experimental results
indicated that it is more difficult to recognize a
listener’s emotion than a speaker’s emotion. Multi-
task learning of expressed and experienced emo-
tions improved the performance of the two emotion
recognition tasks about an utterance and a speaker.

For our future work, we will tackle response
generation based on predicted emotions. With our
corpus, a dialogue system is expected to predict
which emotion it experiences from a given utter-
ance and which emotion it should express for the
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next utterance. Once such emotions are recognized,
the dialogue system should be able to generate an
appropriate response depending on the predicted
expressed emotion.

The corpus in this work is annotated only with
expressed and experienced emotions about an ut-
terance. In addition to the emotion annotation, we
should also consider dialogue situations (Rashkin
et al., 2019). The cause of a dialogue or an utter-
ance helps recognize a speaker’s emotion and how
it changes. We can also consider non-emotional
annotation, such as a dialogue’s topic and an ut-
terance’s intention (Li et al., 2017). The relation-
ship between emotions and non-emotional factors
is also important for machines to better recognize
a speaker’s emotion.
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Ethical Considerations

We built the dataset by collecting texts from Twitter
and annotating them by crowdsourcing. For crowd-
sourcing, we employed 3,847 workers. It took ap-
proximately five minutes for a task of annotating
10 utterances. Every worker was paid 4 JPY per
10 utterances, and in total, the built dataset costs
195,700 JPY. Since the dataset was collected from
Twitter, it may include contents that are harmful
for some of the dataset or its application users. For
building the dataset through the Twitter API and
crowdsourcing, we did not include any sensitive
information that allows personal identification.

The dataset or models trained on it enable down-
stream applications to infer the emotions of their
users, resulting in facilitating communication be-
tween the users and the applications. In terms of
dialogue systems, this ability is considered valu-
able for both task-oriented and non-task-oriented
dialogue systems. For example, it assists the user
in decision-making and solves the user’s worry and
trouble. In contrast to such benefit, it is difficult
for the model to infer the emotion accurately, with
the relatively small dataset. Therefore, prediction
errors by the model, especially for sensitive utter-
ances or negative emotions, may bring harmful
experiences on the users.
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Abstract
It has become crucial to develop tools for auto-
mated hate speech and abuse detection. These
tools would help to stop the bullies and the
haters and provide a safer environment for in-
dividuals especially from marginalized groups
to freely express themselves. However, recent
research shows that machine learning models
are biased and they might make the right deci-
sions for the wrong reasons. In this thesis, I
set out to understand the performance of hate
speech and abuse detection models and the dif-
ferent biases that could influence them. I show
that hate speech and abuse detection models
are not only subject to social bias but also to
other types of bias that have not been explored
before. Finally, I investigate the causal effect
of the social and intersectional bias on the per-
formance and unfairness of hate speech detec-
tion models.

1 Introduction

Over the last decade, there have been attempts to
use machine learning models (Dinakar et al., 2011;
Dadvar et al., 2014; Rafiq et al., 2015; Waseem and
Hovy, 2016a; Raisi and Huang, 2017; Agrawal and
Awekar, 2018a; Kumar et al., 2019; Pavlopoulos
et al., 2019; Mozafari et al., 2019; Yadav et al.,
2020; Paul and Saha, 2020) for the task of hate
speech and abuse detection. However, those studies
focused mainly on enhancing models’ performance,
without providing any insight into the models’ in-
ner workings.

In recent years, the research community started
to pay more attention to machine learning models’
explainability and the biases in these models and
the datasets. Wagner et al. (2021) describe the term
algorithmically infused societies as the societies
that are shaped by algorithmic and human behavior.
The data collected from these societies carry the
same bias in algorithms and humans, like popula-
tion bias and behavioral bias (Olteanu et al., 2019).
These biases are important in the field of Natural

Language Processing (NLP) because unsupervised
models like word embeddings encode them during
training. (Brunet et al., 2019; Joseph and Mor-
gan, 2020). This includes racial biases (Garg et al.,
2018; Manzini et al., 2019; Sweeney and Najafian,
2019), gender biases (Garg et al., 2018; Bolukbasi
et al., 2016; Chaloner and Maldonado, 2019), and
personality stereotypes (Agarwal et al., 2019).

Recent research in social science explains that
using racial slurs and third person profanity goes
beyond offending individuals or groups of people
and that it actually aims at stressing on inferiority of
the identity of marginalized groups (Kukla, 2018).
However, the research on bias in NLP have not
payed attention to how this type of offensive stereo-
typing being encoded in machine learning models
that are trained on data from social media. So I
introduce systematic offensive stereotyping (SOS)
bias which includes associating offensive terms to
different groups of people, especially marginalized
people, based on their ethnicity, gender, or sexual
orientation. On the other hand, studies that fo-
cused on the same type of bias in hate speech detec-
tion models studied it within hate speech datasets
(Dixon et al., 2018; Waseem and Hovy, 2016b;
Zhou et al., 2021), but not in the widely-used word
embeddings which are, in contrast, not trained on
data specifically curated to contain offensive con-
tent.

Moreover, the proposed methods to study social
biases like gender bias in word embeddings focused
on studying the statistical association between
words that describe women e.g., wife, mother, sis-
ter, girl, woman, and words related to femininity
e.g. nurturing, sensitive, and emotional (Caliskan
et al., 2017; Garg et al., 2018; Sweeney and Na-
jafian, 2019; Dev and Phillips, 2019). However,
social science literature has shown that femininity
differs in conceptualization among White and black
people (Giddings, 2006; Rosenfield, 2012). Addi-
tionally, the claim that the bias found in the word
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embeddings influence the NLP downstream tasks
has not been proven (Blodgett et al., 2020). A few
studies have used statistical correlation to show that
influence (De-Arteaga et al., 2019). However, cor-
relation is not causation and causal inferences have
not been used to understand the influence of bias
that exists in word embeddings, on the downstream
task of hate speech detection.

The limitations enlisted here could have negative
implications as hate speech detection models might
learn to associate marginalized groups with extrem-
ism and abuse. As a result, these models that were
supposed to provide a protective environment for
the marginalized people to express themselves are
the ones that could lead to silencing them or flag-
ging their content as inappropriate. In this thesis, I
aim to understand and investigate the performance
and the biases of hate speech and abuse detection
models through achieving the following research
goals: 1) Understand the performance of state-of-
the-art hate speech and abuse detection models.
2) Inspect other biases than social stereotypical
bias in commonly used static word embeddings. 3)
Investigate intersectional bias in contextual word
embeddings and the causal effect of social and inter-
sectional bias on the task of hate speech detection.

2 Literature review

2.1 Hate speech detection

In the literature on hate speech and abuse detec-
tion, there is a lack of clear distinction between
hate speech and related concepts like online abuse
(Elsafoury et al., 2021). There are different def-
initions of online abuse but most of them can be
summarized as “one form or another of insulting,
spread using mobile or internet technology” (El-
safoury et al., 2021). On the other hand, Fortuna et
al. studied hate speech in the literature in relation
to four dimensions: physical violence encourage-
ment, targets, attack language, and humorous hate
speech and introduced the following definition “a
language that attacks or diminishes, that incites
violence or hate against groups, based on specific
characteristics such as physical appearance, re-
ligion, descent, national or ethnic origin, sexual
orientation, gender identity or other, and it can
occur with different linguistic styles, even in subtle
forms or when humor is used” (Fortuna and Nunes,
2018). I could distinguish between online abuse
and online hate speech through the target of the
attack. If the target is an individual then it is online

abuse but if the target is a group of people then
it is online hate speech. Since I’m investigating
bias which is related to groups of people, so in this
thesis, I focus on hate speech detection rather than
abuse detection except for the first research goal
where online abuse datasets are used.

Different approaches have been developed to de-
tect hate speech and abuse detection from social me-
dia including rule-based, conventional, deep learn-
ing, and attention-based machine learning models
(BERT) (Elsafoury et al., 2021). These studies
have shown that BERT outperformed all the other
models on the task of hate speech and abuse detec-
tion (Paul and Saha, 2020; Mozafari et al., 2019).
However, none of them explain why. In the last
few years, there have been published studies on the
analysis of BERT’s attention weights on the GLUE
tasks (Kovaleva et al., 2019; Rogers et al., 2021;
Sun and Lu, 2020; Vashishth et al., 2019; Serrano
and Smith, 2019) but none of them were employed
for the task of hate speech and abuse detection. In-
spired by this research, one of my research goals
in this thesis is to gain a better understanding of
BERT’s strong performance on the task of hate
speech and abuse detection.

2.2 Bias in word embeddings

The term bias is defined and used in many different
ways (Olteanu et al., 2019). Most of the studies
that measure bias in NLP use the statistical defini-
tion of bias as “systematic distortion in the sampled
data that compromises its representatives” (Olteanu
et al., 2019). In the case of bias in distributional
word representations (static word embeddings), the
most commonly used methods for quantifying bias
are WEAT , RND, RNSB, and ECT (Badilla et al.,
2020). For WEAT, the authors were inspired by the
Implicit Association Test (IAT) to develop a statis-
tical test to demonstrate human-like biases in word
embeddings (Caliskan et al., 2017). They used the
cosine similarity and statistical significance tests
to measure the unfair correlations for two differ-
ent demographics, as represented by manually cu-
rated word lists. For RND, the authors used the
Euclidean distance between neutral words, like pro-
fessions, and a representative group vector created
by averaging the word vectors for words that de-
scribe a stereotyped group (gender/ethnicity) (Garg
et al., 2018). In RNSB, a logistic regression model
has first trained on the word vectors of unbiased
labeled sentiment words (positive and negative) ex-
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tracted from biased word embeddings. Then, that
model was used to predict the sentiment of words
that describe certain demographics (Sweeney and
Najafian, 2019). In ECT, the authors proposed a
method to measure how much bias has been re-
moved from the word embeddings after debiasing
them (Dev and Phillips, 2019). These metrics, ex-
cept RNSB, are based on the polarity between two
opposing points, like male and female, allowing for
binary comparisons. This forces practitioners to
model gender as a spectrum between more “male”
and “female” words, requiring an overly simplified
view of the construct, leading to similar problems
for other stereotypical types of bias, like racial and
sexual orientation, where there are more than two
categories that need to be represented (Sweeney
and Najafian, 2019). These metrics also use lists of
seed words that are unreliable as explained by (An-
toniak and Mimno, 2021). Since I am interested
in measuring the systematic offensive stereotypes
of different marginalized groups based on race and
sexual orientation, these metrics would fall short
of my needs. As for the RNSB metric, even though
it is possible to include more than two identities,
the sentiment dimension is represented as positive
or negative (binary). But in my case, I am inter-
ested in a variety of offensive language targeted
at different marginalized groups. Additionally, the
literature on bias in word embeddings claims that it
influences downstream tasks, like translation, clas-
sification, and text generation. Still, these claims
have not yet been tested (Blodgett et al., 2020). In
this thesis, I aim to address these limitations by
introducing the systematic offensive stereotyping
(SOS) bias, proposing a method to measure it, and
investigating the statistical association between the
SOS bias and the task of hate speech detection.

2.3 Intersectionality of bias

Intersectionality as a term is coined by Kimberle
Crenshaw (Crenshaw, 1989) to describe that Black
women experience a different type of bias other
than the ones experienced by White women and
Black men. She states that “This intersectional
experience is greater than the sum of racism and
sexism, any analysis that does not take intersec-
tionality into account can not sufficiently address
the particular manner in which Black women are
subordinated” (Crenshaw, 1989). Ever since there
has been increasing research on intersectionality
in social sciences. For example, European Amer-

ican people associate femininity with character-
istics like submissiveness, nurturing, sensitivity,
and emotional expressiveness. On the contrary, for
African American people, femininity incorporate
paid work and achievement. African American peo-
ple conceptualize gender as flexible with greater
gender role equality and less traditional attitudes
towards women’s roles than European American
people (Giddings, 2006; Rosenfield, 2012). Simi-
larly, O’Brien et al., show that African American
women are more likely to major in STEM fields in
comparison to European American women. They
also found that African Americans had a weaker
implicit gender-STEM stereotype than European
Americans (O’Brien et al., 2015). These Examples
show that the methods used in the literature to mea-
sure the gender bias in word embeddings (WEAT,
RND, and ECT) measure the gender bias that Eu-
ropean American women suffer from “White gen-
der bias” which does not reflect the experience
of women of color especially African American
women.

A few studies focus on the intersectionality of
bias in pre-trained contextual word embeddings
(Guo and Caliskan, 2021; Tan and Celis, 2019;
Lepori, 2020). These studies have used seed words
from the literature for their tests without mitigating
for their limitations as specified by (Antoniak and
Mimno, 2021). The limitations include the lack
of motivation behind choosing and the lack of co-
herence among the words that describe the same
group of people like using people’s names to infer
their ethnicity or race. Additionally, the inspected
intersectional biases have not been tested for their
influence on downstream tasks. For example, (Kim
et al., 2020) investigated the intersectional bias in
hate speech datasets again without analyzing their
influence on the model’s outcome.

In this thesis, I aim to mitigate this limitation by
creating a new bias dataset and propose a method to
measure interseactional bias in contextual word em-
beddings. Additionally, I am going to investigate
the causal influence of the studied intersectional
bias on the task of hate speech detection.

2.4 Causality in NLP

As mentioned earlier the research community has
mainly focused on measuring bias in word embed-
dings without understanding how this bias influ-
ences the downstream NLP tasks. Even the few
studies that investigated that influence, have re-
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Dataset Samples Positive
samples

Kaggle-insults 7425 35% (Kaggle, 2012)
Twitter-sex 14742 23% (Waseem and Hovy, 2016a)
Twitter-rac 13349 15% (Waseem and Hovy, 2016a)
HateEval 12722 42% (Basile et al., 2019)
Twitter-hate 5569 25% (Davidson et al., 2017)
WTP-agg 114649 13% (Wulczyn et al., 2017)
WTP-tox 157671 10% (Wulczyn et al., 2017)

Table 1: Dataset statistics

Dataset LSTM Bi-LSTM BERT(FT)
Kaggle-insults 0.6420 0.653 0.768
Twitter-sex 0.6569 0.649 0.760
Twitter-rac 0.6400 0.678 0.757
WTP-agg 0.7110 0.679 0.753
WTP-tox 0.7230 0.737 0.786

Table 2: F1-scores achieved for each dataset

lied on statistical correlations. For example, De-
Arteaga et al., measure the correlation between the
true positive rates gap between genders in the task
of occupation classification and the existing gender
imbalances in those occupations (De-Arteaga et al.,
2019).

Given that correlation is not causation, there has
been a recent trend in NLP that uses causal infer-
ence to understand the influence of different con-
cepts on different NLP tasks (Feder et al., 2021a).
Some of these studies have focused on understand-
ing the causal inference of concepts (e.g. social
bias in the datasets) on the task of text classification
using counterfactual causal inference (Feder et al.,
2021b; Qian et al., 2021; Elazar et al., 2021). Oth-
ers have focused on using causal inferences to un-
derstand the influence of some concepts (e.g. syn-
tax representation, and social biases in pre-trained
word embeddings) on tasks like consistency with
English grammar (Ravfogel et al., 2021; Tucker
et al., 2021). However, causal inference methods
have not been used to investigate the influence
of bias in pre-trained word embeddings on hate
speech. In this thesis, I aim to fill that research gap
by using counterfactual causal inference to mea-
sure that influence and to measure how harmful that
influence is on the task of hate speech detection.

3 Proposed Methods

In this section, I describe the proposed methods
to achieve my research goals and the outcomes of
the research goals that have been achieved. The
datasets used in the experiments discussed in sec-
tions 3.1 and section 3.2 are described in Table
1.

3.1 Research objective 1

To achieve my first research goal, I started with re-
viewing the literature on hate speech and abuse de-
tection models including the most used ML models,
and datasets. Then, weused BERT in comparison to
RNN models on the task of hate speech and abuse
detection using some. or fine-tuning, BERT was
trained for 10 epochs with a batch size of 32 and a
learning rate of 2e−5, as suggested in (Devlin et al.,
2019). The sequence length parameter changed
across datasets depending on their maximum token
length. For the Twitter-sexism and Twitter-racism
datasets, a sequence length of 64 was used because
it is the closest to the maximum observed sequence
length in the dataset, while 128 was used for the
rest because it is the maximum I could use due to
available computational resources limitations. A
single linear layer was added on top of the pooled
output of BERT for sentence classification. I also
used LSTM (Hochreiter and Schmidhuber, 1997)
and Bi-directional LSTM (Schuster and Paliwal,
1997), with the same architecture as in (Agrawal
and Awekar, 2018a), who used RNN models to
detect cyberbullying. To this end, I first used the
Keras tokeniser (Tensorflow.org, 2020) to convert
the text into numerical vectors (each integer be-
ing the index of a token in a dictionary) with a
maximum length of 600 (the maximum I could
use due to computational resources limitations) for
the Kaggle and WTP datasets and 41 (maximum
observed sequence length in the dataset) for the
Twitter datasets. A trainable embedding layer was
used as the first hidden layer of the LSTM and Bi-
LSTM-based networks, with an input size equal to
the number of unique tokens of the dataset after pre-
processing and an output size of 128. The two mod-
els were then trained for 100 epochs with a batch
size of 32, using the Adam optimiser and a learn-
ing rate of 0.01 which is the default of the Keras
Optimiser. The results show that BERT outper-
forms other commonly used deep learning models
on multiple hate speech and abuse-related datasets
achieving the highest F1 (Table 2).

I built on these results by analyzing the per-
formance of BERT to understand the reason be-
hind BERT’s good performance (Elsafoury). To
achieve that I first examined how fine-tuning af-
fects BERT’s attention weights, the results show
that there is a difference in attention weights’ pat-
terns between BERT with and without fine-tuning.
Then, to investigate the role of attention weights
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Dataset
No.

tokens

PCC (attention

vs importance)

PCC (attention vs

no. occurrences)

PCC (importance vs

no. occurrences)

Twitter-Sexism 3878 0.108 -0.047 -0.002

Twitter-Racism 3991 0.056 -0.015 -0.002

Kaggle-Insults 4452 0.171 -0.023 -0.004

WTP-Aggression 4457 0.125 -0.101 -0.009

WTP-Toxicity 4524 0.163 -0.076 -0.011

Table 3: PCC between mean attention weights of fine-
tuned BERT, mean absolute feature importance and
number of occurrences per token

of a fine-tuned BERT in the model’s performance,
I compared the mean feature importance score of
individual tokens, obtained using the Integrated
Gradients algorithm (Sundararajan et al., 2017), to
their mean attention weights. I computed the Pear-
son’s correlation coefficient (PCC) between the
mean attention weights of fine-tuned BERT of all
heads across the last layers (9-12) and the tokens’
absolute importance score, as it has been shown
that fine-tuning effects mostly BERT’s last layers
(9-12) (Rogers et al., 2021).

The results show that even though the patterns
of the attention weights of fine-tuned BERT are
different from those of BERT without fine-tuning,
results show that attention weights are not mean-
ingful when it comes to the model’s prediction. As
I found no linear correlation between the absolute
importance score and the mean attention weights of
BERT, Table 3, for the examined datasets (0.056 ≤
PCC ≤ 0.171), as well as between the number
of occurrences of a token and the mean attention
weights (−0.101 ≤ PCC ≤ −0.015) or the mean
importance scores (−0.011 ≤ PCC ≤ −0.002).
These results suggest that attention weights don’t
play a direct role in explaining BERT’s perfor-
mance, which is in line with previous studies (Sun
and Lu, 2020; Serrano and Smith, 2019; Vashishth
et al., 2019).

Finally, I analyzed the importance scores of POS
tags of fine-tuned BERT to find out the features that
BERT relies on to make its prediction. The results
show that BERT captures syntactical biases in the
datasets. As the results in Figure 1 show that the
POS tags with the highest importance scores are
auxiliaries, punctuation, determiners, adpositions,
and pronouns which are not informative for the
task of hate speech and abuse detection. Among
these, the most informative tag for hate speech
and abuse detection is the pronoun. These results
suggest that BERT relies on syntactical biases and
shortcuts in the datasets for its good performance. I

Group Word
LGBTQ* lesbian, gay, queer, homosexual, lgbt, bi-

sexual, transgender, trans, non-binary
Women* woman, female, girl, wife, sister, mother,

daughter
Other ethnici-
ties*

african, african american, black, asian, his-
panic, latin, mexican, indian, arab

Straight hetrosexual, cisgender
Men man, male, boy, son, father, husband,

brother
White ethnici-
ties

white, caucasian, european american, eu-
ropean, norwegian, canadian, german, aus-
tralian, english, french, american, swedish,
dutch

*Marginalised group

Table 4: NOI words and the group they describe.

speculate that this syntactical bias is resulted from
the upstream datasets that BERT was pre-trained
on. To mitigate the effect of that bias, I fine-tuned
BERT on an intermediate task which is English
POS tags classification dataset following the work
suggested in (Zhou et al., 2020). However the
results show almost the same distribution of the
feature importance scores. This results suggest
that Post-processing bias mitigation in BERT is
not effective and mitigating the bias during the pre-
training might be more effective. The results in this
section motivate the second and the third research
objectives.

3.2 Research objective 2

To achieve my second research goal and to find
out if there are other biases in the commonly used
word embeddings that are used in the task of hate
speech and abuse detection models, I aim to reveal
whether word embeddings associate offensive lan-
guage with words describing marginalized groups.
I define systematic offensive stereotypes (SOS)
from a statistical perspective as “ A systematic as-
sociation in the word embeddings between profan-
ity and marginalized groups of people”. In other
words, SOS refers to associating offensive terms
to different groups of people, especially marginal-
ized people, based on their ethnicity, gender, or
sexual orientation. Based on my definition of SOS,
I want a method to measure the association that
each word embedding model has between profan-
ity and marginalized groups of people. I propose to
measure that association using the cosine similar-
ity between swear words and words that describe
marginalized social groups.

For the swear words, I used a list of 427 swear
words from (Agrawal and Awekar, 2018b). For
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Figure 1: Mean normalised importance scores assigned by fine-tuned BERT to POS tags in the datasets.
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Figure 2: Mean SOS scores for the examined word embed-
dings and groups.

describing marginalized social groups, I used a
word list that contains non-offensive identity (NOI)
names to describe marginalized groups of people
(Zhou et al., 2021; Dixon et al., 2018) and non-
marginalized ones (Sweeney and Najafian, 2019),
as summarised in Table 4. Similar to RNSB, I
use NOI words to describe the different groups,
unlike WEAT, ECT, and RND which used seed
words like people’s names to infer their nationality
or pronouns. The motivation behind using NOI
words is clearer than using seed words used in the
literature (Antoniak and Mimno, 2021). Moreover,
According to the reported coherence scores in (An-
toniak and Mimno, 2021), The used NOI words for
women, men, white and non-white ethnicity groups,
score the highest coherence which are 0.090 and
0.910 respectively which shows that the NOI that
describe two different groups, e.g. Women vs Men,
are far apart which is ideal. However, they don’t
provide analysis for seed words related to sexual
orientation. Since we used the same method to
collect these seed words like gender and ethnicity
related seed words, I assume that sexual oriented
seed words would also have accepted coherence
scores.

To measure the SOS bias, let WNOI =

{w1, w2, w3, ...wn} be the list of NOI words wi,
i = 1, 2, ..., n, and Wsw = {o1, o2, o3, ...om} be
the list of swear words oj , j = 1, 2, ...,m. To mea-
sure the SOS bias for a specific word embedding
we, I first compute the average vector

−−−→
Wwe

sw of the
swear words for we, e.g. for Word2Vec, Glove, etc.
SOSi,we for a NOI word wi and a word embedding
we is then defined (Equation 1) as the cosine simi-
larity between

−−−→
Wwe

sw and the word vector−−−→wi,we, for
the word embedding we, normalised to the range
[0, 1] using min-max normalisation across all NOI
words (WNOI ).

SOSi,we =

−−−→
Wwe

sw · −−−→wi,we

||−−−→Wwe
sw || · ||−−−→wi,we||

(1)

The normalized SOS score takes values within
the range [0, 1] and indicates the similarity of an
NOI word to the average representation of swear
words. Consequently, a higher SOSi,we value for
word wi indicates that the word embedding −−−→wi,we

for the word wi, is more associated with profan-
ity. The metric is intended to be used compar-
atively among word embeddings, e.g. w2v vs
Glove-WK, or among different groups of people,
e.g. Women vs Men, rather than to determine an
objective threshold below which no bias exists.

I computed the mean SOS score over the ex-
amined word embeddings(Word2Vec, Glove-WK,
Glove-Twitter, UD, and Chan) for each examined
group individually. Figure 2 shows that some
word embeddings are more biased than others
and that the biased word embeddings are more
biased towards the marginalized group than the
non-marginalized groups.

To validate my SOS bias metric, I compared
the SOS bias, measured by my proposed method
and state-of-the-art metrics (WEAT, RNSB, RND,
ECT), to the published statistics on online abuse
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Figure 3: ThePearson’s correlation between the different met-
rics and the percentages of people belonging to the examined
marginalized groups who experienced abuse and extremism
online for each published surveys for the examined word em-
bedding. For RAD heatmap, correlation is computed between
the SOS scores and the differences in RAD between the per-
centage of (women and men), (LGTBQ and straight), and
(Non-white ethnicities and White ethnicities).

and extremism that is targeted at marginalized
groups (Women, LGBTQ, Non-white ethnicities).
The WEFE framework (Badilla et al., 2020) was
used to measure the SOS bias of the examined word
embeddings using the state-of-the-art metrics. The
metrics in the WEFE platform take 4 inputs: Target
list 1: a word list describing a group of people, e.g.
women; Target list 2: a word list that describes a
different group of people, e.g. men; Attribute list 1:
a word list that contains attributes that are believed
to be associated with target group 1, e.g. house-
wife; and Attribute list 2: a word list that contains
attributes that are believed to be associated with
target group 2, e.g. engineer. Each metric then
measures these associations.

To measure the SOSwomen using the state-of-
the-art metrics, target list W1 contained the NOI
words that describe women in Table 4, target list
W2 contained the NOI words that describe men, at-
tribute list 1 contained the same swear words used
earlier to measure the SOS bias, and attribute list
2 a list of positive words provided by the WEFE
framework. To measure the SOSethnicity, I used
the same process, with the same attribute lists, but
with target list E1 that contained NOI words that
describe non-white ethnicities and target list E2
that contained NOI words that describe white eth-
nicities. Similarly, to measure SOSlgbtq, I used
the same attribute lists and target list L1, which
contained NOI words that describe LGBTQ, and
target list L2 which contained NOI words that de-
scribe straight and cisgender people. To measure
SOSwomen, SOSlgbtq, and SOSethnicity with my
proposed metric, I computed the mean SOS scores
of the NOI words that describe Women, LGBTQ,
and Non-white ethnicities. The percentages of peo-
ple belonging to the examined marginalized groups

who experienced abuse and extremism online were
then acquired fromthe following surveys: the Rad
Campaign Online Harassment Survey 2014 (Rad
Campaign, 2014) where 1,000 adult Americans
(aged 18+) were surveyed about being harassed
online and the online extremism and online hate
survey (OEOH), collected by (Hawdon et al., 2015)
from Finland (FI) (n=555), Germany (GR) (n=999),
the US (n=1,033), and the UK (n=999) in 2013 and
2014, for individuals aged 15 - 30.

Then, I computed the Pearson’s correlation co-
efficient between the SOS* scores, measured by
the different metrics for Women, LGTBQ, and
Non-white ethnicities for the examined word em-
beddings and the percentages of people belonging
to the examined marginalized groups who experi-
enced abuse and extremism online. The results in
Figure 3† show that my proposed SOS bias met-
ric, for Chan, UD, and Glove-Twitter, has a high
positive correlation with the published statistics on
online abuse (RAD), whereas the correlation is very
small or negative for word2vec and Glove-WK. On
the contrary, for the online hate and extremism
surveys OEOH (US, UK, GR, and FI), my SOS
bias metric for Word2Vec and Glove-WK shows
a positive correlation, whereas the correlation for
Glove-Twitter, UD, and Chan is negative or very
small. A similar pattern is exhibited by the RNSB
metric to a lesser extend. On the other hand, WEAT,
RND, and ECT exhibit almost the opposite pattern,
as they show a negative or very small correlation to
the statistics of the surveys on online abuse (RAD)
for all the word embeddings, but show a high posi-
tive correlation with the statistics of the surveys of
online hate and extremism OEOH (US, UK, GR,
and FI).

These results suggest that my metric highlights
the difference in the SOS bias between the differ-
ent word embeddings, as the word embeddings
that were trained on the social media datasets
(Glove-Twitter, UD, and Chan) encode the online
abuse towards marginalized people, while word
embeddings that were trained on Google news and
Wikipedia articles encode the hate and extremism
against the marginalized groups shared in those
sources. On the contrary, the other metrics fail to

*Contrary to all other metrics, ECT scores have an inverse
relationship with the level of bias, so I subtract all ECT scores
from 1 to enforce that higher scores for all metrics indicate
greater levels of bias.

†The correlation results for OEOH-US are similar to
OEOH-UK, OEOH-GR, and OEOH-FI, so the latter were
omitted from the figure.
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capture that difference between the word embed-
dings. Consequently, the results suggest that my
bias metric is more reflective of the SOS bias in the
different word embeddings than the-state-of-the-art
bias metrics.

Dataset Model
F1-score

Word2Vec Glove-WK Glove-Twitter UD Chan

HateEval
MLP 0.593 0.583 0.623 0.597 0.627
BiLSTM 0.663 0.651 0.671 0.661 0.661

Twitter-sexism
MLP 0.587 0.587 0.589 0.578 0.563

BiLSTM 0.659 0.661 0.661 0.625 0.631

Twitter-racism
MLP 0.683 0.681 0.680 0.679 0.650

BiLSTM 0.717 0.727 0.6999 0.698 0.712

Twitter-hate
MLP 0.681 0.713 0.775 0.780 0.692

BiLSTM 0.772 0.821 0.851 0.837 0.84

Note: Numbers in bold indicate best performance per model and dataset

Table 5: F1 scores for the used models using the examined
word embeddings on my datasets.

Dataset Model
Spearman’s correlation

WEAT RNSB RND ECT Our metric

HateEval
MLP 0.900 -0.300 0.400 -0.100 0.500
BiLSTM 0.102 -0.974 -0.461 -0.205 0.974

Twitter-sexism
MLP -0.359 -0.564 -0.359 -0.615 0.461
BiLSTM -0.205 -0.102 0.153 -0.872 0.205

Twitter-racism
MLP -0.900 -0.200 -0.600 -0.100 0.100
BiLSTM -0.500 0.500 0.200 -0.300 -0.300

Twitter-hate
MLP 0.300 -0.100 0 0 -0.200
BiLSTM 0.900 -0.300 0.500 -0.500 0.400

Table 6: Spearman’s rank correlation coefficient of the SOS
bias scores of the different word embeddings and the F1 scores
of the used models for each bias metric and dataset.

I also investigate the influence that my SOS
bias metric and state-of-the-art metrics have on the
downstream task of hate speech detection. By cor-
relating the F1 scores of machine learning models
on different hate speech datasets (Table 5) and the
SOS bias scores as measured by my proposed meth-
ods and the state-of-the-art metrics. The results in
Table 6 show that my metric exhibits a positive
correlation with the F1 scores of the Bi-LSTM and
MLP models on the HateEval and Twitter-sexism
datasets. For Twitter-racism, RNSB shows the high-
est positive correlation with the F1-score of the Bi-
LSTM model, while for the Twitter-hate dataset,
WEAT shows the highest positive correlation with
the F1-scores of the MLP and Bi-LSTM models.
These results suggest that my SOS bias metric cor-
relates consistently positively with the F1 scores of
the deep learning models on the different datasets
compared to the other metrics. My findings in this
section suggest that there is an influence of the SOS
bias in the word embeddings on the downstream
task of hate speech detection. However, the re-
sults are not conclusive and more experiments are
required.

The results in this section suggest that the SOS
bias provides important information to be used in
addition to the social bias to get a fuller picture
of the bias in the word embeddings. They also
suggest that impact of the SOS and the social bias
in the word embeddings on the performance of
hate speech detection models. Which means it
is important for the future studies on hate speech
detection to pay attention to the influence of bias on
the models’ performance to develop fairer models.

My findings in this section motivate my next
research objective to use counterfactual causal in-
ference to understand the influence of the bias in
word embedding on the downstream tasks of hate
speech and abuse detection.

3.3 Research objective 3

This research goal can be achieved by answering
the following research question: 1) How to mea-
sure the intersectional bias in pre-trained contextual
word embeddings? 2) What is the causal influence
of bias, social and intersectional, in the pre-trained
contextual word embeddings on the task of hate
speech detection? and how harmful that bias is it
on the models’ fairness?

To answer the first research question and to mea-
sure the intersectional bias (gender and race) in
contextual word embeddings, I plan to first create
an intersectional bias dataset similar to SteroSet
(Nadeem et al., 2021) and CrowS-Pairs (Nangia
et al., 2020) bias datasets but with focus on in-
tersectionality of gender and race. Then, I plan
to use the same method proposed to measure the
bias in contextual word embeddings using the same
method proposed in (Nangia et al., 2020).

To answer the first part of the second questions
and to measure the influence of social and inter-
sectional bias on the task of hate speech detection,
I plan to compute the Average Treatment Effect
(ATE) on the model’s prediction probability dis-
tribution (Feder et al., 2021b). I plan to compute
the ATE of the prediction probability distribution
of a biased contextual word embeddings on a hate
speech dataset (factual) and the prediction probabil-
ity distribution of a debiased contextual word em-
beddings (counterfactual) on hate speech datasets.
I plan to use contextual word embeddings without
fine-tuning to avoid unobserved con-founders like
the bias in the hate speech datasets.

To answer the second half of the second research
question and measure the potential harm of the
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bias on the task of hate speech detection, I plan
to measure the unfairness model for the marginal-
ized and the non-marginalized groups. To measure
the unfairness of hate speech detection models, I
plan to use similar fairness metric to the one sug-
gested in (De-Arteaga et al., 2019) where the au-
thors measure the difference of the true positive
rates (TPR) scores between the different groups of
people (marginalised vs. non-marginalized). But
instead of the TPRs scores, I plan to use the false
positive rate (FPR) scores since FPR is a better esti-
mate of unfairness in hate speech detection models
as suggested by (Dixon et al., 2018). Our metric
to measure unfairness in hate speech models is de-
scribed in Equation 2 where g is the marginalized
group of people (women, non-white ethnicities, and
LGBTQ) and ĝ is hte non-marginalized groups of
peaple (men, white-ethnciities, and straight).

Unfairnessg,y = TPRg − TPRĝ (2)

Similarly I plan to use contextual word em-
beddings without fine-tuning to avoid the unfair-
ness that might result from the imbalances in the
datasets. For the experiments I plan to use distilled
versions of different pre-trained contextual word
embedding, e.g. Distill-BERT, Distill-Roberta, and
Distill-GPT2. due to limited access to computa-
tional resources. I also plan to use the hate speech
datasets described in Table 7, as they contain de-
tailed information on the target of the hate based on
attributes like race, gender, and sexual orientation.

This work is expected to reveal the intersectional
bias in the contextual word embeddings and how, in
addition to the social bias, it causally influence the
performance and the unfairness of the hate speech
detection models. Understanding this causal influ-
ence on performance and fairness would be help-
ful in developing more effective and targeted de-
bias techniques that address the unfairness of the
hate speech detection models instead of generic su-
perficial debias techniques (Gonen and Goldberg,
2019).

Dataset Size
ETHOS 433 (Mollas et al., 2022)
MLMa 5647 (Ousidhoum et al., 2019)
Jigsaw 1,902,194 (Jigsaw, 2019)
MIT 59,179 (Huang et al., 2020)
SBIC 112,900 (Sap et al., 2020)

Table 7: Targeted Hate speech datasets

3.4 Limitations

Even though this work has a positive implications
, it also has its limitations. One of the limitations
is studying bias only from the western society per-
spective as the way bias is measured might differ in
different societies. As for intersectional bias, this
work focus only on the intersectionality of gender
and race. This work focuses only on models and
datasets that are in English which is another limita-
tion. Finally, this work studies the influence of bias
only on hate speech detection models using only
supervised machine learning models.

3.5 Ethical consideration

This work has a positive impact on the society since
it is targeted at revealing the different biases in the
commonly used NLP models. It gives insight into
the potential risks and unfairness of these NLP
models.

4 Conclusion

Hate speech and abuse detection is a very impor-
tant task to provide a safe inclusive environment for
people from different backgrounds to express them-
selves. However, the different types of biases that
have been shown in different NLP tasks could have
a counter effect on these hate speech and abuse
detection models as they could associate minorities
with hate and abuse which could lead to flagging
their content as inappropriate and silencing which
is the exact opposite of the aim of hate speech and
abuse detection models. In this thesis, I look at the
different biases in hate speech and abuse detection
models and what is the influence of that bias on the
performance of hate speech detection models and
how this bias could harm the model’s fairness. This
work reveal types of biases other than social bias
in some of the most common NLP models. And it
gives insight into developing targeted and effective
techniques to mitigate the effect of the different
biases and to develop fairer hate speech detection
models.
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Abstract
This paper considers some ethical implications
of machine translation for low-resourced lan-
guages. I use Armenian as a case study and
investigate specific needs for and concerns aris-
ing from the creation and deployment of im-
proved machine translation between English
and Armenian. To do this, I conduct stake-
holder interviews and construct Value Scenar-
ios (Nathan et al., 2007) from the themes that
emerge. These scenarios illustrate some of
the potential harms that low-resourced lan-
guage communities may face due to the deploy-
ment of improved machine translation systems.
Based on these scenarios, I recommend 1) col-
laborating with stakeholders in order to create
more useful and reliable machine translation
tools, and 2) determining which other forms
of language technology should be developed
alongside efforts to improve machine transla-
tion in order to mitigate harms rendered to vul-
nerable language communities. Both of these
goals require treating low-resourced machine
translation as a language-specific, rather than
language-agnostic, task.

1 Introduction

The challenge of building machine translation sys-
tems for low-resourced languages is often seen
merely a problem of data scarcity, but such a fram-
ing obscures the systemic differences between low-
resourced languages and high-resourced languages,
as well as between their corresponding speaker
communities. Before building machine translation
systems for low-resourced languages, it is impor-
tant to consider the real impact that these systems
can have on their intended users. This paper inves-
tigates the ethical implications for improvements
to machine translation for low-resourced languages
using a Value Scenarios (Nathan et al., 2007) frame-
work to identify potential harms and construct rec-
ommendations to mitigate them.

The remainder of this paper uses the Armenian
language as a case study and considers the specific

circumstances of speakers in the Armenian Dias-
pora. I conducted interviews with four stakeholders
(Armenian speakers who use machine translation
systems) and analyzed their responses to identify
common desires and concerns for machine transla-
tion. I then used these analyses to construct Value
Scenarios, which illustrate potential unintended
consequences of improving the quality of machine
translation between English and Armenian to the
level of current machine translation between En-
glish and other high-resourced languages.

In examining machine translation for Armenian,
I hope to provide examples of the kinds of harms
that may be caused to speakers of low-resourced
languages in the development of machine transla-
tion tools. This paper is not meant as an exhaustive
exploration of all possible harms; instead, it pro-
vides a starting point for considering how the spe-
cific circumstances of a language community can
inform the creation of ethically-produced machine
translation tools.

My findings show that machine translation for
low-resourced languages should not be undertaken
as an aggregated language-agnostic task, but should
instead be approached in a language-specific way
that contextualizes speakers’ needs and other facets
of existing language technology. Such an approach
would allow NLP researchers to move away from
a data-first paradigm that privileges high-resourced
languages and varieties towards one that can take
into account the particular circumstances of vul-
nerable groups in order to ensure that we build
machine translation tools that are genuinely useful
and reliable.

The rest of this paper is organized as follows.
Section 2 provides background information on ma-
chine translation for low-resourced languages and
describes Value Scenarios. Following that, Section
3 gives an overview of considerations for Armenian.
Section 4 describes the methodology I followed
to conduct stakeholder interviews, the results of
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which are analyzed in Section 5. Based on intervie-
wees’ responses, two Value Scenarios are presented
and analyzed in Section 6, and recommendations
based on these scenarios are given in Section 7.
Section 8 describes ethical considerations for this
project, and Section 9 provides a conclusion.

2 Background

2.1 (Neural) Machine Translation for
Low-Resourced Languages

In the past few years, neural machine translation
(NMT) (Bahdanau et al., 2016) has become the
dominant model for machine translation applica-
tions. NMT systems generally show a wide gap
in translation quality for low-resourced languages
and high-resourced languages (Caswell and Liang,
2020). This difference in performance has signifi-
cant consequences for speakers of low-resourced
languages. As Joshi et al. (2020) argue, the diver-
gence in the quality of NLP applications for high-
resourced languages and low-resourced languages
can exacerbate conditions that lead to language
decline.

There have been many efforts to improve ma-
chine translation for low-resourced languages (e.g.
Gu et al., 2018; Lample et al., 2018; Ko et al., 2021;
Zoph et al., 2016; Fadaee et al., 2017), many of
which take a transfer learning approach that applies
models trained on multilingual data to languages
for which there is less data available. Many cur-
rent NMT models are trained on large, uncurated
datasets, such as Wikipedia dumps (Gu et al., 2018).
As a result, NMT systems generally work better for
standard language varieties than non-standard ones
(Kumar et al., 2021).

When approaching the task of machine transla-
tion for low-resourced languages, it is important
to consider the relationship between the NLP com-
munity and communities that speak low-resourced
languages. As Nekoto et al. (2020) detail, under-
standing low-resourcedness as merely a lack of
data is reductive, as this framing fails to capture
the corresponding lack of linguistic and geographic
diversity of NLP scholars. Nekoto et al. (2020) also
describe how much of the work in machine transla-
tion is Anglo-centric, as it prioritizes the quality of
translations to and from English.

Both of these observations point to a disconnect
between the NLP community and speakers of low-
resourced languages. As a result, language tech-
nologists building applications for low-resourced

languages may not have a clear picture of the wants
and needs of these languages’ speaker communi-
ties, and may not understand the benefits and harms
rendered to these communities by the language
technology they build. The number of languages
considered to be low-resourced is vast, and com-
munities that speak low-resourced languages have
diverse needs; often, these needs are very differ-
ent from the needs of speakers of high-resourced
languages (e.g. Joshi et al., 2019).

2.2 Value Scenarios

Incorporating stakeholders’ perspectives is crucial
for creating useful improvements in language tech-
nology for low-resourced languages (e.g. Nekoto
et al., 2020; Joshi et al., 2019).

To do that, this work will draw on the principles
of Value-Sensitive Design (Friedman, 1996), par-
ticularly Value Scenarios (Nathan et al., 2007), to
identify ethical challenges in the improvements of
machine translation for low-resourced languages.
A Value Scenario imagines the systemic impacts
of a proposed technology in order to anticipate and
mitigate negative consequences before that technol-
ogy is deployed. Considering how many efforts are
underway to improve the quality of machine trans-
lation for low-resourced languages, it is pertinent
to examine a range of impacts that these improve-
ments may have for speakers of low-resourced lan-
guages. The utility of Value Scenarios in this use
case is to illustrate the needs and concerns of a
particular group of stakeholders in a way that gen-
erates specific avenues for harm mitigation.

The Value Scenarios framework (Nathan et al.,
2007) identifies five key elements to explore: stake-
holders (people who are impacted by the technol-
ogy either directly or indirectly), pervasiveness (the
effects of the technology when it has widespread
use), time (the effect of the technology in short-
and long-term scales), systemic effects (how the
technology interacts with various areas of life), and
value implications (potential positive and negative
influences that impact use of the technology). My
analysis in this paper will draw on each of these
five components.

It should be noted that the purpose of Value Sce-
narios is not to generate predictions for the future,
nor is it possible to use Value Scenarios to imagine
every possible consequence of a proposed technol-
ogy (Nathan et al., 2007). The task of prevent-
ing harms to marginalized groups is complex and
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ever-changing, and requires the integration of many
types of expertise and a variety of tools. This paper
considers the use of Value Scenarios as one such
tool.

3 Considerations for Armenian

In this section, I present two important challenges
specific to the improvement of machine translation
for Armenian: language variation and orthography.
While the details of these challenges pertain to the
particular situation of the Armenian language and
of Armenian speakers, it is likely that improve-
ments to other low-resourced languages would re-
quire similar considerations.

3.1 Variation

Modern Armenian has two main varieties: Modern
Eastern Armenian and Modern Western Armenian.
While these two varieties are mostly mutually intel-
ligible, there are large distinctions between them in
phonology, morphology, syntax, and lexical items.

The following characterization of Armenian-
speaking populations is consistent with Eberhard
et al. (2021). Eastern Armenian speakers are pre-
dominantly those in Armenia, Artsakh, Russia, and
Iran. Western Armenian speakers are predomi-
nantly those in the United States, Lebanon, Geor-
gia, and Argentina. There are about 3.8 million
Eastern Armenian speakers and about 1.4 million
Western Armenian speakers worldwide.

There is a large imbalance in the amount of data
available in each of the two main varieties; for ex-
ample, the Eastern Armenian Wikipedia (called
simply Armenian Wikipedia) has about 291 thou-
sand articles in early 2022, while the Western Ar-
menian Wikipedia has only about 10 thousand.1

3.2 Orthography

The following description is based on Hagopian
(2007). While all varieties of Armenian are writ-
ten with the same alphabet, there are two sets of
spelling conventions: Classical Orthography and
Reformed Orthography. There are substantial dif-
ferences between the two systems, though it is gen-
erally possible for someone who typically uses one
orthography to read text written in the other. Speak-
ers of all varieties of Western Armenian and of the
Barskahye variety of Eastern Armenian use Classi-
cal Orthography, while all other speakers of East-
ern Armenian use Reformed Orthography. The vast

1meta.wikimedia.org/wiki/List_of_Wikipedias

Eastern, Reformed im qowyr� xosowm �

Eastern, Classical im qoyr� x�sowm �

Eastern, IPA im "khui.R@ "Xo.sum e
Western, Classical im qoyrs k� x�si

Western, IPA im "khui.R@s g@ Xo."si

Table 1: The phrase "my sister speaks" in both Eastern
and Western Armenian. The transcriptions in IPA show
roughly standard pronunciations for both main varieties.

majority of text in Armenian on the Internet is in
Reformed Orthography. See Table 1 for an example
of differences between varieties and orthographies.

Additionally, many Armenian speakers often
write using ad-hoc Romanization rather than Ar-
menian script, which is an additional challenge for
machine translation.

4 Methodology

This section describes the process by which I con-
ducted stakeholder interviews. This study was ap-
proved by the Institutional Review Board (IRB) at
the University of Washington.

4.1 Participants

Four volunteer participants were recruited on the
basis of their status as Armenian and English speak-
ers who have previously used machine translation
technology. To avoid the unwanted identification
of these participants, the following description and
the discussion in Section 5 include only details that
are necessary for contextualizing the perspectives
described in this paper.

Each participant speaks a different variety
of Armenian: Standard Eastern Armenian, the
Karabaghtsi (Artsakhi) variety of Eastern Arme-
nian, the Barskahye (Iranian) variety of Eastern
Armenian, and Standard Western Armenian. These
varieties cover a large swath of Armenian speak-
ers, although of course they do not constitute the
totality of variation in Armenian.

While the stakeholders I interviewed are diverse
in the varieties they speak, they are otherwise a
somewhat homogeneous group. All of the inter-
viewees are below the age of 35, and all have
resided in the United States for the majority of
their lives. Additionally, while all four intervie-
wees speak Armenian at home and in some social
settings, they also all speak English as their pri-
mary language in other settings. Therefore, the
perspectives described in this paper reflect a partic-
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ularly diasporic and English-dominant experience
of Armenian identity, which has a clear influence
on the desires and concerns described in Section 5.
It should also be noted that all of the interviewees
were people in my own network, and do not form
a representative sample of Armenian speakers as a
whole or even of Armenian speakers in the United
States.

4.2 Interviews
Before the interviews were conducted, participants
were provided with a description of this study’s
purpose and the topics that would be discussed dur-
ing the interview, along with a description of how
their data would be stored and used. Each partici-
pant was interviewed separately over a video call
that lasted between one and two hours in length.
With the participants’ consent, the interviews were
recorded to aid later analysis. To protect the in-
terviewees’ privacy, all recording files are secured
in accordance with the guidelines established by
the Human Subjects Division at the University of
Washington.

These interviews were conducted in a semi-
structured format: some questions were pre-
determined, and others were based on participants’
responses in the moment. I constructed a set of
basic questions for each topic I planned to discuss
with interviewees, and these questions served as
starting points to informal conversations. This for-
mat was chosen in order to illuminate comparisons
between different interviewees’ experiences with
machine translation while allowing the course of
each interview to be shaped by particulars of the
interviewee’s perspective. The length of the inter-
views was determined by the length of intervie-
wees’ responses.

Each interview covered the same set of topics,
including the participant’s 1) use of Armenian, 2)
experience of being an Armenian person in online
spaces, 3) use of machine translation technology,
4) desired improvements for Armenian-English
machine translation, and 5) expected benefits and
harms for Armenian-English machine translation.
Below is a sample of the questions that I deter-
mined prior to the interviews; a complete list can
be found in Appendix A.

• What is your experience using machine trans-
lation tools? How usable are they for you?

• What is your experience as an Armenian
speaker online?

• When you translate from English to Arme-
nian, do machine translation tools give you
something that sounds like the way you would
speak?

• When you translate from Armenian to English,
do you run into any problems that relate to the
way you speak Armenian?

• If machine translation for Armenian (to and
from English) improved, how do you think it
would affect you? How do you imagine other
people (both Armenians and non-Armenians)
would use it?

4.3 Limitations

To contextualize the results in Section 5 and the
Value Scenarios in Section 6, it is important to
acknowledge the limitations of this project.

First, as stated previously, the participant group
forms a non-representative sample of Armenian
speakers. There are only four interviewees, and
they have similar backgrounds: they all live in the
United States, they all speak English as a primary
language, and they are all relatively young. Like-
wise, all of the speakers I interviewed indicated
the same types of uses for machine translation and
largely similar concerns. It is very likely that differ-
ent results would have emerged if I had been able to
interview a more diverse group of Armenian speak-
ers, particularly if I was able to incorporate the per-
spectives of older speakers and those who speak a
language other than English as a primary language.
This is not to say that the needs and concerns identi-
fied below are any less relevant – merely that there
are likely many other needs and concerns that I
was not able to identify. The perspectives in this
paper should not be taken as representative of all
Armenian speakers.

Second, as stated in Section 2, the Value Scenar-
ios approach cannot uncover every possible con-
sequence of a proposed technology, since many
harms are emergent. The harms described in this
paper do not constitute the totality of potential nega-
tive impacts for low-resourced machine translation.

5 Results

Below is an overview of significant themes that
emerged from my stakeholder interviews.
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5.1 State of Current Machine Translation
Tools for Armenian

In general, respondents said that they mostly used
translation tools to look up words or short phrases.
The most common usages respondents reported
was to help them remember words that they already
knew or to find words specific to Standard Eastern
Armenian. One respondent said that she occasion-
ally used machine translation to look up specific
terms she knew in English but not Armenian in or-
der to facilitate communication with family mem-
bers who do not speak English well.

All interviewees were familiar with Google
Translate2, which has several features that they
found useful. One such feature is transliterated
output, which makes interpretation easier for inter-
viewees who are unable to read Armenian or less
practiced. Audio output was similarly useful. Re-
spondents reported that they were usually able to
find the English translation of an Armenian word
they were not able to spell correctly, which was
helpful.

On the other hand, every respondent reported a
lack of trust in Google Translate’s accuracy, with
multiple respondents reporting that they usually
verified the output with another Armenian speaker
before incorporating it into their own speech. Addi-
tionally, all respondents noted that the output from
Google Translate had a markedly Standard East-
ern Armenian style, including the exclusive use of
Reformed Orthography. As a result, only the re-
spondent who speaks Standard Eastern Armenian
reported that she was able to consistently get output
from Google Translate that matches the way she
speaks.

Most of the participants were also familiar with
Nayiri Armenian Dictionary3, which is an online
resource that supports Western Armenian (in Clas-
sical Orthography) and Eastern Armenian (in Re-
formed Orthography). Nayiri, which is maintained
by a small team of Armenian software engineers
and linguists, incorporates a database of digitized
Armenian dictionaries into its search. Respondents
who used Nayiri reported that they trusted its output
far more than they trusted that of Google Translate,
but that Nayiri was more challenging to use: the
site is less user-friendly, there is less forgiveness
for misspellings, and Nayiri only supports single-
word look-ups rather than phrase or sentence trans-

2translate.google.com
3nayiri.com

lations.
The respondent who reported the least amount

of resources for her variety was the Barskahye
speaker, who reported that she was unable to find
any translation tool that outputs results in Eastern
Armenian using Classical Orthography.

Respondents reported that neither tool was use-
ful for translating full sentences or paragraphs in
either direction. When respondents have tried to
translate longer utterances on Google Translate,
output was generally jumbled or nonsensical.

5.2 Desires for and Anticipated Benefits of
Improved Machine Translation

The speakers I interviewed were enthusiastic about
the prospect of improved machine translation tools,
and each of them was able to identify both per-
sonal and communal benefits. Beyond a general
improvement in translation quality, interviewees
most strongly desired 1) expanded support for va-
rieties other than Standard Eastern Armenian, and
2) output in Reformed Orthography, Classical Or-
thography, and in Roman characters.

There was a wide variety of potential uses that
the interviewees identified for improved machine
translation tools:

• Language learning. All of the stakeholders
I interviewed said that they would hope to
utilize improved machine translation tools to
expand their own knowledge of the Armenian
language, specifically to improve their vocab-
ulary (in their own and other varieties) and to
strengthen their literacy.

• Transmitting urgent information. Two stake-
holders identified machine translation as a
tool to help Armenians in the diaspora more
rapidly understand urgent news coming out of
Armenia and Artsakh. This is a particularly
pressing need in the wake of the 2020 war
between Artsakh and Azerbaijan.

• Connecting to other Armenians. Related to
the above points, interviewees stated that they
would use improved machine translation tools
to better communicate with other Armenians,
both those that speak their variety and those
that speak other varieties. In particular, one
interviewee spoke of the potential to use such
tools to build bridges between diaspora com-
munities and Armenia and Artsakh.
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• Connecting outsiders to Armenia. One in-
terviewee suggested that improved machine
translation would bolster tourism prospects
for Armenia, while another suggested that it
would allow outsiders easier access to infor-
mation and history that has thus far only been
available in Armenian.

5.3 Concerns about harassment and
disinformation

All respondents described seeing frequent online
harassment against Armenians, generally from
Turkish and Azerbaijani ultra-nationalists. Accord-
ing to respondents, there has been a substantial
increase in harassment since the beginning of the
2020 war between Artsakh and Azerbaijan.

Two respondents reported receiving harassment
on social media themselves, and all respondents
reported seeing other Armenians be harassed. This
harassment generally comes in the form of spam,
specifically the use of particular emojis (e.g. Azer-
baijani and Turkish flags, skulls, coffins, pigs,
wolves, and knives) and inflammatory or disturb-
ing hashtags. Other forms of harassment include
1) comments advocating violence against Armeni-
ans, denying the Armenian Genocide, celebrating
the Armenian Genocide, and claiming Azerbaijani
ownership of Armenian cultural monuments; 2)
hateful or disturbing memes; and 3) videos of Azer-
baijani soldiers desecrating Armenian churches and
cemeteries, flying Azerbaijani flags over Armenian
buildings and monuments, destroying Armenian
homes and property, and in the worst cases, tortur-
ing and murdering Armenian soldiers and civilians.

All respondents stated that their relationship with
social media changed in the wake of the war, with
anti-Armenian harassment being one factor that in-
fluenced this change. When I asked respondents
what negative impacts they could imagine from the
deployment of an effective machine translation tool
for Armenian, three of the four respondents inde-
pendently brought up the potential for production
of hateful content. These respondents expressed
concerns that malicious actors could use improved
machine translation to further their harassment of
Armenians, either by using it to better understand
posts written in Armenian and attacking creators
of those posts, or to translate hateful messages into
Armenian (which would potentially be more dis-
turbing than hateful messages written in English).

Additionally, interviewees were concerned about
the possibility of machine translation tools being

used for disinformation campaigns and propaganda
from Azerbaijani military forces.

5.4 Concerns about standardization

When presented with the possibility of machine
translation tools being improved only for Standard
Eastern Armenian and not for other varieties, three
of the four interviewees expressed concern that this
move would negatively impact speakers of Western
Armenian and non-standard varieties of Eastern Ar-
menian. Specifically, interviewees were concerned
that the hegemony of Standard Eastern Armenian
online, amplified by machine translation tools that
exclusively produce output in Standard Eastern Ar-
menian, would contribute to the common belief
that Eastern Armenian written in Reformed Or-
thography is the most "correct" or "pure" form of
Armenian.

6 Value Scenarios

In this section, I present two value scenarios
that I have constructed based on the above find-
ings. These value scenarios are intended to il-
lustrate potential unwanted consequences of im-
proving machine translation for low-resourced lan-
guages. They are not meant to be predictions of real
events; rather, they are deliberately dark imagin-
ings of the impacts that new technology could have
(Nathan et al., 2007). The purpose of creating these
value scenarios is to uncover considerations that
may need to be made before developing improve-
ments to machine translation for low-resourced lan-
guages.

While the two scenarios below are presented as
separate outcomes, it should be noted they could oc-
cur simultaneously. The distinction between them
is merely for the purpose of more easily illustrating
different possible consequences.

6.1 Value Scenario 1

Thanks to advances in unsupervised neural ma-
chine translation, there have been large improve-
ments in translation between English and languages
with relatively large monolingual corpora; Standard
Eastern Armenian is one such language. Due to
these developments, machine translation in Stan-
dard Eastern Armenian on platforms like Google
Translate is much more reliable than it used to be.

For people looking to learn Standard Eastern Ar-
menian either to connect with their family or to
visit Armenia on vacation, these applications are
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very useful. However, speakers of minoritized va-
rieties of Armenian receive none of these benefits.
On top of that, machine translation for Armenian
is now regarded as a solved task, so there is lit-
tle motivation for expanding machine translation
capabilities for other varieties.

Many more websites and platforms are able to
support Armenian text and Armenian users, but
it assumed that all of these users are willing and
able to communicate in Standard Eastern Armenian
written in Reformed Orthography. This contributes
to the perception that Standard Eastern Armenian is
the only legitimate form of Armenian, leading other
speakers to feel alienated from their communities.
Speakers of Western Armenian and non-standard
varieties of Eastern Armenian alter their speech to
fit in, or they avoid speaking Armenian at all when
other languages are available. Artsakhi refugees
of the 2020 war are ridiculed for their speech in
their new homes in Armenia; many of them face
additional burdens at school or work because their
speech is seen as unintelligent.

Over time, other varieties’ speaker populations
decline, and the linguistic diversity of Armenian
speakers around the world is replaced with homo-
geneity. Along with these varieties, numerous ar-
tifacts of minoritized Armenian cultures become
less accessible and, in some cases, are lost. This
is particularly painful for Western Armenian com-
munities, for whom language was one of the most
significant cultural resources that persisted in the
wake of the Armenian Genocide.

Analysis In this scenario, improvements to ma-
chine translation only for the most high-resourced
variety of Armenian exacerbate existing biases
against speakers of lower-resourced varieties. The
implicit standardization of one variety leads to fur-
ther marginalization of the others, which has social
and cultural consequences, including the erasure of
distinct minoritized cultures.

6.2 Value Scenario 2

After substantial time and effort, improvements
to machine translation tools are rolled out for a
number of low-resourced languages, including Ar-
menian. These improvements increase the accu-
racy of translation between English and Armenian
to a level that is currently only seen among the
most high-resourced language pairs. These im-
provements give Armenians in the diaspora better
tools for developing their language skills, which al-

lows some users to communicate more freely with
their families and friends and connect with commu-
nities in Armenia and Artsakh.

On the other hand, Armenians are facing an ex-
treme increase in online harassment. Turkish and
Azerbaijani ultra-nationalists, seizing upon capabil-
ities of newly released machine translation systems,
gleefully descend into Armenians’ DMs, retweets,
and comments with translated messages express-
ing their hatred of Armenian people. Unlike the
harassment that Armenians had been receiving pre-
viously, this time the comments are lengthier, more
descriptive, and more disturbing – and they’re in
Armenian. While these comments are not trans-
lated perfectly, their meaning and intent is clear
enough; the fact that they appear in the users’ own
language only adds more pain to the experience.

Because major social media platforms have yet
to implement content moderation policies for con-
tent written in Armenian, the platforms are unable
or unwilling to address this influx of harassment.
Armenian users are able to delete messages con-
taining harassment and block the senders’ accounts,
but this does not prevent trolls from making new
accounts and sending more messages. For many
Armenians on social media, this becomes an ex-
hausting part of their daily routine. With all this
effort expended, they still have to see the disturbing
messages.

To escape harassment, many Armenian users,
particularly those with large followings, leave so-
cial media for good. They are unable to use plat-
forms like Twitter, Instagram, or Facebook to con-
nect with friends and family or to engage with their
communities. It becomes more challenging for Ar-
menians to find job opportunities that are advertised
on social media or to establish professional online
profiles. Armenian artists and small business own-
ers have to weigh the prospect of harassment if they
maintain public profiles against losses in income if
they don’t.

The number of Armenian voices online gradu-
ally diminishes; in their absence, disinformation,
anti-Armenian propaganda, and genocide denial
flourishes.

Analysis It is crucial to account for the ways that
machine translation interacts with existing technol-
ogy, particularly on social media. Many Armenians
already have to contend with harassment on social
media, which affects their ability to engage with
these platforms (as detailed in Section 5.3). If a new
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machine translation tool is deployed without taking
these circumstances into account, there could be
dire consequences.

Improved machine translation can allow for a
sudden proliferation of text in a low-resourced lan-
guage like Armenian online, potentially from bad
actors. To prevent unwanted harms, it is neces-
sary for social media platforms to take proactive
steps to support these language communities. In
the above scenario, that means creating more robust
content moderation policies and the infrastructure
needed to enforce these policies. Depending on
community-specific vulnerabilities, there are likely
other possible harms that would need to be miti-
gated using other strategies.

7 Recommendations

The potential benefits of improved machine trans-
lation for low-resourced languages are enormous.
The stakeholders I interviewed all named specific
uses they would have for better translation tools,
ranging from improving their literacy skills to
strengthening their connections to their families
and communities. The potential harms are enor-
mous as well, as the above scenarios illustrate. Dif-
ferent speaker communities will have other uses for
and concerns about machine translation (Paullada,
2020). Ensuring that improved machine transla-
tion tools maximize the benefits and mitigate the
harms requires the NLP community to take explicit
steps to collaborate with and support low-resourced
language communities.

First, it is necessary to examine the particular
wants and needs that language communities have
during the planning stage of a project. This pa-
per demonstrates the efficacy of a Value-Sensitive
Design approach in surfacing a particular commu-
nity’s needs and anticipating potential harms be-
fore technology is built. The interviews described
in Section 5 and the resulting Value Scenarios il-
luminate concerns that otherwise might only be
apparent to Armenian speakers. Similar efforts
can be undertaken with speakers of low-resourced
languages to uncover other community-specific
considerations. Value-Sensitive Design provides
a number of other practical techniques for collab-
orating with stakeholders (Friedman et al., 2017),
which may be useful in future efforts.

Second, we must consider what other facets of
language technology should be developed along-
side improvements to machine translation. The

deployment of robust machine translation allows
for the generation of large volumes of text in a
low-resourced language, which can have negative
impacts for language communities. These impacts
are likely impossible to prevent without actions
taken by entities outside of NLP; for instance,
preventing the outcome described in Value Sce-
nario 2 requires social media platforms to imple-
ment stronger content moderation policies in low-
resourced languages. NLP researchers can, how-
ever, work to expand the capabilities of other facets
of language technology (in this case, hate speech
detection for Armenian) that can mitigate potential
harms caused by improved machine translation.

Fulfilling these goals requires disaggregating the
task of machine translation; rather than creating
translation tools for many languages at once, each
language should be considered separately. Doing
this would undoubtedly be more resource-intensive
than a language-agnostic approach, but it is a nec-
essary step towards prioritizing the needs of low-
resourced language speakers. The scenarios in
Section 6 illustrate just a couple of the ways that
speakers of low-resourced languages may have
very different circumstances than speakers of high-
resourced languages, both linguistically and geopo-
litically, that need to be taken into account when
machine translation applications are deployed. In
both scenarios, harms fall unduly on groups that
are already marginalized: in the first scenario, mi-
noritized Armenian speakers bear the brunt of these
harms, while in the second, Armenians in general
are impacted negatively. Treating machine transla-
tion as an abstract language-agnostic task, divorced
from the specific needs of distinct groups of users,
obscures harms like these. Worse, it risks exacer-
bating inequitable conditions.

Taking a language-specific, stakeholder-focused
approach does more than prevent potential harms; it
also builds better, more reliable technology. When
researchers assemble datasets for languages they
are not familiar with, they are often unable to verify
the validity of a data source and may not be able to
find an existing high-quality data source (Nekoto
et al., 2020). This is illustrated by the difference
in reliability that interviewees reported for Google
Translate and Nayiri: while Google Translate has
more useful features, Nayiri is more trustworthy be-
cause it is built by a team with deep knowledge of
the language and communities it serves, using care-
fully curated resources that may be inaccessible to
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outsiders.

The current paradigm of building NMT sys-
tems that rely on vast quantities of unlabelled data,
whose size prevents careful curation (Bender et al.,
2021; Paullada et al., 2021), makes it difficult to
build systems that can account for language vari-
ation and serve users that speak minoritized va-
rieties. As a result, machine translation systems
cannot produce reliable and useful output for speak-
ers whose varieties do not have substantial bod-
ies of data. Building better and more equitable
systems requires moving away from data-first ap-
proaches and investing in holistic methods that
take into consideration the state of existing lan-
guage technology and external circumstances of
the communities in question, as well as developing
higher-quality data sources (Hanna and Park, 2020;
Paullada et al., 2021). This process does not need to
begin from scratch; as with the example of Nayiri,
low-resourced language communities may already
have ongoing intra-community projects that would
be fruitful sites for investment from and collabora-
tion with NLP practitioners.

8 Ethical Considerations

As described in Section 4.3, the methodology used
in this paper has a number of limitations that affect
how these results may be generalized. Most promi-
nently, the stakeholder group that I interviewed was
small and represented only a small subsection of
the perspectives of Armenian speakers.

Additionally, the group of participants described
in this paper comprises speakers of only one
low-resourced language; speakers of other low-
resourced languages would likely have very differ-
ent needs and concerns. This case study is meant
only to provide examples of the concerns of speak-
ers of a particular low-resourced language. It is
important to avoid generalizing low-resourced lan-
guages and their speakers.

This paper does not cover all of the potential
harms of machine translation; further efforts are
needed to uncover other concerns for individual lan-
guage communities. If only the harms I described
in this paper were taken into consideration in the
development of a machine translation system, it
is certain that other important concerns would be
missed, which could cause substantial harms to
speaker populations.

9 Conclusion

Using Value Scenarios, this paper illustrates some
potential harms that a general-purpose machine
translation system could have for speakers of a low-
resourced language. Avoiding these harms requires
direct collaboration with stakeholders before the
creation of a machine translation system intended
for low-resourced languages. To do so, machine
translation for low-resourced languages should be
undertaken as a language-specific task.
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A Appendix: Interview Topics and
questions

Below are the questions that I used to guide each
interview, separated by topics. Because the inter-
views were conducted in a semi-structured format,
this list does not include every question I asked
participants.

Topic 1: Use of Armenian Language

• Can you describe how you speak Armenian?

• What variety do you speak?

• How often do you speak it?

• With whom do you speak Armenian?

• How do you use Armenian online?

Topic 2: Experience of Being Armenian Online

• What is your experience as an Armenian
speaker online?

• How do you engage with other Armenians or
Armenian communities online?

• How do you engage with non-Armenians on-
line?

• How difficult is it for you to communicate in
Armenian online?

• Have you ever been the subject of harassment?
If so, can you tell me more about that?

Topic 3: Use of Machine Translation Tools

• What is your experience using machine trans-
lation tools?

• What tools do you use?

• How well does it work for your variety?

• How usable is it for you?

• When you translate from English to Armenian,
does it give you something that sounds like
the way you would speak?

• When you translate from Armenian to English,
do you run into any problems that relate to the
way you speak Armenian?

• What is your understanding of how it works?

Topic 4: Desired Improvements and Potential
Uses

• What concerns do you have about how ma-
chine translation currently works for Arme-
nian?

• What would have to change about machine
translation for Armenian to make it more use-
ful for you?

• If machine translation for Armenian (to and
from English) improved, how do you think it
would affect you?

• How would it affect people you know?

Topic 5: Anticipating Improvements to
Machine Translation

• How do you imagine other people (both Ar-
menians and non-Armenians) would use an
improved machine translation system?

• What benefits do you anticipate?

• What harms do you anticipate?

• How would it affect you if your data (speech
or text) was used to improve it?

• What if machine translation was substantially
improved for Standard Eastern Armenian, but
not for other varieties? What impact would
this have on you? What are the potential ben-
efits you would expect in this scenario? What
are the potential harms?

• How would it affect you if non-Armenians
were able to understand you when you speak
Armenian? Specifically, how would it affect
you if you were understood by a) your friends,
b) strangers on the internet, or c) trolls?

• Let’s imagine a best-case scenario for im-
proved machine translation. What would that
look like? How do you think people would
use it? How would you use it?

• Let’s imagine a worst-case scenario. What
would that look like? How would that affect
you and people you know?

Topic 6: Miscellaneous
• What other concerns do you have about im-

provements to machine translation for Arme-
nian?

• Is there anything else you’d like to add?

54



Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics
Student Research Workshop, pages 55 - 66

May 22-27, 2022 ©2022 Association for Computational Linguistics

Integrating Question Rewriting in Conversational Question Answering:
A Reinforcement Learning Approach

Etsuko Ishii⇤, Bryan Wilie⇤, Yan Xu⇤, Samuel Cahyawijaya⇤, Pascale Fung
The Hong Kong University of Science and Technology

{eishii, bwilie, yxucb, scahyawijaya}@connect.ust.hk

Abstract

Resolving dependencies among dialogue his-
tory is one of the main obstacles in the research
on conversational question answering (CQA).
The conversational question rewrites (QR) task
has been shown to be effective to solve this
problem by reformulating questions in a self-
contained form. However, QR datasets are lim-
ited and existing methods tend to depend on
the assumption of the existence of correspond-
ing QR datasets for every CQA dataset. This
paper proposes a reinforcement learning ap-
proach that integrates QR and CQA tasks with-
out corresponding labeled QR datasets. We
train a QR model based on the reward signal
obtained from the CQA, and the experimen-
tal results show that our approach can bring
improvement over the pipeline approaches.
The code is available at https://github.
com/HLTCHKUST/cqr4cqa.

1 Introduction

Conversational Question Rewrites (QR) systems
paraphrase a question into a self-contained format
using its dialogue history so as to make it easier
to understand by the Conversational Question An-
swering (CQA) system. Prior works (Elgohary
et al., 2019a; Anantha et al., 2021a; Kim et al.,
2021) have shown that explicit guidance of QR
benefits the performance of the CQA models in
multiple questions answering datasets.

However, the existing works on QR in the con-
text of CQA are often ignorant of two critical issues.
Firstly, they are dependent on the assumption that
QR datasets exist on target CQA datasets, although
existing QR datasets only cover a small amount of
CQA. It is also notable that building a novel QR
dataset is expensive. Current works mainly focus
on QuAC (Choi et al., 2018) datasets thanks to QR
datasets constructed from it (Elgohary et al., 2019a;
Anantha et al., 2021a), however, the other popular

⇤ Equal Contribution

CQA datasets such as CoQA (Reddy et al., 2019)
remain less explored. Secondly, although QR task
evaluation is mainly done by automatic metrics that
compute n-gram overlaps with BLEU (Papineni
et al., 2002) or ROUGE (Lin, 2004), and by human
evaluation, there is no correlation guaranteed be-
tween those metrics and the performance in CQA.
In fact, Petrén Bach Hansen and Søgaard (2020)
and Buck et al. (2018) suggest “better” rewrites in
the human eye are not necessarily better for ma-
chines.

To this end, we propose to alleviate the limitation
of the QR system by introducing a reinforcement
learning framework that utilizes QR to overcome
the aforementioned two obstacles. In this frame-
work, a QR model plays the role of “the agent”
which receives rewards from a CQA model which
acts as “the environment.” During training, a QR
model aims to maximize the performance on the
CQA task by generating better rewrites of the ques-
tions. Exploiting the reinforcement learning nature,
we can benefit CQA regardless of the existence of
QR annotation, and we can ensure that QR con-
tributes to the final objective of improving CQA.
Experimental results show that our framework suc-
cessfully improves the CQA performance by 4.1 to
8.6 F1 score on CoQA and 4.7 to 9.2 F1 on QuAC
compared to the pipeline baselines that combine a
QR model and a QA model.

Our contributions in this paper can be summa-
rized three-fold as follow:

• We propose a reinforcement learning frame-
work for CQA which can be applied regard-
less of the existence of corresponding QR
datasets.

• Our experimental results on two popular CQA
datasets show that our approach improves
the performance over the simple combination
baselines of a QA and QR model.
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Figure 1: Overview of our reinforcement learning approach for CQA task that involves a QR model and a QA
model. The current question Qt and its dialogue history are reformulated into a self-contained question Q́t by the
QR model. Then, Q́t and optionally, its dialogue history is passed to the QA model to extract an answer span Ãt

from the provided evidence document. We train the QR model by maximizing the reward signal (F1 score) obtained
by the comparison between the predicted answer span Ãt and the gold span At.

• We provide extensive analysis on suitable set-
tings for our approach, such as training al-
gorithms for the QR model and existing QR
datasets for the QR model initialization.

2 Related Work

2.1 Conversational Question Answering
Recently, along with the raised popularity of works
on dialogue systems (Madotto et al., 2020b,a; Ishii
et al., 2021; Lin et al., 2021; Xu et al., 2021a; Liu
et al., 2019b) and question answering(Su et al.,
2020, 2019, 2022), conversational question answer-
ing (CQA) has gained more attention. CQA task
aims to assist users for information-seeking pur-
pose. It has been widely studied in the recent
years and many CQA datasets have been made
publicly available, such as CoQA (Reddy et al.,
2019), QuAC (Choi et al., 2018), ShARC(Saeidi
et al., 2018), Doc2Dial (Feng et al., 2020), and
DoQA (Campos et al., 2020). Existing works focus
on improving the model structure (Zhu et al., 2018;
Huang et al., 2018; Yeh and Chen, 2019; Ohsugi
et al., 2019; Zhang et al., 2021; Zhao et al., 2021) to
deal with the dialogue history, leveraging different
training techniques, such as adversarial training (Ju
et al., 2019), or utilizing data augmentation via
multi-task learning (Xu et al., 2021b) to improve
the model performance in an end-to-end fashion.
Unlike the aforementioned works, we propose to
increase performance on CQA tasks by improving
the readability of the questions via reinforcement
learning. It may not align with the question read-

ability for human beings. Furthermore, Our pro-
posed approach does not contradict with the above
methods, but can co-exist with them in the CQA
system instead.

2.2 Question Rewrites

As the key challenge in CQA is to under-
stand a highly-contextualized question, several
QR datasets are proposed to offer a subtask in
CQA which is to paraphrase a question in a self-
contained style (Elgohary et al., 2019a; Petrén
Bach Hansen and Søgaard, 2020; Anantha et al.,
2021a). While many of the existing works put more
effort on generating high-quality rewrites (Lin et al.,
2020; Vakulenko et al., 2021), Kim et al. (2021)
recently introduced a framework to leverage QR to
improve the performance of CQA models by addi-
tional a consistency-based regularization. Their
EXCORD feeds the original questions together
with the rewritten questions, whereas we only use
the rewritten questions. Similar to our work, Buck
et al. (2018) train a question rewriting model in
reinforcement learning framework interacting with
the question answering environment to transform
a given query from a declarative sentence into an
interrogative one. It is noteworthy that QR in CQA
requires more effort than in their setting, since we
seek a QR model to elaborate dialogue history so
as to resolve anaphora or ellipsis in a question to
rewrite, rather than simple grammatical transforma-
tion of the given query.
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2.3 Reinforcement Learning in Natural
Language Generation

One of the most common reasons to adopt rein-
forcement learning (RL) methods in natural lan-
guage generation (NLG) is due to inconsistency
between train/test measurement (Keneshloo et al.,
2019). If we apply deep neural network, we of-
ten train with differentiable loss function such as
token-wise cross-entropy; but in test time, we use
BLEU or ROUGE which we cannot directly use as
a loss function. Motivated as such, RL approaches
have been investigated in various NLG tasks, for
example, in machine translation (Ranzato et al.,
2016; Wu et al., 2016; He et al., 2017; Bahdanau
et al., 2017), abstractive summarization (Ranzato
et al., 2016; Paulus et al., 2018; Böhm et al., 2019),
or dialogue generation (Li et al., 2016). If we train
an NLG model from scratch with reinforcement
learning, however, a model frequently suffers from
too large exploration space (Ranzato et al., 2016).
Thanks to the recent advance in large pretrained
language models, RL approaches are investigated
as an alternative fine-tuning approach which can
reflect human preferences (Ziegler et al., 2019; Sti-
ennon et al., 2020; Jaques et al., 2020) or reduce
non-normative text (Peng et al., 2020). Our work
also utilize large pretrained language models and
use RL approach for fine-tuning.

3 Methodology

In this section, we present our reinforcement
learning framework and the training algorithm.
Firstly, we offer several preliminary definitions
used throughout the paper, and secondly, we de-
scribe the strategy to train the whole framework.

3.1 Preliminary Definition

We denote a CQA dataset as {Dn}N
n=1 and the di-

alogue history at turn t as Dt = {(Qi, Ai)}t
i=1,

where Qt is the question and At is the answer.
Along with the QA pairs, the corresponding ev-
idence document Yt is also given.

In our proposed framework, a QA model and
a QR model are involved. In CQA tasks, the an-
swers to the questions are composed as pairs of
start indexes and end indexes in the given para-
graphs, where we denote as At = {at

s, at
e}. Let’s

denote a generated rewrite question sequence of Qt

as Q́t = {q́l}L
l=1. The objective of the QR model

is to rewrite the question Qt at turn t into a self-
contained version, based on the current question

Algorithm 1 RL training process of our QR agent
Require: {Dn}: CQA dataset
Require: ⇡✓0 : Pretrained language model

1: Train an environment f� on {Dn}
2: Initialize an agent ⇡✓ with ⇡✓0
3: while not done do
4: Sample an input state from

the CQA dataset Xt ⇠ {Dn}
5: Construct a rewrite sequence Q́t

which maximize ⇡✓(Q́t|Xt)
6: Calculate F1-score r via r(f�(X́t))
7: Update ⇡✓ using an RL algorithm with

state Xt, action Qt, and reward Rt

8: end while

and the dialogue history Dt�1.
As shown in Figure 1, we consider in a reinforce-

ment learning framework. An agent takes an input
state Xt = (Dt�1, Qt) and generates a paraphrase
Q́t. Then, X́t = (Dt�1, Q́t) and an evidence doc-
ument Yt are provided to an environment, namely,
a QA model f�, which extracts an answer span
Ãt = f�(X́t, Yt). We aim the agent, a QR model
⇡✓, to learn to generate a high-quality paraphrase of
given question based on the reward received from
the environment.

The policy, in our case the QR model, assigns
the probability

⇡✓(Q́t|Xt) =

LY

l=1

p(q́l|q́1, . . . , q́l�1, Xt). (1)

Our goal is to maximize the expected reward of the
answer returned under the policy, namely,

Eq́t⇠⇡✓(·|qt)[r(f�(X́t))], (2)

where r is a reward function. We apply the token-
level F1-score between the predicted answer span
Ãt and the gold span At as the reward r. We can
directly optimize the expected reward in Eq. 2 using
reinforcement learning algorithms.

3.2 Training Algorithm

Prior to the training process, the QA model f�
is fine-tuned on {Dn} and the QR model is ini-
tialized with ⇡✓ = ⇡✓0 , where ⇡✓0 is a pretrained
language model. We apply Proximal Policy Op-
timization (PPO) (Schulman et al., 2017; Ziegler
et al., 2019) to train ⇡✓. PPO is a policy gradi-
ent method which alternate between sampling data
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through interaction with the environment and opti-
mizing a surrogate objective function via stochastic
gradient ascent. PPO makes use of learned state-
value function to compute the variance-reduced
advantage-function. The overview of our training
process is shown in Algorithm 1.

Following Ziegler et al. (2019), we penalize the
reward r with a KL-penalty so as to prevent the
policy ⇡✓ from drifting too far away from ⇡✓0 :

Rt = R(X́t) = r(f�(X́t))� �KL(⇡✓,⇡✓0),

where � represents a weight factor. We perform
reinforce learning on the modified reward of Rt

instead of r.
Inspired by MIXER (Ranzato et al., 2016), we

apply a cross-entropy loss on the first m tokens of
the generated sequence Q́t by using the tokens from
the original question Qt as the label to enhance
training stability in addition to the KL-penalty. We
decrease the number of tokens where we apply the
cross-entropy loss over time steps, allowing the
policy ⇡✓ to explore more. By applying the cross-
entropy constraint, the PPO objective function L(✓)
is modified into:

Ll =

8
>><
>>:
�

|V|X

i=1

qi,l log(q́i,l) (l  m)

LCLIP(q́l) + cLVF(q́l) (l > m)

(3)

L(✓) =
1

m

mX

l=1

Ll +

LX

l=m+1

Ll, (4)

where |V| is the vocabulary size, LCLIP is the
clipped surrogate loss (see Eq. 7 in Schulman et al.
(2017)), c is a value loss coefficient, and LVF is
the value function loss (see Eq. 9 in Schulman et al.
(2017)).

In addition to MIXER, we introduce another
strategy to improve exploration (denoted as EX-
PLORE) that comes along with beam-search de-
coding. The strategy of using beam-search is to
search for top-k sequences with the highest like-
lihood during the generation process and take the
one with the highest likelihood over k sequences.
Our approach is utilizing the top-k0 (1  k0  k)
sequences collected during beam search for PPO
training. With this approach, we can improve the
exploration capability of the QR model without
requiring additional exploration steps.

4 Experiments

4.1 Datasets
We conduct our experiments on two CQA datasets,
CoQA (Reddy et al., 2019) and QuAC (Choi et al.,
2018). Since the test set is not publicly available
for both CoQA and QuAC, we follow the splitting
introduced by (Kim et al., 2021). We leverage the
train/dev/test split provided by Kim et al. (2021)
for the QuAC experiments. We randomly sample
5% of data samples in the training set in units of
dialogues and adopt them as our validation set for
CoQA since there is no public split available.

CoQA CoQA dataset contains 127K questions
with answers in the conversation form (8K conver-
sations in total). The questions are highly contex-
tualized with the dialogues, and the answers are
free-form text with their corresponding evidence
in the passage for reference. In this paper, follow-
ing the settings of the other existing works (Huang
et al., 2018; Yeh and Chen, 2019; Ju et al., 2019),
we still construct the answers as spans extracted
from the passages, where the gold labels used in
training are the snippets with the highest F1 score
compared to the annotated answers.

QuAC QuAC is also a crowd-sourced CQA
dataset that contains 14K information-seeking QA
conversations. In contrast to CoQA, QuAC is de-
signed as a span-extraction dataset with dialogue
acts. Moreover, 20% of the questions in QuAC are
unanswerable questions, whereas those in CoQA
take up ⇠1.3%.

We initialize the QR model with a pre-trained
language model that is fine-tuned on QR datasets.
We apply two QR datasets, i.e., QReCC and CA-
NARD, for the fine-tuning to obtain more insights
on the influence of the QR model initialization with
different data sources.

CANARD CANARD dataset (Elgohary et al.,
2019b) is a question-rewriting (QR) dataset which
aims at conducting question-in-context rewriting
to convert the questions with long conversation
histories into short and self-contained questions.
The questions are generated by rewriting a subset
of the original questions in QuAC dataset. The
dataset is split in to training, development, and test
sets in size of 31K, 3.4K, and 5.6K.

QReCC QReCC dataset (Anantha et al., 2021b)
is another QR dataset. In contrast to CANARD,
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Models
CoQA QuAC

Overall F1 Child. Liter. M&H News Wiki. F1 HEQ-Q HEQ-D

end-to-end 84.5 84.4 82.4 82.9 86.0 86.9 67.8 63.5 7.9

QReCC
pipeline-eval 80.6 80.8 78.6 78.3 81.7 83.7 62.9 58.5 5.2
pipeline-train 82.9 82.9 80.9 81.5 84.4 84.8 66.3 62.0 6.6

ours 84.7 84.3 83.1 82.7 86.3 86.8 67.6 63.2 7.8

CANARD

pipeline-eval 75.9 75.5 74.8 73.1 76.3 79.8 58.2 54.5 5.2
pipeline-train 82.8 83.4 80.1 80.8 84.4 85.6 66.5 62.5 7.4
EXCORD† 83.4 84.4 81.2 79.8 84.6 87.0 67.7 64.0 9.3

ours 84.4 84.1 82.7 82.6 86.0 86.7 67.4 62.7 8.1

Table 1: Evaluation results of our approach and baselines on the test set. EXCORD† follows the results reported
in Kim et al. (2021). Bold are the best results amongst all. Underlined represents the best score on each combination
of the CQA and QR datasets.

QReCC dataset is built upon three publicly avail-
able datasets: QuAC, TREC Conversational Assis-
tant Track (CAsT) (Dalton et al., 2020) and Nat-
ural Questions (NQ) (Kwiatkowski et al., 2019),
where QreCC contains 14K dialogues with 80K
questions in total, and 9.3K dialogues are from
QuAC. The sampled data are further extended to
the open-domain CQA setting. It also supports the
passage retrieval and reading comprehension tasks.
The dataset is split into training, development, and
test sets. However, in the released version, the
training and development set are merged. In the
experiments, we directly train the model with the
merged training set and use the test set for evalua-
tion.

4.2 Evaluation Metrics

To automatically evaluate the performance of the
QA models, following Reddy (2020), we leverage
the unigram F1 score. In CoQA evaluation, the
models are also evaluated per domain on all six
domains as listed in the official validation set (our
test set instead), i.e., Children Stories (Child.), Lit-
erature (Liter.), Mid-High School (M&H), News,
and Wikipedia (Wiki.). Following the leaderboard,
for the QuAC dataset, we incorporate the human
equivalence score HEQ-Q and HEQ-D for QuAC
evaluation. HEQ-Q indicates the percentage of
questions on which the model outperforms human
beings and HEQ-D represents the percentage of
dialogues on which the model outperforms human
beings for every question in the dialogue.

4.3 Models

QA model In all the experiments, we leverage
pre-trained RoBERTa (Liu et al., 2019a) model
as the initial model and adapt it to different CQA
tasks (see Table A1 in Appendix for more details).
The RoBERTa model is the leading pre-trained
model according to different leaderboards and it
has shown its effectiveness on QA tasks (Ju et al.,
2019; Zhao et al., 2021; Yasunaga et al., 2021; Zhu
et al., 2021). The model is trained to predict the
start positions and the end positions of the given
contexts with respect to the questions. Since our
proposed method is model-agnostic, the QA com-
ponent in the framework can be replaced with any
existing QA models.

QR model We use GPT-2 (Radford et al., 2019)
as the base model to train the QR models (see Ta-
ble A2 in Appendix for more details). In the QR
training process, we provide the dialogue history
and the current question as the inputs and train
the model to rewrite the current question into a
self-contained version that is able to be answered
without considering the dialogue history.

Model selection and initialization in RL Before
applying our methods, the QA and QR models
are initialized with the best QA and QR baseline
models. For both QA models that are trained on
CoQA and QuAC datasets, the models with the
highest F1 score on the validation set are selected.
We use different metrics for the QR model selection
on two datasets, following the original metrics that
are used for model evaluation. We select the best
QR model checkpoint on the CANARD dataset and
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...
Far on in the hot days of June the Excommunication,
for some weeks arrived from Rome, was solemnly
published in the Duomo. Romola went to witness
the scene, that the resistance it inspired might
invigorate that sympathy with Savonarola ...

...
Jenny loves singing. But her baby
sister is crying so loud that Jenny
can’t hear herself, so she was angry!
Her Mom said she could try to play
with her sister, but that only made ...

Utterance F1 Score Utterance F1 Score

Qt�1 Where was the Excommunication published? Qt�1 How is she feeling?
At�1 in the Duomo At�1 Angry.
Qt When? 0.61 Qt Why? 0.82
Q́t When was the Excommunication published? 1.0 Q́t Why is she feeling? 0.98

Table 2: Examples of rewritten questions by the trained QR model initialized with QReCC. We can see that the
model learns how to recover the abbreviated contents from the dialogue history to get a better score on CoQA.

QReCC dataset based on the BLEU 1 score and the
unigram recall (ROUGE-1 R) score respectively.

4.4 Baselines

We compare our proposed approach with three dif-
ferent settings: (i) directly finetuning the QA model
on the CQA tasks without the QR model (end-to-
end), (ii) inferencing the QA model with questions
rewritten by the QR model (pipeline-eval), and (iii)
finetuning the QA model with questions rewritten
by the QR model (pipeline-train).

4.5 Experimental Setup

Our implementation is based on Wolf et al. (2020).
We conduct all of the experiments with GeForce
RTX 2080 Ti. To obtain the models for initializa-
tion, GPT-2 is trained on QReCC and CANARD
dataset as the QR model, and RoBERTa is trained
on CoQA and QuAC datasets as the QA model
with Adam optimizer (Kingma and Ba, 2015) with
a learning rate of 3e � 5. We report other hyper-
parameters used in the model initialization in Ta-
ble A1 and Table A2 in Appendix.

For PPO training, we train the QR model with
Adam optimizer with a learning rate of 1e � 7.
Further, we use beam search with beam size of
5, preventing generation repetition (Keskar et al.,
2019) with using repetition penalty of 1.1, and set
the maximum input sequence length to 512. On the
MIXER settings, we initialize cross entropy length
as 3 and limits its minimum to 1. We then run the
PPO with value function coefficient of 1.0, while
ensuring the sequence length of question rewriting
model input to be 150 tokens maximum and the

1https://github.com/moses-smt/
mosesdecoder/blob/master/scripts/
generic/multi-bleu-detok.perl

generations length to be 50 tokens at maximum.
To ensure that the learned policy does not deviate
too much, we apply an additional reward signal,
adaptive KL factor � according to the magnitude
of the KL-penalty with a KL-coefficient K� = 0.1.
Other hyperparameters are listed in Table A3 in
Appendix.

4.6 Results
We report our experimental results in Table 1. Our
approach achieves 84.7 and 67.6 F1 scores on the
CoQA and QuAC datasets, respectively, and con-
stantly outperforms the pipeline baselines. As
shown in the examples listed in Table 2, our ap-
proach successfully teaches the QR model to refer
to the dialogue history and recover the abbreviated
contents if necessary. Comparing to the pipeline-
eval, our approach scores at least 4.1 F1 score bet-
ter, which indicates that our reinforcement learning
approach successfully trains the QR model to para-
phrase the questions into more preferred format of
the QA model from the QR model initialization.
Our approach performs better at least by 1.0 over-
all F1 score than EXCORD (Kim et al., 2021) on
CoQA, and comparably on QuAC. However, our
approach could not contribute to the considerable
improvement over the end-to-end baseline, which
poses the need for further investigation.

5 Discussion

In this section, we provide our findings regarding
the most suitable settings of our approach, includ-
ing the comparison of the QR datasets for initial-
ization, the QR model architectures, the training
algorithms, and the effect of the decoding strategy.
For automatic evaluation, we report Exact Match
(EM) in addition to the unigram F1 score. EM in-
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Models # Params
Evaluation

F1 EM

GPT-2 243M 84.7 76.6
BART-base 210M 83.6 75.7

Table 3: Comparison of the QR model architectures
initialized with QReCC and further trained on CQA.
GPT-2 achieves a higher F1 score and EM than BART-
base. Note that we have twice as many parameters
as GPT-2 and 1.5 times as BART-base since we copy
the decoders and train them for estimating the value
function.

dicates that the percentage of the predictions is the
same as the gold answers, while the F1 score eval-
uates the performance with uni-gram overlapping.

5.1 Comparison of QR datasets for
Initialization

We compare the effect of QR dataset initialization,
i.e., QReCC and CANARD, to the evaluation per-
formance of the CQA task. As shown in Table 1,
QR models trained with QReCC dataset almost al-
ways performs better than the ones trained with CA-
NARD dataset, with one exception on the pipeline-
train approach on the QuAC dataset. We assume
this is because QReCC gives more generalization
ability to the QR models since QReCC is composed
of several QA datasets, whereas CANARD is more
devoted to QuAC as it is a subset of QuAC.

5.2 Comparison of QR Model Architectures

In the search for suitable architecture, we com-
pare the architectures of the QR models in the RL
training both using GPT-2 and BART-base (Lewis
et al., 2020). First, we train BART with QReCC in
the same way as GPT-2 and then fine-tune it with
CoQA using our reinforcement learning approach.
It is noteworthy that utilizing the BART-base serves
the system worse fits compared with using GPT-2
as reported in Table 3. However, this performance
gap could be due to our implementation. For BART,
we only copy the decoder to estimate the value func-
tion, resulting in 70M parameters for estimating
the value function, but GPT-2 uses all 117M pa-
rameters for it. In future, we plan to attempt to use
the whole parameters of BART for estimating the
value function.

Algorithm
CoQA QuAC

F1 EM F1 EM

PPO 84.7 76.6 67.6 51.3
REINFORCE 84.2 76.1 64.8 49.3

Table 4: Comparison between training algorithms of
the QR model. PPO scores constantly better than the
REINFORCE algorithm.

5.3 Comparison of RL algorithms

In addition to the PPO approach, we explore the
REINFORCE algorithm (Williams, 1992) to train
⇡✓. We use self-critical sequence training (Rennie
et al., 2017) instead of MIXER in REINFORCE
experiments. In self-critical sequence training, we
normalize the reward r derived from the sampled
rewrites X́t with the reward derived from another
rewrite which is generated by greedy decoding. We
use Adam optimizer with a learning rate of 1e� 7
and keep the other hyperparameters the same as the
PPO training.

We report the evaluation results of CoQA and
QuAC with the initialization of QReCC in Table 4.
REINFORCE could not outperform PPO, although
bringing some improvement over the majority of
the pipeline baselines. This observation that PPO
is better than the REINFORCE supports the ex-
perimental results reported in Andrychowicz et al.
(2021).

5.4 Ablation Study

We examine the effects of different exploration
strategies, namely, EXPLORE and MIXER, on
our approach and report it in Table 5. The QR
models in the experiments are initialized with
QReCC. Both EXPLORE and MIXER improve
performance, although the combination does not
outperform MIXER-only settings. We assume this
is because the benefit of MIXER offsets the contri-
bution of EXPLORE.

EXPLORE helps to explore more by sampling
multiple candidates of question rewrites, and im-
proves F1 scores by 2.5 for CoQA and 1.2 for
QuAC. On the other hand, MIXER teaches the
QR model to copy the first m tokens from the orig-
inal question to limit the exploration space and
stabilize the training process, resulting in a 3.6
F1 score gain in CoQA and 2.9 F1 score gain in
QuAC. Combined, MIXER and EXPLORE offset
the benefits of each other. To further improve the
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Algorithm
CoQA QuAC

F1 EM F1 EM

PPO 81.1 73.3 64.7 49.4
+ EXPLORE 83.8 75.9 65.9 50.3
+ MIXER 84.7 76.6 67.6 51.3
+ MIXER + EXPLORE 84.2 76.2 67.5 51.2

Table 5: Effects of EXPLORE and MIXER in our
framework. Both EXPLORE and MIXER benefit per-
formance, while the combination does not outperform
MIXER-only.

performance, we plan to seek an adequate balance
of exploration and exploitation since we believe
more exploration can boost the performance but
stabilizing the training is challenging according to
our observation.

5.5 Effects of Decoding Strategies

We explore the effect of decoding strategies for
generating question rewrites for inference. We find
the greedy search significantly worsens the perfor-
mance by around 3 to 6 F1 score loss. While the
performance steadily improves along with the in-
crease of the beam size, we can not see non-trivial
improvement when the beam size is equal or larger
than three. We also examine the different sets of
hyperparameters, for example, repetition penalty,
sampling (combination of temperature, top-k, and
top-p) approaches. As reported in Table 6, using
smaller or no repetition penalty yields better results.
We observe that sampling methods only alter the
results marginally. We assume that beam search
works satisfactorily because the optimal rewritten
questions are more or less predictable similar to
machine translation (Yang et al., 2018; Murray and
Chiang, 2018).

6 Conclusion and Future Work

In this paper, we propose a reinforcement learning
framework for CQA that a QR model that acts as an
agent and a QA model as an environment. Our ex-
periments show that the QR model learned to para-
phrase questions into a more suitable format for
the QA model by reward signal obtained from the
CQA performance. Since our exploration is con-
ducted with limited combinations of QA/QR model
structures and datasets, we plan to explore the other
combinations to justify our approach. Moreover, it
would be beneficial to train the QR model without
the dialogue history to enforce the QR model and

Repetition penalty Evaluation

F1 EM

1.0 67.37 51.46
1.1 67.47 51.40
1.3 67.12 51.12

Table 6: Using smaller or no repetition penalty tends to
yield better results.

make the question more self-contained. If we can
minimize the contribution of the dialogue history
in CQA, we can treat the CQA task as a single-
turn QA task, and it enormously expands possible
solutions for the CQA.

Ethical Considerations

This work is not related to any specific real-world
application. All the datasets used in our experi-
ments are collected by crowdsourcing (Anantha
et al., 2021a), especially through Amazon Mechan-
ical Turk (Reddy et al., 2019; Choi et al., 2018;
Elgohary et al., 2019a), and they are publicly avail-
able. As the nature of the task, the data collection
of CQA and QR is done anonymously and does
not involve any privacy or intellectual property con-
cern.
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Abstract

Over the last five years, research on Relation
Extraction (RE) witnessed extensive progress
with many new dataset releases. At the same
time, setup clarity has decreased, contribut-
ing to increased difficulty of reliable empiri-
cal evaluation (Taillé et al., 2020). In this pa-
per, we provide a comprehensive survey of RE
datasets, and revisit the task definition and its
adoption by the community. We find that cross-
dataset and cross-domain setups are particu-
larly lacking. We present an empirical study
on scientific Relation Classification across two
datasets. Despite large data overlap, our anal-
ysis reveals substantial discrepancies in anno-
tation. Annotation discrepancies strongly im-
pact Relation Classification performance, ex-
plaining large drops in cross-dataset evalua-
tions. Variation within further sub-domains ex-
ists but impacts Relation Classification only to
limited degrees. Overall, our study calls for
more rigour in reporting setups in RE and eval-
uation across multiple test sets.

1 Introduction

Information Extraction (IE) is a key step in Natu-
ral Language Processing (NLP) to extract informa-
tion, which is useful for question answering and
knowledge base population, for example. Relation
Extraction (RE) is a specific case of IE (Grishman,
2012) with the focus on the identification of seman-
tic relations between entities (see Figure 1). The
aim of the most typical RE setup is the extraction
of informative triples from texts. Given a sequence
of tokens [t0, t1..., tn] and two entities (spans),
sA = [ti, . . . , tj ] and sB = [tu, . . . , tv], RE triples
are in the form (sA, sB, r), where r ∈ R andR is a
pre-defined set of relation labels. Because of the di-
rectionality of the relations, (sB, sA, r) represents
a different triple.

We survey existing RE datasets—outside the
biomedical domain—with an additional focus on

An entity-oriented approach to restricted-domain parsing is proposed.

sA: METHOD sB: TASK

USED-FOR

Figure 1: RE annotation sample. The sentence contains
two annotated spans denoting two entities, with respec-
tive types METHOD and TASK, and a semantic relation
between them labeled as USED-FOR.

the task definition.1 Existing RE surveys mainly
focus on modeling techniques (Bach and Badaskar,
2007; Pawar et al., 2017; Aydar et al., 2021; Liu,
2020). To the best of our knowledge, we are the
first to give a comprehensive overview of available
RE datasets. We also revisit RE papers from the
ACL community over the last five years, to iden-
tify what part(s) of the task definition recent work
focuses on. As it turns out, this is often not easy
to determine, which makes fair evaluation difficult.
We aim to shed light on such assumptions.2

Moreover, recent work in NLP has shown that
single test splits and in-distribution evaluation over-
estimate generalization performance, arguing for
the use of multiple test sets or split evaluation (Gor-
man and Bedrick, 2019; Søgaard et al., 2021).
While this direction has started to be followed
by other NLP tasks (Petrov and McDonald, 2012;
Pradhan et al., 2013; Williams et al., 2018; Yu et al.,
2019; Zhu et al., 2020a; Liu et al., 2021), for RE
cross-dataset and cross-domain evaluation have re-
ceived little attention. We explore this direction
in the scientific domain and propose to study the
possible presence of distinctive sub-domains (Lip-
pincott et al., 2010). Sub-domains are differences
between subsets of a domain that may be expected
to behave homogeneously. Using two scientific
datasets, we study to what degree: (a) they con-
tain overlapping data; (b) their annotations differ;

1We refer the reader to Luo et al. (2016) for a survey on
biomedical RE and event extraction.

2Pyysalo et al. (2008) discuss similar difficulties in the
biomedical domain.
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and (c) sub-domains impact Relation Classification
(RC)—the task of classifying the relation type held
between a pair of entities (details in Section 3).

The contributions of this paper are:

• To the best of our knowledge, we are the first
to provide a comprehensive survey on cur-
rently available RE datasets.

• We define RE considering its modularity. We
analyze previous works and find unclarity in
setups; we call for more rigour in specifying
which RE sub-part(s) are tackled.

• We provide a case study on Relation Classifi-
cation in the scientific domain, to fill a gap on
cross-domain and cross-dataset evaluation.

2 Relation Extraction Datasets Survey

RE has been broadly studied in the last decades
and many datasets were published. We survey
widely used RE datasets in chronological order,
and broadly classify them into three domains based
on the data source: (1) news and web, (2) scientific
publications and (3) Wikipedia. An overview of the
datasets is given in Table 1. Our empirical target
here focuses on the scientific domain as so far it has
received no attention in the cross-domain direction;
a similar investigation on overlaps in data, annota-
tion, and model transferability between datasets in
other domains is interesting future work.

The CoNLL 2004 dataset (Roth and Yih, 2004)
is one of the first works. It contains annotations
for named entities and relations in news articles. In
the same year, the widely studied ACE dataset was
published by Doddington et al. (2004). It contains
annotated entities, relations and events in broadcast
transcripts, newswire and newspaper data in En-
glish, Chinese and Arabic. The corpus is divided
into six domains.

Another widely used dataset is The New York
Times (NYT) Annotated Corpus,3 first presented
by Riedel et al. (2010). It contains over 1.8 mil-
lion articles by the NYT between 1987 and 2007.
NYT has been created with a distant supervision
approach (Mintz et al., 2009), using Freebase (Bol-
lacker et al., 2008) as knowledge base. Two further
versions of it followed recently: Zhu et al. (2020b)
(NYT-H) and Jia et al. (2019) published manually
annotated versions of the test set in order to per-
form a more accurate evaluation.

3
http://iesl.cs.umass.edu/riedel/ecml/

RE has also been part of the SemEval shared
tasks for four times so far. The two early Se-
mEval shared tasks focused on the identification
of semantic relations between nominals (Nastase
et al., 2021). For SemEval-2007 Task 4, Girju et al.
(2007) released a dataset for RC into seven generic
semantic relations between nominals. Three years
later, for SemEval-2010 Task 8, Hendrickx et al.
(2010) revised the annotation guidelines and pub-
lished a corpus for RC, by providing a much larger
dataset (10k instances, in comparison to 1.5k of the
2007 shared task).

Since 2017, three RE datasets in the scientific do-
main emerged, two of the three as SemEval shared
tasks. In SemEval-2017 Task 10 Augenstein et al.
(2017) proposed a dataset for the identification of
keyphrases and considered two generic relations
(HYPONYM-OF and SYNONYM-OF). The dataset
is called ScienceIE and consists of 500 journal arti-
cles from the Computer Science, Material Sciences
and Physics fields. The year after, Gábor et al.
(2018) proposed a corpus for RC and RE made
of abstracts of scientific papers from the ACL An-
thology for SemEval-2018 Task 7. The data will
be described in further detail in Section 4.1. Fol-
lowing the same line, Luan et al. (2018) published
SCIERC, which is a scientific RE dataset further
annotated for coreference resolution. It contains
abstracts from scientific AI-related conferences.
From the existing three scientific RE datasets sum-
marized in Table 1, in our empirical investigation
we focus on two (SemEval-2018 and SCIERC). We
leave out ScienceIE as it focuses on keyphrase ex-
traction and it contains two generic relations only.

The Wikipedia domain has been first introduced
in 2013. Google released GoogleRE,4 a RE corpus
consisting of snippets from Wikipedia. More re-
cently, Kassner et al. (2021) proposed mLAMA, a
multilingual version (53 languages) of GoogleRE
with the purpose of investigating knowledge in pre-
trained language models. The multi-lingual dimen-
sion is gaining more interest for RE. Following this
trend, Seganti et al. (2021) presented SMiLER, a
multilingual dataset (14 languages) from Wikipedia
with relations belonging to nine domains.

Previous datasets were restricted to the same la-
bel collection in the training set and in the test set.
To address this gap and make RE experimental sce-
narios more realistic, Han et al. (2018) published
Few-Rel, a Wikipedia-based few-shot learning

4
https://code.google.com/archive/p/

relation-extraction-corpus/downloads
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Dataset Paper Data Source # Relation Types

News and Web

CoNLL04 Roth and Yih (2004) News articles 5
ACE? Doddington et al. (2004) News and conversations 24
NYT Riedel et al. (2010) New York Times articles 24-57�

SemEval-2007 Girju et al. (2007) Sentences from the web 7
SemEval-2010 Hendrickx et al. (2010) Sentences from the web 10
TACRED Zhang et al. (2017b) Newswire and web text 42
FSL TACRED Sabo et al. (2021) TACRED data 42
DWIE Zaporojets et al. (2021) Deutsche Welle articles 65

Scientific publications

ScienceIE Augenstein et al. (2017) Scientific articles 2
SemEval-2018 Gábor et al. (2018) NLP abstracts 6
SCIERC Luan et al. (2018) Abstracts of AI proceedings 7

Wikipedia

GoogleRE - Wikipedia 5
mLAMA? Kassner et al. (2021) GoogleRE data 5
FewRel Han et al. (2018) Wikipedia 100
FewRel 2.0 Gao et al. (2019) FewRel data + Biomedical literature 100 + 25
DocRED Yao et al. (2019) Wikipedia and Wikidata 96
SMiLER Seganti et al. (2021) Wikipedia 36

Table 1: Overview of the RE datasets for the English language grouped by macro domains. (?):
Multilingual datasets. (�): The original paper does not state the number of considered relations
and different work describe different dataset setups.

(FSL) RC dataset annotated by crowdworkers. One
year later, Gao et al. (2019) published a new version
(Few-Rel 2.0), adding a new test set in the biomed-
ical domain and the None-Of-The-Above rela-
tion (cf. Section 3).

Back to the news domain, Zhang et al. (2017b)
published a large-scale RE dataset built over
newswire and web text, by crowdsourcing relation
annotations for sentences with named entity pairs.
This resulted in the TACRED dataset with over
100k instances, which is particularly well-suited
for neural models. Sabo et al. (2021) used TA-
CRED to make a FSL RC dataset and compared it
to FewRel 1.0 and FewRel 2.0, aiming at a more re-
alistic scenario (i.e., non-uniform label distribution,
inclusion of pronouns and common nouns).

All datasets so far present a sentence level an-
notation. To address this, Yao et al. (2019) pub-
lished DocRED, a document-level RE dataset from
Wikipedia and Wikidata. The difference with a tra-
ditional sentence-level corpus is that both the intra-
and inter-sentence relations are annotated, increas-
ing the challenge level. In addition to RE, DocRED
annotates coreference chains. DWIE by Zaporo-
jets et al. (2021) is another document-level dataset,
specifically designed for multi-task IE (Named En-
tity Recognition, Coreference Resolution, Relation
Extraction, and Entity Linking).

Lastly, there are works focusing on creating
datasets for specific RE aspects. Cheng et al.
(2021), for example, proposed a Chinese document-
level RE dataset for hard cases in order to move
towards even more challenging evaluation setups.

Domains in RE Given our analysis, we observe
a shift in target domains: from news text in sem-
inal works, over web texts, to emerging corpora
in the scientific domain and the most recent focus
on Wikipedia. Similarly, we observe the emerging
trend for FSL.

Different datasets lend themselves to study dif-
ferent aspects of the task. Concerning cross-
domain RE, we propose to distinguish three setups:

1. Data from different domains, but same rela-
tion types, which are general enough to be
present in each domain (limited and often con-
fined to the ACE dataset) (e.g., Plank and Mos-
chitti, 2013).

2. Stable data domain, but different relation
sets (e.g., FewRel by Han et al., 2018). Note
that when labels change, approaches such as
FSL must be adopted.

3. A combination of both: The data changes and
so do the relation types (e.g., FewRel 2.0 by
Gao et al., 2019).
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In the case study of this paper, given the scien-
tific datasets available, we focus on the first setup.

3 The Relation Extraction Task

Conceptually, RE involves a pipeline of steps (see
Figure 2). Starting from the raw text, the first step
consists in identifying the entities and eventually
assigning them a type. Entities involve either nomi-
nals or named entities, and hence it is either Named
Entity Recognition (NER) or, more broadly, Men-
tion Detection (MD).5 After entities are identified,
approaches start to be more blurry as studies have
approached RE via different angles.

One way is to take two steps, Relation Identi-
fication (RI) and subsequent Relation Classifica-
tion (RC) (Ye et al., 2019), as illustrated in Fig-
ure 2. This means to first identify from all the
possible entity pairs the ones which are in some
kind of relation via a binary classification task
(RI). As the proportion of positive samples over
the negative is usually extremely unbalanced to-
wards the latter (Gormley et al., 2015), a priori
heuristics are generally applied to reduce the pos-
sible combinations (e.g., entity pairs involving dis-
tant entities, or entity type pairs not licensed by
the relations are not even considered). The last
step (RC) is usually a multi-class classification to
assign a relation type r to the positive samples
from the previous step. Some studies merge RI
and RC (Seganti et al., 2021) into one step, by
adding a no-relation (no-rel) label. Other
studies instead reduce the task to RC, and assume
there exists a relation between two entities and the
task is to determine the type (without a no-rel
label). Regardless, RI is influenced by the RC
setup: Relations which are not in the RC label
set are considered as negative samples in the RI
phase. Some studies address this approximation
by distinguishing between the no-rel and the
None-Of-The-Above (NOTA) relation (Gao
et al., 2019). Note that, in our definition, the NOTA
label differs from no-rel in the sense that a rela-
tion holds between the two entities, but its type is
not in the considered RC label set.6

What Do You Mean by Relation Extraction?
RE studies rarely address the whole pipeline. We

5Some studies divide the entity extraction into two sub-
steps: identification (often called MD), and subsequent classi-
fication into entity types.

6Some studies name such relation Other (Hendrickx
et al., 2010).

RAW
TEXT

ENTITIES 
(WITH TYPES) RELATIONS RELATIONS

WITH TYPES

NER/MD RI RC

RE

Figure 2: Relation Extraction pipeline. NER: Named
Entity Recognition; MD: Mention Detection; RI: Rela-
tion Identification; RC: Relation Classification.

analyze all the ACL papers published in the last
five years which contain the Relation Extraction
keyword in the title and determine which sub-task
is performed (NER/MD, RI, RC). Table 2 shows
such investigation. We leave out from this analysis
(a) papers which make use of distant supervision
or which somehow involve knowledge bases, (b)
shared task papers, (c) the bioNLP field, (d) tem-
poral RE, and (e) Open RE.

The result shows that gold entities are usually
assumed for RE, presumably given the complexity
of the NER/MD task on its own. Most importantly,
for end-to-end models, recent work has shown that
ablations for steps like NER are lacking (Taillé
et al., 2020). Our analysis further shows that it is
difficult to determine the RI setup. While RC is
always performed, the situation is different for RI
(or no-rel). Sometimes RI is clearly not done
(i.e., the paper assumes a scenario in which every
instance contains at least one relation), but most
of the times it is either not clear from the paper, or
done in a simplified scenario (e.g., datasets which
already clear out most of the no-rel entity pair
instances). As this blurriness hampers fair evalu-
ation, we propose that studies clearly state which
step they include, i.e., whether the work focus is on
RC, RI+RC or the full RE pipeline and how special
cases (no-rel and NOTA) are handled. These
details are utterly important as they impact both
model estimation and evaluation.

Pipeline or Joint Model? The traditional RE
pipeline is, by definition of pipeline, prone to error
propagation by sub-tasks. Joint entity and relation
extraction approaches have been proposed in order
to alleviate this problem (Miwa and Bansal, 2016;
Zhang et al., 2017a; Bekoulis et al., 2018a,b; Wang
and Lu, 2020; Wang et al., 2021). However, Taillé
et al. (2020) recently discussed the challenge of
properly evaluating such complex models. They
surveyed the evaluation metrics of recently pub-
lished works on end-to-end RE referring to the
Strict, Boundaries, Relaxed evaluation setting pro-

70



Relation Extraction Paper Task Performed
NER/MD RI RC

2021

Wang et al. (2021) X X X
Cui et al. (2021) X
Tang et al. (2021) (?) X
Xie et al. (2021) X (?) X
Tian et al. (2021) X
Ma et al. (2021) X X
Mathur et al. (2021) X
Yang et al. (2021) X
Huang et al. (2021b) (?) X
Huang et al. (2021a) (?) X
2020

Kruiper et al. (2020) X X
Nan et al. (2020) X
Alt et al. (2020) X X
Yu et al. (2020) X X
Shahbazi et al. (2020) (?) X
Pouran Ben Veyseh et al. (2020) X
2019

Trisedya et al. (2019) X (?) X
Guo et al. (2019) X X
Yao et al. (2019) X
Zhu et al. (2019) X X
Li et al. (2019) X (?) X
Ye et al. (2019) X X
Fu et al. (2019) X X X
Dixit and Al-Onaizan (2019) X X X
Obamuyide and Vlachos (2019) (?) X
2018

Christopoulou et al. (2018) X X
Phi et al. (2018) X
2017

Lin et al. (2017) (?) X

Table 2: ACL paper analysis: over the last 5 years,
which RE sub-task is performed. (?) indicates that ei-
ther the paper does not state if the step is considered,
either it is performed, but in a simplified scenario.

posed by Bekoulis et al. (2018a). They observe
unfair comparisons and overestimations of end-to-
end models, and claim the need for more rigorous
reports of evaluation settings, including detailed
datasets statistics.

While some recent work shifts to joint models,
it is still an open question which approach (joint
or pipeline) is the most robust. Zhong and Chen
(2021) found that when incorporating modern pre-
trained language models (e.g., BERT) using sep-
arate encoders can surpass existing joint models.
Since the output label space is different, separate
encoders could better capture distinct contextual
information. At the moment it is not clear if one ap-
proach is more suitable than the other for RE. For
this reason and because of our final goal, which is
a closer look to sub-domains in the scientific field,

we follow the pipeline approach and, following
most work from Table 2, we here restrict the setup
by focusing on the RC task.

Open Issues To summarize, open issues are: 1)
The unclarity of RE setups, as illustrated in Table 2
—specially regarding RI—leads to problematic eval-
uation comparisons; 2) A lack of cross-domain
studies, for all three setups outlined in Section 2.

4 Scientific Domain Data Analysis

In this section, we present the two English corpora
involved in the experimental study (Section 4.1),
explain the label mapping adopted for the cross-
dataset experiments (Section 4.2), discuss the over-
lap between the datasets and the annotation diver-
gence between them (Section 4.3), and introduce
the sub-domains considered (Section 4.4).

4.1 Datasets

SemEval-2018 Task 7 (Gábor et al., 2018) The
corpus contains 500 abstracts of published research
papers in computational linguistics from the ACL
Anthology. Relations are classified into six classes.
The task was split into three sub-tasks: (1.1) RC
on clean data (manually annotated), (1.2) RC on
noisy data (automatically annotated entities) and
(2) RI+RC (identifying instances + assigning class
labels). For each sub-task, the training data con-
tains 350 abstracts and the test data 150. The train
set for sub-task (1.1) and (2) is identical.

SCIERC (Luan et al., 2018) The dataset con-
sists of 500 abstracts from scientific publications
annotated for entities, their relations and corefer-
ence clusters. The authors define six scientific en-
tity types and seven relation types. The original
paper presents a unified multi-task model for en-
tity extraction, RI+RC and coreference resolution.
SCIERC is assembled from different conference
proceedings. As the data is released with original
abstract IDs, this allows us to identify four ma-
jor sub-domains: AI and ML, Computer Vision
(CV), Speech Processing, and NLP, sampled over a
time frame from 1980 to 2016. Details of the sub-
domains are provided in Table 9 in Appendix A.
To the best of our knowledge, we are the first to
analyze the corpus at this sub-domain level.

4.2 Cross-dataset Label Mapping

We homogenize the relation label sets via a manual
analysis performed after an exploratory data analy-
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SemEval-2018 SCIERC

Considered in
this study

COMPARE COMPARE
USAGE USED-FOR
PART_WHOLE PART-OF
MODEL-FEATURE FEATURE-OF
RESULT EVALUATE-FOR*

Not-considered
TOPIC -
- HYPONYM-OF
- CONJUNCTION

Table 3: Label mapping. (*): Same semantic relation,
but inverse direction: We homogenized the two versions
by flipping the head with the tail.

sis, as we find that most of the labels in SemEval-
2018 and SCIERC have a direct correspondent, and
hence we mapped them as shown in Table 3. The
gold label distribution of the relations on the two
datasets is shown in Figure 4 in Appendix B. We de-
cided to leave out the two generic labels from SCI-
ERC and one relation from SemEval-2018 which
does not have any correspondent and is rare.

4.3 Overlap of the Datasets and Annotation
Divergences

Our analysis further reveals a high overlap in ar-
ticles between SemEval-2018 and SCIERC cor-
responding to 307 ACL abstracts.7 Interestingly,
the overlap contains a huge annotation divergence.
In more detail, we identify three main annotation
disagreement scenarios between the two datasets
(represented by the 3 samples in Table 5):

• Sample 1: The annotated entities differ
and so the annotated relations do as well.
SemEval-2018 annotates just one entity and
thus there can not even exist a relation; as the
corresponding sentence in SCIERC is anno-
tated with two entities, it contains a relation.

• Sample 2: The amount of annotated entities
and the amount of annotated relations are the
same, but the annotations do not match. The
relations involve non-mutual entities and so
do not correspond.

• Sample 3: The annotated entities are the
same, but the relation annotations differ. This
involves conflicting annotations, e.g., the bold
arrow shows the same entity pair annotated
with a different relation label.

7Note that in our study, regarding SemEval-2018, for fair
comparison with SCIERC, which is manually annotated, we
consider the dataset related to sub-task (1.1).

Whole corpus

SemEval-2018 SCIERC

# abstracts 500 500
# relations 1,583 4,648

Datasets Overlap (307 abstracts)

# relations 1,087 2,476
# common relations 1,071 1,922

Same entity pair 394
Same entity pair + same relation type 327

Table 4: SemEval-2018 and SCIERC annotation com-
parison. The common relations are the ones with a di-
rect correspondent in both datasets (see Table 3).

Table 4 shows the annotation statistics from
the two corpora and their overlap. Overall both
datasets contain the same amount of abstracts, but
the amount of annotated relations differs substan-
tially. The overlap between the two corpora re-
ports a similar trend. Even the fairer count of the
common labels (see Table 3) reveals that the an-
notation gap still holds (ratio of 1:1.8). In more
detail, the entity pairs annotated in both dataset by
using a strict criterion (i.e., entity spans with the
same boundaries) are only 394 (considering rela-
tions from the whole relation sets). Out of them,
only 327 are labeled with the same relation type,
meaning that there are 67 conflicting instances as
the bold arrow in Table 5 (Sample 3).

4.4 Experimental Sub-domains

We use the metadata described in Section 4.1 to
divide SCIERC into four sub-domains. Figure 5 in
Appendix B shows the label distribution over the
new SCIERC split. As we are particularly inter-
ested in the annotation divergence impact, we leave
out of this study 193 abstracts from SemEval-2018
which are not in overlap with SCIERC.

We assume a setup which takes the NLP domain
as source training domain in all experiments, as
it is the largest sub-domain in both datasets. The
considered sub-domains and their relative amount
of data are reported in Table 6.

5 Experiments

5.1 Model Setup

Since the seminal work by Nguyen and Grishman
(2015), Convolutional Neural Networks (CNNs)
are widely used for IE tasks (Zeng et al., 2014;
Nguyen and Grishman, 2015; Fu et al., 2017; Au-
genstein et al., 2017; Gábor et al., 2018; Yao et al.,
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Sample 1: Different number of entity (and relation) annotations

SemEval-2018
We evaluate the utility of this constraint in two different algorithms.

SCIERC
We evaluate the utility of this constraint in two different algorithms .

EVALUATE-FOR

Sample 2: Different entity annotations

SemEval-2018
We propose a detection method for orthographic variants caused by transliteration in a large corpus .

PART_WHOLE

SCIERC
We propose a detection method for orthographic variants caused by transliteration in a large corpus.

USED-FOR

Sample 3: Different relation annotations

SemEval-2018
The speech-search algorithm is implemented on a board with a single Intel i860 chip , which provides a factor of 5 speed-up over a SUN 4 for straight C code .

MODEL-FEATURE

SCIERC
The speech-search algorithm is implemented on a board with a single Intel i860 chip , which provides a factor of 5 speed-up over a SUN 4 for straight C code .

USED-FOR PART-OF COMPARE

USED-FOR

USED-FOR

Table 5: Annotated sentence pairs from SemEval-2018 and SCIERC. The underlined spans are the entities.

Dataset Sub-domain train dev test

SemEval-2018 NLP 257 50 50

SCIERC

NLP 257 50 50
AI-ML - - 52
CV - - 105
SPEECH - - 35

Table 6: Sub-domains and relative amount of abstracts.

2019). Similarly, since the advent of contextualized
representations (Peters et al., 2018; Devlin et al.,
2019), BERT-like representations are commonly
used (Seganti et al., 2021), but non-contextualized
embeddings (i.e., GloVe, fastText) are still widely
adopted (Yao et al., 2019; Huang et al., 2021b).
We compare the best CNN setup to fine-tuning a
full transformer model. For the latter we use the
MaChAmp toolkit (van der Goot et al., 2021)

Our CNN follows Nguyen and Grishman
(2015). We tests both non-contextualized word
embeddings—fastText (Bojanowski et al., 2017)—
and contextualized ones—BERT (Devlin et al.,
2019) and the domain-specific SciBERT (Beltagy
et al., 2019). Further details about the model im-
plementation and hyperparameter settings can be
found in Appendix C. We use macro F1-score as
evaluation metric. All experiments were run over
three different seeds and the results reported are
the mean.8

5.2 Cross-dataset Evaluation

We test the following training configurations:9

(1) cross-dataset: Training on SemEval-2018 and
testing on SCIERC, and vice versa; (2) cross-
annotation: Training on a mix of SemEval-2018

8
https://github.com/elisabassignana/scientific-re

9The development set follows the train set distributions.

and SCIERC overlap: (2.1) exclusive: Consider-
ing either abstracts from the two corpora, (2.2)
repeated labeling: Including every abstract twice,
once from each dataset; this approach repeats in-
stances with different annotations and is a simple
method to handle divergences in annotation (Sheng
et al., 2008; Uma et al., 2021), (2.3) filter: Double
annotation of the abstracts as in (2.2), but filtering
out conflicting annotations.

Results Table 7 reports the results of the experi-
ments. The cross-dataset experiments (1) confirm
the expected drop across datasets, in both direc-
tions (Sem: 40.28 → 34.81 and SCI: 34.29 →
31.37). Considering the cross-annotation setups,
results are mixed in the exclusive version (2.1). The
overall amount of training data is the same as the
cross-dataset experiments, but there is less dataset-
specific data, which hurts SemEval-2018. In con-
trast, regarding (2.2) and (2.3), in both setups im-
provements are evident on both test sets. Compared
to (2.1), the training data amount is effectively dou-
bled and the model benefits from it. Removing the
conflicting instances results in a slightly smaller
train set, but an overall higher average performance
(43.81→ 44.16). The improvement of (2.3) over
(2.2) is significant, which we test by the almost
stochastic dominance test (Dror et al., 2019). De-
tails about significance are in Appendix D.

5.3 Contextualized Word Embeddings
We pick the best performing training scenario
(cross-annotation filter, 2.3) and compare fastText
with contextualized embeddings: BERT and the
domain-specific SciBERT. The central columns of
Table 7 report the results. While BERT does not
bring relevant improvements over the best fastText
setup, SciBERT confirms the strength of domain-
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Model CNN Transformer [tuned]

Word embedding FastText BERT SciBERT SciBERT SciBERT

↓Test | Train (NLP)→ Sem SCI [1⁄2 + 1⁄2] 2A 2A w/o CR 2A w/o CR 2A w/o CR 2A 2A w/o CR

SemEval NLP 40.28 34.81 39.91 50.17 48.95 42.54 49.27 79.16 77.79
SCIERC NLP 31.37 34.29 36.29 39.36 41.48 38.63 51.99 67.36 69.90
SCIERC AI-ML 37.00 50.44 46.78 49.52 49.66 40.81 51.14 72.48 76.80
SCIERC CV 33.32 41.30 37.24 44.59 45.60 38.51 48.18 73.55 76.11
SCIERC SPEECH 29.60 35.00 33.71 35.39 35.11 31.62 42.72 64.17 65.21

avg. 34.31 39.17 38.79 43.81 44.16 38.34 48.66 71.34 73.56

Table 7: Macro F1-scores of the cross-dataset and cross-domain experiments. (2.1) [1⁄2 + 1⁄2] refers to the case in
which the train is made half by SemEval-2018 and half by SCIERC; (2.2) 2A means double annotation from the
two datasets; (2.3) CR are the conflicting relations (bold sample in Table 5).

specific trained language models (improvement of
4.5 F1 points and almost stochastic dominance).
Compared to the CNN, full transformer fine-tuning
results in the best model (rightmost columns). We
tested different setups to feed the input to the trans-
former (see appendix E), finding two entity spans
and the full sentence as best setup. The full fine-
tuned transformer model confirms the dominance
of training setup (2.3) over (2.2).

5.4 Cross-domain Evaluation
Next, we look at cross-domain variation: Train-
ing on NLP, and testing on all sub-domains. The
lower rows in Table 7 show the results. If we focus
on the SciBERT models, we observe that there is
some drop in performance from NLP, but mostly to
CV and SPEECH. Interestingly, in some cases, AI-
ML even outperforms the in-domain performance.
Over all models, the SPEECH domain shows the
clearest drop in transfer from NLP.10 From an anal-
ysis of the predictions of the RC trained on SciB-
ERT, we notice that the classifier struggles with
identifying the most frequent USAGE relation (see
Appendix B) across sub-domains (confusion from
lowest to highest: AI-ML, CV and SPEECH), and
it is most confused with MODEL-FEATURE. Fig-
ure 7 in Appendix F contains the detailed confusion
matrices. The overall evaluation suggests that in
this setup sub-domain variation impacts RC perfor-
mance to a limiting degree only.

In order to confirm this qualitatively, we (1) in-
spect whether model-internal representations are
able to capture sub-domain variation, and we (2)
test whether sub-domain variation is identifiable.
To answer (1), we visualise the PCA representation
of the CNN trained on setup (2.3) with SciBERT.
The result is shown in Figure 3. The plot confirms

10We note that the data amount for speech is the smallest in
respect to the other sub-corpora, which might have an impact.

Figure 3: PCA representation of the CNN hidden state
(just before the linear layer) using SciBERT.

that the representations do not contain visible clus-
ters: The relation instances from each sub-domain
are equally spread over it, and thus the performance
of the relation classifier is similar for each of them.
Our intuition is that the unified label set contains
relations general enough to be equally covered by
every sub-domain.

We explore the sub-domains more deeply apart
from the RC task. To answer (2), we built a do-
main classifier to investigate how hard it is to tear
apart the sub-domains. We hypothesize that, if sub-
domains are distinguishable, a classifier should be
able to easily distinguish them by looking at the
coarsest level (the abstract). The classifier consists
of a linear layer on top of the SciBERT encoder
and achieves a F1-score of 62.01, over a random
baseline of 25.58. This shows that the sub-domains
are identifiable at the abstract level but with modest
performance. As we would expect, SPEECH and
NLP are highly confused (Figure 6 in Appendix G
reports the confusion matrix) and the large vocabu-
lary overlap shown in Table 8 between these sub-
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Domain # word types # overlap % overlap

NLP 5,646 - -
AI-ML 1,895 917 48.39%
CV 3,387 1,205 35.58%
SPEECH 1,398 715 51.14%

Table 8: Vocabulary overlap between NLP and the
other sub-domains. # word types, # overlap in word
types, and % overlap as relative percentages. Note that
the amount of abstracts varies, cf. Table 6.

domains confirms this observation. Overall, sub-
domains are identifiable but have limited impact on
the RC task in the setup considered.

6 Conclusions

We present a survey on datasets for RE, revisit the
task definition, and provide an empirical study on
scientific RC. We observe a domain shift in RE
datasets, and a trend towards multilingual and FSL
for RE. Our analysis shows that our surveyed ACL
RE papers focus mostly on RC and assume gold
entities. Other steps are more blurry, concluding
with a call for reporting RE setups more clearly.

As testing on only one dataset or domain bears
risks of overestimation, we carry out a cross-dataset
evaluation. Despite large data overlaps, we find
annotations to substantially differ, which impacts
classification results. Sub-domains extracted from
meta-data instead only slightly impact performance.
This finding on sub-domain variation is specific to
the explored RC task on the scientific setup con-
sidered. Our study contributes to the first of three
cross-domain RE setups we propose (Section 2) to
aid further work on generalization for RE.

Limitations and Ethical Considerations

This work focuses on a limited view of the whole
RE research field. Our dataset survey excludes spe-
cific angles of RE such as temporal RE or bioNLP,
as they are large sub-fields which warrant a ded-
icated analysis in itself. From a methodological
point of view, in our analysis we did not further
cover weakly-supervised (e.g., distant supervision)
and un-supervised approaches. Finally, given that
our study points out gaps in RE, specifically cross-
dataset, our experiments are still limited to RC only
and next steps are to extend to the whole pipeline
and to additional datasets and domains.

The data analyzed in this work is based on exist-
ing publicly-available datasets (based on published
research papers).
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Appendix

A SCIERC Conference Division

The metadata relative to the IDs of the SCIERC
abstracts contains information about the proceed-
ings in which the papers have been published. We
use this information to divide SCIERC into four
sub-domains as shown in Table 9.

Conference # abs

Artificial Intelligence - Machine Learning (AI-ML) 52

NeurIPS 20
Neural Information Processing Systems
IJCAI 14
International Joint Conference on Artificial Intelligence
ICML 10
International Conference on Machine Learning
AAAI 8
Association for the Advancement of Artificial Intelligence

Computer Vision (CV) 105

CVPR 66
Conference on Computer Vision and Pattern Recognition
ICCV 23
International Conference on Computer Vision
ECCV 16
European Conference on Computer Vision

Speech 35

INTERSPEECH 25
Annual Conference of the International Speech
Communication Association
ICASSP 10
International Conference on Acoustics, Speech, and
Signal Processing

Natural Language Processing (NLP) 308

ACL 307
Association for Computational Linguistics
IJCNLP 1
International Joint Conference on Natural Language
Processing

Table 9: SCIERC division into conferences and rela-
tive amount of abstracts for each of them.

B Data Analysis

Figure 4 reports the gold label distribution over
SemEval-2018 and SCIERC respectively.

Figure 5, instead, contains the gold label dis-
tributions of SCIERC sub-domains over the five
matching labels between the two datasets (see Ta-
ble 3).

C Model Details

Our RC model is a CNN with four layers (Nguyen
and Grishman, 2015). The layers consist of lookup
embedding layers for word embeddings and en-
tity position information (detailed below), convo-
lutional layers with n-gram kernel sizes (2, 3 and

(a) SemEval-2018

(b) SCIERC

Figure 4: Gold label distribution in the SemEval-2018
sub-task (1.1) and SCIERC datasets.

Figure 5: Gold label distribution of the five considered
relations over SCIERC sub-domains.
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4), a max-pooling layer and a linear softmax rela-
tion classification layer with dropout of 0.5. Each
input to the network is a sentence containing a pair
of entities—which positions in the sentence are
given—and a label within R, the set of five consid-
ered relations.

We experiment with three types of pre-trained
word embeddings: one non-contextualized, fast-
Text (Bojanowski et al., 2017), and two contextu-
alized representations, BERT (Devlin et al., 2019)
and the domain-specific SciBERT (Beltagy et al.,
2019). For word split into subword-tokens, we
adopt the strategy of keeping only the first embed-
ding for each token. For every token we also con-
sider two position embeddings following Nguyen
and Grishman (2015). Each of them encodes the
relative distance of the token from each of the two
entities involved in the relation.

Hyperparameters were determined by tuning the
model on a held-out development set.

All experiments were ran on an NVIDIA® A100
SXM4 40 GB GPU and an AMD EPYC™ 7662
64-Core CPU.

D Significance Testing

We compare our setups using Almost Stochastic
Order (ASO; Dror et al., 2019).11 Given the re-
sults over multiple seeds, the ASO test determines
whether there is a stochastic order. The method
computes a score (εmin) which represents how far
the first is from being significantly better in respect
to the second. The possible scenarios are therefore
(a) εmin = 0.0 (truly stochastic dominance) and
(b) εmin < 0.5 (almost stochastic dominance). Ta-
ble 10 reports the ASO scores with a confidence
level of α = 0.05 adjusted by using the Bonferroni
correction (Bonferroni, 1936). See Section 5 for
the setup details.

E Transformer setups

The MaChAmp toolkit (van der Goot et al., 2021)
allows for a flexible amount of textual inputs (sepa-
rated by the [SEP] token) to train the transformer
and test the fine-tuned model on. We used SciB-
ERT (Beltagy et al., 2019) and tested the following
input configurations:

1. The two entities:
[ ent-1 [SEP] ent-2 ]

11Implementation by Ulmer (2021).
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2A [fastText]* - 1.0 0.0 1.0 1.0 1.0

2A w/o CR [fastText]* 0.0 - 0.0 1.0 1.0 1.0

2A w/o CR [BERT]* 1.0 1.0 - 1.0 1.0 1.0

2A w/o CR [SciBERT]* 0.0 0.0 0.0 - 1.0 1.0

2A [SciBERT]† 0.0 0.0 0.0 0.0 - 1.0

2A w/o CR [SciBERT]† 0.0 0.0 0.0 0.0 0.0 -

Table 10: ASO scores of the main experimental setups
described in Section 5. (*) CNN model. (†) full fine-
tuned transformer model. Read as row→ column.

↓Test | Input Setup→ 1 2 3 4 5

SEMEVAL NLP 58.15 42.08 77.79 74.85 75.12
SCIERC NLP 51.42 42.16 69.90 69.09 71.32
SCIERC AI-ML 54.63 40.35 76.80 75.08 74.93
SCIERC CV 53.16 41.09 76.11 74.73 74.21
SCIERC SPEECH 49.59 40.42 67.21 66.78 67.56

avg. 53.39 41.22 73.56 72.11 72.63

Table 11: Macro F1-scores of the RC using SciB-
ERT (Beltagy et al., 2019) within the MaChAmp
toolkit (van der Goot et al., 2021). Setups 1-5 described
in Appendix E.

2. The sentence containing the two entities:
[ sentence ]

3. The two entities and the sentence containing
them:
[ ent-1 [SEP] ent-2 [SEP] sentence ]

4. For the third setup, we introduce a marker be-
tween the two entities, resulting in a 2-inputs
configuration:
[ ent-1 [MARK] ent-2 [SEP] sentence ]

5. Finally—following Baldini Soares et al.
(2019)—we augment the input sen-
tence with four word pieces to mark
the beginning and the end of each entity
mention ([E1-START], [E1-END],
[E2-START], [E2-END]):
[ sentence-with-entity-markers ]

Table 11 reports the results of the experiments
using MaChAmp on the setups described above.

F Scientific Sub-domain Analysis

Figure 7 contains the confusion matrices of the
CNN trained with SciBERT for the AI-ML, CV
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and SPEECH sub-domains. For fair comparison
between the different data amounts the numbers
reported are percentages.

G Conference Classifier

Figure 6 represents the confusion matrix relative to
the conference classifier described in Section 5.4.

Figure 6: Confusion matrix of the conference classifica-
tion experiment. The numbers reported are the average
over three runs on different seeds.

(a) AI-ML (52 abstracts)

(b) CV (105 abstracts)

(c) SPEECH (35 abstracts)

Figure 7: Percentage confusion matrices of the CNN
on SCIERC sub-domains.
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Abstract

Recently, the Natural Language Inference
(NLI) task has been studied for semi-
structured tables that do not have a strict
format. Although neural approaches have
achieved high performance in various types of
NLI, including NLI between semi-structured
tables and texts, they still have difficulty in per-
forming a numerical type of inference, such as
counting. To handle a numerical type of infer-
ence, we propose a logical inference system
for reasoning between semi-structured tables
and texts. We use logical representations as
meaning representations for tables and texts
and use model checking to handle a numer-
ical type of inference between texts and ta-
bles. To evaluate the extent to which our
system can perform inference with numerical
comparatives, we make an evaluation protocol
that focuses on numerical understanding be-
tween semi-structured tables and texts in En-
glish. We show that our system can more ro-
bustly perform inference between tables and
texts that requires numerical understanding
compared with current neural approaches.

1 Introduction

Natural Language Inference (NLI) (Dagan et al.,
2006) is one of the most fundamental tasks to de-
termine whether a premise entails a hypothesis.
Recently, researchers have developed benchmarks
not only for texts but for other kinds of resources
as well, a table being one example. Previous stud-
ies have targeted database-style structured tables
(Pasupat and Liang, 2015; Wiseman et al., 2017;
Krishnamurthy et al., 2017) and semi-structured
tables, such as the infoboxes in Wikipedia (Lebret
et al., 2016; Gupta et al., 2020). Our focus here is
on the NLI task on semi-structured tables, where
we handle a semi-structured table as a premise and
a sentence as a hypothesis.

In Figure 1, for example, we consider the semi-
structured table as a given premise and take Joe

Joe Biden

Born Joseph Robinette Biden Jr.
November 20, 1942 (age 79)
Scranton, Pennsylvania, U.S.

Political party Democratic (1969–present)
Spouse(s) Neilia Hunter (m. 1966; died 1972)

Jill Jacobs (m. 1977)

Hypothesis 1: Joe Biden was born in November.
Hypothesis 2: Joe Biden has had more than two wives.

Figure 1: A semi-structured table describing Joe
Biden1and two hypothesis sentences. This table entails
Hypothesis 1 and contradicts Hypothesis 2.

Biden was born in November as Hypothesis 1.
We can conclude that Hypothesis 1 is entailed by
the table. A semi-structured table has only two
columns and describes a single object, which is in-
dicated in the title. We call elements of the first col-
umn, such as Political Party, keys, each of which
has an associated value in the second column such
as Democratic (1969–present). Pairs of keys and
values are called rows. It is relatively difficult to
understand the information contained in infobox
tables because (i) values are not limited to words
or phrases, and sometimes whole sentences, and
(ii) a row can contain more than one type of infor-
mation, such as the birthday and birthplace in the
Born row.

In recent years, modern neural network (NN)
approaches have achieved high performance in
many Natural Language Understanding bench-
marks, such as BERT (Devlin et al., 2019). NN-
based approaches (Neeraja et al., 2021) have also
achieved high accuracy on the NLI task between
semi-structured tables and texts, but previous stud-
ies have questioned whether NN-based models
truly understand the various linguistic phenomena

1The table was retrieved from https://en.
wikipedia.org/wiki/Joe_Biden on February
25, 2022. Some rows have been removed to save space.
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(Jia and Liang, 2017; Naik et al., 2018; Rozen
et al., 2019; Ravichander et al., 2019; Richardson
et al., 2020). These studies have shown that NN-
based approaches have failed to achieve a high per-
formance in numerical reasoning.

In this paper, we focus on a numerical type
of inference on semi-structured tables, which re-
quires understanding the number of items in a ta-
ble as well as numerical comparisons. Numerical
comparatives are among the more challenging lin-
guistic phenomena that involve generalized quan-
tifiers. For example, the phrase more than in Hy-
pothesis 2 in Figure 1 is a numerical comparative
and compares two and the number of wives. For
dealing with numerical comparatives, Haruta et al.
(2020a,b) achieved high performance by develop-
ing a logical inference system based on formal se-
mantics. However, Haruta et al. (2020a,b) con-
centrated on the inference between texts only, and
inference systems that reliably perform inference
between tables and texts involving numerical com-
paratives have not yet been developed.

Thus, we aim to develop a logical inference sys-
tem between semi-structured tables and texts, es-
pecially for numerical reasoning. While previous
work (Pasupat and Liang, 2015; Wiseman et al.,
2017; Krishnamurthy et al., 2017) has provided
semantic parsers of constructing query languages
such as SQLs for question answering on database-
style tables, we present logical representations for
semi-structured tables to enable a numerical type
of inference on semi-structured tables. Further-
more, the existing NLI dataset for semi-structured
tables (Gupta et al., 2020) does not contain suffi-
cient test cases for understanding numerical com-
paratives. Thus, there is a need for an evaluation
protocol that investigates the numerical reasoning
skills of NLI systems for semi-structured tables.

Given this background, our main contributions
in this paper are the following:

1. We propose a logical inference system for
handling numerical comparatives that is based
on formal semantics for NLI between semi-
structured tables and texts.

2. We provide an evaluation protocol and dataset
that focus on numerical comparatives between
semi-structured tables and texts.

3. We demonstrate the increased performance of
our inference system compared with previous

NN models on the NLI dataset, focusing on nu-
merical comparatives between semi-structured
tables and texts.

Our system and dataset will be publicly available
at https://github.com/ynklab/sst_
count.

2 Related Work and Background

This section explains the related work of logic-
based NLI approaches and the background of
model checking, which is used for inference be-
tween semi-structured tables and sentences in our
proposed system.

2.1 Logic-based Approach
Based on the analysis of formal semantics, logic-
based NLI approaches can handle a greater vari-
ety of linguistic phenomena than NN-based ap-
proaches can. Some logic-based NLI approaches
using syntactic and semantic parsers based on for-
mal semantics have been proposed (Bos, 2008;
Abzianidze, 2015; Mineshima et al., 2015; Hu
et al., 2020; Haruta et al., 2020a,b). These logic-
based approaches can derive semantic represen-
tations of sentences involving linguistically chal-
lenging phenomena, such as generalized quanti-
fiers and comparatives, based on Combinatory Cat-
egorial Grammar (CCG) (Steedman, 2000) syn-
tactic analysis. CCG is often used in these ap-
proaches because it has a tiny number of combi-
natory rules, which is suitable for semantic com-
position from syntactic structures. In addition, ro-
bust CCG parsers are readily available (Clark and
Curran, 2007; Yoshikawa et al., 2017).

Regarding logic-based approaches for inference
other than inference between texts, Suzuki et al.
(2019) proposed a logical inference system for in-
ference between images and texts. Their system
converts images to first-order logic (FOL) struc-
tures by using image datasets where structured rep-
resentations of the images are annotated. They
then get FOL formulas P for images from these
structures along with the associated image cap-
tions. Hypothesis sentences are translated into
FOL formulas H through the use of a semantic
parser (Martínez-Gómez et al., 2016). For infer-
ence, they used automated theorem proving and
sought to prove P ⊢ H . Our proposed inference
system between semi-structured tables and texts is
inspired by Suzuki et al. (2019). While the previ-
ous system uses automated theorem proving for in-

85



D = {B1, G1, G2}
V = {(ALICE, {G1}), (BOB, {B1}), (CATHY, {G2}),

(BOY, {B1}), (GIRL, {G1, G2}),
(LIKE, {(B1, G1), (B1, G2), (G1, B1)})}

Logical formula Output

∃x.∃y.(BOY(x) ∧ LIKE(x, y)) True
∃x.∃y.(GIRL(x) ∧ GIRL(y) ∧ LIKE(x, y)) False
∃x.∃y.(CAT(y) ∧ LIKE(x, y)) Undefined

Figure 2: Outputs of model checking based on an ex-
ample model and three formulas.

ference between images and texts, our system uses
model checking to judge whether a given text is
true under a given table, and it is expected to be a
faster method.

2.2 Model Checking
We use model checking in the Natural Language
Toolkit (NLTK) (Bird and Loper, 2004; Garrette
and Klein, 2009) for making inference between ta-
bles and texts. This system judges a truth-value
of an FOL formula based on FOL structures. An
FOL structure (called model) is defined by a pair
of the domain D and the valuation V , where D
is a finite set of variables and V is a finite set of
functions. Each element of V is a pair of symbols,
the name of the function and its domain.

Based on the model used, the system will return

• true if the FOL formula is satisfiable,
• false if the formula is unsatisfiable, and
• undefined if there is an undefined function in

the formula.

Figure 2 shows outputs from model checking
based on an example model and three formulas.

3 Method

3.1 System Overview
Figure 3 shows the overview of our proposed sys-
tem. The system takes a table and a sentence as in-
puts and determines whether the table entails, con-
tradicts, or is neutral toward the sentence. We rep-
resent the meaning of tables as FOL structures (see
Section 3.2) and the meaning of sentences as FOL
formulas (see Section 3.3). In the process of trans-
lating a table, we first make a filtered table, and
then translate that table to an FOL structure.

In the process of translating a sentence, we con-
vert the sentence to a CCG derivation tree using a

CCG parser (Yoshikawa et al., 2017). Before pars-
ing, we use a Named Entity Recognition (NER)
system in spaCy2 to identify a proper noun in sen-
tences and add extra underscores to spaces and at
the end of phrases so that such phrases can be
categorized as one proper noun. This derivation
tree is modified by a tree transformation so that it
handles numerical expressions correctly. For the
tree transformation, we use tsurgeon (Levy and
Andrew, 2006) (see Appendix A for more details).
We then construct semantic representations (FOL
formulas) of the hypothesis sentences according
to the CCG derivation tree. For semantic pars-
ing based on CCG, we use ccg2lambda (Martínez-
Gómez et al., 2016). As a result, we obtain an FOL
formula representing the whole sentence.

We apply model checking between the FOL
structure and the FOL formula for inference using
NLTK with optimization (see Section 3.4). Un-
der the FOL formula and the FOL structure, we
assume

• entailment if our system returns true,
• contradiction if our system returns false, and
• neutral otherwise.

3.2 Meaning Representations for Tables
The top of the Figure 3 shows the processes of
translating from premise tables to FOL models.
We select the Children and Parents rows from the
table (a) using rows filtering (see Section 3.2.1).
Then, the filtered table (b) is translated into an
FOL structure (c). In (c), have is a meta-predicate
(see Section 3.2.2), a predicate connecting a title
and other values.

3.2.1 Rows Filtering
To isolate rows from a premise table that are re-
lated to the hypothesis sentence, we apply Distract-
ing Rows Removal (DRR), which was proposed
by the previous approach (Neeraja et al., 2021).
Since that approach was NN-based, a sentence vec-
tor representation was generated for each row in
the table, and the original DRR was applied to
the sentence representation. Then, the similarity
score between each generated sentence and the hy-
pothesis sentence was calculated. In this process,
the previous approach used fastText (Joulin et al.,
2016) to obtain the embedding vectors of words.
They represented a hypothesis vector sequence of
length p as (h0,h1, . . . ,hp−1) and an i-th row

2https://github.com/explosion/spaCy
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Figure 3: Overview of our proposed system with the example set for premise-hypothesis pair describing Bryce
Dallas Howard. Our system returns true (entailment) for this pair.

vector sequence of length q as (ti0, t
i
1, . . . , t

i
q−1).

The similarity score was then calculating using

SCOREi =
∑

0≤j<p

max
0≤k<q

(hj · tik)

Finally, the four rows which were the most similar
were selected as the premise.

We follow most of the original DRR, but with
a slight modification. First, since we directly rep-
resent a set of rows as FOL structures, we do not
need to generate a sentence for each row. Thus,
our system makes a simple concatenation (not us-
ing any words) of keys and values rather than a
proper sentence. Also, to improve the similarity
score calculation, we include numbers in a list of
stopwords. In rows filtering, we select the top two
most similar rows as the premise.

3.2.2 Model Construction
We construct a model based on the title and rows
selected in Section 3.2.1. First, we define an en-
tity variable X0 that indicates a title. For keys and
values in rows,

• when the key is a noun, we define entity vari-
ables Xi (i ≥ 1) indicating the value of each,
and

• when the key is a verb, we define event vari-
ables Vj (j ≥ 1), whose subject is the title
entity and whose accusative is the value of
each.

To classify the parts of speech of the keys as nouns
or verbs of the keys, we use spaCy for part-of-
speech (POS) tagging. Keys are usually composed
of nouns, verbs, adjectives, and prepositions, as
shown in Figure 1. Since morphosyntactic ambi-
guity rarely appears in keys, we can classify keys
into nouns and verbs by simply using a POS tag-
ger.

We also introduce a meta-predicate have, with
an event variable V0. The subject of have is the
variable X0 indicating the title entity, and the ac-
cusatives are any of the entities in values.

3.2.3 Knowledge Injection

In some inference problems, an inference sys-
tem needs to capture paraphrases (restatements
of phrases that have the same meaning but are
worded differently) in a premise table and a hy-
pothesis sentence. For example, the function WIFE

is injected in a model because spouse can be para-
phrased as wife.

Using knowledge graphs to paraphrase some
words in keys, we calculate the relatedness score
between each word in keys (key_term) and each
word in the hypothesis sentence (hypo_term).
When the score exceeds the threshold (0.5), the
hypo_term is introduced as a function, and the do-
main of which is the same as that of the key_term.
In this process, we use the standard knowl-
edge graph ConceptNet (Liu and Singh, 2004) to
get the relatedness score between key_term and
hypo_term. ConceptNet is a knowledge base that
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Bryce Dallas Howard
N

λx.BRYCE(x)

NP

λF1.λF2.∃x.(BRYCE(x)

∧F1(x) ∧ F2(x))

has
(S[dcl]\NP )/NP

λQ1.λQ2.Q2(λx.True(), λx.Q1(λy.True(),
λy.∃e.(HAVE(e) ∧ Subj(e, x) ∧ Acc(e, y))))

two
N/N

λF.F

children
N

λx.CHILD(x)

N

λx.CHILD(x)

NP

λF1.λF2.∃x0, x1.(CHILD(x0) ∧ CHILD(x1)

∧F1(x0) ∧ F2(x0) ∧ F1(x1) ∧ F2(x1) ∧ ¬(x0 = x1))

S[dcl]\NP

λQ2.Q2(λx.True(), λx.∃x0, x1.(CHILD(x0) ∧ CHILD(x1) ∧ True() ∧ ∃e.(HAVE(e)

∧Subj(e, x) ∧ Acc(e, x0)) ∧ True() ∧ ∃e.(HAVE(e) ∧ Subj(e, x) ∧ Acc(e, x1)) ∧ ¬(x0 = x1)))

S[dcl]

∃x.(BRYCE(x) ∧ True() ∧ ∃x0, x1.(CHILD(x0) ∧ CHILD(x1) ∧ True() ∧ ∃e.(HAVE(e)

∧Subj(e, x) ∧ Acc(e, x0)) ∧ True() ∧ ∃e.(HAVE(e) ∧ Subj(e, x) ∧ Acc(e, x1)) ∧ ¬(x0 = x1)))

Figure 4: A derivation tree of Bryce Dallas Howard has two children. True is a predicate which always returns
true regardless of arity and argument. The function BRYCE is an abbreviation for BRYCE_DALLAS_HOWARD_.

Phrase Logical formula

(a) less than two books λF1F2.∀x0x1.((BOOK(x0)∧BOOK(x1) ∧ F1(x0) ∧ F2(x0) ∧ F1(x1) ∧ F2(x1))→(x0=x1))
(b) at least two books λF1F2.∃x0x1.(BOOK(x0) ∧ BOOK(x1) ∧ F1(x0) ∧ F2(x0) ∧ F1(x1) ∧ F2(x1) ∧ ¬(x0=x1))
(c) twice λV QK.∃e1e2.(V (Q,λe.(K(e) ∧ (e = e1))) ∧ V (Q,λe.(K(e) ∧ (e = e2))) ∧ ¬(e1 = e2))

Table 1: Examples of FOL formulas. F1 and F2 in (a) and (b) are unary predicates representing additional attributes
of books on the bottom of the syntactic tree. In (c), V is a unary predicate for verb phrases, Q is a binary predicate
for noun phrases, and K is a unary predicate for additional attributes of the event.

includes WordNet (Miller, 1995). We select Con-
ceptNet because InfoTabS requires paraphrases
based on not only hypernymy and hyponymy re-
lations considered in WordNet, but also common
knowledge. For example, to understand whether
the hypothesis Joe Biden has married twice is en-
tailed or not by Figure 1, we need to capture para-
phrases between Spouse in the premise table and
marry or marriage in the hypothesis.

3.3 Meaning Representations for Sentences

We construct meaning representations of hypoth-
esis sentences based on the CCG derivation tree
and Neo-Davidsonian Event Semantics (Parsons,
1990). ccg2lambda (Mineshima et al., 2015;
Martínez-Gómez et al., 2016) is used to obtain
meaning representations (FOL formulas) of hy-
pothesis sentences based on CCG and λ-calculus.
We extend the semantic template that defines lexi-
cal entries and schematic entries assigned to CCG
categories in Mineshima et al. (2015) so that it can
handle the numerical expressions for this task. In
total, we add 251 extra lexical entries for the nu-
merical expressions. Figure 4 shows an example
of CCG derivation trees with meaning representa-
tions involving numerical expressions.

We focus on expressions related to numerical
comparatives: less than, no more than, exactly, at
least, no less than, and more than. We need to
consider how to represent the meaning of a noun

phrase (NP as its CCG category) that involves a
numerical comparative and the number of entities,
such as less than two books. The meaning of this
phrase is analyzed in Table 1a. We also analyze
the meaning of the phrase at least two books in Ta-
ble 1b. The meaning representation of exactly two
books is given as the composition of the represen-
tation of at least two books and the representation
of no more than two books (van Benthem, 1986).

Adverbs of frequency such as twice describe
the number of events, and their CCG category is
(S\NP )\(S\NP ). The semantic representation
of twice is given in Table 1c.

In previous work, Haruta et al. (2020a,b) han-
dled generalized quantifiers including numerical
comparatives as binary predicates many. For ex-
ample, the noun phrase two cats is represented as
CAT(x) ∧ many(x, 2), which indicates that x has
the property of CAT and is composed of at least 2
entities. Since one of the aims of our system is
to count the elements in the values of premise ta-
bles, our system assigns different entities for every
word or phrase in the values.

3.4 Optimization of Model Checking

To optimize the process of model checking be-
tween tables and texts, we extend the implementa-
tion of model checking in NLTK. Figure 5 shows
the program that evaluates the truth-value of ∃x.A.
NLTK is implemented in Python and uses a set,
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1: for y in D do
2: if the truth-value of A[y/x] is true then
3: return true
4: end if
5: end for
6: return false

Figure 5: A program for evaluating the truth-value of
∃x.A.

which is an unordered collection, to represent the
domain D of an FOL structure. When evaluating
a for loop with a set (line 1 of Figure 5), an order
of values in the set is not fixed for each run. To fix
the order, we changed the implementation of the
domain from a set to a list.

We also modify the original program for
model checking in NLTK to make judg-
ments faster. First, we sort the domain
D to facilitate faster evaluation, giving
(X0, X1, . . . , Xn−1, V0, V1, . . . , Vm−1), where
n and m are the number of entities and events,
respectively. It is sorted this way because the title
variable X0 is often the subject of the hypothesis
sentence, which can be found at the top of the
meaning representations.

Second, we use constraints for both the existen-
tial and universal quantifiers (∃ and ∀). We do
not substitute one variable for the other type of
bounded variable in the evaluation scheme during
quantification. Third, we use constraints for ex-
istential quantifiers (∃) so as not to use the same
variables for two or more bounded variables dur-
ing substitution. We apply this restriction for only
to entity variables because the same variable may
be applied to different bounded variables for each
event. In the process of model checking, we set
a timeout of 10 seconds for judging whether the
formula is satisfiable.

4 Experiments

We evaluate the extent to which our system can
perform inference with numerical comparatives.
We make an evaluation protocol that focuses
on the numerical understanding between semi-
structured tables and texts in English.

4.1 Dataset
We created a new dataset for the numerical un-
derstanding of semi-structured tables. There are
two motivations for doing so. One is that the

Karachi

Country Pakistan
Province Sindh
Metropolitan 2011
corporation
City council City Complex, Gulshan-e-Iqbal Town
Districts Central Karachi, East Karachi, South

Karachi, West Karachi, Korangi, Malir

Table 2: The premise table for the hypothesis Karachi
has a half dozen districts.

number of test cases for numerical understanding
is limited to the previous NLI dataset for semi-
structured tables, InfoTabS (Gupta et al., 2020). In
addition, to evaluate whether NLI systems consis-
tently perform inference with numerical compara-
tives, we need to analyze whether the prediction la-
bels change correctly when the numbers in the hy-
pothesis sentence are slightly changed from those
in the original hypothesis sentence.

To create the dataset for numerical understand-
ing of semi-structured tables, we first manually ex-
tracted 105 examples involving numerical expres-
sions from the α1, α2, and α3 test sets in InfoTabS.
The inference for these examples requires an un-
derstanding of the number of entities and events.
We then made a problem set from each example
and defined the base hypothesis of the test cases
by rewriting to the actual value n with exactly en-
tailed from a premise table.

Table 2 shows a premise table for the hypothe-
sis Karachi has a half dozen districts, which was
extracted from InfoTabS. This premise-hypothesis
pair is an example, and it makes a problem set for
the statement how many districts Karachi has. Be-
cause we can precisely see six districts in Karachi
from the premise table, the base hypothesis of this
problem set is Karachi has exactly six districts,
where a half dozen is defined as the number six.
When the gold label of an example extracted from
InfoTabS is neutral, a base hypothesis of the ex-
ample is made by simply replacing the numerical
comparatives with exactly. The gold label of the
base hypothesis is the same as that of the original
example. For instance, if the original hypothesis is
Bob has more than two dogs, and its gold label is
neutral, then the base hypothesis becomes Bob has
exactly two dogs. Finally, we make test cases from
each base hypothesis using the following process:

(i) We make a new hypothesis sentence S by re-
moving exactly from the base hypothesis.
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Hypothesis Gold Note

Karachi has less than five districts. C [2]
Karachi has less than six districts. C [1]
Karachi has less than seven districts. E

Karachi has five districts. E [1]
Karachi has six districts. E
Karachi has seven districts. C

Karachi has more than five districts. E [1]
Karachi has more than six districts. C
Karachi has more than seven districts. C

Table 3: A part of the test cases made from the prob-
lem set for the base hypothesis Karachi has exactly six
districts. [i] (i = 1, 2) as noted means that the test case
is not defined when n ≤ i, n being the actual value. E
and C are entailment and contradiction, respectively.

(ii) We make two new hypothesis sentences, S+

and S− by replacing the number n in S with
n + 1 and n − 1 in S, respectively.

(iii) We make six additional hypothesis sentences
each from S, S+, and S− by adding the ex-
pressions related to numerical comparatives,
less than, no more than, exactly, at least, no
less than, and more than, thus making a prob-
lem set consisting of 21 hypothesis sentences
with correct gold labels. Table 3 shows a part
of the hypothesis sentences.

(iv) We remove unnatural hypothesis sentences
from the problem set, including such as at
least zero and less than one.

Note that here two has the same meaning as at
least two. Our dataset consists of 105 problem sets
with 1,979 test cases. The distribution of gold la-
bels is (entailment, neutral, contradiction) = (965,
176, 838). This dataset includes ten problem sets
that are filled with neutral labels. We confirmed
all words are commonly used in a training set in
InfoTabS and our dataset.

4.2 Experimental Setup for Previous
Research

Neeraja et al. (2021) proposed an NN-based model
for inference between semi-structured tables and
texts and tested it by InfoTabS. We compare our
system to +KG explicit, which was the setting for
which the previous model (Neeraja et al., 2021)
achieved the highest performance. +KG explicit
consists of the following four methods for making
sentence representations of tables.

+KG Ours

All problem sets 0.03 0.31
All problem sets excluding neutral-filled 0.00 0.27

Table 4: The accuracy of problem sets whose test cases
were all predicted correctly. +KG is an abbreviation for
+KG explicit.

Implicit Knowledge Addition The model adds
information that is not in the tables and texts to
models by pre-training with a large-scale NLI cor-
pus, MultiNLI (Williams et al., 2018).

Better Paragraph Representation The model
generates more grammatical sentences for specific
entity types, such as money, date, and cardinal,
with carefully crafted templates when making sen-
tence representations of tables.

Distracting Rows Removal (DRR) The model
removes several rows from the premise table that
are unrelated to the hypothesis sentence. For a de-
tailed explanation of DRR, see Section 3.2.1.

Explicit Knowledge Addition The model adds
a suitable meaning to the keys for each premise
from WordNet (Miller, 1995) or Wikipedia articles
by calculating similarity based on the BERT em-
bedding.

+KG explicit makes sentence representations of
tables and uses RoBERTa-large (Liu et al., 2019)
for encoding premise-hypothesis pairs. Almost all
of the setups are identical to what was used in pre-
vious research except (i) the batch size is set to 4
and (ii) we adopt the result of one seed rather than
the average of three seeds.

4.3 Results

Accuracy per Problem Set Table 4 shows the
accuracy of the previous model (+KG) and our sys-
tem (Ours) for a number of problem sets. Our pro-
posed system could correctly predict 31% of all
problem sets, while the previous model only pre-
dicted 3%. Premise-hypothesis pairs whose gold
labels are neutral can be predicted correctly with-
out a precise numerical understanding. Table 4
also shows that +KG could not perform inference
on any problem set whose gold labels were entail-
ment or contradiction at all. On the other hand,
the accuracy of our logic-based system was 27%.
These results indicate that our system better han-
dles inference involving numerical comparatives
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+KG Ours

less than k 0.10 0.36
no more than k 0.10 0.35
exactly k 0.19 0.32
k 0.24 0.33
at least k 0.08 0.32
no less than k 0.19 0.33
more than k 0.17 0.35

Table 5: The accuracy for each numerical comparative
construction. +KG is an abbreviation for +KG explicit.
k indicates a number.

than the previous model, being able to more ro-
bustly predict entailment and contradiction labels.
This shows that our proposed dataset for numerical
understanding is challenging for current systems.
We describe the error analysis of our system in the
fourth paragraph of this section.

Understanding for Each Numerical Compara-
tive Table 5 shows the accuracy of both methods
for each numerical comparative construction. We
observe that our proposed method can predict cor-
rect labels more often than the existing method for
all numerical comparatives.

Run Time for Model Checking with Optimiza-
tion We compare the run times for model check-
ing with and without our optimization for model
checking (see Section 3.4). We chose six problem
sets involving different numbers of values, which
consist of two problem sets each whose numbers
of values are 2, 4, and 6. All of the problems re-
quire understanding the number of entities. The
number of test cases is 124. Table 6 shows the av-
erage and maximum run times for ten trials. We
observe that our optimization made model check-
ing much faster.

Error Analysis Error analysis shows that main
errors are caused by the failure of knowledge injec-
tion. Figure 6 shows two premise-hypothesis pairs,
one for which our system was able to perform
inference and one for which it was not. In Fig-
ure 6a, the function HUSBAND was added to the
model in the knowledge injection process because
the relatedness score between spouse and husband
was high (0.747). On the other hand, in Figure
6b, the function WIN was not added to the model
because the relatedness score between award and
win was low (0.336). In addition, even though we
improved the speed of the original model check-
ing program, several test cases still ran out of time.

Optimization Average Maximum

disabled 3.20 185.17
enabled 0.04 1.26

Table 6: Average and maximum run time (seconds) for
model checking with and without optimization.

For example, the problem with the hypothesis sen-
tence Jimmy Eat World has been on 13 labels (this
gold label is contradiction) exceeded the maxi-
mum time limit (10 seconds).

Discussion We discuss how to handle various
types of inference other than the numerical one
in InfoTabS with our inference system. First, we
have to correctly parse values in various tables and
extract information from them. For example, to
determine whether Hypothesis 1 in Figure 1 is en-
tailed by the premise table, we need to parse the
noun phrase November 20, 1942 into one date for-
mat. In addition to this, various formats are needed
to be provided, such as age, duration, and year
of marriage. Also, some test cases require arith-
metic operations other than counting, such as Joe
Biden and Neilia Hunter divorced six years after
their marriage, based on the premise table in Fig-
ure 1. Although such issues are tricky, we believe
that our logic-based approach is applicable with
adding premises related to arithmetic operations.

5 Conclusion

In this study, we proposed a logic-based system
for an NLI task that requires numerical understand-
ing in semi-structured tables. We built an NLI
dataset that focuses on numerical comparatives
between semi-structured tables and texts. Using
this dataset, we showed that our system performed
more robustly than the previous NN-based model.

In future work, we will improve knowledge in-
jection process to cover various problems. We also
seek to handle other generalized quantifiers such
as many. We believe that our system and dataset
for performing numerical inference between semi-
structured tables and texts could pave the way for
applications of inference between resources other
than texts.
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Jodie Whittaker

Spouse Christian Contreras

i. Part of the filtered table describing Jodie Whittaker.

D = {X0, X1, V0}
V = {(JODIE_WHITTAKER_, {X0}), (SPOUSE, {X1}),

(CHRISTIAN_CONTRERASM, {X1}),
(HUSBAND, {X1}), (HAVE, {V0}),
(Subj, {(V0, X0)}), (Acc, {(V0, X1)})}

ii. Part of the model constructed by our system for (a-i).

∃x.(JODIE_WHITTAKER_(x) ∧ ∃x0.(HUSBAND(x0)

∧ ∃e.(have(e) ∧ Subj(e, x) ∧ Acc(e, x0))))

iii. An FOL formula constructed from the hypothesis Jodie
Whittaker has had one husband.

(a) Outputs of our system to the premise-hypothesis pair de-
scribing Jodie Whittaker. Our system was able to perform
inference correctly.

Karl Ferdinand Braun

Awards Nobel Prize in Physics (1909)

i. Part of the filtered table describing Karl Ferdinand Braun.

D = {X0, X1, V0}
V = {(KARL, {X0}), (AWARD, {X1}),

(NOBEL_PRIZE_PHYSIC, {X1}), (HAVE, {V0}),
(Subj, {(V0, X0)}), (Acc, {(V0, X1)})}

ii. Part of the model constructed by our system for (b-i).

∃x.(KARL(x) ∧ ∃x0.(AWARD(x0)

∧ ∃e.(WIN(e) ∧ Subj(e, x) ∧ Acc(e, x0))))

iii. An FOL formula constructed from the hypothesis Karl
Ferdinand Braun won one award.

(b) Outputs of our system to the premise-hypothesis pair de-
scribing Karl Ferdinand Braun. Our system was not able to
perform inference correctly.

Figure 6: Two premise-hypothesis pairs, one for which our system was able to perform inference (a) and one for
which it was not (b). The function KARL in (b-ii, b-iii) is an abbreviation for KARL_FERDINAND_BRAUN_. The
underlined functions are added in the knowledge injection process to perform inference.
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Knowledge injection Accuracy

disabled 0.23
enabled 0.34

Table 7: The accuracy of our proposed system with and
without knowledge injection.

A Examples of Tree Transformation

We detect where to transform by tregex (Levy and
Andrew, 2006), the regular expression for trees.
We have three tsurgeon scripts, all of which are
for handling numerical expressions involving the
number of events. For example, as Figure 7 shows,
we transform the CCG subtree (a) for exactly n
times, where n is a number, into the CCG subtree
(b).

B Ablation Study for Knowledge
Injection

We conducted an ablation study for knowledge in-
jection (see Section 3.2.3). We picked all of the
base hypotheses in our dataset (105 cases in total)
and experimented to see how effective our knowl-
edge injection method is. As seen in Table 7, our
knowledge injection method provided increased
accuracy by 11% (12 cases).

95



exactly

((S\NP )\(S\NP ))/((S\NP )\(S\NP ))

n

((S\NP )\(S\NP ))/((S\NP )\(S\NP ))

times
(S\NP )\(S\NP )

(S\NP )\(S\NP )

(S\NP )\(S\NP )

(a)

exactly

(((S\NP )\(S\NP ))/((S\NP )\(S\NP )))

/(((S\NP )\(S\NP ))/((S\NP )\(S\NP )))

n

((S\NP )\(S\NP ))/((S\NP )\(S\NP ))

((S\NP )\(S\NP ))/((S\NP )\(S\NP ))

times
(S\NP )\(S\NP )

(S\NP )\(S\NP )

(b)

Figure 7: An example tree transformation process for exactly n times, where n is a number. (a) is transformed into
(b).
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Abstract

There are two main paradigms for Named En-
tity Recognition (NER): sequence labelling and
span classification. Sequence labelling aims
to assign a label to each word in an input
text using, for example, BIO (Begin, Inside
and Outside) tagging, while span classification
involves enumerating all possible spans in a
text and classifying them into their labels. In
contrast to sequence labelling, unconstrained
span-based methods tend to assign entity la-
bels to overlapping spans, which is generally
undesirable, especially for NER tasks without
nested entities. Accordingly, we propose GN-
Ner, a framework that uses Graph Neural Net-
works to enrich the span representation to re-
duce the number of overlapping spans during
prediction. Our approach reduces the num-
ber of overlapping spans compared to strong
baseline while maintaining competitive met-
ric performance. Code is available at https:
//github.com/urchade/GNNer.

1 Introduction

Named Entity Recognition (NER) is an information
extraction task that aims to identify named entities
such as locations, organizations and person names
from textual data. Frequently, NER is designed as
a sequence labelling task where each word is clas-
sified into its respective label using an annotation
scheme such as BIO (Huang et al., 2015; Lample
et al., 2016). Such schemes are used to encode
segment information on the token level. Recently,
span-based NER has gained a lot of popularity by
handling segments, instead of individual words,
as the basic units for labelling (Luan et al., 2018;
Wadden et al., 2019). Specifically, span-based NER
enumerates every segment in a text and classifies
them by their entity label, whereby non-entity seg-
ments are classified into an allocated null label.
While this method has shown good empirical re-
sults, it often assigns entity labels to overlapping

Figure 1: The overall architecture of our framework:
GNNer

spans, which is not desirable, especially for flat
NER tasks.

Therefore, to ensure that entities do not overlap,
a constraint must be explicitly applied during de-
coding through, for example, Semi-Markov CRFs
(Sarawagi and Cohen, 2005; Sato et al., 2017). Re-
cent work by Fu et al. (2021) and Li et al. (2021)
address overlapping entities using heuristic decod-
ing: conflict between overlapping spans is resolved
by retaining the span with the highest prediction
probability, dropping the others. This approach
has proven effective, however, the no-overlap con-
straint is not imposed during learning, which is
sub-optimal. In this work, we consider that the
no-overlap constraint could be optimized directly
by injecting inductive biases into the model.

In this regard, we propose a new approach to
reduce overlapping in span-based NERs without
affecting the efficiency of heuristic-based decod-
ing. The idea is to make the representation of each
span directly influenced by other spans overlap-
ping with it. Specifically, we encode overlapping
information as a graph and feed it into the span rep-
resentation using an equivariant graph neural net-
work layer. In this way, we bias the model towards
predictions that implicitly respect the constraints
without explicitly modelling them. Our results
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demonstrate that injecting this graph during model
training significantly reduces the number of over-
laps compared to our baseline model while achiev-
ing better performance. We propose, in this paper,
two variants of our model, GNNer-Conv based on
the graph convolution network (Kipf and Welling,
2017) and GNNer-AT based on the graph atten-
tion network (Velickovic et al., 2018). We observe
that GNNer-AT is best at preventing span overlaps
at the cost of a low recall, while GNNer-Conv
provides a better trade-off between the number of
violated constraints and metric performance (preci-
sion, recall and F-score).

2 Model

Given an input sequence, our task involves enumer-
ating and classifying every span. The architecture
of our model, summarized in Figure 1, includes the
following components: token representation layer,
span representation layer, GNN layer and span clas-
sification layer. Our model is similar to the vanilla
span-based NER models (Lee et al., 2017; Luan
et al., 2019), to which we add the GNN layer.

2.1 Word Representation

The primary component of our architecture is
the word representation layer. The purpose of
this layer is to return a set of embedding vec-
tors {h0,h1, . . . ,hL} from a sequence of tokens
{w0, w1, . . . , wL}. For this part, we employ pre-
trained Transformer models such as BERT (Devlin
et al., 2019). However, since pre-trained Trans-
former models produce sub-word instead of word
representations, we retain for each word its first
sub-word representation. This choice works well
in practice for token classification tasks (Devlin
et al., 2019; Beltagy et al., 2019).

2.2 Span Representation

After representing words with their contextualized
embeddings, we enumerate all the spans of the sen-
tence up to a maximum span width, which we set
to 6 in all our experiments, following prior works
(Sarawagi and Cohen, 2005; Xia et al., 2019). Next,
we compute the representation of a span as the con-
catenation of word embeddings of its left and right
extremities, along with a learned embedding of the
span width. Specifically, a span (i, j) of width k
is represented by the vector sij = hi ⊗ hj ⊗ zk
where hi and hj are respectively the representation
of the words at indexes i and j, and zk corresponds

to the embedding vector for spans of width k; the
⊗ symbol denotes the concatenation operation.

2.3 Graph construction

Given two spans s1 and s2, our graph as repre-
sented by the adjacency matrix A is defined as
follows:

A[s1, s2] =





1, if s1 = s2

0, if |s1 ∩ s2| = 0

−1, otherwise

(1)

In the adjacency matrix, the edge weight 1 cor-
responds to self-connection, 0 to non-overlapping
nodes, and -1 to overlapping spans. The choice
of -1 for the overlap case is supposed to bias the
model to learn dissimilar representations for over-
lapping spans. However, we believe that there may
be a better choice to achieve this objective, which
would require more in-depth investigation. The ad-
dition of the span graph information to the model
before the classification layer gives each span in-
formation about the spans connected to it and thus
allows them to make predictions in a collaborative
way, i.e. to make their predictions according to the
predictions of their neighbours in the graph.

2.4 Span refinement with GNN

After the initial BERT-based representations of
all spans are obtained, we refine them using a
GNN layer exploiting the previously constructed
graph. We propose two versions of the GNN layer:
GNNer-CONV, based on graph convolution; and
GNNer-AT based on attention mechanisms. By
exploiting the graph information, we expect the
model to implicitly learn that two overlapping
spans should not be predicted as a named entity
at the same time by learning dissimilar representa-
tions for them.

2.4.1 GNNer-CONV

The first variant of our model uses a GCN (Kipf
and Welling, 2017) layer, but since GCN is not well
suited in the presence of negative edges (Derr et al.,
2018), we run two independent 1-layer GCNs over
the span representations S: a first GCN, GCN+

using only positive edges E+ and another GCN
GCN− using only negative edges E− for which we
concatenate the two representations to get the final
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Architecture Precision Recall F1 Num. Ov.
Baseline 89.83±0.48 90.31±0.26 90.06±0.15 83±27

Conll 2003 GNNer-CONV 90.12±0.32 89.88±0.36 90.16±0.52 52±1
GNNer-AT 89.54±0.84 79.32±0.04 84.12±0.37 24±11

Baseline 66.69±0.49 69.89±0.45 68.25±0.33 87±4
SciERC GNNer-CONV 66.89±1.59 70.34±0.50 68.57±0.96 35±3

GNNer-AT 63.21±0.51 58.06±0.86 60.53±0.69 13±2
Baseline 85.30±0.45 89.59±0.74 87.39±0.13 43±12

NCBI GNNer-CONV 85.98±0.45 88.93±0.45 87.43±0.45 16±5
GNNer-AT 84.78±0.18 79.41±0.61 81.98±0.38 10±4

Table 1: The results of the experiments on the test datasets. We report the micro-averaged precision, recall and
F1-score as well as Num. OV., the total number of overlapping spans on all the test set (without normalization). The
numbers are the result of averaging across 3 different/independent runs using different random seeds.

span representation:

S+ = GCN+(S, E
+)

S− = GCN−(S, E−)

Sfinal = S+ ⊗ S−
(2)

Note that running a 1-layer GCN on the positive
edges is equivalent to a linear layer since the posi-
tive edges are self-connections.

2.4.2 GNNer-AT
The second variant of our method uses a graph
attention network (Velickovic et al., 2018) but in-
stead of using additive attention, we employ a dot
product attention which is much faster and more
space-efficient in practice, according to Vaswani
et al. (2017). More specifically, we project the span
representation into keys K, queries Q, and values
V using a two-layer feed-forward network, and
compute the attention score as the dot product of
the queries and all keys. We further include the
scaling factor 1√

dmodel
following (Vaswani et al.,

2017) to prevent saturation. We then multiply this
attention score by the weighted adjacency matrix.
We compute the final span representation as fol-
lows:

Sfinal = (
QKT

√
dmodel

⊙A)V (3)

In the above equation,⊙ denotes element-wise mul-
tiplication or Hadamard product which is used to
mask the attention for null edges. One downside to
this approach is that the self-attention mechanism
has a quadratic complexity in the number of spans.

2.5 Span classification
Lastly, the final representation of the spans is
passed to a linear layer with softmax activation

to predict the span labels. Remember that for non-
entity spans, we allocate a null label.

Y = softmax(SfinalW (f)) (4)

Here, W (f) is a weight matrix that project the
span representations into the label space and the
softmax activation function is applied to the label
dimension.

3 Experiments

3.1 Experimental Setup
Datasets We evaluate our approach on three
benchmark datasets: Conll-2003 (Tjong Kim Sang
and De Meulder, 2003), SciERC NER (Luan et al.,
2018) and NCBI (Doğan et al., 2014). Conll-2003
is a general domain NER dataset that extracts per-
son, organization and location entity mentions from
text. SciERC is a dataset for scientific information
extraction that consists of article abstracts extracted
from Artificial Intelligence related articles. NCBI
is a NER dataset that is designed to identify disease
mentions in biomedical texts. For all the datasets,
we employed the standard train, test and validation
splits.

Domain Train Dev Test
Conll 2003 News 14,987 3,466 3,684

NCBI Bio 5432 923 940
SciERC CS 350 50 50

Table 2: The statistics of the datasets

Evaluation We evaluate our models on the test
splits of the corresponding datasets. Our evaluation
is based on the exact match between true and gold
entities by discarding non-entity spans. We report
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the micro-averaged precision, recall and F1. In
addition, we also measure the ability of each model
to avoid entity overlaps during classification by
reporting the number of entity overlaps (Num. Ov.)
across all the test set, where a lower number is
better.

Implementation details For all our experiments,
we used either pre-trained BERT (Devlin et al.,
2019) or SciBERT (Beltagy et al., 2019) as the
word encoder depending on the dataset used i.e.
BERT for conll-2003, and SciBERT for SciERC
and NCBI. We employed a span width embedding
of 128 dimensions, and down-projected the span
representation (768 * 2 + 128) into 128 units before
the GNN layer, using a linear layer. We used only
one layer for all GNN variants, which resulted in
the best performance on the dev set. In fact, we
noticed in our preliminary experiments that adding
more layers resulted in decreased performance and
slower convergence during training. For all exper-
iments, we set our learning rate to 1e-5 and used
Adam (Kingma and Ba, 2017) as our optimizer. We
ran all our models for up to 50 epochs and kept the
checkpoint with the best validation performance for
testing. All our models are implemented in the Py-
Torch (Paszke et al., 2019) and we used the heavily
tested GCN layer provided by PyTorch Geometric
library (Fey and Lenssen, 2019).

Baseline We used the same architecture without
the GNN layer as our baseline. For fair compar-
isons, we increased the size of the baseline layers
to obtain a comparable number of parameters to
our proposed models.

3.2 Results

Table 1 summarizes the results of our exper-
iments by reporting the performance measures
(micro-averaged Precision, Recall and F1-score)
and the Num. Ov. on the test set. The numbers are
the result of averaging across 3 independent runs
using different random seeds.

Main results From the table 1 we can draw sev-
eral conclusions. First, GNNer-AT outperforms
every approach at reducing Num. Ov. On average.
It produces 4 times fewer overlaps than the baseline
model and 2 times fewer than the GNNer-CONV
model. However, it has low recall (-11 absolute
points compared to the baseline on conll-2003) but
can maintain a comparable precision score. The
problem of low recall could be caused by overly re-

stricting the span representation through the use of
negative edges in our span graph, which could pre-
vent the model from predicting many entities. Sec-
ond, GNNer-CONV gets competitive results while
maintaining a low Num. Ov. compared to the base-
line model, making it the best balance between
Num. Ov. and metric performance.

Learning curves Figure 2 shows the evolution of
precision, recall, and Num. Ov. during model train-
ing. The plot is shown for training on the SciERC
dataset, we obtained similar curves on Conll-2003
and NCBI datasets. We observe that the baseline
model trains faster than the GNN-based method,
which can be explained by the non-overlap con-
straint induced by the GNN that favours low re-
call. On the other hand, the Num. Ov. of the
graph-based approach remains low during train-
ing, especially for the GNNer-AT approach, while
the baseline model increases at the first stage of
training before gradually decreasing.

4 Limitations

There are several limitations to our approach. First,
the addition of GNN does not completely remove
the overlapping spans in contrast to heuristic ap-
proches. Moreover, the inclusion of GNN layer
bring more comptation to the model which result
into a slower model than the baseline span-based
NER. In fact since, the overlaping span graph is
dense (contains many egde), the model does not
really benefit of efficient sparse operations of GNN
layers.

5 Related works

Approaches for NER NER is an important tasks
in Natural Language Processing and is used in
many downstream information extraction applica-
tions. Usually, NER tasks are designed as sequence
labelling (Chiu and Nichols, 2016; Huang et al.,
2015; Ma and Hovy, 2016; Lample et al., 2016;
Akbik et al., 2018; Zaratiana et al., 2022). The goal
is to predict BIO tags in which a word is labelled as
B-tag if it is the beginning of an entity, I-tag if it is
within but not the first in the entity and O for non-
entity words. Recently, different approaches have
been proposed to perform NER tasks that go be-
yond traditional sequence labelling. One approach
that has been widely adopted is the span-based ap-
proach (Luan et al., 2018, 2019; Wadden et al.,
2019; Xue et al., 2020) where the representation of
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Figure 2: Evolution of precision, recall and number of overlaps (Num. Ov.) on the SciERC validation set.

each segment is computed using a neural network,
then fed to a classifier. To prevent overlapping
span, priors works either used heuristic decoding
(Fu et al., 2021; Li et al., 2021; Xia et al., 2019) or
structured decoding using semi-CRFs (Sato et al.,
2017; Ye and Ling, 2018). However, to the best of
our knowledge, no work have used GNN for the
purpose of reducing span overlap for NER. Some
work (Li et al., 2020) has also approached NER as
a question answering task in which named entities
are extracted by retrieving answer spans. In addi-
tion, with the growing popularity of prompt-based
learning, recent work such as (Cui et al., 2021)
considers NER as template filling by fine-tuning a
BART (Lewis et al., 2019) encoder-decoder model.
In contrast we focus on learning appropriate span
representations.

GNN for NLP GNNs have gained a lot of popu-
larity recently due to their powerful ability to repre-
sent arbitrary shapes of data (Hamilton et al., 2018;
Wu et al., 2019; Hamilton, 2020). Specifically,
GNNs provide a way to inject prior knowledge into
NLP systems through, for example, dependency
graphs (Liu et al., 2018; Zhang et al., 2019), con-
stituency graphs (Marcheggiani and Titov, 2020)
or knowledge graphs (Sun et al., 2018; Lin et al.,
2021). As a result, GNNs have been widely ap-
plied to different NLP tasks such as Neural Ma-
chine Translation (Bastings et al., 2017; Beck et al.,
2018), Semantic Parsing (Xu et al., 2018; Shao
et al., 2020), Information Extraction (Fu et al.,
2019; Sun et al., 2019) and text classification (Yao
et al., 2018; Liu et al., 2020). More relevant to
our work, DyGiE (Luan et al., 2019; Wadden et al.,
2019) used GNNs to refine the span representation
for joint NER and RE extraction, but in contrast,
they learn their graph dynamically during training
while we used a static span graph. For a detailed
review of GNNs for NLP, please refer to Wu et al.

(2021).

6 Conclusion

In this work, we investigated new span-based NER
method using Graph Neural Networks. Our best
approach, built on a Graph Convolution Network,
significantly reduces the number of overlapping
spans compared to a strong baseline (up to 2 times
less) while maintaining competitive metric perfor-
mance. In future work, we will explore ways to
integrate GNN-enhanced representations into ar-
chitectures for joint named entity recognition and
relation extraction tasks.

Ethical considerations

There are ethical considerations to take into ac-
count when using NER technology. For example,
the technology may disproportionately work worse
for some populations with uncommon name struc-
ture. This could have a negative impact on these
groups, as their names may not be accurately recog-
nized and classified by the software. It is important
that we are aware of potential biases in our data
and algorithms, so that we can avoid unfairly dis-
criminating against certain groups of people.
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Abstract

Natural Language Inference (NLI) is the task of
determining whether a premise entails a hypoth-
esis. NLI with temporal order is a challenging
task because tense and aspect are complex lin-
guistic phenomena involving interactions with
temporal adverbs and temporal connectives. To
tackle this, temporal and aspectual inference
has been analyzed in various ways in the field
of formal semantics. However, a Japanese NLI
system for temporal order based on the analysis
of formal semantics has not been sufficiently
developed. We present a logic-based NLI sys-
tem that considers temporal order in Japanese
based on compositional semantics via Com-
binatory Categorial Grammar (CCG) syntactic
analysis. Our system performs inference involv-
ing temporal order by using axioms for tempo-
ral relations and automated theorem provers.
We evaluate our system by experimenting with
Japanese NLI datasets that involve temporal
order. We show that our system outperforms
previous logic-based systems as well as current
deep learning-based models.

1 Introduction

Natural Language Inference (NLI) is the task of
determining whether a premise entails a hypothesis.
In particular, NLI involving temporal expressions is
crucial. (1) is an example of English NLI involving
temporal expressions.

(1) P: I arrived in April 2021.
H: I arrived before May 2021. (entailment)

The inference example with temporal expressions
is challenging. This is because we need to represent
the meaning of sentences that contain temporal
adverbs like before and in, temporal expressions
like April 2021, and verb tenses like arrived, and
to compute temporal order of events written in the
sentences.

Thukral et al. (2021) showed that deep learning-
based models (Liu et al., 2019; He et al., 2020)

trained on a standard NLI dataset such as Multi-
Genre Natural Language Inference (MultiNLI;
Williams et al. (2018)) failed to perform simple
temporal inference as in (1). Furthermore, deep
learning-based models have performed poorly on
challenging NLI datasets that involve various tem-
poral inferences such as FraCaS (Cooper et al.,
1996) for English and JSeM (Kawazoe et al., 2015)
for Japanese.

Recently, logical inference systems based on
compositional semantics (Bos and Markert, 2005;
Abzianidze, 2015; Mineshima et al., 2015, 2016;
Bernardy and Chatzikyriakidis, 2017, 2020; Onishi
et al., 2020) (i.e., semantics in which the meaning
of a phrase is determined compositionally from the
syntax and the meaning of the lexicon contained
in the phrase) achieved high accuracy in FraCaS
and JSeM. However, most previous systems did not
cover temporal inference.

In addition, because most previous research on
NLI has focused on English, research on other lan-
guages is desirable. In particular, research on NLI
in Japanese is still in its infancy and is limited
to deep learning-based systems using pre-trained
language models and a few logical inference sys-
tems (Mineshima et al., 2016; Onishi et al., 2020).
Onishi et al. (2020) attempted to implement a
Japanese logical inference system for temporal in-
ference. However, the focus of this previous re-
search was limited to a few temporal clauses in
Japanese, and temporal adverbs are out of scope.
Thus, there is still room for improvement in the
accuracy of temporal inference in Japanese.

In this study, our aim is to realize the compo-
sitional semantics and a logical inference system
for temporal inference in Japanese based on Com-
binatory Categorial Grammar (CCG) (Steedman,
2000; Bekki, 2010) to derive a transparent syntax-
semantics interface and the analysis of tense and as-
pect studied in formal semantics (Kamp and Reyle,
1993; Yoshimoto, 2000; Kaufmann and Miyachi,

104



2011; Utsugi and Bekki, 2015; Ogihara, 2017; Ja-
cobsen, 2018). We focus on temporal order and
develop a Japanese logical inference system for
temporal order.

In our system, a CCG parser first parses
the premise and hypothesis sentences and con-
verts them into CCG trees. Based on the anal-
ysis of the compositional semantics, we then
modify the obtained CCG trees. Next, using
ccg2lambda (Martínez-Gómez et al., 2016), the
meaning of the whole sentence is derived as a log-
ical form. Finally, we attempt to prove the entail-
ment relations between the obtained logical forms
by an automated theorem prover Vampire (Kovács
and Voronkov, 2013).

We experiment with two NLI datasets involving
temporal order in Japanese: JSeM and a Japanese
translation of the NLI dataset focusing on tem-
poral inference (Thukral et al., 2021). We com-
pare our system with the previous Japanese log-
ical inference system (Onishi et al., 2020) and
the Japanese BERT model (Devlin et al., 2019).
Our experiments show that our system outper-
forms previous logical inference systems as well
as current deep learning-based models. Our sys-
tem will be available for research use at https:
//github.com/ynklab/ccgtemp.

2 Background

Tense and aspect are important linguistic phenom-
ena related to temporal expressions. This section
provides standard background on the semantics of
temporal expressions in Japanese, which have been
analyzed in previous studies (Yoshimoto, 2000;
Kaufmann and Miyachi, 2011; Utsugi and Bekki,
2015; Ogihara, 2017; Jacobsen, 2018).

In Japanese, verb tense is classified into past (-
ta) and non-past (-ru), and aspect is classified into
stative (like iru) and non-stative (like kuru). The
temporal interpretation of a matrix clause (i.e., a
clause that contains a subordinate clause) is de-
termined by the combination of tense and aspect,
and is expressed by the constraints imposed on the
relation between speech time and reference time.
Speech time represents the time that a sentence is
uttered, and reference time is a concept proposed
by Reichenbach (1947) and refers to the time used
with location time (i.e., time when an event occurs)
and speech time to represent the meaning of tense.
Table 1 shows the temporal interpretation of a ma-
trix clause determined by the combination of tense

and aspect and example sentences corresponding
to each combination.

Past Stative Relation Example

+
+ r < s

Taro-ga ita
‘Taro was here’

− r < s
Taro-ga kita
‘Taro came’

− + r ≥ s
Taro-ga iru
‘Taro is here’

− r > s
Taro-ga kuru
‘Taro is coming’

Table 1: Constraints imposed on the relation between
speech time s and reference time r by tense and aspect
and example sentences

To analyze the temporal interpretation of em-
bedded clauses, the concepts of absolute tense and
relative tense are necessary. Absolute tense means
that the temporal interpretation is determined by
the relation between the speech time and the ref-
erence time, as in the matrix clause. However,
relative tense means an interpretation in which the
temporal interpretation does not depend on the re-
lation between the speech time and the reference
time. We explain the details with examples in Sec-
tion 3.2.

This paper uses CCG to formalize the syntactic
analysis of our method and analyzes the composi-
tional semantics of temporal expressions based on
the analysis by Kaufmann and Miyachi (2011).

3 Compositional Semantics and Inference
for Tense

3.1 Semantic Representations for Verb Tense
This section explains the semantic representations
for verb tense. Consider the following sentences.

(2) a. Taro-ga kuru
Taro-NOM come-NP

‘Taro is coming’

b. Taro-ga kita
Taro-NOM come-P

‘Taro came’

(2a) is non-past tense (NP), and (2b) is past tense (P).
(2a) means that the event of Taro’s coming occurs
after the speech time, whereas (2b) means that the
event occurred before the speech time. Thus, for
the speech time s and the reference time r, r > s
in (2a) and r < s in (2b). Here, r and s both
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太郎 (Taro)

NP[nc,nm,f]

λNF.(N(λx.⊤,Taro) ∧ F (Taro))

が (NOM)

NP[ga,nm,f]\NP[nc,nm,f]

λQ.Q

NP[ga,nm,f]
<

λNF.(N(λx.⊤,Taro) ∧ F (Taro))

来る (come-NP)

S[nm,base,f]\NP[ga,nm,f]

λQC1C2C3Ki1j1.Q(λI.I, λx.∃e1.(K(λe2i2j2.(come(e2)
∧ during(time(e2), j2) ∧ after(j2, i2)), e1, i1, j1) ∧ C1(x, e1,Nom)))

S[nm,base,f]
<

λC1C2C3Ki1j1.(⊤ ∧ ∃e1.(K(λe2i2j2.(come(e2) ∧ during(time(e2), j2) ∧ after(j2, i2)), e1, i1, j1) ∧ C1(Taro, e1,Nom)))

S[nm,base,t]

∃sr.(⊤ ∧ ∃e1.(come(e1) ∧ during(time(e1), r) ∧ after(r, s) ∧ (Nom(e1) = Taro)))

Figure 1: CCG derivation tree for Taro-ga kuru (Taro is coming). ⊤ denotes the tautology.

represent intervals and r < s means the end of the
interval r is before the beginning of the interval s.
Another interpretation of time is instance semantics,
which treats time as an instance, but in this study,
we follow the standard treatment of time as an
interval (Kamp and Reyle, 1993; Bernardy and
Chatzikyriakidis, 2020).

Following Kamp and Reyle (1993), in this study,
the time of an event is represented by its relation-
ship with the reference time. Then, the meaning
of (2a) and (2b) can be expressed by the follow-
ing logical expressions, where tgk is the predicate
that represents the event Taro’s coming, time is
the function that returns the time when the event
occurred and e is a variable representing the event.

(3) a. ∃e.(tgk(e) ∧ time(e) ⊆ r ∧ r > s)

b. ∃e.(tgk(e) ∧ time(e) ⊆ r ∧ r < s)

The meanings of (3a) and (3b) are as shown in the
Figure 2 and Figure 3. Figure 1 shows the CCG
derivation tree for (2a).

s
r

tgk(e)

time(e)

Figure 2: Temporal interpretation of (2a)

s
r

tgk(e)

time(e)

Figure 3: Temporal interpretation of (2b)

3.2 Semantic Representations for Temporal
Clause

Next, consider the following sentences with an em-
bedded clause.

(4) a. Taro-ga kuru mae-ni oyoida
Taro-NOM come-NP before-LOC swim-P

‘I swam before Taro came’

b. Taro-ga kita ato-ni oyoida
Taro-NOM come-NP after-LOC swim-P

‘I swam after Taro came’
In (4a), the embedded clause is the non-past tense,
and in (4b), the embedded clause is the past tense.
As mentioned in Section 2, the temporal meaning
of embedded clauses is interpreted using “relative
tense.” Thus, the temporal meaning of embedded
clauses is determined not by the relation between
the speech time and the reference time of the em-
bedded clause but by the relation between the ref-
erence time of the matrix clause and the reference
time of the embedded clause. For the reference
time of the embedded clause t and the reference
time of the matrix clause r, we then have t > r in
(4a), and t < r in (4b).

Therefore, using the same predicates and func-
tions as Section 3.1, the meaning of the embedded
clauses can be expressed by the following logical
formulas.

(5) a. ∃e.(tgk(e) ∧ time(e) ⊆ t ∧ t > r)

b. ∃e.(tgk(e) ∧ time(e) ⊆ t ∧ t < r)

By combining these logical formulas with the
meanings of the matrix clauses interpreted in the
same way as Section 3.1, the meanings of sentences
with the embedded clauses can be expressed by the
following logical formulas, where o is the predicate
that represents the event of my swimming.

(6) a. ∃t.(∃e1.(tgk(e1) ∧ time(e1) ⊆ t ∧ t >
r) ∧ ∃e2.(o(e2) ∧ time(e2) ⊆ r ∧ r < s))

b. ∃t.(∃e1.(tgk(e1) ∧ time(e1) ⊆ t ∧ t <
r) ∧ ∃e2.(o(e2) ∧ time(e2) ⊆ r ∧ r < s))

The meanings of (6a) and (6b) are as shown in the
Figure 4 and Figure 5.
This study interprets the temporal meaning of sen-
tences with embedded clauses in this way.
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s
t

tgk(e1)

time(e1)

r

o(e2)

time(e2)

Figure 4: Temporal interpretation of (4a)

s
t

tgk(e1)

time(e1)

r

o(e2)

time(e2)

Figure 5: Temporal interpretation of (4b)

3.3 Semantic Representations for Temporal
Adverb

3.3.1 Syntactic analysis
An example of the temporal adverbs targeted in
this paper is shown in bold in the following.

(7) Taro-ga 4 gatsu 3 nichi izen-ni kita
Taro-NOM 4 month 3 day before come-P

‘Taro came before April 3’
More generally, we analyze temporal adverbs com-
prising various types of absolute temporal expres-
sions (e.g., date, day of the week, and time) and
temporal connectives izen (before) and ikou (af-
ter). Absolute temporal expressions are temporal
expressions that do not depend on the speech time,
in contrast to relative temporal expressions such
as today that depend on the speech time. In this
study, temporal adverbs containing relative tempo-
ral expressions are out of scope and left for future
work.

In temporal adverbs containing absolute tempo-
ral expressions, the particle -ni is unnecessary. For
example, the following three sentences are all ac-
ceptable and have the same meaning.

(8) a. 4 gatsu 3 nichi ni Taro-ga kita
4 month 3 day on Taro-NOM come-P

‘Taro came on April 3’

b. 4 gatsu 3 nichi, Taro-ga kita
4 month 3 day Taro-NOM come-P

‘Taro came on April 3’

c. 4 gatsu 3 nichi Taro-ga kita
4 month 3 day Taro-NOM come-P

‘Taro came on April 3’

Thus, -ni can be analyzed as a separation of clauses
like a comma and does not have any meaning. Be-
fore considering the syntactic category of -ni, let us

consider absolute temporal expressions. As shown
in (8c), absolute temporal expressions are com-
bined with sentences such as Taro-ga kita. There-
fore, S/S is assigned as the syntactic category of
the absolute temporal expression 4 gatsu 3 nichi.
As mentioned above, because -ni plays the role of
connecting the preceding and following clauses,
(S/S)\(S/S) is appropriate as its syntactic cate-
gory.

In addition, absolute temporal expressions like
4 gatsu 3 nichi can be a noun phrase NP , as in
Figure 6. In this example, the syntactic category of
4 gatsu 3 nichi is NP , and the syntactic category
of izen is (S/S)\NP . We explain the reason why
absolute temporal expressions are used as both NP
and S/S from a semantic perspective in the next
paragraph.

4月3日 (April 3)
NP

以前 (before)
(S/S)\NP

S/S

に

(S/S)\(S/S)
S/S

Figure 6: CCG derivation tree for 4 gatsu 3 nichi izen
ni (before April 3).

3.3.2 Semantic analysis
We treat absolute temporal expressions (e.g., 4
gatsu 3 nichi (April 3)) as multi-word expressions.
Consider the expression 4 gatsu 3 nichi. We can
decompose the expression into four constituents as
follows.

[4 gatu 3 nichi] = [4 gatu][3 nichi]

= [[4][gatu]][[3][nichi]]

A current Japanese CCG parser (Yoshikawa et al.,
2017) analyzes each constituent as the syntactic
category 4 = NP, gatsu = (NP/NP )\NP, 3 =
NP, and nichi = NP/NP , respectively. The se-
mantic template for NP is λE N F.∃x.(N(E, x)∧
F (x)), which means “some bound variable x is as-
sociated with the word E.” Now 4 and 3 are both
NP , so 4 and 3 have different bound variables as-
sociated with them. This bound variable refers to
the interval. Essentially, because 4 gatsu 3 nichi
refers to only one interval, 4 and 3 need to be asso-
ciated with the same interval. The correct meaning
cannot be derived when 4 and 3 are associated with
different bound variables.

Thus, we treat temporal expressions such as 4
gatsu 3 nichi as multi-word expressions and set
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Category Expression Semantic Template

S\NP
来る
(is coming)

λQ C1 C2 C3K i1 j1.Q(λI.I, λx.∃e1.(K(λe2 i2 j2.(come(e2)
∧ during(time(e2), j2) ∧ after(j2, i2)), e1, i1, j1) ∧ C1(x, e1,Nom)))

S\NP
来た
(came)

λQ C1 C2 C3K i1 j1.Q(λI.I, λx.∃e1.(K(λe2 i2 j2.(come(e2)
∧ during(time(e2), j2) ∧ before(j2, i2)), e1, i1, j1) ∧ C1(x, e1,Nom)))

NP
4月3日
(April 3rd) λN F.∃x.(N(λy.(normalized_time(y) = 40300), x) ∧ F (x))

S/S
4月3日
(April 3rd)

λS C1 C2 C3K i1 j1.S(C1, C2, C3, λJ e1 i2 j2.K(λe2 i3 j3.(J(e2, i3, j3)∧
∃x.((normalized_time(x) = 40300) ∧ (x = j3))), e1, i2, j2), i1, j1)

(S/S)\NP
以前
(before)

λQ S C1 C2 C3K i1 j1.S(C1, C2, C3, λJ e1 i2 j2.K(λe2 i3 j3.(J(e2, i3, j3)∧
Q(λI.I, λx.before(j3, x))), e1, i2, j2), i1, j1)

(S/S)\(S/S) に
(on) λV 3.V 3

Table 2: Examples of semantic templates.

up a semantic template as shown in Table 2. This
semantic template allows us to derive the mean-
ing of a temporal expression associated with only
one bound variable. In this template, the func-
tion normalized_time takes interval as an argu-
ment and returns its actual time, which can be
set in the format YYYYMMDDHH from abso-
lute temporal expressions. For example, for in-
terval x, which represents April 3, the value is
normalized_time(x) = 0000040300. In this ex-
ample, year and hour are not explicitly written, so
zero-padding is applied to them.

As shown in Figure 6, 4 gatsu 3 nichi functions
as NP when connected to izen and as S/S when
used by itself. This phenomenon can be analyzed
as follows. Temporal expressions such as 4 gatsu
3 nichi and 4 gatsu 3 nichi izen play the role of
representing the time of the sentence. Consider the
following sentences.

(9) 4 gatsu 3 nichi ni Taro-ga kita
4 month 3 day on Taro-NOM come-P

‘Taro came on April 3’

(10) 4 gatsu 3 nichi izen-ni Taro-ga kita
4 month 3 day before Taro-NOM come-P

‘Taro came before April 3’

In (9), the location time of the event Taro-ga kita
(Taro came) is 4 gatsu 3 nichi (April 3), and in (10),
the location time of the event Taro-ga kita (Taro
came) is 4 gatsu 3 nichi izen (before April 3). The
expressions that represent temporal adverbs such
as 4 gatsu 3 nichi (April 3) and 4 gatsu 3 nichi izen
(before April 3) must have the syntactic category of
S/S, so 4 gatsu 3 nichi changes from NP to S/S.

Next, the semantic template for izen was deter-
mined as shown in Table 2. The temporal meaning
of izen is represented as the lambda expression

λx.before(j3, x), which indicates that the expres-
sion “doing before x” means “doing in j3 before
x.” Finally, the meaning of temporal expressions
can be derived by setting up a template with -ni
and a comma as meaningless words, as described
in Section 3.3.1.

3.4 Inference with Tense

We introduce a set of axioms for temporal rela-
tions and temporal expressions to perform infer-
ence for temporal order. Allen (1983) defined 13 re-
lations between time intervals. The previous logic-
based inference system (Onishi et al., 2020) intro-
duced 169 axioms for these 13 temporal relations.
Six of the 13 temporal relations, meets, met_by,
starts, started_by, finishes, and finished_by are
special cases of other relations in implementing
axioms. For example, meets is a special case of
before where the end of the preceding interval co-
incides with the beginning of the following interval.
meets is necessary for inferences involving tempo-
ral clauses such as soon after. Thus, we consider
that those six relations are redundant in performing
the temporal inference involving temporal order
in this study. We therefore merged them into the
most similar relations: merged meets into before,
met_by into after, starts into during, started_by
into contains, finishes into during, and finished_by
into contains, respectively. In summary, we intro-
duce 49 axioms corresponding to seven temporal
relations: before, after, overlaps, overlapped_by,
during, contains, and equal.

In addition, we speculate 30 additional axioms
for temporal expressions in Japanese such as izen
(before) and ikou (after), and those for identity
conditions of speech times between premises and
hypotheses. Table 3 shows examples of the axioms.
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CCG Parser

Syntactic Parsing

Modified 
CCG TreeCCG Tree Logical Forms TPTP 

Format

Axioms

Sentences 
(Premise 

Hypothesis)

Yes / No / 
Unknown

Modifying Trees
ccg2lambda

Semantic Parsing

Vampire

Theorem Proving

Figure 7: Overview of our system

Pattern Axiom
transitivity of before relations ∀A,B,C.(before(A,B) ∧ before(B,C)→ before(A,C))

insertion of izen
∀I,X,R.((nort(X) = I ∧ (X = R))→ (∀J.((I ≤ J)
→ (∃Y.(nort(Y ) = J ∧∃ Z.(before(Z, Y ) ∧ (Z = R))))))).

replacement of izen
∀I,X,R.((nort(X) = I ∧ before(R,X))→ (∀J.((I ≤ J)
→ (∃Z.(nort(Z) = J ∧ before(R,Z))))))

identity condition of speech times ∀S1, S2.(speech_time(S1) ∧ speech_time(S2)→ S1 = S2)

Table 3: Examples of axioms. nort indicates a normalized_time function.

4 System Overview

Figure 7 shows the pipeline of our system. Our
system consists of three main steps. First, natural
language sentences of premises and hypotheses are
converted into modified CCG trees by CCG pars-
ing and modifying trees. Next, a meaning from the
semantic templates is assigned to each lexical item.
The semantics in lexical items are then composed
by ccg2lambda to derive a logical formula that rep-
resents the meaning of the whole sentence. Finally,
an automated theorem prover determines whether
the logical formula of the hypothesis is provable
from the logical formula of the premises. In this
section, we describe each of these steps.

4.1 Syntactic Analysis

The syntactic analysis, which obtains CCG pars-
ing trees of input sentences, consists of two steps.
First, we use the tokenizer to tokenize sentences
and a CCG parser to obtain a CCG tree. We
use depccg (Yoshikawa et al., 2017), a standard
Japanese CCG parser, trained on the Japanese CCG-
Bank (Uematsu et al., 2013) for the first step.

Second, if the sentence contains temporal expres-
sions, we extract the subtrees in which the leaves
are temporal expressions from the CCG tree of the
whole sentence. The extracted CCG subtree is then
transformed into an appropriate form. Figure 8 and
Figure 9 show the temporal expression subtrees 4
gatsu 3 nichi ni (on April 3) before and after the
conversion. As another possible way of implemen-

tation for obtaining correct CCG trees for temporal
expressions, we can improve the CCG parser it-
self. However, to do that, we need to re-train the
morphological analyzer and the CCG parser to cor-
rectly handle a variety of temporal expressions. We
do not take this approach because it is too costly.

4
NP/NP

月(month)

NP/NP

NP/NP
>B

3
NP

日(day)

NP\NP

NP
<

NP
>

に

(S/S)\NP

S/S
<

Figure 8: CCG derivation tree before conversion.

4月3日(April 3)
S/S

に

(S/S)\(S/S)
S/S

<

Figure 9: CCG derivation tree after conversion.

4.2 Semantic Analysis
In semantic analysis, each leaf (lexical item) of
the CCG tree obtained in the syntactic analysis is
assigned a meaning from the semantic templates.
The lexical items are then combined according to
the CCG derivation tree to derive a logical formula
that expresses the meaning of the entire sentence.
The composition is performed using ccg2lambda
in Japanese (Mineshima et al., 2016).

In order to assign meaning to the temporal ex-
pressions, we set up semantic templates for lexical
items such as absolute temporal expressions and
izen. We provide a set of semantic templates, which
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contains 150 lexical entries. The number of lexi-
cal entries assigned to CCG categories is 92, and
the number of entries directly assigned to specific
words is 58. Table 2 shows the examples of seman-
tic templates.

As a representation language, we use the typed
first-order form of the Thousands of Problems for
Theorem Provers (TPTP; Sutcliffe (2017)) format.
We use standard interval semantics (Dowty, 1979;
Bennett and Partee, 1978) and introduce an interval
type to express time instances as intervals and their
relations in logical expressions. We use four basic
types: E (Entity), Ev (Event), Prop (Proposition)
and I (Interval). The types of expressions we adopt
are defined by

T ::= E | Ev | Prop | I | T1⇒ T2

where T1 ⇒ T2 is a function type. Because the
logical expressions derived by ccg2lambda are not
typed, we implement automatic completion of vari-
able types, predicate types, and definitions of pred-
icates.

4.3 Theorem Proving

In theorem proving, we use the state-of-the-art
first-order logic automated theorem prover Vam-
pire (Kovács and Voronkov, 2013) which accepts
TPTP formats to determine whether or not a hy-
pothesis is provable from premises using the logical
formula derived in Section 4.2. The system out-
puts “yes” (entailment) when the hypothesis can
be proved from the premises, “no” (contradiction)
when the negation of the hypothesis can be proved
from the premises, and “unknown” (neutral) when
neither can be proved. We use the fastest mode,
CASC mode, and set the timeout of Vampire to a
maximum of 300 sec for our experiments.

Even though Vampire is a fast theorem prover,
it takes too long to prove the problems, whose
premises and hypothesis are too complex. When
proving the negation of a hypothesis, it turns out
that simply negating the logical formula increases
the complexity. Therefore, this study uses the sym-
metrical relationship between ikou and izen to re-
place izen and ikou in the hypothesis with ikou
and izen, respectively, to negate the logical formula
without increasing the complexity.

5 Experiments

5.1 Experimental Setup

We evaluate our system on two datasets. First,
JSeM (Kawazoe et al., 2015) is a Japanese ver-
sion of the FraCaS (Cooper et al., 1996) test suite,
which consists of nine sections, each containing
representative problems of semantically challeng-
ing inferences involving various linguistic phenom-
ena. In this study, we use 23 problems involving
temporal order in temporal reference section. The
distribution of gold answer labels for the problems
is (yes/no/unknown) = (12/4/7).

PLMUTE Section: time_multi, No. 11, Gold answer: yes

P
午後7時以降ロビンは両親を訪ねた。
(After 7 p.m. Robin visited her parents.)

H
16時以降ロビンは両親を訪ねた。
(After 16:00 Robin went to visit her parents.)

PLMUTE Section: day, No. 239, Gold answer: no

P
月曜日以前、食料品店が閉店した。
(Before Monday, the grocery store was closed.)

H
火曜日以降、食料品店が閉店した。
(After Tuesday, the grocery store was closed.)

JSeM No. 645, Gold answer: yes

P

1992年以来、ITELはバーミンガムにある。
(Since 1992 ITEL has been in Birmingham.)
現在、1996年である。
(It is now 1996.)

H
ITELは1993年にはバーミンガムにあった。
(ITEL was in Birmingham in 1993.)

Table 4: Examples of problems from JSeM and
PLMUTE_ja.

Second, we created an NLI dataset focusing on
temporal order in Japanese from the existing NLI
dataset (which we refer to as PLMUTE) for tem-
poral inference in English proposed by Thukral
et al. (2021) because Japanese NLI datasets involv-
ing diverse temporal adverbs were not well devel-
oped. We used the ordering section of PLMUTE,
which collects problems related to ordering vari-
ous temporal adverbs for a date, day of the week,
and time. The original PLMUTE is automati-
cally generated from 71 templates by a program.
Thus, we manually translated the templates into
Japanese and modified the program to generate the
dataset to make the generated dataset natural in
Japanese. We automatically generated a Japanese
translation of the original PLMUTE by using the
translated templates and modified program. We
call the dataset PLMUTE_ja. PLMUTE_ja con-
sists of nine sections: year (340 problems), month
(480 problems), date (560 problems), date_DMY
(340 problems), date_MY (340 problems), day
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System year month date
date
_dmy

date
_my

day
time
_12

time
_24

time
_multi

Majority .382 .421 .425 .403 .379 .396 .368 .415 .418

BERT
JSNLI .394 .413 .382 .400 .400 .380 .378 .415 .368
few .509 .517 .509 .491 .476 .518 .440 .453 .515
all .997 1.000 .998 .985 .982 1.000 1.000 .998 .960

Onishi et al. (2020) .238 .265 .239 .206 .244 .291 .290 .225 .253
Our system 1.000 1.000 .980 .971 .974 .984 .943 .970 .953

Table 5: Accuracy on the PLMUTE_ja test suite.

(560 problems), time_12 (400 problems), time_24
(400 problems), and time_multi (400 problems).
The distribution of gold answer labels for the prob-
lems is (yes/no/unknown) = (1353/1502/965). Ta-
ble 4 shows examples of problems in JSeM and
PLMUTE_ja.

We compared our system with the following
previous logic-based inference system and deep
learning-based models in Japanese.

Logic-based inference system We used the
logic-based inference system for temporal infer-
ence in Japanese proposed by Onishi et al. (2020).
Onishi et al. (2020)’s system used Coq, a higher-
order theorem prover based on natural deduction.

Deep learning-based model We used the
Japanese BERT (Devlin et al., 2019) model (cl-
tohoku/bert-base-japanese-whole-word-masking)
of Huggingface transformers1 as a deep learning-
based model. This Japanese BERT model is the
most commonly used pre-trained language model
for Japanese in huggingface/transformers. In
this study, we experimented with the following
three models: BERT_JSNLI is Japanese BERT
fine-tuned on a large Japanese NLI dataset
JSNLI (Yoshikoshi et al., 2020) (533,005 ex-
amples), a Japanese translation of the SNLI
dataset (Bowman et al., 2015), which is one of
the most widely used NLI datasets. BERT_few
is Japanese BERT fine-tuned on the PLMUTE_ja
minimal training set with two examples each of
different combinations of tenses and sections
(360 examples). BERT_all is Japanese BERT
fine-tuned on the entire PLMUTE_ja training set
(11,220 examples).

1https://huggingface.co/transformers/

System Accuracy

BERT
JSNLI .522
few .217
all .435

Onishi et al. (2020) .478
Our system .783

Table 6: Accuracy on the problems involving temporal
order in the JSeM test suite.

6 Results and Discussion

6.1 Results

The results on the problems involving temporal
order in JSeM are shown in Table 6. As the table
shows, our system outperforms all models.

The results on the PLMUTE_ja test set are
shown in Table 5. As the table shows, our sys-
tem outperforms all models except BERT_all. Al-
though the performance is slightly inferior to
BERT_all, the performance is comparable to
BERT_all with 11,220 training data. The exper-
iment with Japanese BERT + PLMUTE_ja repro-
duced the results of the experiment with English
RoBERTa + PLMUTE conducted by Thukral et al.
(2021). That is, although the model trained on all
of the PLMUTE training sets could achieve high
accuracy, the model trained on either the large stan-
dard NLI dataset or the minimal training set could
only achieve low accuracy.

We also compared the average proof time for
all four problems for which both our system and
Onishi et al. (2020)’s system output “yes”. Our
system was faster than the previous logic-based
system: the average proof time for our system was
1.98 seconds, while Onishi et al. (2020)’s system
was 3.11 seconds.
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P1 ジョーンズが契約書を修正した。
(Jones revised the contract.)

P2 スミスが契約書を修正した。
(Smith revised the contract.)

P3 ジョーンズがスミスより先に契約書を修正した。
(Jones revised the contract after Smith did.)

H スミスはジョーンズより後に契約書を修正した。
(Smith revised the contract before Jones did.)

Gold answer: yes (JSeM No. 659)

Table 7: An example of problem our system did not
solve.

6.2 Error Analysis

In this section, we discuss the error analysis in the
experiments. Our system did not solve the prob-
lems involving comparative deletion and temporal
connectives such as yori mae (before) and yori ato
(after), as shown in Table 7.
Although yori mae and yori ato have similar mean-
ings to izen and ikou, they have different meanings.
For example, 4 gatsu 3 nichi izen includes April
3rd, while 4 gatsu 3 nichi yori-mae does not in-
clude April 3rd. In addition, yori mae is more
difficult to analyze than izen because it consists of
two words, yori and mae that require the analysis
of comparative deletion, which we leaves for future
work.

7 Conclusion

In this paper, we compositionally derived semantic
representations of sentences with tense and aspect
in Japanese based on CCG. We developed a logic-
based NLI system that considers temporal order
in Japanese. We evaluated our system by experi-
menting with two Japanese NLI datasets involving
temporal order. Our system performed more ro-
bustly than previous logic-based systems as well
as current deep learning-based models. The experi-
mental results of our system suggest that a logical
NLI system based on an analysis of tense in for-
mal semantics is effective for temporal inference.
Other previous studies of logic-based methods have
shown the effectiveness of NLI systems based on
the analysis of various semantics such as degree
semantics (Haruta et al., 2020). By combining
them, we will be able to construct one NLI sys-
tem capable of performing a variety of inferences.
In the future, we plan to cover various temporal
inferences involving comparative deletion and tem-
poral anaphora. Furthermore, we plan to construct
inference test sets for these challenging inferences.

Acknowledgements

We thank the three anonymous reviewers for their
helpful comments and feedback. This work was
supported by PRESTO, JST Grant Number JP-
MJPR21C8, Japan.

References
Lasha Abzianidze. 2015. A tableau prover for natural

logic and language. In Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Language
Processing, pages 2492–2502, Lisbon, Portugal. As-
sociation for Computational Linguistics.

James F. Allen. 1983. Maintaining knowledge about
temporal intervals. Commun. ACM, 26(11):832–843.

Daisuke Bekki. 2010. A Formal Theory of Japanese
Grammar: The Conjugation System, Syntactic Struc-
tures, and Semantic Composition (in Japanese).
Kuroshio.

Michael Bennett and Barbara Hall Partee. 1978. Toward
the logic of tense and aspect in English, volume 84.
Indiana University Linguistics Club Bloomington.

Jean-Philippe Bernardy and Stergios Chatzikyriakidis.
2017. A type-theoretical system for the FraCaS test
suite: Grammatical framework meets coq. In IWCS
2017 - 12th International Conference on Computa-
tional Semantics - Long papers.

Jean-Philippe Bernardy and Stergios Chatzikyriakidis.
2020. Fracas: Temporal analysis. arXiv preprint
arXiv:2012.10668.

Johan Bos and Katja Markert. 2005. Recognising tex-
tual entailment with logical inference. In Proceed-
ings of Human Language Technology Conference
and Conference on Empirical Methods in Natural
Language Processing, pages 628–635, Vancouver,
British Columbia, Canada. Association for Computa-
tional Linguistics.

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015. A large anno-
tated corpus for learning natural language inference.
In Proceedings of the 2015 Conference on Empiri-
cal Methods in Natural Language Processing, pages
632–642, Lisbon, Portugal. Association for Compu-
tational Linguistics.

Robin Cooper, Richard Crouch, Jan van Eijck, Chris
Fox, Josef van Genabith, Jan Jaspars, Hans Kamp,
Manfred Pinkal, David Milward, Massimo Poesio,
Stephen Pulman, Ted Briscoe, Holger Maier, and
Karsten Konrad. 1996. Using the framework. Tech-
nical report, Technical Report LRE 62-051 D-16, The
FraCaS Consortium.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of

112



deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

David R Dowty. 1979. Word meaning and Montague
grammar: The semantics of verbs and times in gen-
erative semantics and in Montague’s PTQ. Reidel,
Dordrecht.

Izumi Haruta, Koji Mineshima, and Daisuke Bekki.
2020. Logical inferences with comparatives and gen-
eralized quantifiers. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics: Student Research Workshop, pages 263–
270, Online. Association for Computational Linguis-
tics.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and
Weizhu Chen. 2020. DeBERTa: Decoding-enhanced
BERT with disentangled attention. arXiv preprint
arXiv:2006.03654.

Wesley M. Jacobsen. 2018. Tense and Aspect, page
332–356. Cambridge University Press.

Hans Kamp and Uwe Reyle. 1993. From Discourse to
Logic: Introduction to Modeltheoretic Semantics of
Natural Language, Formal Logic and Discourse Rep-
resentation Theory. Dordrecht: Kluwer Academic
Publishers.

Stefan Kaufmann and Misa Miyachi. 2011. On the
temporal interpretation of japanese temporal clause.
Journal of East Asian Linguistics, 20(1):33–76.

Ai Kawazoe, Ribeka Tanaka, Koji Mineshima, and
Daisuke Bekki. 2015. An inference problem set
for evaluating semantic theories and semantic pro-
cessing systems for japanese. In JSAI International
Symposium on Artificial Intelligence, pages 58–65.
Springer.

Laura Kovács and Andrei Voronkov. 2013. First-order
theorem proving and Vampire. In International Con-
ference on Computer Aided Verification, pages 1–35.
Springer.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
RoBERTa: A robustly optimized BERT pretraining
approach. arXiv preprint arXiv:1907.11692.

Pascual Martínez-Gómez, Koji Mineshima, Yusuke
Miyao, and Daisuke Bekki. 2016. ccg2lambda: A
compositional semantics system. In Proceedings
of ACL-2016 System Demonstrations, pages 85–90,
Berlin, Germany. Association for Computational Lin-
guistics.

Koji Mineshima, Pascual Martínez-Gómez, Yusuke
Miyao, and Daisuke Bekki. 2015. Higher-order logi-
cal inference with compositional semantics. In Pro-
ceedings of the 2015 Conference on Empirical Meth-
ods in Natural Language Processing, pages 2055–
2061, Lisbon, Portugal. Association for Computa-
tional Linguistics.

Koji Mineshima, Ribeka Tanaka, Pascual Martínez-
Gómez, Yusuke Miyao, and Daisuke Bekki. 2016.
Building compositional semantics and higher-order
inference system for a wide-coverage Japanese CCG
parser. In Proceedings of the 2016 Conference on
Empirical Methods in Natural Language Process-
ing, pages 2236–2242, Austin, Texas. Association
for Computational Linguistics.

Toshiyuki Ogihara. 2017. Tense and aspect. The hand-
book of Japanese linguistics, pages 326–348.

Maiko Onishi, Hitomi Yanaka, Koji Mineshima, and
Daisuke Bekki. 2020. Recognizing temporal rela-
tions in natural language based on ccg and theorem
proving (in japanese). In Proceedings of the An-
nual Conference of JSAI, volume JSAI2020, pages
1E3GS904–1E3GS904.

Hans Reichenbach. 1947. Elements of Symbolic Logic.
London: Dover Publications.

Mark Steedman. 2000. The syntactic process, vol-
ume 24. MIT press Cambridge, MA.

Geoff Sutcliffe. 2017. The TPTP problem library and
associated infrastructure. Journal of Automated Rea-
soning, 59(4):483–502.

Shivin Thukral, Kunal Kukreja, and Christian Kavouras.
2021. Probing language models for understanding of
temporal expressions. In Proceedings of the Fourth
BlackboxNLP Workshop on Analyzing and Interpret-
ing Neural Networks for NLP, pages 396–406, Punta
Cana, Dominican Republic. Association for Compu-
tational Linguistics.

Sumire Uematsu, Takuya Matsuzaki, Hiroki Hanaoka,
Yusuke Miyao, and Hideki Mima. 2013. Integrat-
ing multiple dependency corpora for inducing wide-
coverage Japanese CCG resources. In Proceedings
of the 51st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 1042–1051, Sofia, Bulgaria. Association for
Computational Linguistics.

Maika Utsugi and Daisuke Bekki. 2015. Towards an
analysis of tense and aspect in japanese by dependent
type semantics (in japanese). In Proceedings of the
Annual Conference of JSAI, volume JSAI2015, pages
2F4OS01a3–2F4OS01a3.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume

113



1 (Long Papers), pages 1112–1122, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

Masashi Yoshikawa, Hiroshi Noji, and Yuji Matsumoto.
2017. A* CCG parsing with a supertag and depen-
dency factored model. In Proceedings of the 55th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 277–287,
Vancouver, Canada. Association for Computational
Linguistics.

Takumi Yoshikoshi, Daisuke Kawahara, and Sadao
Kurohashi. 2020. Multilingualization of a natural
language inference dataset using machine translation
(in japanese). In The 244th Meeting of Natural Lan-
guage Processing, pages 1–8.

Kei Yoshimoto. 2000. Tense and Aspect in Japanese
and English. Peter Lang Publisher Inc.

114



Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics
Student Research Workshop, pages 115 - 131

May 22-27, 2022 ©2022 Association for Computational Linguistics

Combine to Describe: Evaluating Compositional Generalization in Image
Captioning

Georgios Pantazopoulos
Heriot-Watt University
Edinburgh, Scotland

gmp2000@hw.ac.uk

Alessandro Suglia
Heriot-Watt University

Edinburgh, Scotland
a.suglia@hw.ac.uk

Arash Eshghi
Heriot-Watt University
Edinburgh, Scotland

a.eshghi@hw.ac.uk

Abstract

Compositionality – the ability to combine sim-
pler concepts to understand & generate arbi-
trarily more complex conceptual structures –
has long been thought to be the cornerstone of
human language capacity. With the recent, no-
table success of neural models in various NLP
tasks, attention has now naturally turned to the
compositional capacity of these models. In this
paper, we study the compositional generaliza-
tion properties of image captioning models. We
perform a set of experiments under controlled
conditions using model and data ablations, each
designed to benchmark a particular facet of
compositional generalization: systematicity is
the ability of a model to create novel combina-
tions of concepts out of those observed during
training, productivity is here operationalised
as the capacity of a model to extend its pre-
dictions beyond the length distribution it has
observed during training, and substitutivity is
concerned with the robustness of the model
against synonym substitutions. While previous
work has focused primarily on systematicity,
here we provide a more in-depth analysis of
the strengths and weaknesses of state of the art
captioning models. Our findings demonstrate
that the models we study here do not compo-
sitionally generalize in terms of systematicity
and productivity, however, they are robust to
some degree to synonym substitutions1.

1 Introduction

Deep neural networks have undoubtedly become
the standard option for many Natural Language
Processing (NLP) tasks with tangible results across
a variety of tasks (Vaswani et al., 2017; Devlin
et al., 2019; Raffel et al., 2020; Brown et al., 2020;
Liu et al., 2019). Despite their success, neural net-
works are regularly criticized from a growing body
of research for their limited capacity to generalize
beyond the distribution of the data on which they

1Code & data are available here.

were trained. A frequent topic of discussion is com-
positionality of meaning. Humans can understand
or generate novel and more complex conceptual
structures or sentences out of simpler constituent
representations, without needing to encounter any
instances of these more complex structures. On the
other hand, to what extent different neural models
exhibit compositional behavior remains an open
problem (Fodor and Pylyshyn, 1988; Smolensky,
1990; Hupkes et al., 2020; Baroni, 2020).

Previous work studying compositionality has
primarily focused on artificially created datasets,
where compositional rules can be isolated from
other natural language phenomena (Baroni, 2020).
In this setting, the majority of prior work has
largely focused on systematicity under the prism of
a downstream task. While these approaches have
provided valuable insights, compositionality is mul-
tifaceted and a single test can yield misleading find-
ings regarding compositional generalization.

In this paper, we explore compositionality from
the perspective of image captioning as a grounded
natural language task and propose an evaluation
framework with multiple dimensions of composi-
tionality for captioning models. In particular, we
adapt the independent and task-agnostic compo-
sitionality tests from Hupkes et al. (2020) to the
task of image captioning using data and model
ablations. Each test is designed to quantify the be-
havior of a model along a specific dimension of
compositionality. In particular, we evaluate three
facets of compositionality: (1) systematicity (Fodor
and Pylyshyn, 1988; Fodor and Lepore, 2002): the
ability to generalize to unseen combinations of con-
cepts learned in isolation during training; (2) pro-
ductivity: the capacity to extend predictions beyond
the observations; and (3) substitutivity: the robust-
ness of predictions under synonym substitution.
Previous approaches investigating compositional-
ity in image captioning have focused primarily on
systematicity (Atzmon et al., 2016; Nikolaus et al.,
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2019; Bugliarello and Elliott, 2021). Our work
thus constitutes a more in-depth analysis on the
compositional capabilities of captioning models.

Our findings regarding systematicity indicate
that the standard fine-tuning approach using rein-
forcement learning provides gains in word-overlap
metrics but hinders systematic generalization. In
productivity, we demonstrate that models struggle
to extend the length of their prediction beyond the
training distribution. Finally, with substitutivity, we
demonstrate that state of the art captioning models
we study here are robust against substitutions of
fine-grained with more high-level synonyms.

2 Related Work

In mathematical logic, the principle of composi-
tionality declares that the meaning of an expression
can be derived from the meanings of its constituent
expressions (Frege, 1950). From the perspective of
natural language, if all lexical/word meaning is ab-
stracted out from a sentence, then what remains are
the rules of composition. Implications of the princi-
ple influence research to this day with longstanding
debates regarding compositional properties of vec-
tor space and neural models.

Compositionality in Neural Language Process-
ing Initial approaches on distributional, vector-
space semantics use tensors as word and phrase
meaning representations, and has studied various
tensor operations for composition (Mitchell and
Lapata, 2008; Baroni and Zamparelli, 2010; Co-
ecke et al., 2010; Sadrzadeh and Grefenstette, 2011;
Purver et al., 2021). In all this work, the compo-
sitional operations are fixed in advance based on
some linguistic theory. In contrast, neural models
learn to encode meaning: compositional operations
are neither fixed during processing, nor given in
advance. To encourage compositionality of neu-
ral models, prior work clusters around data aug-
mentation (Akyürek et al., 2020; Qiu et al., 2021),
loss functions that encode different inductive biases
(Yin et al., 2021; Jiang and Bansal, 2021), as well
as meta-learning (Conklin et al., 2021).

Benchmarking compositionality Composition-
ality is often measured as systematic generalization
in different tasks including: in navigation environ-
ments (Lake and Baroni, 2018), where the objective
is to translate commands into sequences of actions;
or in question-answering, (Sinha et al., 2019; Key-
sers et al., 2019; Kim and Linzen, 2020), where

to answer a question the model needs to infer un-
derlying relationships between entities. Additional
benchmarks include evaluating arithmetic expres-
sions (Veldhoen et al., 2016; Saxton et al., 2019),
and logical entailment (Bowman et al., 2015; Mul
and Zuidema, 2019).

Compositionality in Visually Grounded Natu-
ral Language Compositionality has also been
studied from the perspective of visually grounded
natural language. Previous work on visual ques-
tion answering (VQA) measures generalization to
novel question-answer pairs on natural (Agrawal
et al., 2017; Whitehead et al., 2021), and synthetic
datasets (Bahdanau et al., 2018; Johnson et al.,
2017). Similarly, Suglia et al. (2020), proposes an
evaluation framework that accounts for a model’s
systematic generalization capacity coupled with
task performance in the context of visual guess-
ing games. More closely related to this paper, prior
work has examined compositionality for image cap-
tioning (Atzmon et al., 2016; Nikolaus et al., 2019;
Bugliarello and Elliott, 2021). However, the afore-
mentioned works mainly focus on systematicity
alone and thus provide valuable, but limited in-
sights on compositional properties.

Some prior work has studied compositionality
along different prisms. Ruis et al. (2020) exam-
ines compositionality under multiple dimensions
extending the work of Lake and Baroni (2018) by
grounding language to grid world environments.
Hupkes et al. (2020) provides a multifaceted view
on compositional properties of neural models un-
der a set of task-agnostic tests instantiated with an
artificial translation task. The distilled conclusion
of this work is that the performance on a single
downstream task is not a representative indicator
of compositional awareness, even if this task is
designed to be highly compositional. This paper
can be viewed as an extension of the latter line of
work, where we adapt the more fine-grained com-
positionality tests to the visually grounded image
captioning task.

3 Testing Compositionality in Image
Captioning

In this section, we describe the proposed tests for
evaluating compositionality in image captioning.
Figure 1 illustrates examples from each test. We
adopt a subset of task-agnostic tests proposed by
Hupkes et al. (2020). Our suite consists of three
tests: systematicity, productivity, and substitutivity.
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Training Data

A white cat laying

on top of a car.

A black dog inside

a brightly lit room.

A black puppy
laying on a couch.

Systematicity

A white dog is next

to a yellow fire

hydrant.

Productivity

A dog wearing

goggles and a red

collar in the

backseat of a car.

Substitutivity

A puppy dog is

standing on the seat

of a motorcycle.

Figure 1: Illustration of different compositionality tests. In the systematicity test, we evaluate the ability to combine
concepts (white cat, black dog) to form novel output (white dog). With productivity we focus on the conditions
where a model can produce output extending beyond the observable samples. In the substitutivity test, we investigate
if models are robust to synonym substitutions. Note that the training data is different across each compositional test.

For each test we define custom training and eval-
uation splits of the MSCOCO dataset (Lin et al.,
2014). Appendix A contains additional details con-
cerning dataset splits, and we will release this data
in the public domain.

Systematicity The first test asserts the model’s
ability to combine known concepts into new expres-
sions. If somebody can understand the meaning of
a ‘black dog’ and a ‘white cat’, then they can under-
stand the meaning of a ‘white dog’ (Szabó, 2012).
Consequently, a model should be able to describe
a white dog even though it has only observed pairs
of black dogs and white cats during training.

To probe for systematic behavior, we consider
pairs of concepts where their combination is ob-
served during testing and independently during
training. In the above example, the pairs ‘black
dog’ and ‘white cat’ belong to the training while
the pair ‘white dog’ is assigned to the evaluation
split. Following Nikolaus et al. (2019), we adopt
systematicity splits with pairs of adjectives and
nouns, as well as verbs and nouns. For comparative
analysis we use a second evaluation set where the
constituents of the pairs are observed separately.

Productivity Natural languages are said to be
productive in the sense that the speakers of a lan-
guage are able to understand & generate a theo-
retically infinite set of expressions or sentences.
While there is broad agreement that much of this
productivity is buttressed by systematicity, there
are also exceptional cases of non-systematic, or
partial productivity (Baroni, 2020).

In this paper, we operationalise the broad con-
cept of productivity in two very specific ways. First,
we take the productivity of a model to be its ability
to generate captions beyond the length it has ob-
served during training (Graves et al., 2014). We
tokenize each caption and compute the average cap-
tion length for each image. We assign the images
at the tail of the histogram of the average caption
length to the evaluation set. From the remaining
pool of images we sample a second equally-sized
evaluation set for comparative analysis. The re-
maining images are used for training. Second, we
assume a model exhibits productive behavior if it
can describe significantly denser, more complex
images than it has observed during training. We
use the number of ground truth bounding boxes
from MSCOCO as an indicator of the number of
objects present in a scene, and as a measure of their
density; and use this measure to create controlled
training and evaluation splits.

Substitutivity Substitutivity states that the mean-
ing of a complex expression is not altered after
replacement of one of its constituents with an-
other constituent that has the same meaning (Pagin,
2003). Therefore, if a model is compositional then
replacing an expression with its synonym should
not affect the structure nor the meaning of the
whole expression. In the above example a model
should be able to infer that the word ‘puppy’ and
‘dog’ are synonyms, thus the substitution should
preserve the meaning and structure of the caption.

We use a subset of the synonyms of the 80
MSCOCO categories defined by Lu et al. (2018).
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We consider substitutions between the original ob-
ject category and the corresponding retrieved syn-
onym. For each object category and its synonyms,
we select pairs that make valid substitutions given
the visual context by manually inspecting ground
truth captions containing each constituent word.
We further exclude ambiguous words and divide
object categories to ensure that the substitutions we
make are always valid. For instance, we divide the
‘person’ category into ‘man’, ‘woman’ and ‘child’.

4 Experiments and results

Model We use M2-transformer (Cornia et al.,
2020), and adopt the configuration with the best re-
ported results. Following standard protocol (Ander-
son et al., 2018; Lu et al., 2018; Cornia et al., 2020),
the training scheme in all experiments consists of
two phases: cross-entropy (XE) and CIDEr opti-
mization. For XE, we apply teacher forcing where
the model is trained to predict the next token given
the previous ground truth tokens. We adopt Self
Critical Sequence Training (SCST) (Rennie et al.,
2017), as the reinforcement learning paradigm for
CIDEr optimization. The reward function is the
CIDEr score obtained with sampled sentences us-
ing beam search. For both phases, we applied the
same training hyperparameters as in Cornia et al.
(2020). The training phases are performed sequen-
tially. We start by optimizing XE and then fine-tune
the model using SCST. We used early stopping to
terminate a training phase, whenever the CIDEr
score on the validation set did not improve for 5
consecutive epochs.

Evaluation We evaluate compositional general-
ization using standard metrics in image caption-
ing: BLEU (B1, B4, Papineni et al., 2002), ME-
TEOR (M, Denkowski and Lavie, 2014), ROUGE
(R, Lin, 2004), and CIDEr (C, Vedantam et al.,
2015. We also quantify semantic similarity using
the multi-reference BERTSCORE (Yi et al., 2020).
For the case of systematicity, we follow previous
approaches (Nikolaus et al., 2019; Bugliarello and
Elliott, 2021), and additionally report Recall@K of
the pair of interest over the K generated captions
using beam search (K = 1 . . . 5).

4.1 Systematicity
In the first set of experiments, we investigate
whether or not the model can combine known con-
cepts disjointly observed during training. We adopt
a subset of the pairs of adjectives and nouns, verbs

B1 B4 M R C BS

V
M2 75.71 37.01 27.81 58.22 106.25 45.07
M2

SCST 78.68 39.37 28.93 59.51 116.81 46.15

TNC
M2 75.22 35.94 27.35 56.42 115.95 43.78
M2

SCST 80.36 39.14 28.59 58.41 130.16 45.20

TC
M2 75.83 36.08 27.56 57.79 105.90 44.83
M2

SCST 79.02 38.66 28.56 59.36 116.11 45.80

Table 1: Results on systematicity split in validation (V),
Test no Comb (TNC), and Test Comb (TC).

and nouns defined by Nikolaus et al. (2019), and
modify the proposed train, validation, and test sets.
The examined pairs are presented in Table 7.

With these pairs we test the model under two
different conditions: Test no Comb (TNC) consists
of images where the constituents of the pairs are
not observed in the same image; and Test Comb
(TC) is the test set defined in Nikolaus et al. (2019).
For TNC, we sampled random images from the
proposed train set ensuring that both test sets have
the same number of images. Finally, we used the
same validation set as the proposed split. Notably,
the validation set consists of images where at least
one of the captions contains the concept of interest.
This means that while the model is not directly
exposed to the combination of the concepts, it is
tuned by optimizing the evaluation metrics on a set
that contains these combinations.

Table 1 shows the performance of both models
in terms of standard captioning metrics. In par-
ticular, SCST improves the performance of the
model in terms of word similarity metrics, but
also in terms of semantic equivalence as shown
by BERTSCORE. Furthermore, there are no sig-
nificant performance drops between the validation
and TC set. However, TNC appears to be much
easier for both models presumably because it lacks
the combined pair. Importantly, out of all the evalu-
ation metrics used here, BLEU has the weakest (El-
liott and Keller, 2014), and METEOR and CIDEr
have the strongest correlations with human judge-
ments (Yi et al., 2020). In terms of capturing se-
mantics, SCST yields a more robust model than XE
optimization as indicated by the 0.6 and 1 decline
in BERTSCORE units respectively.

Considering that we kept all the conditions the
same, differences must be due to the poor ability
of the model to combine concepts without having
observed the combinations during training, i.e. lack
of systematicity. To confirm this, we inspect the
Recall@K of the pairs after testing on TC. Because
the combination of the pairs occur approximately
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M2 M2
SCST

R@1 R@2 R@3 R@4 R@5 R@1 R@2 R@3 R@4 R@5
black cat 1.12 2.01 3.13 3.58 4.03 1.79 1.79 2.46 3.13 4.03
big bird 0 0.81 0.81 0.81 0.81 0 0 0 0 0
red bus 10.39 14.29 19.48 22.94 27.71 12.12 13.42 15.15 16.88 17.32
small plane 0 0 0 0 0 0 0 0 0 0
eat man 11.67 13.75 17.5 21.25 22.08 8.33 8.75 10.42 12.08 12.08
lie woman 4.23 10.56 12.68 14.79 16.2 5.63 6.34 9.15 10.56 11.27
Average 4.57 6.9 8.93 10.56 11.8 4.65 5.05 6.2 7.11 7.45

Table 2: Recall scores for each pair of interest in the systematicity test.

in 1.57 of the 5 ground truth captions, it is not ex-
pected by the model to generate the combination in
a single caption (Nikolaus et al., 2019). We there-
fore use the top 5 most likely captions generated
using beam search. Table 2 illustrates recall scores
for all pairs. Both models rarely perform any sys-
tematic generalizations. On average, only 4.57%
(4.65%) of the time the model under XE (SCST)
includes the pair in the description.

Surprisingly, SCST fine-tuning actually hinders
the systematic performance of the model. While
both models perform similarly when taking into ac-
count the single most likely caption, XE optimiza-
tion yields significant gains by taking into account
additional generations. Intuitively, SCST should
facilitate exploration of the caption space. Because
the reward value is a function of word overlap, for
images where the majority of the reference cap-
tions do not contain the examined pair, the model
will be penalized when making any systematic gen-
eralizations. This is further exacerbated by the lack
of diversity in each active hypothesis during beam
search decoding (Li et al., 2016; Vijayakumar et al.,
2016). If most of the active hypotheses have signif-
icant overlaps with minor variations, then there is
little hope for the model to make systematic gener-
alizations in any of the K most likely generations.
An alternative approach would be to modify the re-
ward function to not penalize plausible descriptions
that deviate from the ground truth. For instance, a
model should not be penalized if it describes prop-
erties of objects in an image even if these properties
are not mentioned in the ground truth. We leave
this direction for future work.

4.2 Productivity

With productivity, we explore to what degree a cap-
tioning model can extend its predictions beyond the
length distribution it has observed during training.
We expose the models in two different test condi-

B1 B4 M R C BS

V
M2 76.22 36.17 28.35 57.11 115.90 44.33
M2

SCST 81.31 39.39 29.26 59.26 130.03 45.56

TB
M2 76.22 35.91 28.17 56.92 116.11 44.30
M2

SCST 80.98 39.38 29.22 59.49 130.42 45.54

TR
M2 75.72 35.97 24.99 53.31 85.01 40.28
M2

SCST 80.79 39.53 26.31 55.58 95.73 41.47

Table 3: Results on productivity split in validation (V),
Test Base (TB), and Test Rich (TR).

tions. First, we tokenize each caption using spaCy
(Honnibal et al., 2020) and compute the histogram
of the average caption length for each image. The
distribution of the average caption length is shown
in Figure 2. For each condition, we use the same
number (5000) of images for validation and testing
as in Karpathy and Fei-Fei (2015). From the his-
togram, we assign the 5000 images with the highest
caption length to the first condition, denoted Test
Rich (TR). From the remaining examples, we ran-
domly select 5000 images and assign them to the
second condition - Test Base (TB), and 5000 im-
ages for validation. Lastly, the remaining 82, 783
images are used for training.

This procedure yields two independent tests,
where the base test follows the same distribution of
caption lengths as the train set. The rich test con-
tains images with significantly greater length. Ta-
ble 9 illustrates the average POS tags and the length
of each caption per image. On average captions of
images from TR have approximately 14.47% more
adjectives, 31.75% more nouns, and 29.70% verbs
than the train, validation, and TB.

We report the performance on the productivity
test in Table 3. Overall, it appears that images con-
taining longer captions are difficult for both models
as showcased by standard captioning and semantic
metrics. The performance on the TB is compara-
ble with the validation set, however, both models
perform considerably worse on the TR set. The
model after XE optimization reports a drop of 31.1
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CIDEr units when evaluated on longer captions.
The same trend can be observed for SCST where
the performance gap between TB and TR is even
greater than solely training using XE. In terms of
semantics, we observe a drop of approximately 4
BERTSCORE units across both methods.

M2 M2
SCST

TB TR TB TR
ADJ 0.56 0.48 0.43 0.37
ADP 1.73 1.77 1.68 1.82
ADV 0.09 0.11 0.05 0.07
CCONJ 0.15 0.19 0.20 0.24
DET 2.3 2.40 2.41 2.56
NOUN 3.42 3.49 3.45 3.62
PRON 0.03 0.03 0.04 0.04
VERB 1 1.01 0.92 0.91
LENGTH 9.36 9.58 9.34 9.74

Table 4: Average POS tags and length of generated
captions in Test Base (TB) and Test Rich (TR).

Further insights can also be obtained from the
average POS tags and caption length illustrated in
Table 4. We observe that the model from XE op-
timization generates more adjectives and verbs as
opposed to the model using SCST. However, the
latter is generating substantially more nouns espe-
cially to describe images from the TR set. This
observation also supports the findings on system-
aticity. If a model is generating more adjectives and
verbs then it is capable of making more (adjective,
noun) and (noun, verb) compositions. It is likely
that the model receives greater reward by describ-
ing additional objects in the image rather than their
attributes or their relations (eg ‘a blue bird sitting
on a bench’ vs ‘a bird next to two people’). As
a result, the generated captions contain additional
DET and ADP tags present in the caption which is
also supported by the presented findings.

4.2.1 Visual Density

B1 B4 M R C BS

V
M2 75.89 36.38 27.83 56.65 115.0 44.06
M2

SCST 80.74 39.43 29.08 59.01 129.11 45.38

TLD
M2 75.98 36.12 27.81 56.57 114.86 43.97
M2

SCST 80.97 39.88 29.02 59.24 130.21 45.31

THD
M2 77.23 37.96 27.07 56.56 90.76 41.60
M2

SCST 81.57 40.36 28.52 58.8 103.52 43.26

Table 5: Results on productivity (visual density) split in
validation (V), Test Low Density (TLD), and Test High
Density (THD).

The caption length may correlate with the visual
information from the image and thus it may contain

lots of words because the image has rich content.
While this would be a nice property of captioning
models, it would mean that the models do not nec-
essarily exhibit productive behavior but simply are
capable of describing additional concepts in the
image. However, there is no linear dependency
between the number of concepts in an image and
with the length of its description (Figure 4). Con-
sequently, a model may actually behave differently
in terms of productivity if it is exposed to images
with less number of objects during training.

Motivated by this observation, we repeat the pro-
ductivity experiments but this time we are inter-
ested in exposing the model to images with low
visual density and evaluating on images with high
density. We split the dataset in a way that the test
images contain significantly more numbers of con-
cepts. Similarly, we have two test conditions: Test
Low Density (TLD) and High Density (THD).

Table 5 illustrates the results in the productivity
split based on image density. The word overlap
evaluation metrics showcase that the models ex-
hibit the same behavior with the previous experi-
ments. We also observe performance drop in terms
of semantic equivalence using BERTSCORE. How-
ever, it is worth mentioning that the degradation
in capturing semantics is less significant than the
productivity experiments using caption length. Pre-
viously, XE and CIDEr optimization recorded a
difference of 4 BERTSCORE units between TLD
and THD, whereas BERTSCORE declined by 2.37
and 2.05 units respectively.

4.3 Substitutivity

B1 B4 M R C BS

O vs GT M2 77.12 37.5 30.12 58.64 110.54 45.18
M2

SCST 81.74 40.63 31.00 60.42 122.14 46.24

S vs GT M2 72.78 29.35 26.6 52.76 95.42 43.87
M2

SCST 76.13 33.19 28.26 54.74 109.62 45.54

O vs S M2 62.57 35.18 32.98 60.8 304.27 65.79
M2

SCST 77.0 55.88 44.89 75.16 466.76 77.71

Ot vs St M2 66.27 46.16 34.9 64.55 446.13 69.30
M2

SCST 85.21 74.37 50.93 82.76 707.9 83.51

Table 6: Results on substitutivity test. (GT ) ground
truth captions, (O) original caption without substitution,
(S) caption after substitution, (Ot) sub-caption after the
synonym word, (St) sub-caption after substituting the
synonym word.

The objective of the final test is to evaluate the ro-
bustness of a model against synonym substitutions.
In order to create a substitutivity test, we manually
create two sets of words S1, S2. For every word
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w ∈ S1, there is another word s ∈ S2 such that
w can always be replaced by s without altering
the meaning of the caption. We initially consid-
ered the 80 COCO object categories and used the
mapping between objects and fine-grained classes
defined by Lu et al. (2018). We excluded object
categories with no synonyms (‘cup’) and categories
containing more than one word (‘baseball glove’).
Next, we manually inspected ground truth captions
to ensure that pairs of object categories and their
synonyms are interchangeable. With this process
we further divided the ‘person’ category into ‘man’,
‘woman’, ‘boy’, and ‘girl’ with ‘person’ and ‘child’
as synonyms. Finally, we discarded words with
multiple meanings.

The pairs of object categories and synonyms
used to test substitutivity are illustrated in Table
10. In order to ensure that the model is exposed
to both object categories and fine-grained classes,
we selected those that appeared adequate times dur-
ing training. We trained a model on the train set
of the Karpathy split and selected pairs of cate-
gories and fine-grained classes, where each word
appears at least 200 times in the ground truth train-
ing examples. Note that in substitutivity we are not
exclusively interested in images where the pair of
words is jointly observed in its captions. Finally,
we selected images from the test set in the Karpathy
split where the generated captions of the trained
model contained the fine-grained class. To verify
that a substitution is performed adequate times dur-
ing inference, we used pairs where the fine-grained
class appeared at least 10 times in the generated
captions. The distribution of the number of images
with captions containing either a selected object
category or fine-grained class for the train and test
set are illustrated in Figure 5.

We inspect how the model behaves under re-
placement of a word with its synonym. During
inference we apply beam search. For each active
hypothesis, if the current most likely word belongs
in S1, we substitute the word with its synonym
from S2. To ensure that the substitution is pre-
served after each decoding stage, we set the prob-
ability of the synonym word to 1. We compute
standard metrics using the original caption (O), the
caption after substitution (S), the sub-caption af-
ter the synonym word (Ot), and the sub-caption
after replacing the synonym word (St). In this set-
ting, high values regarding overlap metrics such as
BLEU and ROUGE indicate robustness of a model

while semantic equivalence BERTSCORE also pro-
vides valuable insights.

The substitutivity results are illustrated in Table
6. In the first two rows we compare the ground truth
caption with the originally generated caption and
the caption after substitution. For both model vari-
ations we observe considerable performance drops
after replacing a word with its synonym. This is
expected as we intervened during decoding and re-
placed the original word with its synonym that had
lower probability. In this case, the main concern is
not whether the model generates plausible captions
but whether its prediction matches the prediction
before the substitution. The last two rows of the ta-
ble compare the generated caption and the caption
after substitution. Overall, both models performed
exceptionally well with SCST providing consis-
tent gains across all metrics. The sub-caption after
substituting the synonym word appears to match
with the sub-caption after the synonym word both
in terms of n-gram metrics as well as semantics.
This claim also holds for the captions as a whole;
the high scores indicate that the models may be
meaning-invariant with regards substitutions from
fine-grained classes to more generic ones.

Our findings suggest that the model is robust
against these substitutions. However, it may be
straightforward for the model to substitute a fine-
grained object description with another that has
a broader concept. A more challenging scenario
would involve the same experiment but replacing
generic descriptions with more fine-grained cate-
gories. For instance, replacing ‘person’ in ‘A per-
son driving truck’ with ‘firefighter’.

5 Qualitative Analysis

For each proposed test we randomly sampled 100
examples from the derived splits and inspected the
generated captions. In this section, we report the
main findings based on that pool. Additional mate-
rial is provided in the Appendix C.

Systematicity We observed that the models from
both training procedures are reluctant to make sys-
tematic generalizations. In the case of adjective and
noun pairs the models consistently avoided using
adjectives or used adjectives that describe a differ-
ent property of the object. In these cases the models
do not actually learn to combine pairs but instead
learn co-occurrence statistics in the data (e.g., ‘a
double decker bus’ and ‘a red bus’). With regards
to pairs of nouns and verbs the models tended to
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replace the verb with a generic phrase. We also
found an adequate number of examples where the
generated caption did not contain any verb at all.

Productivity Overall, both models favored short
captions. We observed cases where the ground
truth captions provided fine-grained explanations,
yet the generated caption contained only a hand-
ful of these descriptions. However, this does not
entail that the generated caption is incorrect or of
poor quality. Both models generally performed
reasonably well, without hallucinating objects in
the scenes or assigning incorrect properties to de-
scribed objects. We also frequently observed cases
where at least one of the reference captions consti-
tutes an outlier in terms of caption length. In these
cases the annotator provided a thorough description
of the image. To maximize its performance, the
model prioritizes matching the generated with the
remaining reference captions whose lengths cluster
around similar values.

Substitutivity In the cases of mismatch between
the originally generated caption and its modifica-
tion, the majority of the examples differed exclu-
sively in the part of the caption after the substi-
tution. The modified caption either contained the
same objects and their attributes with a simple re-
ordering or the objects were described with more
detail including additional properties or relations.
We observed a few examples where the caption was
completely restructured and identified two cases of
such behavior. On the one hand, the original cap-
tion contained multiple occurrences of fine-grained
objects (e.g., ‘a man and a woman riding on a mo-
torcycle’ & ‘a person riding a motorcycle with a
person on the back’). On the other hand, the cap-
tion was altered to include additional properties of
the substituted word (e.g., ‘a living room with a
television and a fireplace’ & ‘a flat screen tv in a
living room with a fireplace’). These cases could
be due to the decoding policy as substituting the
original word with its synonym in an active hy-
pothesis results in a sequence with lower marginal
probability. The active hypothesis is then discarded
as it does not fit in the beam width. This is a com-
mon problem in decoding, where high probability
words are concealed behind low probability words.

6 Conclusion

We presented a series of tests for compositionality
in image captioning. This work contributes towards

what it means for a captioning model to be ‘compo-
sitional’, and what properties we would like them
to have. We performed data and model ablations to
identify limitations of state of the art models across
three dimensions of compositionality.

Our findings in the systematicity align with
the findings from previous works. We find that
transformer-based captioning models rarely make
systematic generalizations. However, as shown
by the experiments in productivity, this is also par-
tially due to the model not producing adjectives and
nouns. We demonstrated that the well-established
CIDEr fine-tuning coupled with beam search de-
coding actually exacerbates the already poor per-
formance on systematicity.

In productivity, we found out that models strug-
gle to extend their predictions to match the length
of the ground truth captions. Both models trained
using XE and SCST generated less number of ad-
jectives, nouns, and verbs compared to the ground
truth captions. On average we observed that models
after XE optimization provide captions with more
adjectives and verbs, while models incorporating
SCST generate descriptions with more nouns. We
further included a set of experiments concerning
the visual density of the image with similar results.

The substitutivity experiment showcased that it
is easy for the models to substitute a fine-grained
with abstract descriptions of concepts. In most
cases, the part of the caption following the syn-
onym word was identical to the part of the caption
after the substitution with its synonym. A natural
extension to the substitutivity experiment would
include the performance after substituting more
abstract with fine-grained descriptions.

With our framework we provided insights regard-
ing the evaluation and training of image captioning
models. Word overlap metrics favor models that
generate sequences closer to the target rather than
more ‘grounded’ models that focus on actual prop-
erties of the objects in the image. This calls for a
training regime that mitigates this issue by intro-
ducing multimodal metrics that take both text and
vision into account (e.g., CLIPScore (Hessel et al.,
2021)). Additionally, different training strategies
should be adopted to allow the model to explore
the search space, and learn to generate sequences
that go beyond the average sequence length.
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7 Ethical statement

The presented paper introduces a framework to
evaluate compositionality of image captioning mod-
els from multiple perspectives. The dataset and
the model under evaluation are publicly available
for academic purposes and not intended for down-
stream deployment.

Despite recent advances, our findings challenge
the systematicity and productivity of current mod-
els. This suggests that the generalization capacity
and robustness remain a barrier to overcome, be-
fore exposing the outputs of these models to end
users. As a result, we believe that comprehensive
evaluations can help expose biases in the model
and minimize the impact in real-world deployment
of language technologies.
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A Dataset splits

We created custom splits of the MSCOCO dataset
(Lin et al., 2014), a collection of images described
in English.

A.1 Systematicity

black cat
big bird
red bus

small plane
eat man

lie woman

Table 7: Pairs of concepts used to test systematicity.

Recall scores

Color Size Verb
BUTD Nikolaus et al. 15.95 0.32 10.55
M2 15.78 0.41 19.14
M2

SCST 8.66 0 11.7

Table 8: Recall@5 for each grouped category of con-
cepts of interest.

Additional insights can be obtained by observ-
ing the individual recall scores for each concept
of interest. Both models cannot make systematic
generalizations in terms of adjectives describing
size. This aligns with the view of (Nikolaus et al.,
2019) who also showcased that the actual bounding
box of the referred noun does not correlate with
its size modifiers in the description of an image.
For additional comparison with the work of Niko-
laus et al. (2019), we group the pairs in terms of
color, size, and verb as shown in Table 8. Interest-
ingly, our findings suggest that transformer-based
architectures are more capable of systematic com-
position when they describe verbs. On the other
hand, BUTD recorded the best generalization per-
formance when they describe color and noun pairs.
There is no reported performance of BUTD for the
systematicity split using SCST.

A.2 Productivity
The distribution of the average caption length is
shown Figure 2. An overview of the average POS
tags and the length of each caption per image is
illustrated in Table 9, where the left and right part of
the table account for the Karpathy and the proposed
productivity split. On average captions of images

Figure 2: Histogram and boxplots of average caption
length for each image in the train, validation, and test
sets of the productivity split.

from Test Rich have approximately 14.47% more
adjectives, 31.75% more nouns, and 29.70% verbs
than the train, validation, and test base sets. We
apply the same procedure for the visual density
experiment. Figure 3 shows the distribution of the
number of instances on each split.

A.3 Substitutivity

We initially considered the 80 COCO categories
and used the mapping between objects and fine-
grained classes defined by Lu et al. (2018). We ex-
cluded object categories with no synonyms (‘cup’)
and categories containing more than one word
(‘baseball glove’). Next, we manually inspected
ground truth captions to ensure that pairs of object
categories and their synonyms are interchangeable.
With this process we further divided the ‘person’
category into ‘man’, ‘woman’, ‘boy’, and ‘girl’
with ‘person’ and ‘child’ as synonyms. Finally,
we discarded the ‘dog’ category completely as we
found that it often referred to the actual animal or
‘hot dog’.
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Train Valid Test Train Valid Test Base Test Rich
ADJ 0.76 0.76 0.77 0.76 0.77 0.76 0.87
ADP 1.74 1.75 1.75 1.71 1.71 1.71 2.46
ADV 0.15 0.15 0.16 0.15 0.15 0.14 0.21
CCONJ 0.24 0.24 0.24 0.23 0.23 0.23 0.45
DET 2.2 2.21 2.2 2.17 2.17 2.18 2.9
NOUN 3.64 3.64 3.62 3.59 3.58 3.58 4.73
PRON 0.18 0.18 0.18 0.17 0.18 0.17 0.32
VERB 1.02 1.02 1.01 1.01 1 1.01 1.31
LENGTH 11.34 11.35 11.32 11.19 11.17 11.2 15.03

Table 9: Comparison of average POS tags and caption lengths in each image between train, validation, and test sets
in the Karpathy (Karpathy and Fei-Fei, 2015) and the productivity split.

Figure 3: Histogram and boxplots of number of in-
stances for each image in the train, validation, and test
sets of the productivity split concerning visual density.

B Model details

Our implementation is based on the publicly
available PyTorch codebase of M2-transformer
(https://github.com/aimagelab/
meshed-memory-transformer). Following
Cornia et al. (2020) we use 3 encoding and
decoding layers, 8 attention heads, and 40 memory
vectors.

We also noticed during SCST, that the model
occasionally produced incomplete captions (e.g.,

Figure 4: Illustration of the number of instances and
the caption length of images in MSCOCO (Lin et al.,
2014).

Object category Fine-grained class
person man, woman
child boy, girl
bicycle bike
airplane plane, jet, jetliner
cow cattle
tv television
refrigerator freezer
laptop computer

Table 10: Selected pairs of object categories and fine-
grained classes used in substitutivity split. During infer-
ence, we replace the generated fine-grained word with
its synonym.

‘a man is riding a horse in a’). Our interpretation
here is that the model is reluctant to produce that
noun and the learnt policy indicates that it is better
to generate an incomplete caption and receive the
adjusted reward rather than make a ‘risky’ predic-
tion. The paper introducing SCST (Rennie et al.,
2017) states in the supplementary materials (sec-
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Figure 5: Distribution of object categories and fine-
grained classes in train (left) and test (right) substitutiv-
ity split.

tion E): “One detail that was crucial to optimizing
CIDEr to produce better models was to include the
EOS tag as a word.” If the EOS word is omitted,
trivial sentence fragments such as ‘with a’ and ‘and
a’ receive significant reward values, as opposed to
their full sentence counterparts. However, includ-
ing the EOS tag lowers the reward allocated to the
incomplete captions. We apply the same procedure
by appending EOS token to both candidate and
reference captions.

C Qualitative analysis

We examined qualitatively the behavior of the mod-
els under each compositional test by randomly sam-
pling 100 examples. For systematicity (Figure 6),
we compared the occurrences of systematic gener-
alization in Test Comb. Similarly, for productivity
(Figure 7) we studied the captions over images
belonging to Test Rich with a focus on the part-of-
speech tags produced during generation as opposed
to the reference captions. Finally, for substitutivity
(Figure 8) we examined the originally generated

and the modified caption and emphasized on their
similarity.

128



GT : a cute cat sticking its head in a box of pizza,
a white and black cat with its head inside a box
smelling the food,
a cat pokes its head into a box and smells the food
inside it,
a cat with its head in a box of pizza,
a cat trying to sneak a bite of pizza
M2: a white and black cat eating a piece of pizza
M2

SCST : a cat is eating a pizza in a box

GT : a couple of black cats laying on top of a bed,
two black cats cuddle together on a blanket,
two black cats sleeping together on a bed,
two black cats cuddled together on a bed,
a couple of cats relaxing with each other on the bed
a woman sitting in the drivers seat of a car with a
cat in her lap
M2: a cat laying on a blanket on a bed
M2

SCST : a black cat laying on a bed

GT : two red buses headed to the same place are right
next to each other on the road,
buses lined up on the street in traffic,
there are many red busses coming down the street
together,
the buses are lined up waiting for passengers,
a couple of buses drive next to each other
M2: a couple of red buses driving down a street
M2

SCST : two red buses driving down a city street

GT : a red bus on street next to buildings,
a public transit bus on a city street,
a large red bus on a city street,
a red bus crossing a street next to tall buildings,
a red bus is parked along the side of a street
M2: a double decker bus driving down a city street
M2

SCST : a double decker bus driving down a city street

GT : a bright blue and white amx jet is in the clear sky,
a blue airplane is flying during a clear day,
an airplane flying in a blue sky,
a small two toned blue airplane flying,
a small plane is seen flying on a clear day
M2: a blue and white airplane flying in the sky
M2

SCST : an airplane is flying in the blue sky

GT : an airplane with wheels wheels barely off ground
tilted slightly upward from the pavement to the blue sky,
a small plane is taking off from a sandy beach,
a white airplane is driving down the runway,
small plane inches above flat surface near water,
a small plane on the sand near a beach
M2: an airplane is on the runway on a sunny day
M2

SCST : an airplane is taking off from an airport runway

GT : a man holding a slice of pizza while wearing glasses,
there is a man eating a sandwich with lots of cheese on it,
a man in red is eating some food,
a full view of an individual in the image,
a man looks at the camera while holding a hot dog
M2: a man in a red shirt holding two hot dogs
M2

SCST : a man in a red shirt holding a hot dog

GT : three guys sitting down eating sandwiches and
smiling,
three men eating sandwiches at a corner table,
two young men one old enjoying a meal at a restaurant,
three men all eating sub sandwiches at a restaurant,
three men are sitting in a restaurant eating sandwiches
M2: three men sitting at a table eating food
M2

SCST : three men sitting at a table eating a sandwich

Figure 6: Examples of generated captions for different concept pairs from the Test Comb. Bold phrases indicate
successful systematic generalization.
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GT : a woman driving a car while holding a cat on her lap
a woman driving her car with a cat riding in her lap,
a lady driving her car with a black and white cat in her lap,
a woman sitting in a car with a black and white cat,
a woman sitting in the drivers seat of a car with a cat in her lap
M2: a person in a car with a cat
M2

SCST : a woman in a car with a black and white cat

GT : a bunch of people sitting on and standing around a bench with bikes,
some people sit on a bench near bicycles,
a group of people sit on and near a park bench,
several people sit on a blue bench with their bikes around them,
a bench seats a few people as bikes are parked nearby and one man sits on a brick
walkway as another boy in blue stands near them
M2: a couple of people sitting on top of a bench
M2

SCST : a bike with a bench and people in it

GT : a man holding an orange frisbee in his mouth with a dog,
a dog and its owner battling over a frisbee,
a person with a frisbee in his mouth bending over to his dog who has the other
end of the frisbee in its mouth,
a man in the snow holding a disc in his mouth as a dog bites it also,
a man and dog use their teeth to fight for the same frisbee
M2: a man holding an orange dog in the snow
M2

SCST : a man holding an orange frisbee with a dog

GT : a wooden kitchen table topped with baked goods and pie,
a tray with some food a pot and some bottles,
there is a pan with lettuce in it near a tray of meat,
a tray of food and a boiler with a vegetable sit on a kitchen counter,
a counter with a pot with a vegetable in it as well as chicken breasts on the side
M2: a wooden cutting board topped with lots of food
M2

SCST : a wooden table with a pan of food and a knife

GT : father and daughter leaning over small cake with large candle on it,
a man and a woman blowing out a candle in a cake,
a guy and girl celebrating an occasion with a cake with chocolate frosting
and 1 candle,
a man and woman stand before a small cake with a single candle in it,
a couple blowing out an enormous candle on a small chocolate
M2: a man blowing out candles on a birthday cake
M2

SCST : a man and a woman blowing out candles on a birthday cake

GT : a kitchen counter top with a tray of sliced tomatoes and a plate
of whole tomatoes,
there is a large plate of tomatoes and a pan of sliced tomatoes,
a cookie sheet with red sliced tomatoes and a platter of whole tomatoes on
a crowded kitchen counter, there ’s plenty of red tomatoes on the kitchen counter,
a sloe up of sliced tomatoes on a baking pan
M2: a close up of a plate of food with tomatoes
M2

SCST : a kitchen counter with a bunch of tomatoes and other vegetables

Figure 7: Productivity: examples of generated captions from images in the Test Rich.

130



GT : an airport with large jetliners and a bus traveling on a tarmac,
an airplane and busses are lined up at the airport,
a group of buses driving around at the airport,
airplanes sit at the gate as transportation vehicles move about,
a busy runway with buses and luggage carts driving around
M2: a large jetliner sitting on top of an airport tarmac
M2 (S): a large airplane that is on a runway
M2

SCST : a plane is parked at an airport terminal
M2

SCST (S): a airplane parked at an airport with cars and planes

GT : a person sits on top of a motorcycle with a stuffed toy,
a person riding a motorcycle with a stuffed animal on the back,
a person on a motorcycle with a stuffed animal on back,
a motorcyclist riding with a stuffed animal attached to the back,
a person in full leather riding a motorcycle with a stuff animal on the back
M2: a man riding on the back of a motorcycle
M2 (S): a person riding a motorcycle on a street
M2

SCST : a man riding a motorcycle on a road
M2

SCST (S): a person riding a motorcycle on a road

GT : an older woman sits in a sweater at the beach,
a person wearing sun glasses and blue jeans sitting on a rock by the ocean,
a woman is sitting on the beach,
a lady near some rocks during the daytime looking at the camera,
an older woman sitting on a drift log at a beach
M2: a woman sitting on a log near the water
M2 (S): an older person sitting on a log in front of a mountain
M2

SCST : a woman sitting on a log by the water
M2

SCST (S): an older person sitting on a log near the water

GT : two girls in a library seated at a table cutting large brown paper,
girls sitting in a library cutting brown paper,
two girls working on a project in the library,
a couple of girls cutting paper with some scissors,
two teenaged girls sitting in armchairs at a public library and cutting sheets of
craft paper with scissorsM2: two girls sitting on chairs in a library
M2 (S): two young children sitting together in a library
M2

SCST : two girls sitting in chairs in a library
M2

SCST (S): two children sitting in chairs in a library

GT : a young man standing next to a race car with the red sox logo on it ’s hood,
a young boy standing in front of a sponsored car,
a man standing near a red sox nascar,
a young boy standing by a red sox car wearing red sox shirt and visor,
a young man standing next to a racecar on a display lot
M2: a young boy wearing a red hat standing in front of a car
M2 (S): a young child standing in front of a car
M2

SCST : a young boy is standing next to a car
M2

SCST (S): a young child standing next to a police car

GT : a low flying commercial plane passing tall buildings,
an airplane is flying in the sky beyond some skyscrapers,
a jetliner flying low as viewed between two skyscrapers,
an airplane is seen in the air between two buildings,
an airplane flying pass building and a bank building
M2: a large jetliner flying over a tall building
M2 (S): a large airplane flying over a city skyline
M2

SCST : a large jetliner flying over a tall building
M2

SCST (S): a large airplane flying over a city skyline

Figure 8: Substitutivity: examples of generated captions from images in the substitutivity test.
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Abstract

Discourse information is difficult to represent
and annotate. Among the major frameworks for
annotating discourse information, RST, PDTB
and SDRT are widely discussed and used, each
having its own theoretical foundation and fo-
cus. Corpora annotated under different frame-
works vary considerably. To make better use of
the existing discourse corpora and achieve the
possible synergy of different frameworks, it is
worthwhile to investigate the systematic rela-
tions between different frameworks and devise
methods of unifying the frameworks. Although
the issue of framework unification has been
a topic of discussion for a long time, there is
currently no comprehensive approach which
considers unifying both discourse structure and
discourse relations and evaluates the unified
framework intrinsically and extrinsically. We
plan to use automatic means for the unification
task and evaluate the result with structural com-
plexity and downstream tasks. We will also ex-
plore the application of the unified framework
in multi-task learning and graphical models.

1 Introduction

A text is not a simple collection of isolated sen-
tences. These sentences generally appear in a
certain order and are connected with each other
through logical or semantic means to form a co-
herent whole. In recent years, modelling beyond
the sentence level is attracting more attention, and
different natural language processing (NLP) tasks
use discourse-aware models to obtain better perfor-
mance, such as sentiment analysis (Bhatia et al.,
2015), automatic essay scoring (Nadeem et al.,
2019), machine translation (Sim Smith, 2017), text
summarization (Xu et al., 2020) and so on.

As discourse information typically involves the
interaction of different levels of linguistic phenom-
ena, including syntax, semantics, pragmatics and
information structure, it is difficult to represent
and annotate. Different discourse theories and dis-

course annotation frameworks have been proposed.
Accordingly, discourse corpora annotated under
different frameworks show considerable variation,
and a corpus can be hardly used together with an-
other corpus for natural language processing (NLP)
tasks or discourse analysis in linguistics. Discourse
parsing is a task of uncovering the underlying struc-
ture of text organization, and deep-learning based
approaches are used in recent years. However, dis-
course annotation takes the whole document as the
basic unit and is a laborious task. To boost the
performance of neural models, we typically need a
large amount of data.

Due to the above issues, the unification of dis-
course annotation frameworks has been a topic of
discussion for a long time. Researchers have pro-
posed varied methods to unify discourse relations
and debated over whether trees are a good repre-
sentation of discourse (Egg and Redeker, 2010;
Lee et al., 2008; Wolf and Gibson, 2005). How-
ever, existing research either focuses on mapping
or unifying discourse relations of different frame-
works (Bunt and Prasad, 2016; Benamara and
Taboada, 2015; Sanders et al., 2018; Demberg et al.,
2019), or on finding a common discourse struc-
ture (Yi et al., 2021), without giving sufficient at-
tention to the issue of relation mapping. There
is still no comprehensive approach that considers
unifying both discourse structure and discourse re-
lations.

Another approach to tackling the task is to use
multi-task learning so that information from a dis-
course corpus annotated under one framework can
be used to solve a task in another framework,
thus achieving synergy between different frame-
works. However, existing studies adopting this
method (Liu et al., 2016; Braud et al., 2016) do not
show significant performance gain by incorporating
a part of discourse information from a corpus anno-
tated under a different framework. How to leverage
discourse information from different frameworks
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remains a challenge.
Discourse information may be used in down-

stream tasks. Huang and Kurohashi (2021) and Xu
et al. (2020) use both coreference relations and
discourse relations for text summarization with
graph neural networks (GNNs). The ablation study
by Huang and Kurohashi (2021) shows that using
coreference relations only brings little performance
improvement but incorporating discourse relations
achieves the highest performance gain. While dif-
ferent kinds of discourse information can be used,
how to encode different types of discourse infor-
mation to improve discourse-awareness of neural
models is a topic that merits further investigation.

The above challenges motivate our research on
unifying different discourse annotation frameworks.
We will focus on the following research questions:

RQ1: Which structure can be used to represent
discourse in the unified framework?

RQ2: What properties of different frameworks
should be kept and what properties should be ig-
nored in the unification?

RQ3: How can entity-based models and lexical-
based models be incorporated into the unified
framework?

RQ4: How can the unified framework be evalu-
ated?

The first three questions are closely related to
each other. Automatic means will be used, although
we do not preclude semi-automatic means, as ex-
emplified by Yi et al. (2021). We will start with the
methods suggested by existing research and focus
on the challenges of incorporating different kinds
of discourse information in multi-task learning and
graphical models.

The unified framework can be used for the fol-
lowing purposes:

1. A corpus annotated under one framework can
be used jointly with another corpus annotated
under a different framework to augment data,
for developing discourse parsing models or
for discourse analysis. We can train a dis-
course parser on a corpus annotated under one
framework and compare its performance with
the case when it is trained on augmented data,
similar to Yi et al. (2021).

2. Each framework has its own theoretical foun-
dation and focus. A unified framework may
have the potential of combining the strengths
of different frameworks. Experiments can

be done with multi-task learning so that dis-
course parsing tasks of different frameworks
can be solved jointly. We can also investi-
gate how to enable GNNs to better capture
different kinds of discourse information.

3. A unified framework may provide a common
ground for exploring the relations of different
frameworks and validating annotation consis-
tency of a corpus. We can perform compar-
ative corpus analysis and obtain new under-
standing of how information expressed in one
framework is conveyed in another framework,
thus validating corpus annotation consistency
and finding some clues for solving problems
in a framework with signals from another
framework, similar to Poláková et al. (2017)
and Bourgonje and Zolotarenko (2019).

2 Related Work

2.1 An Overview of Discourse Theories

A number of discourse theories have been pro-
posed. The theory by Grosz and Sidner (1986)
is one of those earlier few whose linguistic claims
about discourse are also computationally signifi-
cant (Mann and Thompson, 1987). With this theory,
it is believed that discourse structure is composed
of three separated but interrelated components: lin-
guistic structure, intentional structure and atten-
tional structure. The linguistic structure focuses
on cue phrases and discourse segmentation. The
intentional structure mainly deals with why a dis-
course is performed (discourse purpose) and how
a segment contributes to the overall discourse pur-
pose (discourse segment purpose). The attentional
structure is not related to the discourse participants,
and it records the objects, properties and relations
that are salient at each point in discourse. These
three aspects capture discourse phenomena in a sys-
tematic way, and other discourse theories may be
related to this theory in some way. For instance,
the Centering Theory (Grosz et al., 1995) and the
entity-grid model (Barzilay and Lapata, 2008) fo-
cus on the attentional structure, and the Rhetori-
cal Structure Theory (RST) (Mann and Thompson,
1988) focuses on the intentional structure.

The theory proposed by Halliday and Hasan
(1976) studies how various lexical means are used
to achieve cohesion, these lexical means including
reference, substitution, ellipsis, lexical cohesion
and conjunction. Cohesion realized through the
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first four lexical means is in essence anaphoric de-
pendency and conjunction is the only source of dis-
course relation under this theory (Webber, 2006).

The other discourse theories can be divided into
two broad types: relation-based discourse theories
and entity-based discourse theories (Jurafsky and
Martin, 2018). The former studies how coherence
is achieved with discourse relations and the latter
focuses on local coherence achieved through shift
of focus, which abstracts a text into a set of entity
transition sequences (Barzilay and Lapata, 2008).

RST is one of the most influential relation-based
discourse theories. The RST Discourse Treebank
(RST-DT) (Carlson et al., 2001) is annotated based
on this theory. In the RST framework, discourse
can be represented by a tree structure whose leaves
are Elementary Discourse Units (EDUs), typically
clauses, and whose non-terminals are adjacent
spans linked by discourse relations. The discourse
relations can be symmetric or asymmetric, the for-
mer being characterized by equally important spans
connected in parallel, and the latter typically having
a nucleus and a satellite, which are assigned based
on their importance in conveying the intended ef-
fects. An RST tree is built recursively by con-
necting the adjacent discourse units, forming a hi-
erarchical structure covering the whole text. An
example of RST discourse trees can be seen in
Figure 1.

Another influential framework is the Penn Dis-
course Treebank (PDTB) framework, which is rep-
resented by the Penn Discourse Treebank (Prasad
et al., 2008, 2018). Unlike the RST framework, the
PDTB framework does not aim at achieving com-
plete annotation of the text but focuses on local
discourse relations anchored by structural connec-
tives or discourse adverbials. When there are no
explicit connectives, the annotators will read ad-
jacent sentences and decide if a connective can
be inserted to express the relation. The annota-
tion is not committed to a specific structure at the
higher level. PDTB 3.0 adopts a three-layer sense
hierarchy, including four general categories called
classes at the highest level, the middle layer be-
ing more specific divisions, which are called types,
and the lowest layer containing directionality of
the arguments, called subtypes. An example of the
PDTB-style annotation is shown as follows (Prasad
et al., 2019):

The Soviet insisted that aircraft be brought into
the talks,(implicit=but){arg2-as-denier} then ar-

gued for exempting some 4,000 Russian planes
because they are solely defensive.

The first argument is shown in italics and the sec-
ond argument is shown in bold font for distinction.
As the discourse relation is implicit, the annotator
adds a connective that is considered to be suitable
for the context.

The Segmented Discourse Representation The-
ory (SDRT) (Asher and Lascarides, 2003) is based
on the Discourse Representation Theory (Kamp
and Reyle, 1993), with discourse relations added,
and discourse structure is represented with directed
acyclic graphs (DAGs). Elementary discourse units
may be combined recursively to form a complex
discourse unit (CDU), which can be linked with
another EDU or CDU (Asher et al., 2017). The set
of discourse relations developed in this framework
overlap partly with those in the RST framework but
some are motivated from pragmatic and semantic
considerations. In Asher and Lascarides (2003),
a precise dynamic semantic interpretation of the
rhetorical relations is defined. An example of dis-
course representation in the SDRT framework is
shown in Figure 2, which illustrates that the SDRT
framework provides full annotation, similar to the
RST framework, and it assumes a hierarchical struc-
ture of text organization. The vertical arrow-headed
lines represent subordinate relations, and the hor-
izontal lines represent coordinate relations. The
textual units in solid-line boxes are EDUs and π'
and π'' represent CDUs. The relations are shown
in bold.

2.2 Research on Relations between Different
Frameworks

The correlation between different frameworks has
been a topic of interest for a long time. Some stud-
ies explore how different frameworks are related,
either in discourse structures or in relation sets.
Some studies take a step further and try to map the
relation sets of different frameworks.

2.2.1 Comparison/unification of discourse
structures of different frameworks

Stede et al. (2016) investigate the relations between
RST, SDRT and argumentation structure. For the
purpose of comparing the three layers of annota-
tion, the EDU segmentation in RST and SDRT is
harmonized, and an “argumentatively empty” JOIN
relation is introduced to address the issue that the
basic unit of the argumentation structure is coarser
than the other two layers. The annotations are con-
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Figure 1: An RST discourse tree, originally from Marcu (2000a).

a. Max had a great evening last night.

Elaboration

π'

b. He had a great meal. e. He then won a dancing competition.
Narration

Elaboration

π''

c. He ate salmon. d. He devoured lots of cheese.
Narration

Figure 2: SDRT representation of the text a. Max had a great
evening last night. b. He had a great meal. c. He ate salmon.
d. He devoured lots of cheese. e. He then won a dancing
competition. The example is taken from Asher and Lascarides
(2003).

verted to a common dependency graph format for
calculating correlations. To transform RST trees to
the dependency structure, the method introduced
by Li et al. (2014) is used. The RST trees are bina-
rized and the left-most EDU is treated as the head.
In the transformation of the SDRT graphs to the
dependency structure, the CDUs are simplified by
a head replacement strategy. The authors compare
the dependency graphs in terms of common edges
and common connected components. The relations
of the argumentation structure are compared with
those of RST and SDRT, respectively, through a co-
occurrence matrix. Their research shows the sys-
tematic relations between the argumentation struc-
ture and the two discourse annotation frameworks.
The purpose is to investigate if discourse parsing
can contribute to automatic argumentation analysis.
The authors exclude the PDTB framework because
it does not provide full discourse annotation.

Yi et al. (2021) try to unify two Chinese dis-
course corpora annotated under the PDTB frame-
work and the RST framework, respectively, with

a corpus annotated under the dependency frame-
work. They use semi-automatic means to transform
the corpora to the discourse dependency structure
which is presented in Li et al. (2014). Their work
shows that the major difficulty is the transforma-
tion from the PDTB framework to the discourse de-
pendency structure, which requires re-segmenting
texts and complementing some relations to con-
struct complete dependency trees. They use the
same method as Stede et al. (2016) to transform
the RST trees to the dependency structure. Details
about relation mapping across the frameworks are
not given.

2.2.2 Comparison/unification of discourse
relations of different frameworks

The methods of mapping discourse relations of
different frameworks presented by Scheffler and
Stede (2016), Demberg et al. (2019) and Bourgonje
and Zolotarenko (2019) are empirically grounded.
The main approach is to make use of the same texts
annotated under different frameworks.

Scheffler and Stede (2016) focus on mapping
between explicit PDTB discourse connectives and
RST rhetorical relations. The Potsdam Commen-
tary Corpus (Stede and Neumann, 2014), which
contains annotations under both frameworks, is
used. It is found that the majority of the PDTB con-
nectives in the corpus match exactly one RST re-
lation and mismatches are caused by different seg-
ment definitions and focuses, i.e., PDTB focuses
on local/lexicalized relations and RST focuses on
global structural relations.

As the Potsdam Commentary Corpus only con-
tains explicit relations under the PDTB frame-
work, Bourgonje and Zolotarenko (2019) try to
induce implicit relations from the corresponding
RST annotation. Since RST trees are hierarchi-
cal and the PDTB annotation is shallow, RST re-
lations that connect complex spans are discarded.
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Moreover, because the arguments of explicit and
implicit relations under the PDTB framework are
determined based on different criteria, only RST
relations that are signalled explicitly are considered
in the experiment. It is shown that differences in
segmentation and partially overlapping relations
pose challenges for the task.

Demberg et al. (2019) propose a method of map-
ping RST and PDTB relations. Since the number
of PDTB relations is much smaller than that of
RST relations for the same text, the PDTB rela-
tions are used as the starting point for the mapping.
They aim for mapping as many relations as possi-
ble while making sure that the relations connect
the same segments. Six cases are identified: direct
mapping, which is the easiest case; when PDTB ar-
guments are non-adjacent, the Strong Composition-
ality hypothesis (Marcu, 2000b) (i.e., if a relation
holds between two textual spans, that relation also
holds between the most important units of the con-
stituent spans) is used to check if there is a match
when the complex span of an RST relation is traced
along the nucleus path to its nucleus EDU; in the
case of multi-nuclear relations, it is checked if a
PDTB argument can be traced to the nucleus of
the RST relation along the nucleus path; the mis-
match caused by different segmentation granularity
is considered innately unalignable and discarded;
centrally embedded EDUs in RST-DT are treated
as a whole and compared with an argument of the
PDTB relation; and the PDTB ENTREL relation
is included to test its correlation with some RST
relations that tend to be associated with cohesion.

Other studies are more theoretical. Hovy (1990)
is the first to attempt to unify discourse relations
proposed by researchers from different areas and
suggests adopting a hierarchy of relations, with the
top level being more general (from the functional
perspective: ideational, interpersonal and textual)
and putting no restrictions on adding fine-grained
relations, as long as they can be subsumed under ex-
isting taxonomy. The number of researchers who
propose a specific relation is taken as a vote of
confidence of the relation in the taxonomy. The
study serves as a starting point for research in this
direction. There are a few other proposals for uni-
fying discourse relations of different frameworks
to facilitate cross-framework discourse analysis,
including: introducing a hierarchy of discourse
relations, similar to Hovy (1990), where the top
level is general and fixed, and the lowest level is

more specific and allows variations based on genre
and language (Benamara and Taboada, 2015), find-
ing some dimensions based on cognitive evidence
where the relations can be compared with each
other and re-grouped (Sanders et al., 2018), and
formulating a set of core relations that are shared
by existing frameworks but are open and extensible
in use, with the outcome being ISO-DR-Core (Bunt
and Prasad, 2016). When the PDTB sense hierar-
chy is mapped to the ISO-DR-Core, it is found that
the directionality of relations cannot be captured by
the existing ISO-DR-Core relations and it remains
a question whether to extend the ISO-DR-Core re-
lations or to redefine the PDTB relations so that the
directionality of arguments can be captured (Prasad
et al., 2018).

3 Research Plan

RST-DT is annotated on texts from the Penn Tree-
bank (Marcus et al., 1993) that have also been an-
notated in PDTB. The texts are formally written
Wall Street Journal articles. The English corpora
annotated under the SDRT framework, i.e., the
STAC corpus (Asher et al., 2016) and the Molweni
corpus (Li et al., 2020), are created for analyzing
multi-party dialogues, making it difficult to be used
together with the other two corpora. Therefore, in
addition to RST-DT and PDTB 3.0, we will use
the ANNODIS corpus (Péry-Woodley et al., 2009),
which consists of formally written French texts.
We will first translate the texts into English with an
MT system and then manually check the translated
texts to reduce errors.

In the following, the research questions and the
approach in our plan will be discussed. These ques-
tions are closely related to each other and the re-
search on one question is likely to influence how
the other questions should be addressed. They are
presented separately just for easier description.

RQ1: Which structure can be used to represent
discourse in the unified framework?

Although there is a lack of consensus on how to
represent discourse structure, in a number of stud-
ies, the dependency structure is taken as a common
structure that the other structures can be converted
to (Muller et al., 2012; Hirao et al., 2013; Venant
et al., 2013; Li et al., 2014; Yoshida et al., 2014;
Stede et al., 2016; Morey et al., 2018; Yi et al.,
2021). This choice is mainly inspired by research
in the field of syntax, where the dependency gram-
mar is better studied and its computational and
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representational properties are well-understood1.
The research by Venant et al. (2013) provides a
common language for comparing discourse struc-
tures of different formalisms, which is used in the
transformation procedure presented by Stede et al.
(2016). Another possibility is the constrained di-
rected acyclic graph introduced by Danlos (2004).
While Venant et al. (2013) focus on the expressiv-
ity of different structures, the constrained DAG is
motivated from the perspective of strong genera-
tive capacity (Danlos, 2008). Although neither of
the studies deals with the PDTB framework, since
they are both semantically driven, we believe it is
possible to deal with the PDTB framework using
either of the two structures. We will start with the
investigation of the two structures.

Another issue is how to maintain one-to-one cor-
respondence during the transformation of the orig-
inal structure and the unified structure back and
forth. As indicated by Stede et al. (2016), the trans-
formation from the RST or SDRT structures into
dependency structures always produces the same
structure, but going back to the initial RST or SDRT
structures is ambiguous. Morey et al. (2018) intro-
duces head-ordered dependency trees in syntactic
parsing (Fernández-González and Martins, 2015)
to reduce the ambiguity. We may start with a simi-
lar method.

As is clear from Section 2, using the dependency
structure as a common ground for studying the re-
lations between different frameworks is not new in
existing literature, but comparing the RST, PDTB
and SDRT frameworks with this method has not
yet been done. This approach will be our starting
point, and the suitability of the dependency struc-
ture in representing discourse will be investigated
empirically. The SciDTB corpus (Yang and Li,
2018), which is annotated under the dependency
framework, will be used for this purpose.

RQ2:2 What properties of different frameworks
should be kept and what properties should be ig-
nored in the unification?

We present a non-exhaustive list of properties,
which we consider to have considerable influence
on the unified discourse structure.

1. Nuclearity: Marcu (1996) uses the nuclear-
ity principle as the foundation for a formal
treatment of compositionality in RST, which

1In communication with Bonnie Webber, January, 2022.
2In communication with Bonnie Webber, January, 2022.

We thank her for pointing out this aspect.

means that two adjacent spans can be joined
into a larger span by a rhetorical relation if and
only if the relation holds between the most
salient units of those spans. This assumption
is criticized by Stede (2008). The remedy pro-
vided by Stede (2008) is to separate different
levels of discourse information, which is in
line with the suggestions in Knott et al. (2000)
and Moore and Pollack (1992). Our strategy
is to keep this property in the initial stage of
experimentation. The existing methods for
transforming RST trees to dependency struc-
ture (Hirao et al., 2013; Li et al., 2014) rely
heavily on the nuclearity principle and we will
use these methods in the transformation and
see what kinds of problems this procedure will
cause, particularly with respect to the PDTB
framework, which does not enforce a hierar-
chical structure for complete coverage of the
text.

2. Sentence-boundedness: The RST framework
does not enforce well-formed discourse sub-
trees for each sentence. However, it is found
that 95% of the discourse parse trees in RST-
DT have well-formed sub-trees at the sen-
tence level (Soricut and Marcu, 2003). For
the PDTB framework, there is no restriction
on how far an argument can be from its cor-
responding connective: it can be in the same
sentence as the connective, in the sentence
immediately preceding that of the connec-
tive, or in some non-adjacent sentence (Prasad
et al., 2006). Moreover, the arguments are de-
termined based on the Minimality Principle,
which means that clauses and/or sentences
that are minimally required for the interpreta-
tion of the relation should be included in the
argument, and other spans that are relevant
but not necessary can be annotated as supple-
mentary information, which is labeled depend-
ing on which argument it is supplementary
to (Prasad et al., 2008). The SDRT framework
developed in Asher and Lascarides (2003)
does not specify the basic discourse unit, but
in the annotation of the ANNODIS corpus,
EDU segmentation follows similar principles
as RST-DT. The formation of CDU and the at-
tachment of relations are where SDRT differs
significantly from RST. A segment can be at-
tached to another segment from the same sen-
tence, the same paragraph or a larger context,
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and by one or possibly more relations. A CDU
can be of any size and can have segments that
are far apart in the text, and relations may be
annotated within the CDU3.

The differences in the criteria on location and
extent for basic discourse unit identification
and relation labeling of the RST framework
and the PDTB framework may be partly at-
tributed to different annotation procedures. In
RST, EDU segmentation is performed first
and EDU linking and relation labelling are
performed later. The balance between consis-
tency and granularity is the major concern be-
hind the strategy for EDU segmentation (Carl-
son et al., 2001). In contrast, in PDTB, the
connectives are identified first, and their argu-
ments are determined afterwards. Semantic
relatedness is given greater weight and the
location and extent of the arguments can be
determined more flexibly. On the whole, nei-
ther SDRT nor PDTB shows any tendency
of sentence-boundedness. We will investi-
gate to what extent the tendency of sentence-
boundedness complicates the unification and
what the consequences are if entity-based
models and lexical-based models are incor-
porated.

3. Multi-sense annotation: As shown above,
SDRT and PDTB allow multi-sense annota-
tion while RST only allows one relation to
be labeled. The single-sense constraint ac-
tually gives rise to ambiguity because of the
multi-faceted nature of local coherence (Stede,
2008). For the unification task, we assume
that multi-sense annotation is useful. How-
ever, we agree with the view mentioned
in Stede (2008) that incrementally adding
more relations as phenomena are being rec-
ognized is not a promising direction. There
are two possible approaches: one is to sepa-
rate different dimensions of discourse infor-
mation (Stede, 2008) and the other is to rep-
resent different kinds of discourse informa-
tion simultaneously, similar to the approach
adopted in Knott et al. (2000). While multi-
level annotation may reveal the interaction
between discourse and other linguistic phe-

3See section 3 of the ANNODIS annotation manual,
available through http://w3.erss.univ-tlse2.
fr/textes/publications/CarnetsGrammaire/
carnGram21.pdf

nomena, it is less helpful for developing a
discourse parser and requires more efforts in
annotation. The second approach may be con-
ducive to computationally cheaper discourse
processing when proper constraints are intro-
duced.

RQ3: How can entity-based models and lexical-
based models be incorporated into the unified
framework?

The PDTB framework believes that lexical-
based discourse relations are associated with
anaphoric dependency, which is anchored by dis-
course adverbials (Webber et al., 2003) and anno-
tated as a type of explicit relations. As for entity-
based relations, PDTB uses the ENTREL label to
annotate this type of relations when neither explicit
nor implicit relations can be identified and only
entity-based coherence relations are present. In the
RST framework, the ELABORATION relation is
actually a relation between entities. However, it
is encoded in the same way as the other relations
between propositions, which bedevils the frame-
work (Knott et al., 2000). Further empirical studies
may be needed to identify how different frame-
works represent these different kinds of discourse
information. The main challenge is to use a rela-
tively simple structure to represent different types
of discourse information while keeping the com-
plexity relatively low.

RQ4: How can the unified framework be evalu-
ated?

We will use intrinsic evaluation to assess the
complexity of the discourse structure.

Extrinsic evaluation will be used to assess the
effectiveness of the unified framework. The down-
stream tasks in the extrinsic evaluation include
text summarization and document discrimination,
which are two typical tasks for evaluating discourse
models. The document discrimination task asks a
score of coherence to be assigned to a document.
The originally written document is considered to be
the most coherent, and with more permutations, the
document becomes less coherent. For comparison
with previous studies, we will use the CNN and
Dailymail dataset (Hermann et al., 2015) for the
text summarization task, and use the method and
dataset4 in Shen et al. (2021) to control the degree
of coherence for the document discrimination task.

4https://github.com/AiliAili/
Coherence_Modelling
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Previous studies that use multi-task learning and
GNNs to encode different types of discourse infor-
mation will be re-investigated to test the effective-
ness of the unified framework.

As we may have to ignore some properties, we
will examine what might be lost with the unified
framework.

4 Conclusion

We propose to unify the RST, PDTB and SDRT
frameworks, which may enable discourse corpora
annotated under different frameworks to be used
jointly and achieve the potential synergy of dif-
ferent frameworks. The major challenges include
determining which structure to use in the unified
framework, choosing what properties to keep and
what to ignore, and incorporating entity-based mod-
els and lexical-based models into the unified frame-
work. We will start with existing research and try
to find a computationally less expensive way for
the task. Extensive experiments will be conducted
to investigate how effective the unified framework
is and how it can be used. An empirical evaluation
of what might be lost through the unification will
be performed.
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Abstract

Alignment between concepts in an abstract
meaning representation (AMR) graph and the
words within a sentence is one of the impor-
tant stages of AMR parsing. Although there
exist high performing AMR aligners for En-
glish, unfortunately, these are not well suited
for many languages where many concepts ap-
pear from morpho-semantic elements. For the
first time in the literature, this paper presents
an AMR aligner tailored for morphologically-
rich and pro-drop languages by experimenting
on the Turkish language being a prominent ex-
ample of this language group. Our aligner fo-
cuses on the meaning considering the rich Turk-
ish morphology and aligns AMR concepts that
emerge from morphemes using a tree traversal
approach without additional resources or rules.
We evaluate our aligner over a manually anno-
tated gold data set. Our aligner outperforms
the Turkish adaptations of the previously pro-
posed aligners for English and Portuguese by
an F1 score of 0.87 and provides a relative error
reduction of up to 76%.

1 Introduction

AMR (Banarescu et al., 2013) is a semantic formal-
ism that represents sentence meaning as directed
graphs. The nodes in the graphs represent the con-
cepts in the sentence, and the edges show the rela-
tions between the concepts. The purpose of AMR
is to abstract sentence meaning from syntactic fea-
tures. It gathers the semantic aspects of the sen-
tence (semantic roles, time concepts, entity names,
etc.) under a formalism and focuses on the sen-
tence’s meaning. Words that do not contribute to
meaning and some syntactic features (tenses, pas-
sive voice, etc.) are not shown in AMR graphs.

With its increasing popularity in recent years,
AMR has attracted the attention of many re-
searchers (Žabokrtskỳ et al., 2020; Bos, 2016) and
has been used in several applications such as text
generation (Wang et al., 2020; Mager et al., 2020;

Zhao et al., 2020; Fan and Gardent, 2020), text sum-
marization (Dohare et al., 2017; Liu et al., 2018a;
Liao et al., 2018), event extraction (Huang et al.,
2016; Li et al., 2020). An important branch of this
research is AMR parsing. Most parsing studies
require an alignment between graph nodes and sen-
tence concepts to create the training set for convert-
ing sentences to AMR graphs (Flanigan et al., 2014;
Wang et al., 2015; Zhou et al., 2016). Many studies
in the literature have reported that the alignment
process greatly affects the parsing performance and
has offered different solutions for the alignment
process (Flanigan et al., 2014; Liu et al., 2018b;
Pourdamghani et al., 2014; Anchiêta and Pardo,
2020). Lyu and Titov (2018) use alignments as
latent variables during parsing, while Konstas et al.
(2017); Zhang et al. (2019) could be given as an
example study which does not require an alignment
stage before parsing. However, since in these stud-
ies the learning process requires large amounts of
sentence-AMR graph pairs, it is hard to apply them
directly to a resource-poor languages.

The popular approaches in the literature for au-
tomatic AMR alignment aim to match concepts
(either with fuzzy or semantic match) with the
word lemmas with the help of a rule list. Although
these approaches seem to be suitable for English,
they do not perform well on languages with dif-
ferent characteristics (Anchiêta and Pardo, 2020).
Morphologically-rich and pro-drop languages pose
interesting challenges for AMR alignment as well
as other NLP tasks. In these languages, many
concepts appear from morpho-semantic elements
rather than the entire word surface-form, yielding
multiple concepts from a single word. In this pa-
per, we introduce an AMR aligner for Turkish, a
morphologically-rich and pro-drop language. Our
alignment strategy handles concepts that emerge
from the morphemes without the need for any ex-
tension of external resources or rules. Differing
from the literature, with this approach, instead of
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looking for a match over the rule list, we use a
two-stage strategy: we first map words to lexi-
cal concepts by using a similarity measure, and
then navigate through the nodes over these matches,
aligning the remaining concepts (i.e., abstract and
morphology-based concepts) that do not have a
word correspondence in the sentence. We evaluate
our approach on manually annotated sentences ran-
domly selected from IMST (Sulubacak et al., 2016)
using the same evaluation methods from Flanigan
et al. (2014). The results show that the proposed
alignment strategy performs better for Turkish than
the existing approaches originally proposed for En-
glish and Portuguese. The aligner will be available
for researchers in GitHub 1.

The paper is organized as follows: Section 2
provides alignment fundamentals and briefly repre-
sents the related studies from the literature. Section
3 introduces the aligner and Section 4 gives the
evaluation. Finally, 5 provides the conclusion.

2 Background and Related Work

In AMR parsing, although the parser takes sen-
tences as input and produces AMR graphs, it is
challenging to learn complete semantic representa-
tion from the sentences directly by using sentence-
AMR graph pairs. Therefore, several parsing ap-
proaches need a word-concept alignment stage to
know the semantic representation of words sepa-
rately. One should note that concepts’ names may
differ substantially (e.g., due to inflections, deriva-
tions, or semantic closeness) from the related lexi-
cal words, and it is probable that they could not be
mapped directly: for example, the word ‘desirous’
or ‘desires’ could be related to the concept name
‘desire.01’ in an AMR graph. This situation may
be even harder in morphologically rich languages,
where the character length of the inflectional af-
fixes could be longer then the length of the lemma.
Another example could be the word ‘afraid’ related
to the concept ‘fear-01’. An aligner is a tool that
maps AMR concepts to the related words within
the sentence. The outputs of the aligner are used as
input data to train the AMR parsers.

JAMR (Flanigan et al., 2014) aligner, the first
AMR aligner in the literature, is built on heuris-
tic rules and greedy search. In this method, fuzzy
matching between words and concepts is searched
using heuristic rules. The aligner moves down

1https://github.com/amr-turkish/
turkish-amr-aligner

from the first rule and looks for a fuzzy match
based on the rule currently being processed. While
some rules are applied to all nodes by traversing
the entire graph for each rule, some are only ap-
plied to some specific nodes (e.g., entity names).
The TAMR (Liu et al., 2018b) aligner is an ex-
tension of the method presented in JAMR with
emphasis on meaning. The list of JAMR rules
has been expanded with syntactic and semantic
matching, where semantic and morpho-semantic
matching are used together with fuzzy matching.
The connection between verb-invoking nouns and
their verb frames (e.g., example - exemplify) is
provided by the morphological meaning database
(Fellbaum et al., 2007). Pourdamghani et al. (2014)
used syntax-based statistical machine translation
with an unsupervised word alignment method in the
alignment approach. During the alignment, they
linearize AMR graphs with the IBM word align-
ment model (Brown et al., 1993) and map the nodes
to English sentences. Anchiêta and Pardo (2020)
presents an AMR aligner for Portuguese which
is a morphologically rich language. The authors
solve the word-concept alignment using the Word
Mover’s Distance (Kusner et al., 2015) and lexical
lists for the alignment of the abstract concepts and
entity names.

::snt The boy wants to be believed by the girl.
::alignments 1-2|0.0 2-3|0 5-6|0.1 8-9|0.1.0

(w / want-01 0
:ARG0 (b / boy) 0.0
:ARG1 (b2 / believe-01 0.1

:ARG0 (g / girl) 0.1.0
:ARG1 b))

Figure 1: Alignment format of JAMR

The alignment format adopted in the literature
is presented by JAMR, where alignment blocks
are separated with white space (Figure 1). Each
alignment block includes a word span and its graph
fragment where a pipe sign (‘|’) separates them.
Graph fragments consist of nodes represented with
their position in the AMR graphs. A root node is
located at position 0 (‘want-01’); its children take
0.x where x represents the order of the children.
For example, the first child of the root node takes
0.0 as a position indicator (‘boy’); the second takes
0.1 (‘believe-01’).
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3 The Aligner

For Turkish, an alignment approach depending only
on word-concept matching (Flanigan et al., 2014;
Liu et al., 2018b) does not fully cover all concepts.
On the other hand, unsupervised machine transla-
tion approaches (Pourdamghani et al., 2014) are
not easily applicable due to representation issues
(Oflazer and Durgar El-Kahlout, 2007) and the
need for high-volume of parallel data. In Turkish,
some of the correspondences are not present ex-
plicitly as a word, and are hidden inside the words
as morphemes (e.g., personal markers, modality
markers) due to its complex morphology and pro-
drop nature. Consider the sentences in Figure 2
“Sana geleceğimi bilebilmene şaşırdım” (I am sur-
prised that you could know that I would be coming
to you.). The lemma of the words are ‘sen’ (you),
‘gel’(come), ‘bil’ (know) and ‘şaşır’ (be shocked).
The lexical concepts related to these may be aligned
using fuzzy matching, however, the other concepts
‘ben’ (I) and mümkün.01 (possible-01)) deriving
from their suffixes could not be matched. ‘ben’
is a dropped pronoun represented with a the first
personal suffix (-m) that attach to verb lemma
‘gel’, ‘mümkün.01’ is originated from the modality
marker (-ebil).

Figure 2 shows the aligned version of the sen-
tence “Sana geleceğimi bilebilmene şaşırdım” (I
am surprised that you could know that I would be
coming to you.).

::snt Sana / geleceğimi / bilebilmene / şaşırdım
::eng to you / that I would be coming / that you
could know / I am surprised
::alignments 0-1|0.1.1 1-2|0.1.1.0 2-3|0.1.0+0.1
3-4|0+0.0

(ş / şaşır.01 0
:ARG0 (b / ben) 0.0
:ARG1 (m / mümkün.01. 0.1

:ARG1 (b2 / bil.01. 0.1.0
:ARG0 (s / sen). 0.1.1
:ARG1 (g / gel.01 0.1.1.0

:ARG0 b
:ARG4 s))))

Figure 2: AMR representation of the sentence “Sana
geleceğimi bilebilmene şaşırdım” (I am surprised that
you could know that I would be coming to you ) and its
alignment in JAMR format

To align such concepts, one alternative is to
follow the literature and expand the rule list of
JAMR (Flanigan et al., 2014) with the new rules

to handle morphology based concepts. We believe
this is not an option due to the following reasons:
(i) There may be morphemes whose meaning can
be changed according to the context. In order to
align them, their meaning should be determined
first and this needs semantic interpretation. Modal-
ity marker (-meli) is such an example and could
carry out different meanings (i.e., ‘should’ or ‘have
to’) depending on the context. (ii) There may be
morphemes that invoke predicates, and the predi-
cates invoked by the same morphemes can be dif-
ferent based on the nouns being attached. For ex-
ample, when the very productive suffix -CI (with
surface forms ci, cı, çi, çı under different vowel har-
monies) attaches to nouns, it may mean 1) ‘a person
who sells’ the item given in the noun lemma (e.g.,
‘simitçi’ is the person who sells bagels where ‘simit’
is bagel), 2) ‘a person who runs’ the item given in
the noun lemma (e.g., ‘lokantacı’ is a person who
runs a restaurant where ‘lokanta’ is restaurant) 3)
‘a person who plays’ (e.g., ‘bascı’ is a person who
plays bass guitar where ‘bas’ is bass guitar), and so
forth. Covering all possible meanings with defining
rules requires numerous rules. (iii) Construction
of a solution on top of the morphemes (i.e., align-
ing morphemes using a predefined list) requires
a preliminary morphological analysis stage. The
aligner would become very dependent on the per-
formance of the morphological analysis, and its
errors propagate throughout the alignment. Con-
sidering these, we believe that a better approach
should be proposed for the alignment of handling
morphology-based concepts.

We propose an alignment strategy which relies
on the word-concept similarity and tree traversal.
Our aligner has two steps. In the first step, it builds
a map where concepts are mapped to their word
correspondence. This mapping is done by using
similarity between pre-trained word embeddings
for the words of the sentence and the node labels
of the graph. The mapping does not necessarily in-
clude all concepts in this step: morphology derived
and abstract concepts are left unmapped. The sec-
ond step focuses on aligning all concepts. First, it
starts aligning with concept-words pairs in the map-
ping obtained in the first step. Then it aligns the
remaining concepts (i.e., morphology derived and
abstract concepts) by traversing the AMR graph
through the mapping. For each concept-word pair,
the aligner visits neighbors of the concept by fol-
lowing the heuristically determined paths, and any
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unaligned neighbors are simply added to the align-
ments for the word. Our aligner is detailed in the
following subsections: Section 3.1 and 3.2.

3.1 Similarity Mapping

The similarity mapping aims to create lemma-
concept pairs to be aligned in the next step. Our
approach is similar to TAMR in which both syntac-
tic and semantic similarities are used. However, we
do not use morpho-semantic matching from TAMR
despite Turkish being an morphologically rich lan-
guage. Since Turkish is an agglutinative language,
there is a direct link between the nouns invoking
verbs and the verb frames. Therefore, semantic
similarity can easily be used to match such nouns
and the use of extra databases is not necessary.

The mapping is started with the semantic simi-
larity calculation. A similarity score is calculated
for each lemma-concept pair in the cross of lemma
and concept set. We use Fasttext2 (Grave et al.,
2018) vectors, and empirically define threshold of
0.5 for the similarity score. Lemma-concept pairs
with similarity scores above this limit are consid-
ered ‘close’. The closest ones are matched with
each other when they satisfy the condition that the
closeness should be bi-directional. In other words,
a mapping occurs when the closest concept of a
lemma ‘A’ is B when B’s closest pair is A (Function
mapping in Algorithm 2). It should be noted the
aligner allows the lemma A to map more than one
concept since there may be cases where A should
have more than one concept as pair.

In some cases, word vectors fail to converge
words having the same stem semantically; to han-
dle them, we use syntactic similarity (mFuzzy)
since their lemmas are the same3. After these two
similarity matching processes, it is considered that
remaining words that can not be mapped to any
concept do not contribute to sentence meaning.

Similarity mapping seems straightforward; how-
ever, ellipsis makes the mapping difficult. An
elliptical construction is the omission of one or
more words that we call omitted words and their
existence may be understood from the remaining
words within the context. The AMR representa-
tion of such constructions varies across languages
(Migueles-Abraira et al., 2018; Liu et al., 2019).
Similar to (Liu et al., 2019), the omitted words
are also restored and represented with concepts in

2https://fasttext.cc/docs/en/crawl-vectors.html
3We set threshold of 0.95 for the similarity score

Turkish AMR. This results in a situation that there
may appear concepts whose correspondence words
do not exist within the sentence. We call these
concepts ‘elliptic concepts’ since they should align
with the elided words. The elliptic concepts should
be aligned with the words, but the aligned words
may change according to the ellipsis type. Gener-
ally, we align elliptic concepts with the words that
can help to understand the omitted words by seman-
tic inference: these can be either the re-occurrences
or the antecedents of the elided words. For the sake
of simplicity, we name these words infer-words.

We gather the alignment of elliptic concepts un-
der two categories: alignment with re-occurrences
and alignment with antecedents. Similarity map-
ping of the first category is straightforward since
re-occurrences can easily be matched with the el-
liptic concepts such as gapping ellipses. In the
sentence “Herkes şeker (verirdi), o çikolata verirdi.”
(Everybody would give chocolate, s/he would give
a candy.), ‘verirdi’ in parenthesis is omitted, but we
can understand its existence by the last predicate
(i.e., the infer-word). Its AMR graph has to have
two ‘ver.01’ (give) frames since two different peo-
ple perform different actions. We map both ‘ver.01’
concepts to ‘verirdi’.

The latter category deserves more attention since
the infer-words may cause ambiguity. Nominal el-
lipsis is such an example where there could exist
syntactically similar words within the same sen-
tence to the elliptic concrete concept, while the
elliptic concept should actually be aligned to some
other words (e.g., nominal adjectives) that derive
the ellipsis instead of the syntactically similar one.
This means that we need to match the concepts with
the words that are not similar neither semantically
nor syntactically, even if there exist completely
identical words within the sentence.

Figure 3a provides such an example of the align-
ment of an English sentence (“S/he preferred the
red dress over the white.”). The elliptic concept
(i.e., the second dress) is also derived from ‘dress’.
However, the morphologically-rich nature of Turk-
ish poses extra challenges in such situations since
the meaning carried by the ‘dress’ (first dress) will
be provided by the suffix ‘a’ attached to the adjec-
tive (Figure 3b). This situation yields the need of
mapping the elliptic concept to the nominal adjec-
tive.

To deal with this, we add a disambiguation (Fun-
tion disambiguation in Algorithm 2) step. Simi-
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(a) The alignment of nominal ellipsis in English. AMR
graph on the left, the words of the actual sentence on
the right. The elliptic concept ‘d2’ should be aligned
with the word ‘dress’.

(b) The alignment of nominal ellipsis in Turkish.
AMR graph on the left, the words of the actual sentence
on the right. The elliptic concept ‘e3’ should be aligned
with “beyaza” (the lemma ‘beyaz’ (white) in dative form
carrying the meaning of the dress).

Figure 3: The alignment of nominal ellipsis

larity mapping and disambiguation operate simul-
taneously. When there is more than one concept
candidate paired with a single word within the sen-
tence, a disambiguator is invoked to decide if a
removal of a concept-word match is necessary: At
this stage multiple mapping is allowed for the first
category describe above (i.e., gapping ellipsis). For
the second category (i.e., nominal ellipsis), the dis-
ambiguator reduces the possible multiple mappings
into a selected one; i.e., selects one of the candi-
dates.

The disambiguator searches for common syntac-
tic structures (i.e., modifiers of the concept-lemma
pair in focus) between the candidate concept and
lemma. However, since we do not use any extra
resources at this stage such as a dependency parser,
we make a general assumption that the modifiers
(e.g., adjectives describing a noun) would appear
on the left side of a noun in the actual sentence
word order. Although, most of the time, this as-
sumption holds for English and several other lan-
guages, where modifiers frequently precede nouns,
the direction may be changed if necessary for the
language in focus.

First, the aligner calculates an overlap score be-
tween the 1-degree neighbors of each candidate
concepts and the neighboring words in the 1-word
window of the word in focus (i.e., the focus word
to be mapped). Then, the candidate having a higher
overlap score is matched with the word in focus.
For example, possible mappings of the word in
focus ‘dress’ in the actual sentence provided in Fig-
ure 3a are the two concepts d and d2. The overlap
between the word in focus’ neighbors is the word
‘red’, which eliminates the second possible map-
ping: the white dress. As one would notice, the

introduced assumption does not have any effect in
this example since the single overlapped word is
enough for the elimination. However, when we
look to the second example (Figure 3b) in the same
figure, the 1-word window neighbor set of the word
‘elbise’ (dress) contain both the words ‘red’ and
‘white’ where our assumption helps to select the
most possible candidate concept.

3.2 Alignment Algorithm

The alignment procedure (Algorithm 1) starts
with similarity mapping (simMap) where word-
concept pairs are determined as described in the
previous section. Consider a set of words W =
{w1, w2, ..., wn} in sentence S, where n is the
number of words, the AMR graph is shown as
G = {C, V }, where C = {c1, c2, ..., cm} is the
set of concepts, and V is the relation set between
these concepts. It should be noted that concept
indexes and word indexes are not directly related
to each other. As the output of similarity map-
ping, we get a list, each element of which is also
a list (pl). This list pl contains < wj , ci > pairs
where j depicts the word-order index of the current
word within the sentence. Our aligner processes
each < wj , ci > pair and first aligns ci with wj .
Then it searches for ci’s one-edge away neighbors
to find unmatched concepts during previous stage
that need to be aligned with wj . ci is accepted as
a central node and the aligner visits its neighbors.
If a neighbor has a word pair, the aligner turns
back to ci. Otherwise the neighbor node is added
to a list of visited concepts and the aligner moves
to that node to search unmapped concepts in its
neighborhood. This recursive process stops when
there are no more mapped concepts in the neigh-
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borhood and the aligner returns to ci. Concepts
added into the visited list during neighbor search
are aligned with wj . Then, the aligner moves to
another concept-word pair and repeats the same
steps. The alignment algorithm terminates when
all pairs are processed.

Algorithm 1: Alignment Algorithm
Input: S = List(w1 . . . wn), G = (C, V )
Output: Alignments
M ← simMap(S,G)
M ← sort(M)
T ← removeReent(G)
Alignments← ∅
for j = 0 to n do

plj ←M [j]
for < wj , ci >∈ plj do

Alignments[j] ∪ {ci}
Alignments[j]∪getVisited(ci,T ,M )

end
end
Alignments←postprocess(Alignments)

Function getVisited (c, T,M ):
visited← ∅
n← NeighInAllowedPath(c, T,M)
for ni,∈ n do

if < ∀w, ni > /∈M then
visited ∪ getVisited(ni,T ,M )

end
return visited

Morphologicallly rich languages lead to frequent
reification (i.e., conversion of a role into a concept
(Banarescu et al., 2013)) situations in AMR. This
results in nested concepts. Remember the example
‘simitçi’ (the person who sells bagels) from Section
3, which produces 3 concepts: ‘person’, ‘sell.01’,
and ‘bagel’. We use the above-explained recursive
search for finding unmapped concepts within the
nested relation chains.

At the beginning of the alignment proce-
dure, we remove reentrancy4 relations (function
removeReent in the Algorithm 1) and the graphs
are transformed into trees. The reasons for this
are that (i) we aim to align words whose align-
ments are graph fragments, and reentrancy connec-
tions appear on the linguistic phenomena such as
co-reference, coordination, repetition, etc. (Blod-

4A single word in a sentence might be argument of more
than one predicate. This is called reentrancy (Banarescu et al.,
2013) in AMR.

gett and Schneider, 2021) rather than morphology-
based ones where such graph fragments emerge.
Therefore, we assume that the graph fragments do
not include reentrancy connections. (ii) the ma-
jority of the reentrancy relations come from the
personal suffixes whose concepts are mostly mor-
phology originated. In figure 2, the concept ‘ben’
comes from the personal suffix -Im and can be
aligned with ‘geleceğimi’ or ‘şaşırdım’, both align-
ments are correct. Since one of them is enough for
the aligner to be used in concept generation as the
first stage of parsing, we ignore the reentrancy con-
nections during the alignment to be handled later
during parsing.

Our aligner greedily searches neighbor nodes
and the ordering of the concepts in the mapping
list (M) is crucial for our aligner. The unmapped
morphology-based concepts should be reached
from their children nodes first since they tend
to appear on top of the lexical concepts in the
AMR graph. In order to ensure this, we add a
sorting (sort) operation which moves the predi-
cate concepts to the end of the mapping list to
ensure that they are handled later than the leaf
nodes. Moreover, we put constraints to force the
aligner to visit neighbor nodes only in allowed
path (NeighInAllowedPath) so that some nodes
are reachable only via specified relations. These
constraints guarantee the alignment of the abstract
concepts of AMR. For instance, ‘-quantity’ con-
cepts are only reachable over the relations :unit
and :value. The constraints are taken from JAMR
rules responsible for alignments of abstract con-
cepts.

Up to this stage, the aligner produces alignments
for words. However, in order to produce align-
ments for word spans (e.g., named entities, redu-
plications, multi-word expressions), we need an
additional stage to combine some words and their
alignments. Therefore, we use a two stage post-
processing step: The first stage focuses on the
alignment of named entities: it unifies the align-
ment of consecutive words which were initially
aligned to some concepts connected to the same
‘name’5 concept. In other words, consecutive words
are merged into word spans, and their related con-
cepts are also merged similarly for named entities.

5In AMR, the abstract ‘name’ concept is used for repre-
senting the named entities.
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Algorithm 2: Similarity Mapping Algo-
rithm (simMap)

Input: S = List(w1 . . . wn), G = (C, V ),
wv, t

Output: M
sim← n×m, M← ∅
for j = 0 to n do

wj ← S[j]
vwj ← wv(wj)
for ci ∈ C do

vci ← wv(ci)
if CosSim(vwj ,vci) ≥ t then

sim[wj][ci]←CosSim(vwj ,vci)
else if mFuzzy(vwj ,vci ≥ 0.95 then

sim[wj][ci]←mFuzzy(vwj ,vci)
end

end
for j = 0 to n do

concepts← mapping(sim,S,j,G)
for each ci in concepts do

M[j] ∪{< S[j], ci >}
end

end
Function mapping (sim,S,j,G)

wj ← S[j]
s←max(sim[wj])
for cl ∈ C do

wk ←argmax(sim[:,cl])
if wk = wj then

cands ∪ {cl} if s =sim[wk,cl]
end
if length(cands) ≥ 2 then

cands←
disambugate(cands,S,j,G)

end
return cands

Function disambugate (candidates,S,i,G)
max← 0, v← ∅
for each c in candidates do

if c is verb frame then
return candidates

else
children← getChildren(c,G)
prev← {S[i− 1]}
next← {S[i+ 1]}
parents← getParent(c,G)
overlap← { prev ∩ children } ∪

{ next ∩ parents }
if length(overlap)≥ max then

v← candidate
max← length(overlap)

end
end

end
return { v }

The second stage focuses on multi-word ex-
pressions (i.e., idioms) and reduplications 6. The
previous stages can only align one word of such
constructions, and the other words in the expres-
sion or reduplication remain unaligned. The post-
processor checks each unaligned word within a
sentence and creates word spans by combining
them with their consecutive neighbours whose re-
lated concept name includes the unaligned word’s
lemma. For the languages which do not have these
phenomena, this latter post processing steps could
be omitted.

4 Experiments and Results

In order to evaluate the performance of our aligner,
we randomly choose 100 sentences from a Turkish
AMR corpus (Oral et al., 2022). and manually align
the concepts of the AMR graphs with the words
within sentences.7

Following the same evaluation method used in
JAMR8, we compare our aligner with TAMR (Liu
et al., 2018b), JAMR (Flanigan et al., 2014) , and
Portuguese-Aligner (shortly, PrAMR) (Anchiêta
and Pardo, 2020). We adapt these aligners to Turk-
ish. The predefined dictionaries such as months,
conjunctions, etc., are replaced with their Turkish
counterparts, and Fasttext is used in TAMR and
PrAMR. We set similarity thresholds as 0.5 and 1.5
respectively. Since PrAMR uses lexical lists for
named entities, we localized these as far as possible
via a Portuguese to Turkish translator and adding
additional Turkish gazetteers. Table 1 shows the re-
sults. Our aligner achieves an F1-score of 87% and
outperforms the other aligners developed for En-
glish and Portuguese. Although TAMR and JAMR
have a precision score relatively close to our aligner,
they fall far behind the F1 score due to their low re-
calls. The recalls obviously show that the proposed
methods for alignment fail to align around half of
the concepts; these are the concepts derived from
morphology. Furthermore, the alignment approach
with Word Mover’s Distance (PrAMR) has poorer
performance than the fuzzy matching.

We design another experiment to evaluate our ap-
6Reduplication is the repetition of a word or part of a word

(Göksel and Kerslake, 2004).
7The alignment gold set was annotated by one of the au-

thors in two iterations. In the first iteration, the alignments
were built from scratch. In the second iteration, the same
annotator checked the correctness of the alignments, and the
ones having alignment mistakes were corrected.

8https://github.com/jflanigan/jamr/blob/Semeval-
2016/src/EvalSpans.scala
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Output P R F1
JAMR 0.73 0.48 0.58
TAMR 0.70 0.43 0.53
PrAMR 0.55 0.39 0.45
Ours 0.89 0.84 0.87

Table 1: The evaluation of our aligner

proach’s effectiveness and investigate our aligner’s
alignment performance on different concept types.
We evaluate our aligner on the sentence con-
stituents concerning only the concept types in fo-
cus.

P R F1
Elliptic Concepts 0.60 0.42 0.50
NEs 0.86 0.89 0.88
Abstract Concepts 0.90 0.82 0.86
Morphological Concepts 0.87 0.86 0.86

Table 2: Alignment performance of our aligner on dif-
ferent concept types

As shown in Table 2, our aligner’s performance
is in parallel to its overall score except elliptic
concepts. Ellipsis is one of the most challenging
parts of AMR alignment in Turkish. As a future
work, we aim to improve the approach for this phe-
nomenon.

We make a further error analysis to see the weak-
nesses of our aligner. One of our aligner’s mis-
takes is the mismatch/unmatch of specific concepts.
Since our alignment algorithm greedily searches
unmapped concepts, any mistakes in the mapping
phase result in the wrong alignments. Although our
aligner uses the power of the pre-trained word em-
beddings, it fails to match the punctuation marks
when they create concepts, especially the cases
when they have a coordination role in the sentence:
for example the comma mark is related to the con-
cept ‘and’, and the colon mark is related to the
concept ‘de.01’(say.01), however these punctuation
marks are not similar to the concept names neither
semantically nor syntactically. The alignment of
the light verbs is another unmatched case where
our aligner fails. The Turkish Propbank (Şahin,
2016) represents them as frames of auxiliary verbs,
which is how the AMR uses them too. Therefore,
our aligner maps only the verb part due to seman-
tic similarity; the first part of the verb is left un-
matched. For example ‘tercih et-’ (to prefer) is
represented with ‘et.16’ our aligner aligns only ‘et’
(do). Our aligner also shows poor performance on

the alignment of the auxiliary verb ‘ol’. This verb
has 26 frames, including the widespread meanings
‘have’ (ol.04) and ‘become’ (ol.03). When there
are multiple occurrences within the same sentence,
the aligner does not have enough information to
distinguish these frames. As a result, it may pro-
duce wrong mappings. An option to solve this
ambiguity problem could be to integrate Propbank
verb frames as an external resource in future works.
One should note that this kind of additions would
increase the alignment cost.

5 Conclusions and Feature Work

In this paper, we proposed an alignment approach
for morphologically-rich and pro-drop languages
and presented the first AMR aligner designed for
Turkish which is prominent language of morpho-
logically rich languages. Our aligner uses pre-
trained word vectors and fuzzy matching for align-
ing concrete concepts. Furthermore, we present an
algorithm for the alignment problem of concepts
that emerged from the morphemes; this simple ap-
proach may be adopted to other morphologically
rich and pro-drop languages with little effort. Our
study reveals the challenging points in the Turkish
alignment study, and we believe that our findings
will accelerate the development of multilingual
AMR parsing studies. As a future work, we plan
to expand our study on the other morphologically
rich and pro-drop languages (e.g., Portuguese).
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Abstract

The capability of holding social talk (or ca-
sual conversation) and making sense of con-
versational content requires context-sensitive
natural language understanding and reasoning,
which cannot be handled efficiently by the cur-
rent popular open-domain dialog systems and
chatbots. Heavily relying on corpus-based ma-
chine learning techniques to encode and decode
context-sensitive meanings, these systems fo-
cus on fitting a particular training dataset, but
not tracking what is actually happening in a
conversation, and therefore easily derail in a
new context. This work sketches out a more
linguistically-informed architecture to handle
social talk in English, in which corpus-based
methods form the backbone of the relatively
context-insensitive components (e.g. part-of-
speech tagging, approximation of lexical mean-
ing and constituent chunking), while symbolic
modeling is used for reasoning out the context-
sensitive components, which do not have any
consistent mapping to linguistic forms. All
components are fitted into a Bayesian game-
theoretic model to address the interactive and
rational aspects of conversation.1

1 Introduction and Background

Developing dialog systems that can socially com-
municate with humans and make sense of conver-
sational content would demonstrate that we are able
to put together all linguistic knowledge and skills
in action in a truly personalized manner, i.e. the
dialog systems can use the same language com-
petence to produce different coherent contents in
different conversational situations. Such domain-
independence would allow a dialog system to be
robustly used across multiple content and task do-
mains. While the benefit of using social interaction
style in real-life dialog systems is a controversial
topic (e.g. Chattaraman et al., 2019; Clark et al.,

1The live version of this publication is located at
https://osf.io/xz65k/.

2019), the availability of social dialog agents can
alleviate the critical shortage of human resources,
e.g. in language education (Swanson and Mason,
2018), among other domains. Worldwide language
learners often have little time to develop their com-
munication skills with their teachers in the class-
room setting; consequently teachers do not have
enough clues to analyze their students’ communi-
cation competence and their own teaching effec-
tiveness. Having a dialog system that can socially
converse with students at least about the learning
materials outside the classroom and being able to
access the content of these conversations for further
analysis would be a plausible solution to the bot-
tleneck of human resources in language education.

Research on social dialog systems has thrived in
recent years thanks to optimism about the robust-
ness of Natural Language Processing (NLP) tech-
niques based on big data and deep learning. Within
this period, emerging dialog systems either (1) seek
to accommodate the open-domain information ex-
change by expanding the list of predefined inter-
locutors’ intents and conversational topics for mod-
ular architectures, e.g. systems competing in Alexa
Prize Socialbot Challenges (Khatri et al., 2018), or
(2) focus on generating utterances to prolong the
conversation based on neural network sequence-
to-sequence approaches, such as Google’s Meena
(Adiwardana et al., 2020) and Meta’s BlenderBot
(Roller et al., 2021). Primarily motivated by the
available data and statistical techniques but not the
sociocultural characteristics of social talk, these
dialog systems focus on fitting pre-existing training
datasets, but not tracking what is actually happen-
ing in a conversation. As a consequence, they easily
derail in a new context, as illustrated in Figure 1:
the chatbot seems to interpret bank in the question
What do you do at a river bank? as a financial
institution, which is statistically preferred given the
training data, instead of the land alongside a river,
which is more felicitous in this particular context.
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Figure 1: A dialog between me and a state-of-the-art (SOTA) chatbot developed by Meta Research (Roller).

To address that shortcoming, this work takes
a novel approach, relying on in-depth analysis
of naturally occurring data to sketch out a more
linguistically-informed2 architecture to handle so-
cial talk in English, in which corpus-based meth-
ods form the backbone of the relatively context-
insensitive components (e.g. part-of-speech (POS)
tagging, approximation of lexical meaning, and
constituent chunking), while symbolic modeling is
used for reasoning out the context-sensitive com-
ponents, which do not have any consistent mapping
to linguistic forms. All components are fitted into
a Bayesian game-theoretic model to address the
interactive and rational aspects of conversation.

This paper is organized as follows. Section 2 pro-
vides a working definition of interlocutors’ shared
goal in social talk and its implications. Section 3
presents the key aspects of coherence with respect
to the shared goal3. Section 4 outlines the conversa-
tional context that accounts for the coherence-based
and goal-directed nature of social talk. Section 5
describes a simple worked example of the proposed
model. Section 6 discusses the key differences be-
tween the proposed approach and current popular
approaches to social dialog systems, analyzing its
advantages and limitations, research priorities, and
ethics and social impact considerations. Section 7
concludes and presents a plan for future work.

2 Interlocutors’ Shared Social Goal

Lưu and Malamud (2020b) provides evidence of
non-content based coherence in social talk that is
not constrained by the purpose of information ex-
change. Specifically, the new-topic utterances in
social talk, which begin a new topic not linguis-
tically correlating with the content of prior dis-
course, signal certain sequential adjustment of the
distances between the active conversational topic
and each interlocutor, such as switching social fo-
cus from one interlocutor to another. This finding
suggests that the definition of interlocutors’ shared
goal in social talk must be based on a social inter-
action formalism that goes beyond an information

2As theory-neutral as possible.
3Detailed discussion on the concepts of “social talk” and

“coherence” can be found in Lưu and Malamud (2020b).

exchange framework (cf. Hovy and Yang, 2021 – a
recent advocate for incorporating language’s social
factors into computational models of language use,
given the SOTA NLP advancements).

Following the literature on intersubjectivity in
communication (e.g. Rommetveit, 1976; Schiffrin,
1990; Wertsch, 2000; Tirassa and Bosco, 2008),
I propose that the shared goal of interlocutors in
social talk is to create a coherent experience of
together making sense of Self, the Other, and the
relationship between them (but not necessarily to
share the same perspective on any aspect of the con-
versational content). This shared goal is not only
primarily addressed by social talk but also forms
a part of natural task-oriented conversation when
the interlocutors attempt to build mutual rapport.
Even the task-related conversational goals can be
considered instantiations of this shared goal when
Self and the Other are playing specific social roles
in the task domains, e.g. seller – buyer or consul-
tant – client. Within this shared goal, performing
a conversational move implies taking a stance, i.e.
a public social act of simultaneously evaluating
objects (directly or indirectly) discussed in the con-
versational move, positioning subjects (Self or the
Other or both), and aligning with the other sub-
ject, with respect to any salient dimension of the
sociocultural field (Du Bois, 2007, p. 163). Re-
garding the sociocultural field, I adopt the proposal
in Stevanovic and Peräkylä (2014) and Stevanovic
and Koski (2018) for representing conversational
interactions between Self and the Other as falling
into one of three dimensions: epistemic (knowl-
edge/information exchange - how knowledgeable
the interlocutors are), normative4 (power/social
distance - how powerful the interlocutors are), and
affective (affect/emotion - how emotional the in-
terlocutors are). By explicitly paying attention to
the normative and affective domains in the con-
versational context, we can expand current mod-
els of dialog that involve a representation of con-
text but focus on the epistemic domain (such as
those that build on Stalnaker, 1974, 1978; Roberts,
1996/2012, inter alia), and therefore can adequately

4The original term, deontic, can be confusing since it
expresses duty or obligation in the linguistics literature.
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handle the multifaceted coherence in social talk and
the corresponding social reasoning.

3 Multifaceted Coherence in Social Talk

Lưu and Malamud (2020b) shows that conversa-
tional coherence in social talk arises from at least
two different sources, depending on whether the
target utterance bears any content-based coherence
relations to prior discourse.

Where there is at least one content-based coher-
ence relation between the target utterance and prior
discourse, this relation is shaped by certain dis-
course hooks5 (located in the target utterance) that
are pragmatically accessible to the hearer, and can
be discourse-old, discourse-new bearing inferential
relation to discourse-old, or discourse-new and re-
lated to discourse-old in a non-inferential manner
(cf. Prince, 1992; Birner, 2012, inter alia). For ex-
ample, in the social dialog in Table 1 the utterance
132-A is connected to the utterance 131-A by a
coherence relation that is explicitly triggered by the
conjunction and and shaped by several discourse
hooks: the pronoun it is evoked as discourse-old
information, referring to a lovely red dress which
first appeared in 131-A, and everything is arguably
inferrable from that dress via the entity/attribute
inferential relation. Another coherence relation can
be established between 133-A and 136-B since the
clause she totally ditched it in the former utter-
ance presupposes that there is a reason behind that
action, which becomes the focus of the latter.

When there is no content-based coherence re-
lation between the target utterance and prior dis-
course, conversational coherence is demonstrated
by the shift of social focus created by certain ex-
plicit positioning or alignment signals in the target
utterance. For example, the utterance 147-A of the
excerpt shown in Table 1 switches the social fo-
cus from the speaker A to the hearer B by raising
a question related to B, given that the preceding
topic of discussion is A’s difficulty in searching
for a dress. By extending the conversation with
new content relevant to the social subject who has
received less focus in the preceding discourse, this
utterance does contribute to the process of ‘together
making sense of Self, the Other, and the relation-
ship between them’ in a coherent way and seems to
get its motivation from the non-epistemic domains:

5I follow Birner to step away from the term ‘topic’ which
“has not succeeded in becoming a unified concept within
linguistic theory” (Birner, 2012, p. 214).

6This corpus can be obtained upon request to its directors.

Utt. Simplified transcript
131-A Well Rosemary and I went in for a look

and uhm I found a lovely red dress
132-A And I was like delighted with it and ev-

erything
133-A And I brought mum up to see it and she

totally ditched it
134-B Yeah
135-B Yeah
136-B Why
137-A She said it looked like she was she was

saying it didn’t do anything for my hips
138-A It made my hips look big and like you

know my bum and hips and everything
139-A I was really excited cos I had the dress

and then I just
140-B But did you like it
141-A Yeah
142-B But she turned you off it
143-A Yeah well I mean I’m hardly going to

wear it now seeing everyone thinking I’ve
big hip

144-A Hip girl
145-A I’ll be called hippy
146-A Hippo
147-A Ah so how are you anyway

Table 1: An excerpt, with indexed utterances, from
telephone dialog P1A-099 in the SPICE-Ireland corpus6

(Kallen and Kirk, 2012) between two students A and B.

speaker A probably wants to show her attentiveness
to speaker B (affective dimension), and her social
closeness to B makes her think that this move is
appropriate (normative dimension).

Coherence and Relevance It is worth noting
that to be coherent, an utterance must not only
be connected to the prior discourse via certain in-
ferences, but also be relevant to the conversational
goals, which coordinate the sequences of action
performed by interlocutors’ utterances (cf. Clift,
2016, pp. 89-94 for the discussion on coherence in
interaction). Within the shared goal of interlocutors
in social talk defined in Section 2, the expression
of this relevance varies according to sociocultural
dimensions. To be epistemically relevant, an ut-
terance must, at least, introduce a new focus of
discussion instead of simply repeating the old in-
formation. To be affectively relevant, an utterance
can mimic the emotional intensity or support the
sentiment of the immediately preceding discourse.
For example, the interlocutors clearly show their
matching emotional intensity in the excerpt of a
face-to-face social dialog in Table 2 whose second
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half is full of laughter (see Ginzburg et al., 2020
for the discussion on emotive aspects of laughter).
Finally, to be normatively relevant, the utterance
should not, for example, provoke any controver-
sial discussion that may hurt the social relationship
between interlocutors, which is usually handled
by profanity filters in current dialog systems (e.g.
Khatri et al., 2018).

Coherence and Consistency Another aspect of
conversational coherence is the consistency of the
interlocutors’ conversational contents and psycho-
logical behaviors, which are subsumed in the term
‘speaker type’ in this paper. An utterance is in-
coherent if it commits an object evaluation, e.g.
I like cats, that conflicts with another evaluation
of the same object by the same speaker in prior
discourse, e.g. I hate cats. One of the popular at-
tempts to address this problem is the creation of
the PERSONA-CHAT dataset for training and testing
the aspects of persona consistency in chatbot mod-
els (Zhang et al., 2018). An utterance is also less
coherent if it demonstrates some dramatic change
in its speaker’s behaviors, e.g. a rude statement
from a speaker who is very polite in prior dis-
course. From the production perspective, a speaker
would like to maintain their behavioral consistency;
while from the interpretation perspective, a hearer
would assume this consistency from the speaker
to effectively decode the meaning of the speaker’s
utterance. Previous work such as Fang et al. (2018)
shows that understanding the speaker’s personal-
ity in the dialog helps the hearer in having better
interaction strategies. It’s worth noting that inter-
locutors’ psychological behaviors vary according to
different factors of the speech situation such as the
cultural conditions, the interlocutors’ personalities,
and the relationship between interlocutors. For ex-
ample, the social distance between interlocutors can
affect the course and topics of discussion. Com-
paring the dialog in Table 2 between two friends
and the dialog in Table 3 between a couple, we
see that even though both of them are casual, the
higher intimacy in the latter can be observed in all
sociocultural dimensions:

• epistemic: the discussion topics are more per-
sonal (e.g. two things I got out of my marriage,
the marriage itself I mean as hellish) and in-
volve more creative association (e.g. it pulled
me under like a giant octopus or a giant giant

7The original audio recording and transcript of the dialog
can be conveniently browsed here.

Utt. Simplified transcript
1442-M You know I wish I was uh the person

whose voice they used in the telephone
when it tells you the number has been
changed

... ...
1458-M They certainly use her a lot
1459-M But I mean they only use what as uh

five seconds total or something
1460-M You know it’s a
1461-J Probably took her a long time to to say

every possible combination
1462-M Oh but they the computer does that
1463-M All she has to do is say each digit
1464-M And the computer
1465-J Oh that’s all it is
1466-M Yeah
1467-M It’s like a series of samples
1468-J And it automatically sorts em
... ...
1474-M It would be much more pleasant if they

had done all the combinations though
1475-M You know call it up and there’s some-

thing that actually says your number
1476-M In toto
1477-M You know [laughter]
1478-J Yeah
1479-J Or because it recognizes your phone

number it automatically goes into the
computer finds that

1480-M Yeah that sample
1481-J And and names the name
1482-J Thank you Mister Smith for calling Pa-

cific Bell
1483-J [laughter]
1484-M Yeah right
1485-M You know [laughter]
1486-J I am your personal computer represen-

tative
1487-J [inhalation]
1488-M That’d be great
1489-J [laughter]
1490-M [laughter]

Table 2: An excerpt, with indexed utterances, from face-
to-face dialog SBC017Notions7 in the NEWT-SBCSAE
corpus (Lưu and Malamud, 2020a; Riou, 2015; Du Bois
et al., 2000) between two friends Michael and Jim.

shark, it’s not the way with food)
• affective: more instances of highly expressive

language such as really interesting, really got
me grounded, as hellish as it was, like a gi-
ant octopus or a giant giant shark, the silent
scream, so much better, very hellish

• normative: the fact that the interlocutors are
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comfortable with more personal topics and
more expressive language; and the emphasis
on positioning by explicitly involving Self in
the story (e.g. I used to have ..., two things I
got out of my marriage, ... got me grounded,
... pulled me..., there I was, then I found that
I was on my own two feet again, a way out of
me) but not on alignment as in the other dialog
in which the interlocutors use the phrase you
know as an alignment signal more frequently.

The difference in the normative dimension con-
firms that explicit positioning and alignment play
an important role in the dynamics of social rela-
tionship between the interlocutors.

Utt. Simplified transcript
2494-P I used to have this sort of standard line

that there were two things I got out of
my marriage

2495-P One was a name that was easy to spell
and one was a a child

2496-P That really got me grounded
2497-P But the fact of the matter is
2498-P That the marriage itself I mean as

hellish as it was it’s like it pulled me
under like a giant octopus

2499-P Or a giant giant shark
2500-P And it pulled me all the way under
2501-P And then
2502-P And there I was
2503-P It was like the silent scream
2504-P And then then I found that I was on my

own two feet again
2505-P And it really was what was hell in that

that marriage became became a way
out of me

2506-P It was the flip side
2507-P It’s like sometimes you go through

things and you come out the other side
of them

2508-P You come out so much better
2509-P And if I hadn’t had that if I hadn’t had
2510-P [inhalation]
2511-D It’s not the way with food
2512-P What do you mean
2513-D What goes in one way doesn’t come out

[laughter]
2514-P [laughter]
2515-P [laughter]
2516-P [inhalation]
2517-P Comes out very hellish

Table 3: An excerpt, with indexed utterances, from face-
to-face dialog SBC005Book8 in the NEWT-SBCSAE
corpus (Lưu and Malamud, 2020a; Riou, 2015; Du Bois
et al., 2000) between a couple, Pamela and Darryl.

4 Context Representation and Update

To be capable of reasoning about multifaceted co-
herence in social talk presented in Section 3, a
linguistically-driven dialog model needs an ad-
equate representation of the conversational con-
text that consists of essential linguistic information
obtained from either neural or symbolic knowl-
edge. To optimally exploit both sources of knowl-
edge, the relatively context-insensitive components
of the conversational context are deduced by ma-
chine learning techniques; while the more context-
sensitive components, which do not have any con-
sistent mapping to linguistic forms, are reasoned
out by symbolic methods. This division of labor
takes advantage of the knowledge of pretrained sta-
tistical models as prior experiences to approximate
linguistic meanings, at the same time separate them
from the real-time meanings co-constructed by in-
terlocutors in a specific conversational context via
symbolic reasoning. To facilitate the reasoning, the
conversational context has direct access to knowl-
edge sources including linguistic dictionaries and
thesauri, and world knowledge bases. An all-in-one
option for knowledge sources is Wolfram Engine.

Specifically, using statistical models of off-the-
shelf NLP libraries such as spaCy, we can auto-
matically obtain basic linguistic annotations of an
utterance including word tokens, their POS tags and
contextual embeddings, syntactic relations between
word tokens (as the result of dependency parsing),
and linguistic constituents (including named en-
tities). Based on these pieces of linguistic infor-
mation, the discourse hooks in an utterance are
identified by various heuristics such as:
Relying on linguistic definitions and relations:

• use dictionaries to obtain the senses of a word
token and the corresponding definitions and
examples of their usage in context

• select the most probable senses of that token
in the target utterance based on the similarity
scores between the contextual embeddings of
the token and each of its senses

• use linguistic thesauri, such as WordNet (Fell-
baum, 2010), to obtain the set of related lexi-
cal items of each selected sense, e.g. its syn-
onyms, hypernyms and hyponyms

• identify and weigh potential discourse hook
relations between each selected sense or re-
lated lexical item of the examined token and

8The original audio recording and transcript of the dialog
can be conveniently browsed here.
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other tokens in prior context based on the sim-
ilarity scores between their embeddings

Relying on world knowledge bases:
• map a linguistic constituent to a concept

in knowledge bases based on the similarity
scores between their embeddings

• obtain a set of neighbor concepts of that lin-
guistic constituent in knowledge bases

• identify and weigh potential discourse hook
relations between each neighbor concept and
other concepts in prior context based on the
similarity scores between their embeddings

Relying on discourse knowledge:
• use the conversational context itself as a

knowledge source to infer those potential dis-
course hook relations such as co-references
between a pronoun in the target utterance and
entities in immediately preceding discourse,
and the temporal and spatial relations between
an event or object in the target utterance and
other events or objects in preceding discourse

These heuristics mainly address the first two
types of discourse hook discussed in Section 3,
discourse-old and discourse-new bearing infer-
ential relation to discourse-old; the final type,
discourse-new and related to discourse-old in a
non-inferential manner, requires more sophisticated
linguistic reasoning about presupposed content of
an utterance. It is worth noting that by establish-
ing potential discourse hook relations we not only
connect two utterances but also lengthen various
conversational threads which reflect different se-
quences of actions performed by the interlocutors,
and therefore provide a deeper contextual structure
in comparison with the contextual representation in
which prior discourse is treated as a single conver-
sational thread, usually called the dialog history.

Further, to represent non-epistemic dimensions,
it is necessary to annotate at least the following:
Affective: intances of highly expressive language
in the target utterance such as adjectives and idioms
(which can be identified by analyzing their defini-
tion and properties recorded in the linguistic dic-
tionaries) and their sentiments (which can retrieved
from off-the-shelf sentiment analysis models)
Normative: default and emphasized positioning
and alignment in the target utterance which can be
identified based on the clause type of the utterance
and the absence or presence of Self and the Other
in its linguistic content; for example:

• If the target utterance is a declarative:

– if Self is present in the utterance: em-
phasized Self positioning

– else: default Self positioning
• If the target utterance is an interrogative:

– if the Other is present in the utterance:
emphasized alignment

– else: default alignment
• If the target utterance is an imperative:

– emphasized alignment
– if Self is present in the utterance: em-

phasized Self positioning
– else: default Self positioning

As discussed in Section 3, instances of highly
expressive language help the dialog model esti-
mate the emotional intensity or sentiment conveyed
by its partner and flavor its own utterances with
appropriate affective connotations; while empha-
sized positioning and alignment assist the model
in recognizing a potential shift of social focus or
of social distance expressed by its partner. Using
clause types to reason out emphasized position-
ing is a basic pragmatic calculation of social acts
encoded in an utterance in the proposed architec-
ture. System designers can enrich the pragmatic
calculation with additional normative rules for a
more fine-grained representation of social acts9.
Although clause type classification is not a current
component of a typical automatic linguistic annota-
tion pipeline, this task should not be as challenging
as speech act/intent classification and should be ro-
bustly handled by statistical models because clause
types are distinguished by specific form-based fea-
tures, at least in English (Siemund, 2018).

A Minimally Viable Dialog Model A minimally
viable linguistically-driven reasoning dialog model
for social talk is an honest conversational com-
panion in that it behaves as a conversing com-
puter without wearing any superficial persona. It is
equipped with all components listed in this section.
From the interpretation perspective, whenever it re-
ceives the transcript of an utterance from the human
interlocutor, it will obtain the automatic linguis-
tic annotations of the utterance and apply prede-
fined heuristics (1) to establish potential discourse
hook relations between the words/constituents of

9Which can be informed by additional sociolinguistic
knowledge, e.g. variant linguistic forms of the English suffix
(ING) signal different levels of formality (an embodiment of
social distance): the standard form -ing is more formal than
the marked form -in’ (Labov, 2012).
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the utterance and other words/constituents in prior
discourse, (2) to mark the instances of highly ex-
pressive language in the utterance with their sen-
timents, and (3) to capture the default/emphasized
positioning and alignment in the utterance.

The model is aware that there may exist different
alternatives in its interpretation; for example, each
word in the utterance can have different discourse
hook relations for different senses and therefore the
number of alternatives for the whole utterance is
the product of the numbers of senses. To select the
best interpretation alternative, the model assigns a
discourse salience score to each alternative.

This salience score is compositionally calculated
based on how strongly an alternative is grounded
in the context, including, for example, the weights
of the discourse hook relations characterizing that
alternative, and the recentness of discourse threads
they participate in. Each alternative is also indexed
with the sociocultural dimension that is most rele-
vant to it: epistemic if it is full of discourse hooks,
affective if it stands out with plenty of highly ex-
pressive language, or normative if it is highlighted
by emphasized positioning/alignment. The inter-
pretation alternative that has the highest discourse
salience score will be added to the conversational
context. Its salience factors and relevant sociocul-
tural dimension provide human-readable evidence
of what makes it a coherent move within the shared
social goal, as discussed in Section 3.

From the production perspective, the model can
heuristically generate a set of utterances as produc-
tion alternatives which are salient with respect to
the current conversational context and relevant to
the conversational goal in at least one sociocultural
dimension. For example, if the model knows that
the human interlocutor just evaluated some aspect
of an object and manages to find other information
about the object in its knowledge bases, it can gen-
erate an utterance evaluating the object in the newly
found aspect. In another scenario when the model
has nothing else to comment on the object under
discussion, it can switch social focus to the hu-
man interlocutor using the emphasized alignment
technique, e.g. What else are you interested in?
Similarly to the case of interpretation, the model
can index each production alternative with the so-
ciocultural dimension that is most relevant to it,
and heuristically assign discourse salience scores
to the alternatives in order to select the best one
and update the context with its content.

Game-Theoretic Reasoning The selection of the
best alternative from either interpretation or pro-
duction perspectives can be formalized in a game-
theoretic style, which pairs Lewis (1969/2002)’s
signaling games (between two communicators)
with the Bayesian approach to speaker/listener
reasoning (see Tenenbaum et al., 2011 for an
overview). Specifically, the probability P (m|u,C)

that the model assigns the hidden meaning m to
the observable utterance u in the conversational
context C depends on the prior probability P (m)

of the human interlocutor having m in mind and
the utility value U(u,m,C), corresponding to the
salience of m with respect to u in C10.

P (m|u,C) ∝ P (m)× exp(α× U(u,m,C))

(where α is a normalizing constant)
The prior probability P (m) is used to account

for the consistency of the speaker type discussed
in Section 3. Specifically it captures the personal
inclination of the human interlocutor towards a par-
ticular sociocultural dimension (cf. Yoon et al.,
2020 for a different way to integrate these dimen-
sions into a game-theoretic model and Asher and
Lascarides, 2013 for a similar way to integrate
a different aspect of speaker types into a game-
theoretic model). There are three values of P (m)

for the three sociocutural dimension indexes:
• Pepi(m) + Paff (m) + Pnor(m) = 1

These values are paired with the utility values
of alternatives which share the same sociocultural
dimension index. They can be learned offline based
on a sample of human interlocutors or assigned by
the interlocutor at the beginning of a conversation.
These values can also be updated in a real time
manner, e.g. if the human interlocutor produces
a series of conversational moves that are highly
relevant to the conversational goal in the affective
dimension, Paff (m) will be increased accordingly.

5 A Worked Example

To demonstrate how the proposed dialog model
works, a proof-of-concept text-based dialog sys-
tem was developed based on the Free Wolfram

10This formalism simplifies the Bayesian inference in that
it doesn’t require the separation between speaker and listener
behaviors as in recent popular game-theoretic frameworks
for pragmatic reasoning, e.g. Iterated Best Response (Franke,
2009), Rational Speech Act (Frank and Goodman, 2012), and
Social Meaning Game (Burnett, 2019). That simplification
results from the fact that the model reasons based on a prede-
fined shared goal and a rich representation of conversational
context which accounts for all relevant aspects of real-time
meanings co-constructed by interlocutors.
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Figure 2: Contextual representation of a dialog turn.

Engine for Developers and spaCy v2.3.511, includ-
ing its small core model for English and the Dis-
tilBERT model (Sanh et al., 2019), accessed via
spacy-transformers v0.6.x11. Figure 2 shows the
conversational context created by the system after
the human interlocutor enters the text string I just
had a walk along the Connecticut river. The bank
is gorgeous. (please refer to Appendix A for the
snapshots of step-by-step context update).

The system uses spaCy’s core model to tokenize
the text string into word tokens (including punc-
tuation marks), provide their POS tags, and then
segment the sequence of tokens into sentences with
their dependency structures. The system relies on
DistilBERT to obtain the contextual embeddings
of tokens and sequences of tokens so that it can
calculate similarity scores between these embed-
dings to reason out the most appropriate senses
of semantically ambiguous words as well as the
potential discourse hook relations between linguis-
tic constituents. For each open class word, i.e. an
adjective, adverb, interjection, noun or verb, the
system first retrieves all of WordNet senses from
Wolfram knowledge base (via Wolfram Engine),
and then identifies the real-time context-sensitive
sense, as shown under each of these words in Fig-
ure 2. Each real-time sense is the one whose con-
textual embedding (calculated based on its textual
definition) is the most similar to the contextual em-
bedding of the corresponding word. They not only
represent the human-readable meanings, but also
participate in the creation of future discourse hook
relations. Next, the system adds a meta-data token
storing speaker information to each sentence before

11Under the MIT License.

performing more context-sensitive reasoning.
Based on the pronoun I, the punctuation “.” and

the dependency links, the system recognizes that
the first sentence is a declarative which has Self as
the subject. Consequently, this sentence features
the emphasized Self positioning. Moving to the
second sentence, the system first examines alter-
native discourse hook relations between its sole
noun phrase and other noun phrases in prior dis-
course, which results in the selection of the most
salient relation between the bank and the Connecti-
cut river, corresponding to the highest similarity
score (0.892) between the embeddings of the real-
time senses of the head nouns bank and river. The
system then marks the adjective gorgeous as an
instance of highly expressive language because its
definition contains a degree adverb (dazzlingly).

To produce the most relevant response, the sys-
tem puts more weight on the candidates addressing
the second sentence as it is more recent. The high-
est salience score is achieved when the response
includes both the bank and the emotional reso-
nance of gorgeous, an instance of positive sen-
timent. Consequently, the system adds positive
elements such as the predicate like to its planned
response. A possible template for this planned re-
sponse is “It seems that you like ... a lot, right?”,
which results in the ultimate response as It seems
that you like the bank a lot, right?12

6 Discussion

Departing from current popular approaches to so-
cial dialog systems, which rely on available mod-

12Using templates is the simplest technique for the proof-of-
concept system, but not a categorical implementation choice.
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els for similar tasks13 and conversational data cre-
ated in artificial or asynchronous settings (Huang
et al., 2020), this work starts with empirical analy-
sis of naturally occurring data, i.e. human–human
casual conversation in real life, to systematically
define key linguistic characteristics of social dia-
log which can be modeled based on SOTA NLP
techniques. This approach is in line with the pre-
registration practice promoted by van Miltenburg
et al. (2021), entailing both advantages and lim-
itations. By specifying what I want to capture
in my model before the actual implementation, I
can avoid the post-hoc problems faced by heav-
ily data-driven architectures (e.g. Henderson et al.,
2018). However, not relying on benchmark data
and their corresponding techniques, I can not prove
the practicality and reproducibility of my model
in an actionable way before a full-blown dialog
system is implemented. In addition, while this
work starts with human–human conversation, its
ultimate outcome is human–computer conversation
which definitely diverges from the input guiding
data and can potentially direct the research agenda
into unplanned territories. It is also worth noting
that while the modularity of the proposed archi-
tecture allows independent and simultaneous im-
provements of its components, its effectiveness can
suffer from cumulative parsing errors caused by its
pipeline design. Moreover, the statistical models
of off-the-shelf NLP libraries used in the proposed
architecture, mostly trained on planned text (e.g.
Weischedel et al., 2013), may not work well on
spontaneous conversation.

Research Priorities As the ultimate goal of the
proposed dialog model is to truly facilitate mu-
tual understanding in human–computer social com-
munication, the model must aim at effectively co-
constructing the real-time conversational context
with its interlocutors and reasoning about their con-
versational moves (Kopp and Krämer, 2021). Thus,
within the proposed framework I will focus on
coherence-based context modeling and discourse
salience calculation, taking into account the shared
social goal. In other words, the research question
that captivates me most is how to dynamically con-
struct meaning in the context of social conversation
(cf. Trott et al., 2020 for a broader research agenda).
This priority implies the necessity of novel evalua-

13Either in the application aspect, e.g. task-oriented dia-
log models, or technical aspect, e.g. sequence-to-sequence
machine translation models.

tion protocols to validly and reliably assess human–
computer mutual understanding, which is ignored
in current evaluation practices for in social dialog
systems (Finch and Choi, 2020).

Another direction for exploration, which is more
application-oriented, is how to optimally incorpo-
rate additional knowledge sources into the dialog
model or spotlight a portion of the existing ones
to seamlessly change salience calculation results,
which conform to the system owner’s desire. For
example, imagine the scenario in which a language
learner want to chat with the dialog system to en-
hance their vocabulary on a specific topic, they
would definitely want the system to pay more atten-
tion to the area of knowledge sources which covers
that topic. Ultimately, the dialog model could be
systematically adapted for task-oriented dialog by
integrating domain-specific knowledge bases.

Ethics and Social Impact Considerations The
proposed dialog model is explainable in both its
development approach and its interactions with dif-
ferent stakeholders (Kaur et al., 2022). First, its
design is explicitly informed by empirical analy-
sis of relevant data and its operational decisions
are interpretable, using human-readable symbolic
representation of conversational context. Second,
the transparency of the proposed architecture with
well-defined functional components can provide
adequate and personalized explanations to the in-
volved developers, domain experts, and end users.

Relying on publicly accessible NLP resources
and featuring a widely integrable structure, the pro-
posed dialog model can be freely implemented and
used by independent end users, and continuously
developed and enhanced by domain experts.

7 Conclusion and Future Work

This paper sketches out a novel dialog model for
social conversation in English, motivated by a thor-
ough investigation of the nature and linguistic char-
acteristics of the phenomenon, including the shared
goal between interlocutors and multifaceted co-
herence across different sociocultural dimensions.
Next, I will implement a full-blown dialog system
based on this model and develop adequate evalu-
ation protocols, before iteratively evaluating and
improving the system until it can consistently hold
casual conversations with humans. Subsequently,
I will use these conversations and their contextual
representation as a new window into the social in-
teraction between humans and reasoning machines.
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A Step-by-Step Context Update

Figures 3–20 capture the sequence of context
changes discussed in Section 5.
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Figure 3: Add spaCy’s linguistic annotations.

Figure 4: Add DistilBERT embeddings.

Figure 5: Navigate open class words, which are just, walk, Connecticut, river, bank and gorgeous.

165



Figure 6: Calculate and rank similarity scores between just and each of its dictionary sense definitions.

Figure 7: Add the contextually identified sense of just.

Figure 8: Calculate and rank similarity scores between walk and each of its dictionary sense definitions.
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Figure 9: Add the contextually identified sense of walk.

Figure 10: Calculate and rank similarity scores between Connecticut and each of its dictionary sense definitions.

Figure 11: Add the contextually identified sense of Connecticut.
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Figure 12: Add the sole sense of river.

Figure 13: Calculate and rank similarity scores between bank and each of its dictionary sense definitions. Before
that, the contextual embedding of bank was recalculated based on a modified version of the second sentence, which
is The Connecticut river, the bank is gorgeous. This enhancement of the real-time context-sensitive meaning of
bank is informed by the fact that the Connecticut river is the noun phrase in the first sentence whose head noun, i.e.
river, is the closest to bank in terms of similarity scores between their contextual embeddings.

Figure 14: Add the contextually identified sense of bank.
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Figure 15: Add the sole sense of gorgeous.

Figure 16: Add speaker tokens Human to each sentence.

Figure 17: Identify emphasized positioning present in the first sentence. This is an instance of emphasized Self
positioning, embodied by the first person pronoun I in a declarative sentence.
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Figure 18: Identify potential discourse hook relations which connect the second sentence to the first sentence by
calculating relevant similarity scores between the definitions of identified senses of head nouns of noun phrases.

Figure 19: Select the most salient discourse hook relation, shaped by the similarity score between bank and river.

Figure 20: Identify highly expressive language present in the second sentence. This is an instance of positive
sentiment expressed by the adjective gorgeous.
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Abstract

Indonesian and Malay are underrepresented in
the development of natural language processing
(NLP) technologies and available resources are
difficult to find. A clear picture of existing work
can invigorate and inform how researchers con-
ceptualise worthwhile projects. Using an educa-
tion sector project to motivate the study, we con-
ducted a wide-ranging overview of Indonesian
and Malay human language technologies and
corpus work. We charted 657 included studies
according to Hirschberg and Manning’s 2015
description of NLP, concluding that the field
was dominated by exploratory corpus work, ma-
chine reading of text gathered from the Internet,
and sentiment analysis. In this paper, we iden-
tify most published authors and research hubs,
and make a number of recommendations to
encourage future collaboration and efficiency
within NLP in Indonesian and Malay.

1 Introduction

Limited natural language processing (NLP) re-
sources currently available for Indonesian and
Malay varieties do not reflect large speaker popula-
tions of these languages in Indonesia, Malaysia,
and other South-East Asian nations1. Difficul-
ties locating resources and existing work hinders
progress in the field; it can result in duplicated
or unnecessary work, clouding the ability of re-
searchers to formulate useful research questions
and study designs. Since Indonesian and Malay va-
rieties are closely related (Sneddon, 2003; Basuki
and Antaputra, 2020b), connecting research and

1In 2011, the Indonesian Census recorded 197 million In-
donesians as literate in Indonesian (Zein, 2020). In Malaysia,
nearly the whole population speak Malay as a first or addi-
tional language (Coluzzi, 2017); in 2021, according to the
Department of Statistics Malaysia, this was about 32 mil-
lion people.

technologies developed for either language could
provide useful insights and shortcuts for work in
the other language.2

These challenges restrict the impact that ad-
vances in NLP might have in the education sector
in Indonesia and Malaysia, and in the teaching of
these languages. Ideally, teachers of Indonesian or
Malay as a second or foreign language would draw
on a wide range of human language technologies,
machine learning methods, and corpus linguistics
tools to enhance teaching and learning outcomes 3.

As part of a broader project investigating teacher-
speech and materials for Indonesian language
teaching (Maxwell-Smith et al., 2020; Maxwell-
Smith, 2021), the aims of this study were to scope
the state of play of existing work in Indonesian and
Malay NLP to assist in the formulation of realistic
research goals, and to identify useful networks and
resources. As such, our study draws on the notion
of scoping work as “reconnaisance” (Peters et al.,
2015), where the goal is to first determine what
range of quantitative and/or qualitative evidence
is available on a topic and then to chart, map, or
otherwise represent this located evidence visually.

Our research questions were as follows:

1. What language technologies and NLP re-
sources exist for Indonesian/Malay (and there-
fore for education sector applications)?

2. How do they align with the trends seen more
widely in NLP?

We begin by describing our search strategy and
methods for charting 657 included studies by their

2As indicated in Lin et al. (2019c) and Nomoto et al.
(2018a), some significant differences should caution NLP re-
searchers from regarding the Indonesian and Malay languages
as one.

3See for example Lee et al. (2020) in journals such as
CALL and LLT.
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Figure 1: Screening Process and Study Selection

topic and year of publication. We summarize ex-
isting literature reviews and notable work, graph
most published authors and their affiliated research
hubs, and describe recent educational applications
of NLP. Finally, we make 7 recommendations to
build collaboration and efficiency in Indonesian
and Malay NLP, highlighting our contribution to
these goals.

2 Methods

In order to capture a broad and rich picture of the
recent literature, we applied a simplification of the
Systematic Reviews and Meta-Analyses (PRISMA)
for scoping reviews (Tricco et al., 2018; Page et al.,
2021). Generally, we aimed to provide a descriptive
overview and visualization of the reviewed mate-
rial without detailed critical appraisal of individual
studies or synthesis of evidence from different stud-
ies (Pham et al., 2014; Peters et al., 2015).

The review engaged with literature from many
disciplines, including, but not limited to, Computa-
tional Linguistics, Computer Science, Indonesian
Language Teaching, and NLP. Extensive consulta-
tions with research librarians resulted in a broad
search strategy of the databases and terms (Fig-
ure 2). Both Indonesian/Malay and English search
terms were used to maximize coverage. Additional
search terms focused on our interest in Indonesian
language teaching were used to mitigate the risk of
missing relevant literature.

We experienced significant problems identifying
studies with the Association for Computational Lin-

guistics (ACL) as their publisher. In searches via
Google Scholar, Scopus, and Proquest; many ACL
publications (e.g., Koto et al. (2020a) and Wilie
et al. (2020)) were not returned4. We then added
a direct ACL Anthology search to our database
search list. Unexplained behaviour in the ACL An-
thology sort by ‘Year of Publication’ functionality
cut results by over 400%, missing, for example, the
aforementioned two relevant papers. To identify a
reasonable portion of the work presented at ACL
events, we extended the set of identified records
semi-automatically by manually opening and ex-
porting studies from ACL Anthology searches.

Our inclusion criteria specified that studies be
recent (published in 2016 or later), peer-reviewed,
written in English, Indonesian or Malay, and rele-
vant to our topic (work about other languages or
unrelated to NLP was excluded). Topical relevance
was determined by a single reviewer (the first au-
thor of this paper) screening the title, abstract, and
metadata of each identified study (n = 1, 954) that
was unique (n = 1, 510) (Figure 1).

Included studies were then classified according
to Hirschberg and Manning’s 2015 characterization
of advances in NLP. We refer to these classifica-
tions in brief as: Broad NLP; Machine Reading;
Machine Translation; Spoken Dialogue Systems;
Speaker State; and Social Media. We added a class
— Statistical Work — to group work which primar-
ily contributes corpus data or statistical and pre-
processing work which stands at the foundation of
most NLP.

Two reviewers (the first and last author of this
paper) worked as a classification team, thereby as-
suring the quality of this ‘light-touch’ manual con-
tent analysis (Saldaña, 2016). In total, 80 of the
657 included studies (12.2%) were classified in-
dependently by both reviewers, including studies
whose classification was perceived as uncertain
by the first reviewer, as well as a random selec-
tion of further studies to increase confidence in
reviewer agreement. Reviewers’ classification dis-
agreements were resolved through reference to full-
text articles and discussion reaching consensus5.

While many studies were classified as belonging
to more than one ‘grouping’, the primary class was

4Not in the top 100 search results on Google Scholar.
5Both reviewers are academic researchers in NLP and

teachers. Reviewer agreement of classification was very high.
Most often the selection of a primary class was discussed and
resolved by looking beyond brief, and at times misleading,
information in article abstracts.
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Figure 2: Search Strategy

used in our analysis below. Appendix B is sorted by
the second and third classification levels to improve
search-ability and provide further information.

A search of titles and abstracts uncovered pre-
existing reviews. These reviews were screened
in full text and their findings are outlined in our
results section to complement the scoping or quan-
titative map of the field. Literature outside our
inclusion criteria which appeared highly relevant
was retained separately for full-text review.

Unique names in the raw list of the top 50 most-
published authors were manually normalized to pre-
pare a publication-by-author count. Manual iden-
tification of name variants for authors with many
publications were identified by matching author
initials, affiliations, and profiles where possible to
create Figure 5. Author affiliations for Figure 6
were taken from the most recent study of a given
author included in this overview.

3 Results

A total of 657 from 1, 954 studies met our inclu-
sion criteria. Statistical and corpus work dominated
throughout the last 5 years (from 2016 — Fig-
ure 3). Studies related to machine reading and senti-
ment analysis of online text such as news websites
(included in ‘Speaker States’) and social media
(sentiment analysis comprises much of our ‘Social
Media’ classification) were popular and showed
growth (Figure 4). The largest growth area was in

Figure 3: Indonesian and Malay NLP Research in 2016–
2021

‘Speaker Dialogue Systems’ with a relative boom
in publishing in 2019 (26 studies).

While our search terms were bilingual, the ma-
jority of studies that met our inclusion criteria were
written in English or had an English title and ab-
stract. The apparent stagnation of publications in
2020 (Figure 4) with a rebound in the first half
of 2021 (which our search covered) could be re-
lated to the context of the COVID19 pandemic.
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Figure 4: Categorisation of Indonesian and Malay NLP Research in 2016–2021 by Year

However, as “country-specific variables play a sig-
nificant role” (Abramo et al., 2022) in pandemic
publication trends, this is very difficult to deter-
mine.

As noted by Hirschberg and Manning in 2015,
machine reading research makes use of the vast
quantities of text available in the modern world
while the mining of text from social media has “rev-
olutionized the amount and types of information
available today to NLP researchers”. The presence
of work in all classifications indicates Indonesian
and Malay NLP has advanced from its 2015 state,
when Hirschberg and Manning said it had “no such
resources or systems available” (2015). To comple-
ment the quantitative picture in Figures 3 and 4, we
identified existing reviews and provide a summary
below. A detailed full-text review of all articles
identified in a given classification is needed to fully
investigate progress in each respective field.

3.1 Existing Reviews
Of the included studies, 15 were identified as re-
views and read in full-text. Lan and Logeswaran
(2020) discussed NLP in Indonesian/Malay in gen-
eral. They did not identify their search methods nor
their inclusion criteria, and their reference list had
a strong focus on Malaysian research. Their de-
scription of statistical work on morphological and
lexical analysis, the development of stop word lists,
text normalization and named entity recognition
concluded that “most researchers have no choice
but to resort to compile their own corpus specific
to their domain” (Lan and Logeswaran, 2020). Ac-
cording to their discussion, applications of NLP,

such as those for machine translation, sentiment
analysis, sarcasm and spam detection, as well as
text summarization, were hampered by an absence
of language-specific tools and resources. For exam-
ple, they stated that the Jawi Malay script (which
is based on Arabic) appeared to be missing charac-
ters, lemmatizers for translation seemed to struggle
with affixes as they were loaned from English NLP,
and sentiment analysis tended to rely on translated
sentiment lexicons.

A 16th review article — “An Overview of Natu-
ral Language Processing for Indonesian and Malay”
by Jiang et al. (2020), written in Mandarin — was
identified at the screening stage. It fell outside
the scope of this study but we did note that it
provided a detailed overview of Indonesian/Malay
NLP. The authors characterized the field as “widely
distributed, covering stemming, part-of-speech tag-
ging, syntactic analysis, semantic analysis, and
other underlying technologies, as well as upper-
level applications such as machine translation, spell
checking, sentiment analysis, named entity recogni-
tion” (Jiang et al., 2020). However, similarly to Lan
and Logeswaran (2020), they noted that “the basic
resources, open data platforms and open-source lan-
guage processing tools for these two languages are
also lacking, and there are few mature and available
text analysis systems” (Jiang et al., 2020).

Statistical or corpus based NLP is important to
further the field; however, only 2 reviews had a
special focus on corpora and these were specific
to Malay (Awang Abu Bakar et al. (2018) and
Nasharuddin et al. (2018)). These reviews provided
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some insight into Malay resources, and Nasharud-
din et al. (2018) suggested document alignment as
an avenue to overcome parallel corpus scarcity in
cross and bilingual information retrieval, however,
a thorough picture of existing corpora was lacking.

A further review by Kassim et al. (2016b) dis-
cussed morphology related challenges in stem-
ming tools for Malay as perceived by the authors.
However, this review did not fully address the
complex steps necessary to uncover lemmas. As
later described by Nomoto (2020), what has been
“thought of as stemming and lemmatization [· · ·] is
in fact ‘root’-ing, that is, undoing all morphologi-
cal processes to get a root”. Future work needs
to make use of the sort of stem and lemma in-
formation in MALINDO Morph to create Indone-
sian/Malay stemmers.

Machine translation was discussed in a single
review of Indonesian translation by Rahutomo et al.
(2019)6, who identified that many researchers had
created their own web-crawled parallel corpora.
They described a range of techniques used in In-
donesian translation, noting that Moses was com-
monly used and that attention-based approaches
were improving neural machine translation. Their
list of studies spanned languages: Sundanese, Ja-
vanese, Lampung, as well as English, Japanese,
and Korean — a very limited list given there are be-
tween 652–701 languages in use in Indonesia (Zein,
2020). Thereby translation needs are yet to be met.

Machine reading was the focus of 5 reviews.
Gunawan and Amalia (2018) reviewed single doc-
ument text summarization and identified evalua-
tion methods as a significant concern among 10
papers reporting research into extractive text sum-
marization. They concluded that a text-summary
dataset created by experts is needed to advance the
field and to calibrate the diverse results reported in
the literature.

Looking only at Malay, Mohemad et al. (2020b)
suggested relatively poor results across the field.
They found summaries were often longer than the
original text and Malay anaphora proved difficult
to condense, resulting in poor comprehensibility.7

In 2021, Widodo et al. remained concerned with
evaluation measures in text summarization. Their
review of 6 studies found all text summarization
work was in extractive summarization — as op-

6see also Septarina et al. (2019)
7Providing a brief reference to Malay language corpora,

Omar et al. (2021) outlined advances in text summarization
techniques.

posed to abstractive — and that it was dominated
by single document summarization of online news.
To expand the usability and scope of these tools
for Indonesian, they suggested that journal articles
should be used as data to support multi-document
summarization, as existing summaries of these doc-
uments could be used to enhance results.

Malay named entity recognition and classifica-
tion (NERC) was carefully reviewed by Mohemad
et al. (2020a), finding that differences in Malay
morphology and textual ambiguities, as well as lim-
itations on corpora and annotated data, are difficult
challenges affecting both rule-based and machine
learning methods. In addition, they found that the
“majority of the systems developed [were] based
on manually predefined dictionaries by a human”
(Mohemad et al., 2020a) and that deep learning
methods were yet to be studied with Malay NERC.

All 4 reviews of sentiment analysis were primar-
ily concerned with social media in the Malaysian
context (see both ‘Speaker States’ and ‘Social Me-
dia’ in Appendix B). Abdullah et al. (2017) found
hybrid approaches of lexicon based and supervised
machine learning were most common, while Han-
dayani et al. (2018) added a more detailed discus-
sion of techniques and datasets found in 10 care-
fully selected studies. Abu Bakar et al. (2020)
foregrounded the ‘noise’ of social media data to
confront the more complex language often found
on the Internet. Abdullah and Rusli (2021) pushed
this further, examining literature on multilingual
sentiment analysis to inform the development of
sentiment analysis for the Malaysian social media
context, which they described as characterized by
the multilingual use of English, Malay, and Chi-
nese.

No reviews of spoken dialogue systems, such as
automated speech recognition (ASR) or Text To
Speech (TTS) toolkits (which are typically consid-
ered later-generation NLP), were found. This is
not surprising given text-based NLP (e.g., machine
reading) dominated the research agenda (Figure 4).

3.2 Notable Work Responding to the Lack of
Data and Evaluation Methods, and Other
Recent Contributions

Common to all reviews was a scarcity of freely
available NLP resources, and subsequently the
creation of custom datasets, loaned preprocess-
ing tools from NLP in English, and difficulties in
benchmarking performance without reliable eval-
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uation techniques and reference datasets. In this
context, we note the growing use of zero and few
shot methods which are supported by pipelines
such as HuggingFace8. We also note four projects
and respective papers that develop benchmarking
and open access corpora for:

• language modelling; Indonesian Language
Evaluation Montage (IndoLEM) and Indone-
sian Bidirectional Encoder Representations
from Transformers (IndoBERT);

• Indonesian Natural Language Understanding
(IndoNLU); as well as

• Indonesian Natural Language Generation (In-
doNLG) and Indonesian Natural Language
Inference (IndoNLI).

Recently available, but not included in our study
as it was published after our analysis was complete,
Aji et al. (2022) provide a detailed discussion of
NLP for the 700+ languages spoken in Indonesia.
They outline challenges for NLP in Indonesia, de-
scribing limited resources, language diversity, or-
thography variation, and societal challenges such
as the poor distribution of technology and educa-
tion across Indonesia.

3.3 Highly Active Researchers and Research
Hubs

Highly active researchers in the field are identified
in Figure 5. While we made substantial efforts to
ensure author publications were grouped accurately,
name variations appeared to be prevalent in this
field. We concentrated our efforts on normalizing
the raw list of the top 50 authors. In contrast to
broader trends (Mohammad, 2020), we note that
7 of the 11 authors in Figure 5 are female, though
some are not first authors on many papers.

Research hubs in Indonesia and Malaysia are
illustrated in Figure 6. The affiliations of the 25 au-
thors with the most publications were used to iden-
tify these hubs. All affiliated universities listed by
these 25 authors (as indicated in their most recent
publication which met our inclusion criteria) were
in either Malaysia or Indonesia. While there was
an even spread between the two countries, overall
Malaysia dominated with a ratio of 14:11 affilia-
tions in Malaysia and Indonesia, respectively.

8See, for example, Cahya Wirawan’s pre-trained Wikipedia
model.

3.4 Education Specific Studies
The number of education specific studies was 41
(see Appendix A), based on the title and abstract.
Of these 41 studies, 15 focused on assessment, with
an emphasis on expediting and improving the effi-
ciency of grading and providing feedback. Earlier
studies (2016–2018) tended to focus on word-level
error correction and short-answer grading while
later studies (2019–2021) seemed to address whole
of text evaluation, assessment task design (particu-
larly questioning techniques), and providing feed-
back. Within the limited time frame of our study,
we tentatively noted a shift from micro language
level applications and their intrinsic evaluations to
more macro, holistic language use applications that
proceed to extrinsic or broader NLP evaluations.

A portion of education studies considered teach-
ing practices and teacher training. Generally the
studies reflected the design of our search-terms
to target Indonesian language teaching; 10 papers
were geared towards using NLP to improve the
teaching and learning of Indonesian/Malay for non-
background language learners. Bahasa Indonesia
bagi Penutur Asing (BIPA — Indonesian language
for Foreign Learners) and the Malay equivalent
were discussed separately. Two studies were re-
lated to using NLP to improve the training of teach-
ers of Indonesian as a foreign language. Another
2 studies focused on NLP for improving the teach-
ing of translation for local students (i.e., Indone-
sian background speakers). Beyond studies from
a language teaching setting, a further 6 studies re-
lated to instruction in general or other areas of the
curriculum such as Mathematics, study skills, and
values education.

Overall the body of work indicates a need for
greater resourcing generally, and greater resourc-
ing in education, with a shift towards more so-
phisticated language concerns and potential uses
for these methods. Pleasingly, researchers identi-
fied for a high number of publications in Figure 5,
such as Amalia, A9 were also identified among
those developing NLP for education (Amalia et al.,
2019a), indicating high profile NLP researchers are
invested in education sector applications.

4 Discussion

This study sheds significant light on the state of
play and progress of Indonesian and Malay NLP.

9(see also name variant: Amalia, Amalia and Google
Scholar profile Amalia, Mahdi)
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Figure 5: Authors with 10 or More Publications

Figure 6: Author Affiliation of the Top 25 Authors with Most Publications

We make the following 7 recommendations and
outline our related contributions to encourage col-
laboration and support appropriate investment in
the development of Indonesian and Malay NLP,
and its application in education.

4.1 Recommendations

1. Broader adoption of best-practices for find-
able, open, sustainable, and future-proof data.
All 15 reviews raised the difficulty of locating data,
tools, and existing work as a significant problem.

Our study responds to this problem and is unique
in that Appendix B offers a catalogue of recent
work, identifies a variety of openly shared datasets
and tools, and locates research hubs. Our results
complement reviews such as Lan and Logeswaran
(2020) and Jiang et al. (2020) by providing an em-
pirical picture of published research on Indonesian
and Malay NLP. While our study was not specif-
ically focused on corpora like Awang Abu Bakar
et al. (2018), over 50 of the papers listed at the
top of ‘Statistical Work’ in Appendix B point to
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datasets which may be useful to future projects.
Useful advice to implement the FAIR Principles

(Findable, Accessible, Interoperable, Reusable)
and further advice for individual researchers/teams
to develop metadata, choose file formats, and think
beyond their immediate plans for linguistic data is
set out by Janda (2022) and Mattern (2022), respec-
tively. Funding requirements that encourage data
reuse (given ethics restraints) and which provide
financial support for adequate digital stewardship
are recommended.
2. Expanded evaluation methods and datasets,
and negative result publication
As identified by Gunawan and Amalia (2018) and
Widodo et al. (2021), evaluation of Indonesian and
Malay NLP is poorly supported due to a lack of
clear methods and few reference datasets. Open,
accessible data from studies can assist with this,
but to encourage further efficiency in the field, we
also recommend authors consider the publication
of ‘unsuccessful’ experiments in venues such as
Workshop on Insights from Negative Results in
NLP and organize or participate in evaluation chal-
lenges (a.k.a. shared tasks) and their workshops,
for example, as part of ACL conferences.
3. Collaboration and connection between
Indonesian and Malay NLP research and
projects to speed development and allow cross-
fertilisation
Many of the reviews discussed in our results fo-
cused on Malaysian research specifically looking
at Malay NLP. By using both Indonesian and Malay
in our search terms we connect these reviews to the
work of Indonesian authors. To illustrate, Han-
dayani et al. (2018), Abu Bakar et al. (2020), and
Abdullah et al. (2021) examine one study which
included Malay in the application of multilingual
sentiment analysis. Our findings connect this work
in Malay to more recent work by Tho et al. (2021),
who looked at Indonesian and Javanese code-mixed
sentiment analysis.

Indonesian and Malay are closely related (Sned-
don, 2003). With a caveat that corpus metadata
must clearly describe which languages are present,
and that projects must clearly state how Indonesian
and Malay are used in training data, we recom-
mend future work seek out synergies that could be
leveraged by using both languages.
4. Flexible author name formats and consistent
author name use
Many authors of studies we included had only one

name, but appeared to double this name in some
publications but not others, perhaps to suit forms
built with an (eurocentric) expectation of fam-
ily names. Similarly, many authors with lengthy
names used various forms.

We recommend publishers adapt their submis-
sion forms to accommodate diverse name traditions
and support existing unique author identifiers (e.g.,
the ORCID system). We also recommend authors
choose a publication name and use it as consistently
as possible to increase the findability of their work.
5. Investment in spoken language data and tran-
scription protocols
Our findings indicate only modest developments
of ‘later-generation’ NLP in Indonesian and Malay.
Significant investment is needed to give users of
these languages access to a broader gamut of NLP
applications, including applications in the educa-
tion sector.

In this space it is also essential to recognise dif-
ferences in the actual usage of these languages in
real-life, spoken situations. Transcription which
records code-mixed and often diglossic use of spo-
ken varieties of Indonesian and Malay in a machine
readable format needs to be investigated and scruti-
nised (Maxwell-Smith et al., 2020).
6. Investment in other languages of Indonesia
and Malaysia
As a necessary endeavour for equitable access to
advances in NLP for speakers, and to limit the
further endangerment of many languages as a con-
sequence of the expansion of Indonesian (Zein,
2020), we recommend simultaneous investment in
other languages of Indonesia and Malaysia. Linked
to Recommendation 5, to reflect actual usage and
to allow NLP to be useful in real-world contexts
where code-mixing is the norm, investment in other
languages is also likely crucial.
7. Education and NLP researchers should con-
sider the use of datasets by researchers outside
their field
A research project such as ours, investigating
teacher-speech and teaching materials for Indone-
sian language teaching (Maxwell-Smith et al.,
2020) should take advantage of human language
technologies. This article contributes a language-
specific characterization of the field which will help
scope future projects.

Education researchers should be aware that com-
putational methods such as data normalization
scripts and stemming tools are yet to be fully de-
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veloped for their use with the Indonesian language.
If working with spoken language, ASR toolkits for
working on low resource languages are suitable for
consideration but may require significant invest-
ment of time and training before they are capable
of managing complex code-switching behaviours
common in education settings.

For education researchers and teachers to use
NLP resources they need clear information about
the profile of language/s in corpora and also about
what data has been used when training mod-
els/tools. This allows proper assessment of the
cultural and political suitability of NLP resources.

Education researchers also need to consider the
possible use of datasets by researchers outside
their field. Ensuring data they collect is recorded in
‘future-proof’ formats and prepared with consider-
ation of the FAIR principles (see Recommendation
1 — Janda (2022) and Mattern (2022)) is an invest-
ment which encourages NLP applications specifi-
cally built for or amenable to education settings.

4.2 Limitations and Future Work

With regard to the limitations of this study, we em-
ployed a ‘light-touch’, subjective coding method
with a discrete set of class labels to scope relevant
literature; we did not undertake the act of synthesis
(Peters et al., 2015). We screened only the title and
abstract for the vast majority of references. Unin-
tentional misinterpretation could have taken place.
Our analysis provides an approximate area within
NLP for each reference to assist researchers study-
ing an NLP application or use-case. Researchers
interested in a particular algorithm (e.g., Random
Forest Decision Trees or Transformers), or the use
of a particular performance indicator (e.g., F1 or
Word Error Rate), might not find our work as useful,
but we encourage them to scan related categories
in Appendix A for work relevant to their interest.
Most references were labelled as belonging to mul-
tiple categories, with the identification of the first
category an educated but ultimately subjective de-
cision. Reading every study carefully beyond title
and abstract was beyond the scope of this study.

Future studies to target Indonesian and Malay
language publications may identify further litera-
ture on Indonesian and Malay NLP. Unfortunately,
our initial searches through databases such as the
University of Indonesia’s Research Portal, pro-
duced varied results, with a large proportion of
returned studies not necessarily having been as rig-

orously peer-reviewed (encompassing for example
many ‘skripsi’ or honours dissertations). Indone-
sia’s national library service OneSearch has grown
dramatically, and with over 3748 libraries affiliated
in February 2022, it should also be included in
future reviews of Indonesian and Malay NLP.

Since we conducted our review, Aji et al. (2022)
have proposed potential research directions in
the Indonesian context such as data-efficient and
compute-efficient NLP. Given the low number of
studies in our Speaker Dialogue Systems class, we
support their call for “NLP Beyond Text”. The ‘su-
perglossic’ translanguaging practices of Indonesia
(Zein, 2020), and language classrooms (Maxwell-
Smith et al., 2020), correspond with their call for
“Robustness to Code-mixing and Non-Standard Or-
thography”. Applications of Indonesian NLP ne-
cessitate involvement with other languages of In-
donesia and inevitably impact many at-risk lan-
guages. There is an ethical obligation for “careful
assessment of individual usage scenarios of lan-
guage technology, so they are implemented for the
good of the local population” (Aji et al., 2022).

5 Conclusion

Overall, this scoping study provides a baseline pic-
ture of Indonesian and Malay NLP. It shows an
emerging research community engaged with the
wide range of NLP advances identified in 2015 by
Hirschberg and Manning. Researchers in the field
continue to experience difficulties in benchmarking
performance without reliable evaluation techniques
and reference datasets, re-engineering of loaned
preprocessing tools from English NLP, and thank-
less tasks such as the creation of custom datasets
and resources. NLP applications in education are
limited, as are tools for language which is not in
text format. Our results highlight the importance
of creating and releasing well-described and main-
tained resources openly and fostering collaboration.
IndoLEM-IndoBERT, IndoNLU, IndoNLG, and In-
doNLI are notable releases that are already helping
to orientate researchers and future projects using
Indonesian and Malay NLP.
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A Appendix

A more accessible table will be available here.

Table 1

Education Specific Studies
Title Author Year
The Development of an Audible Pattani Malay- . . . Boonkwan et al. 2016
A corpus platform of Indonesian academic language Kwary 2019
U-tapis: Automatic spelling filter as an effort to . . . Mediyawati et al. 2021
Word level auto-correction for latent semantic . . . Ratna et al. 2017
The development of Indonesian POS tagging sys . . . Muljono et al. 2017c
A morphophonemic analysis on the affixation in . . . Ampa et al. 2019
Learning Indonesian Frequently Used Vocabulary . . . Lin et al. 2019b
Towards developing colloquial Indonesian lan . . . Nataprawira and Carey 2020
Pengajaran bahasa dan pemerolehan bahasa ke . . . Rosiyana 2020
Cross-corpus native language identification via . . . Rangel et al. 2018
Acquiring Extended Units of Meaning: The Role . . . Suhardijanto and Putra 2019
Designing Phonetic Alphabet for Bahasa Indone . . . Karlina et al. 2020
Indonesian essay grading module using Natural . . . Ajitiono and Widyani 2017
Automated Bahasa Indonesia essay evaluation . . . Amalia et al. 2019a
Exploiting Syntactic Similarities for Preposition . . . Irmawati et al. 2016
Vocabulary Load on Two Mainstream Indonesian . . . Destiani et al. 2018a
Perbandingan Deiksis pada Dua Buku Ajar: Anal . . . Destiani et al. 2018b
Pengembangan kamus pemelajar Bahasa Indone . . . Fadly 2018
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Strategi Pengukuran Upaya Berbahasa Menerusi . . . Redzwan et al. 2020
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An experimental study of text preprocessing tech . . . Hasanah et al. 2018
N-Gram Keyword Retrieval on Association Rule . . . Setiawan et al. 2018
Semi-supervised learning self-training for Indone . . . Wulan and Supangkat 2018
Evaluating rnn architectures for handling imbal . . . Christianto et al. 2020
A comparison of supervised text classification . . . Dhammajoti et al. 2020
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Answer categorization method using K-means for . . . Ratna et al. 2019
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A novel model and implementation of humanoid . . . Budiharto et al. 2021

End of Table
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B Appendix

A more accessible table will be available here.

Table 2

Broad NLP
Title Author Year
IndoLEM and IndoBERT: A Benchmark Dataset . . . Koto et al. 2020b
Unstructured Malay Text Analytics Model in Crime Mohemad et al. 2020c
A new framework for information system devel . . . Sukarsa et al. 2018
An overview of BPPT’s Indonesian language re . . . Gunarso et al. 2016
Challenges and development in Malay natural lan . . . Lan and Logeswaran 2020

Statistical and Corpus Work
Title Author Year
The Development of an Audible Pattani Malay- . . . Boonkwan et al. 2016
Linking the TUFS Basic Vocabulary to the Open . . . Bond et al. 2020
Hypernym-Hyponym Relation Extraction from . . . Nityasya et al. 2019
Linguistik Korpus Kuantitatif dan Kajian Seman . . . Rajeg 2020
Characteristics of Malay translated hadith corpus Sazali et al. 2020
Syllabification Model of Indonesian Language . . . Fanani and Suyanto 2021
A corpus platform of Indonesian academic language Kwary 2019
Examining the writing genre in journal articles of . . . Wiratno and Dzakiria 2016
An annotated news corpus of Malaysian Malay Chung and Shih 2019
Introduction of the Asian Language Treebank Riza et al. 2017
Information extraction: Evaluating named entity . . . Sazali et al. 2017
Comparative study on corpus development for . . . Din et al. 2017
Building the Pornography Corpus for Bahasa In . . . Gunawan et al. 2019c
Building a Malay-English code-switching subjec . . . Kasmuri and Basiron 2019
IndoNLU: Benchmark and Resources for Evaluat . . . Wilie et al. 2020
Development of a retrieval system for Al Hadith . . . Aulia et al. 2017b
An Ontological Approach towards Dialogue . . . Mohd Yunus et al. 2017
Co-occurrence technique and dictionary based . . . Sholikah et al. 2017
Penentuan Fitur bagi Pengekstrakan Tajuk Berita . . . Shahrul Azman Mohd et al. 2018a
The Development of the Malaysian Hansard Cor . . . Abdullah et al. 2021
Rancang bangun aplikasi web scraping untuk kor . . . Mitra et al. 2017
NUWT: Jawi-specific buckwalter corpus for . . . Bakar et al. 2016
Towards Computational Linguistics in Minangk . . . Koto and Koto 2020
Indonesia Language Sphere: an ecosystem for . . . Murakami 2019
Designing a collaborative process to create bilin . . . Nasution et al. 2019
Tufs asian language parallel corpus (talpco) Nomoto et al. 2018b
Sentence segmentation and phrase strength esti . . . Hanum and Bakar 2016b
Evaluation of Energy and Duration on Malay . . . Hanum and Bakar 2016a
Prosodic breaks on Malay speech corpus: Evalua . . . Hanum et al. 2017
Demarcating and highlighting in Papuan Malay . . . Kaland and Baumann 2020
Repetition Reduction Revisited: The Prosody of . . . Kaland and Himmelmann 2020
Stress predictors in a Papuan Malay random forest Kaland et al. 2019
Lexical analyses of the function and phonology . . . Kaland et al. 2021
Development of under-resourced Bahasa Indone . . . Cahyaningtyas and Arifianto 2018
Generative Indonesian Conversation Model using . . . Chowanda and Chowanda 2018
An evaluation of sentence selection methods on . . . Muljono et al. 2020
Indonesian Affective Word Resources Construc . . . Hulliyah et al. 2019
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Analysis of Indonesian sentiment text based on . . . Hulliyah et al. 2017
An integrated semi-automated framework for . . . Kaity and Balakrishnan 2020
BMBI: A Development of a Special Corpus on . . . Rumaisa et al. 2020
Sentiment analysis in Indonesian and French by . . . Shalunts et al. 2018
Preliminary Research Design on Sensor Data . . . Aulia et al. 2020
Review on the Role of Social Media for Dengue . . . Kannan et al. 2019
Twitter corpus creation: The case of a Malay . . . Saloot et al. 2016
An Application that Invites Users to Participate . . . Thamrin et al. 2019b
A publicly available Indonesian corpora for auto . . . Koto 2016
Development of multilingual social media data . . . Rumaisa et al. 2019
Bahasa Indonesia text corpus generation using . . . Amalia et al. 2019b
WatsaQ: Repository of Al Hadith in Bahasa (Case . . . Aulia et al. 2017a
Malay Online Virtual Integrated Corpus . . . Awang Abu Bakar et al. 2018
The Development of an Integrated Corpus for . . . Bakar 2020
Building Corpus in Bahasa Indonesia for Porno . . . Chandra et al. 2019
Building a web-based application for language . . . Dinakaramani and Suhardijanto 2019
Development of a Web-based Jahai-Malay Lan . . . Mohtar et al. 2021
A Review on Building Bilingual Comparable Cor . . . Nasharuddin et al. 2018
Linguistic studies using large annotated corpora: . . . Nomoto and Moeljadi 2019
Introducing the Asian language treebank (ALT) Thu et al. 2016
Bahasa Melayu sebagai Bahasa Ilmu (BMBI) di . . . Yusof et al. 2017
A dependency annotation scheme to extract syn . . . Irmawati et al. 2017a
Domain-specific stop words in Malaysian parlia . . . Rahman et al. 2021a
Transforming semi-structured indigenous dictio . . . Ranaivo-Malançon et al. 2017
Rule-based text normalization for Malay social . . . Ariffin and Tiun 2020
Evaluating the use of word embeddings for part- . . . Abka 2017
Information Retrieval System to Find Articles and . . . Sulaeman et al. 2020
U-tapis: Automatic spelling filter as an effort to . . . Mediyawati et al. 2021
Building the Application to Identify Incorrect Cap . . . Gunawan et al. 2019a
Feature extraction using regular expression in de . . . Sulaiman et al. 2017
Incorporating Knowledge Base in Unsupervised . . . Rifin and Hamzah 2017
Movie Summarization based on Indonesian Subti . . . Situmeang et al. 2019
Semantic similarity measures for Malay-English . . . Mahadzir et al. 2018
Recognizing and normalizing temporal expres . . . Mirza 2016
Automatic Grammar Checking System for Indone . . . Rahutomo et al. 2018
Rapid Heteronym Disambiguation for Text-to- . . . Samsudin and Rahim 2019
Identification Of Features In Predicting Promi . . . Tiun and Hong 2020
An Enhancement of Malay Social Media Text . . . Bakar et al. 2019
Text Normalization Algorithm on Twitter in Com . . . Hanafiah et al. 2017
Pre-processing Tasks in Indonesian Twitter Messages Hidayatullah and Ma’arif 2017
Proposal: A Hybrid Dictionary Modelling Ap . . . Nor Azlizawati Binti et al. 2017
Normalization of Indonesian-English code-mixed . . . Barik et al. 2019
Review and Visualization of Facebook’s FastText . . . Young and Rusli 2019
Bidirectional encoder representations from trans . . . Candra et al. 2021
Categorization of Malay social media text and . . . Maskat and Rahman 2020
Exploring Edit Distance for Normalising Out-of- . . . Raja et al. 2019
An automatic construction of Malay stop words . . . Chekima and Alfred 2016
Word Sense Disambiguation in Bahasa Indonesia . . . Faisal et al. 2018
Cross-Lingual and Supervised Learning Ap . . . Mahendra et al. 2018b
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Enhancing Latent Semantic Analysis by Embed . . . Rahman et al. 2017
Word level auto-correction for latent semantic . . . Ratna et al. 2017
Evaluating Word Embeddings for Indone . . . Rizal and Stymne 2020
Designing and implementing parsing for ambigu . . . Soyusiawaty and Aribowo 2016
Word Embedding for Small and Domain-specific . . . Tiun et al. 2020a
Resolving Malay word sense disambiguation uti . . . Yahaya et al. 2017a
Morphological Analysis of Malay Words for Re . . . Yahaya et al. 2018
Evaluation on knowledge extraction and machine . . . Yahaya et al. 2017b
Naïve Bayes implementation into Bahasa Indone . . . Jodhinata and Hartanti 2016
Analyzing Malay Stemmer Performance Towards . . . Rodzman et al. 2018
Information Retrieval Technique for Indonesian . . . Riza et al. 2020
Stemmer and phonotactic rules to improve n-gram . . . Suyanto et al. 2021
Analysis of Stemming Influence on Indonesian . . . Hidayatullah et al. 2016
Towards stemming error reduction for Malay texts Kassim et al. 2019
Enhanced Text Stemmer with Noisy Text Normal . . . Kassim et al. 2020b
Design Consideration of Malay Text Stemmer . . . Kassim et al. 2020a
Malay word stemmer to stem standard and slang . . . Kassim et al. 2016b
Enhanced rules application order to stem affixa . . . Kassim et al. 2016a
Word stemming challenges in Malay texts: A lit . . . Kassim et al. 2016c
Non-formal affixed word stemming in Indonesian . . . Putra et al. 2018a
Accuracy measurement on Indonesian non-formal . . . Putra et al. 2019
Improving stemming techniques for non-formal . . . Rianto et al. 2021
Comparison of stemming algorithms on Indone . . . Rizki et al. 2019
Improvement on stemmer algorithm for Indone . . . Syawanodya and Huda 2018
The development of Indonesian POS tagging sys . . . Muljono et al. 2017c
Semantic Role Labeling in Conversational Chat . . . Rachman et al. 2018a
POS-Tagging for informal language (study in In . . . Suryawati et al. 2018
Part-of-speech tagger for Malay social media texts Ariffin and Tiun 2018
A comparison of different part-of-speech tagging . . . Amrullah et al. 2017
Indonesian part of speech tagging using hidden . . . Cahyani and Vindiyanto 2019
Part-of-speech (pos) tagger for Malay language . . . Gaber et al. 2020
Part of Speech Tagging for Indonesian Language . . . Handrata et al. 2019
Evaluating the Morphological and Capitalization . . . Manik et al. 2019
Morphology analysis for Hidden Markov Model . . . Muljono et al. 2017a
POS-tagging for non-English tweets: An auto . . . Munandar et al. 2017
An evaluation of MorphInd’s morphological an . . . Prihantoro 2021
Rule-based Part of Speech Tagger for Indonesian . . . Purnamasari and Suwardi 2018
Evaluating lstm networks, hmm and wfst in . . . Tan et al. 2017b
Time Series Neural Network Model for Part-of- . . . Tanadi 2018
Implementation of ontology-based on Word2Vec . . . Togatorop et al. 2020
Utilizing Morphological Features for Part-of- . . . Trisna et al. 2020
On Empirical Evaluation of Deep Architectures . . . Yuwana et al. 2019
On part of speech tagger for Indonesian language Yuwana et al. 2018
Identifying Sentence Structure in Bahasa Indone . . . Gunawan et al. 2019d
Breakdown film script using parsing algorithm Wahana et al. 2020
Algorithm for simple sentence identification in . . . Anggraini et al. 2018
Indonesian Parsing using Probabilistic Context- . . . Cahyani et al. 2020
The effectiveness of bottom up technique with . . . Fairuzz Hiloh et al. 2018
Warning and Suggestion System on Syntax Tree . . . Haris et al. 2019
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A Finite State Machine Model to Determine Syl . . . Haryanto and Aripin 2019
Tackling the Low-resource Challenge for Canoni . . . Mager et al. 2020
Modification of Chu-Liu/Edmonds algorithm and . . . Nizami and Purwarianti 2017
Sentence boundary disambiguation for Indone . . . Putra et al. 2017
Rule based sentence segmentation of Indonesian . . . Raharjo et al. 2018
Ensemble technique utilization for Indonesian de . . . Rahman and Purwarianti 2017
How Similar is Similar: A Comparison of Bahasa . . . Basuki and Antaputra 2020a
New tools for old tasks: A new approach to the . . . Don and Knowles 2020
Identifying and Exploiting Definitions in Wordnet . . . Moeljadi and Bond 2016
A morphophonemic analysis on the affixation in . . . Ampa et al. 2019
A study of education-related Chinese words used . . . Kia and Su’Ad 2019
Learning Indonesian Frequently Used Vocabulary . . . Lin et al. 2019b
Towards developing colloquial Indonesian lan . . . Nataprawira and Carey 2020
Pengajaran bahasa dan pemerolehan bahasa ke . . . Rosiyana 2020
An identification of authentic narrator’s name fea . . . Abd Rahman et al. 2016
The process of forming a more complex idiomatic . . . Ismail et al. 2021
Exploring Lexical Differences Between Indone . . . Lin et al. 2019c
A Corpus Driven Analysis of Representations . . . Nor Fariza Mohd et al. 2019
Exploiting Malay corpus on islamic issue using . . . Setik et al. 2018
English legalese translation into Indonesian Dewi et al. 2021
A corpus-based analysis of English core modal . . . Oktavianti 2019
Comparison of Personal Pronoun between Arabic . . . Markhamah Abdul et al. 2017
Prosody analysis of Malay language storytelling . . . Ramli et al. 2016
Code-switching in Bruneian online retail transactions Henry and Ho 2016
Comparison of the themes of Malaysian Friday . . . Aasim Asyafi’Ie bin Ahmad et al. 2017
Where is the Head Positioned in Indonesian Lan . . . Ansari and Suhardijanto 2019
Online-Dating Romance Scam in Malaysia: An . . . Azianura Hani et al. 2019
Conceptual structure representation of causative . . . Binti Yusof and Binti Rosly 2018
A new look at Pattani Malay Initial Geminates: a . . . Burroni et al. 2020
The particle pun in modem Indonesian and . . . Chambert-Loir 2019
Lagi in standard Malaysian Malay: Its meaning . . . Chung 2019
The Indonesian prefixes PE- and PEN-: A study . . . Denistia and Baayen 2019
Similar southeast asian languages: Corpus-based . . . Ding et al. 2016
The Design of Lexical Database for Indonesian . . . Gunawan and Amalia 2017
Automatic extraction of multiword expression can . . . Gunawan et al. 2017b
The Observation of Bahasa Indonesia Official . . . Gunawan et al. 2018a
Utterance-final particles in Klang Valley Malay Hoogervorst 2018
Covid-19 dalam Korpus Peristilahan Bahasa . . . Kasdan et al. 2020
Gandaan Separa dalam Terminologi Bahasa . . . Kasdan et al. 2017
Compilation of Malay criminological terms from . . . Lee et al. 2019
Exploring Letter’s Differences between Partial . . . Lin et al. 2019a
Hedging in the discussion sections of English and . . . Loi and Lim 2019
Formation of health science terminology by users . . . Mohamad et al. 2020c
Politeness in communication through local chil . . . Mohamad Nor et al. 2019
Translation and Markedness Ni et al. 2018
Frequency of Verbs in Lifestyle Column in the . . . Oktavianti and Pramesti 2019
The influence of students’ L1 and spoken English . . . Prihantoro 2016
Sketching the Semantic Change of Jahanam and . . . Puspita and Yusuf 2020
Vector Space Models and the usage patterns of . . . Rajeg et al. 2019
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Cross-corpus native language identification via . . . Rangel et al. 2018
Imbuhan meN- dengan Kata Nama Konkrit Unsur . . . Saad and Jalaluddin 2020
Ideational Grammatical Metaphors in Doctrinal . . . Saragih et al. 2017
Collocation analysis of variants of intensifies in . . . Sarudin et al. 2020a
Discourse functions of the two non-active voices . . . Shiohara et al. 2019
The Framework of Multiword Expression in In . . . Suhardijanto et al. 2020
Acquiring Extended Units of Meaning: The Role . . . Suhardijanto and Putra 2019
Bila dan Mengapa ‘You’ Menjadi ‘Kita’: Satu . . . Sulaiman and Bin Mohamad Yusoff 2020
Frasa Topik Dan Fokus Dalam Bahasa Melayu: . . . Sultan and Othman 2021
Prestige of products and code-switching in retail . . . Ting et al. 2020
Quantifying semantic shift visually on a Malay . . . Tiun et al. 2020b
Informativity and the actuation of lenition Uriel Cohen 2017
Spesifikasi ruang dalam kata kerja deiktik datang . . . Yusof and Harun 2021
‘Sampai Di’ Vs ‘Sampai Ke’: Accomplishment . . . Yusof et al. 2016
Diachronic Corpora as a Tool for Tracing Etymo . . . Yusuf and Puspita 2020
Representatif Leksikal Ukuran sebagai Metafora . . . Zaini et al. 2020b
Designing Phonetic Alphabet for Bahasa Indone . . . Karlina et al. 2020
Indonesian essay grading module using Natural . . . Ajitiono and Widyani 2017
Automated Bahasa Indonesia essay evaluation . . . Amalia et al. 2019a
Exploiting Syntactic Similarities for Preposition . . . Irmawati et al. 2016
Vocabulary Load on Two Mainstream Indonesian . . . Destiani et al. 2018a
Perbandingan Deiksis pada Dua Buku Ajar: Anal . . . Destiani et al. 2018b
Pengembangan kamus pemelajar Bahasa Indone . . . Fadly 2018
Fossicking in dominant language teaching: Ja . . . Maxwell-Smith 2021
Teaching Specific Purpose Translation: Utiliza . . . Siregar 2017
Theme markedness in the translation of student . . . Sofyan and Tarigan 2018
Strategi Pengukuran Upaya Berbahasa Menerusi . . . Redzwan et al. 2020
Generating artificial error data for Indonesian . . . Irmawati et al. 2017b
Menangani Kekaburan Kemahiran Prosedur dan . . . Anida et al. 2019
Environmental awareness content for character . . . Rahmawati et al. 2020
Development of Malay word materials for . . . Yusof et al. 2019
Exploring gender issues associated with . . . Aziz 2019
“Happiness” in Bahasa Indonesia and its implica . . . Effendi and Muchammadun 2018
Defying the global: The cultural connotations of . . . Hashim and Rahim 2016
The implicit meaning in Malay figurative lan . . . Mansor and Jalaluddin 2016
“Is Selangor in Deep Water?”: A Corpus-driven . . . Norsimah Mat et al. 2019
Linguistic Representation of Violence in Judicial . . . Othman et al. 2019
Text mining of online job advertisements to iden . . . Panggih Kusuma et al. 2020
Inquisitive semantic analysis of Malay language . . . Subet and Md Nasir 2019
Spotlight on LGBT in Malaysian online newspa . . . Ting et al. 2021
The polarity of war metaphors in sports news: A . . . Hua et al. 2021
Communicating insults in cyberbullying Hua et al. 2019
Analisis korpus terhadap idiom Bahasa Indonesia . . . Paramarta 2018
Conceptual metaphor and linguistic manifesta . . . Saad et al. 2018b
The relationship between astronomy and architec . . . Sarudin et al. 2020b
Beyond the closet? The trends and visibility of . . . Subir 2019
Trend Penggunaan Bahasa Samar dalam Persidan . . . Tan et al. 2017a
Form and function of negation in German and . . . Triyono et al. 2020
Bòsò Walikan Malang’s Address Practices Yannuar et al. 2017

219



Continuation of Table 2
Title Author Year
Perception and metaphorical smell: A Malay . . . Zaini et al. 2020a
House building tips (HBT) corpus dataset as a . . . Zaini et al. 2021
Understanding quotation extraction and attribu . . . Purnomo W.P et al. 2020
An automatic health surveillance chart interpreta . . . Aulia and Barmawi 2016
A text representation model using Sequential . . . Alias et al. 2018b
Relationship analysis of keyword and chapter in . . . Chua and Nohuddin 2017
Relation extraction using dependency tree kernel . . . Esperanti and Purwarianti 2016
An experimental study of text preprocessing tech . . . Hasanah et al. 2018
Relation Detection for Indonesian Language Us . . . Hasudungan and Purwarianti 2019
Classification of short possessive clitic pronoun . . . Noor et al. 2020
Assessing Suitable Word Embedding Model for . . . Phua et al. 2020
Experiments on coreference resolution for Indone . . . Suherik and Purwarianti 2017
Malay manuscripts transliteration using statistical . . . Razak et al. 2019
Transliteration engine for union catalogue of . . . Razak et al. 2018
SMVS: A Web-based Application for Graphical . . . Ahmat Baseri et al. 2020
Exploring Multilingual Syntactic Sentence Repre . . . Liu et al. 2019a
Transfer Building of Multiword Expression Re . . . Liu and Wang 2020
Reclassification of the Leipzig Corpora Collec . . . Nomoto et al. 2018a
Learning Indonesian-Chinese Lexicon with Bilin . . . Qiu and Zhu 2016

Machine Reading
Title Author Year
Towards corpus and model: Hierarchical . . . Fu et al. 2021
Towards a Standardized Dataset on Indonesian . . . Khairunnisa et al. 2020
Semi-supervised learning approach for Indone . . . Aryoyudanta et al. 2017
Named entity recognition for extracting concept . . . Santoso et al. 2021
Rule-based Approach on Extraction of Malay . . . Zamri Abu et al. 2017
A review of named entity recognition and classifi . . . Mohemad et al. 2020a
Detecting proper nouns in Indonesian-language . . . Raharjo et al. 2020
Named entity recognition on Indonesian tweets . . . Azarine et al. 2019
Named entity recognition on Indonesian Twitter . . . Rachman et al. 2018b
An enhanced Malay named entity recognition us . . . Asmai et al. 2018
Named entity recognition using fuzzy c-means . . . Salleh et al. 2018
Named entity recognition on Indonesian mi . . . Taufik et al. 2017
DBpedia entities expansion in automatically build . . . Alfina et al. 2017
Entity annotation WordPress plugin using . . . Aprilius et al. 2017
Developing name entity recognition for structured . . . Azzahra et al. 2020
Detection of compound word with combination . . . Bakar et al. 2017
Identification of Noun + Verb Compound Nouns . . . Bakar et al. 2018a
Automatic detection of compound word in Malay . . . Bakar et al. 2018b
Named-Entity Recognition for Indonesian Lan . . . Gunawan et al. 2018c
A Concise Review of Named Entity Recognition . . . Ikhwan Syafiq et al. 2019
Empirical Evaluation of Character-Based Model . . . Kurniawan and Louvan 2018
A Semi-supervised Algorithm for Indonesian . . . Leonandya et al. 2016
Malay name entity recognition using limited re . . . Noor et al. 2016
Medical Named Entity Recognition for Indone . . . Rahman 2018
Pendekatan Teknik Pengecaman Entiti Nama . . . Saad and Mohamed Kamil 2018
A Malay named entity recognition using condi . . . Salleh et al. 2017
Low Complexity Named-Entity Recognition for . . . Sukardi et al. 2020
Building Low-Resource NER Models Using Non- . . . Tsygankova et al. 2021
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Hate speech detection in the Indonesian language: . . . Alfina et al. 2018
Developing Indonesian corpus of pornography . . . Andriansyah et al. 2018
Bahasa Indonesia pre-trained word vector genera . . . Putri et al. 2021
Indonesian text document similarity detection sys . . . Sinaga and Hansun 2018
N-Gram Keyword Retrieval on Association Rule . . . Setiawan et al. 2018
The Effectiveness of Using Malay Affixes for Han . . . Mohamed et al. 2018
Author-Topic Modelling for Reviewer Assign . . . Kusumawardani and Khairunnisa 2019
Benchmarking Mi-AR: Malay anaphora resolution Xian et al. 2016
Fake news identification characteristics using . . . Al-Ash and Wibowo 2018
Graph-based text representation for Malay trans . . . Alias et al. 2017a
Building automatic mind map generator for natu . . . Yulianto and Mariyah 2017
Neural sequence-to-sequence learning of internal . . . Ruzsics and Samardzic 2017
Classification of user comment using word2vec . . . Kurnia and Girsang 2021
Short Message Service (SMS) Spam Filtering us . . . Theodorus et al. 2021
Analysis and implementation of cross lingual . . . Dewi et al. 2018
Long short-term memory for hate speech and abu . . . Salim and Suhartono 2021
Semi-supervised learning self-training for Indone . . . Wulan and Supangkat 2018
Multi-Label Topic Classification of Hadith of . . . Abu Bakar et al. 2019a
Hoax analyzer for Indonesian news using rnns . . . Adipradana et al. 2021
An evolutionary-based term reduction approach . . . Alfred et al. 2017
Assessing factors that influence the performances . . . Alfred et al. 2016
A comparison study of document clustering using . . . Amalia et al. 2020a
An Efficient Text Classification Using fastText . . . Amalia et al. 2020b
Optimizing Deep Learning for Detection Cyber . . . Anindyati et al. 2019
Evaluating rnn architectures for handling imbal . . . Christianto et al. 2020
A comparison of supervised text classification . . . Dhammajoti et al. 2020
Classifying Medical Document in Bahasa Indone . . . Dhomas Hatta and Kiki Purnama 2021
Using naïve bayes classifier for application feed . . . Ferdino and Rusli 2019
The identification of pornographic sentences in . . . Gunawan et al. 2019e
The Best Parameter Tuning on RNN Layers for . . . Hikmah et al. 2020
A language identifier for Indonesian and Malay . . . Indra et al. 2016
A category classification algorithm for Indonesian . . . Jaafar et al. 2016
The impacts of singular value decomposition al . . . Jambak et al. 2019
Automatic Indonesia’s questions classification . . . Kusuma et al. 2016
Comparative Study of Machine Learning Ap . . . Mohammad Najib et al. 2017
Hoax Analyzer for Indonesian News Using Deep . . . Nayoga et al. 2021
Study of hoax news detection using naïve bayes . . . Pratiwi et al. 2018
Building a question classification model for a . . . Puteh et al. 2019
Age Group Based Document Classification in Ba . . . Putra et al. 2020
Hoax web detection for news in bahasa using sup . . . Rahmat et al. 2019
Indonesian news classification using convolu . . . Ramdhani et al. 2020
Answer categorization method using K-means for . . . Ratna et al. 2019
Identifying fake news in Indonesian via super . . . Rusli et al. 2020
Indonesian news classification based on NaBaNA Septian et al. 2017
Knowing Right from Wrong: Should We Use . . . Septiandri et al. 2020
Enhancing text classification performance by pre . . . Setiabudi et al. 2021
Text Classification Services Using Naïve Bayes . . . Setiani and Ce 2018
Argument annotation and analysis using deep . . . Suhartono et al. 2020
Semi-supervised Category-specific Review Tag . . . Sun et al. 2020
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Short Message Service Filtering with Natural Lan . . . Tandra et al. 2021
Implementation of Naïve Bayes Classifier Algo . . . Thirafi and Rahutomo 2018
Research on Pseudo-label Technology for Multi- . . . Wang et al. 2021
Efficient Implementation of Dirty Words Detec . . . Yao et al. 2020
A Study of Text Classification for Indonesian . . . Yovellia Londo et al. 2019
Developing the COVID-19 Malay Corpus Using . . . Hakimi and Rahman 2021
Query rewriting and corpus of semantic similarity . . . Purnamasari et al. 2016
Performance Evaluation of Inverted Files, B-Tree . . . Rosnan et al. 2019
Word prediction algorithm in resolving ambiguity . . . Sazali et al. 2016
Implementation of LSI method on information . . . Pardede and Barmawi 2016
A document recommendation system of stem . . . Parwita 2020
Weighted inverse document frequency and vector . . . Pratama et al. 2020
Cross Language Information Retrieval Using Par . . . Rahmanda et al. 2019
Machine Learning Approach for Sentiment Anal . . . Mantoro et al. 2020
Natural Language Interface to Database (NLIDB) . . . Anisyah et al. 2019
A Survey on Context-Aware Information Re . . . Bin Rodzman et al. 2018a
The implementation of fuzzy logic controller for . . . Bin Rodzman et al. 2018b
Experiment with text summarization as a positive . . . Bin Rodzman et al. 2019b
Indonesian document retrieval using vector space . . . Fitriasari et al. 2017
Access to Relational Databases Using Interroga . . . Ghassani and Widagdo 2018
Automatic open domain information extraction . . . Gultom and Wibowo 2018
Open Text Ontology Mining to Improve Re . . . Hamzah and Kamaruddin 2021
Multi-word similarity and retrieval model for a . . . Hanum et al. 2019
Syntactic rule-based approach for extracting con . . . Husin et al. 2018
Web Service for Search Engine Bahasa Indonesia . . . Husni et al. 2020
Information Retrieval for Malay Text: A Decade . . . Kamaruddin et al. 2021
Teknik Pengukuhan Perangkak Tumpuan melalui . . . Masnizah et al. 2018
Natural Language Interface to Database (NLIDB) . . . Poetra et al. 2019
Content-based Filtering Model for Recommenda . . . Putri et al. 2019b
Fabricated and Shia Malay translated hadith as . . . Rodzman et al. 2020
Domain specific concept ontologies and text sum . . . Rodzman et al. 2019
Rule-based Indonesian Open Information Extraction Romadhony et al. 2018
A Statistical Linguistic Terms Interrelationship . . . Yusuf et al. 2021
A Survey: Framework of an Information Retrieval . . . Zulkefli et al. 2017
Crowdsourcing in developing repository of phrase . . . Thamrin et al. 2019a
Single document keywords extraction in Bahasa . . . Trisna and Nurwidyantoro 2020
Topic modeling on Indonesian online shop chat Hidayatullah et al. 2019
Indonesian abstractive text summarization using . . . Adelia et al. 2019
Topic labeling towards news document collection . . . Adhitama et al. 2017
MYTextSum: A Malay Text Summarizer Model . . . Alias et al. 2018a
A Malay text corpus analysis for sentence com . . . Alias et al. 2016
Extract, compress and summarize–An experiment . . . Alias et al. 2017c
A Malay text summarizer using pattern-growth . . . Alias et al. 2017b
Understanding Human Sentence Compression Pat . . . Alias et al. 2018c
Bilingual extractive text summarization model . . . Alias et al. 2020
A Syntactic-based Sentence Validation Technique . . . Alias et al. 2021
Indonesian Automatic Text Summarization Based . . . Cai et al. 2019
Summarizing Indonesian news articles using . . . Garmastewira and Khodra 2019
Review of the recent research on automatic text . . . Gunawan and Amalia 2018
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Multi-document Summarization by using Tex . . . Gunawan et al. 2019b
Automatic Text Summarization for Indonesian . . . Gunawan et al. 2017a
Liputan6: A Large-scale Indonesian Dataset for . . . Koto et al. 2020a
Peringkasan dokumen berita Bahasa Indonesia . . . Mandar and Gunawan 2017
The purpose of bellman-ford algorithm to summa . . . Maylawati et al. 2020
Sequential pattern mining and deep learning to . . . Maylawati et al. 2019
Technique on Malay text summarization: A review Mohemad et al. 2020b
Generation of news headline for Malay language . . . Noah et al. 2018
Text simplification for Malay corpus: A Review Omar et al. 2021
Automatic Text Summarization for Malay News . . . Rahman et al. 2021b
Towards product attributes extraction in Indone . . . Rif’at et al. 2018
Multidocument Abstractive Summarization using . . . Severina and Khodra 2019
Penjanaan Ringkasan Isi Utama Berita Bahasa . . . Shahrul Azman Mohd et al. 2018b
Terrorism domain corpus building using Latent . . . Suhendra et al. 2018
Topic Modelling for Malay News Aggregator Weiying et al. 2018
A comparative review of extractive text summa . . . Widodo et al. 2021
Indonesian Abstractive Summarization using Pre- . . . Wijayanti et al. 2021
A Conceptual Framework for Malay-English . . . Lim et al. 2021
Design of Ontology-based Question Answering . . . Yunmar and Wayan Wiprayoga Wisesa 2019
Corpus development for Indonesian consumer- . . . Hakim et al. 2018
Towards question identification from online . . . Mahendra et al. 2018a
WPS: Application for Generating Answer of . . . Oktavia et al. 2021
Automated question generating method based on . . . Wijanarko et al. 2020
Question generation model based on key-phrase, . . . Wijanarko et al. 2021
Developing Question Generation System for Ba . . . Wisnu Prabowo et al. 2021
Developing an adaptive language model for Ba . . . Hidayatullah and Suyanto 2019
Pembangunan Taksonomi dari Teks Melayu . . . Mohd Zakree Ahmad et al. 2018
Document Similarity Detection Using Indonesian . . . Ramadhanti and Mariyah 2019
Paraphrase construction of Al Quran in Indone . . . Hutami et al. 2019
Rude-Words Detection for Indonesian Speech Us . . . Novitasari et al. 2019
Taxonomy development from Malay text using . . . Ahmad Nazri et al. 2018
Cross-Language Plagiarism Detection System Us . . . Anak Agung Putri et al. 2017
Plagiarism Detection for Indonesian Language . . . Arifin et al. 2018
Knowledge representation system for copula sen . . . Cahyani et al. 2016
Keyword extraction from scientific articles in Ba . . . Gunawan et al. 2020
Extracting disease-symptom relationships from . . . Halim et al. 2018
Segregation of Code-Switching Sentences using . . . Kasmuri and Basiron 2020
Automated verbalization of ORM models in . . . Lim and Halpin 2016
Noun phrases extraction using shallow parsing . . . Santoso et al. 2016
Implementing Graph Based Rank on Online News . . . Syafiandini et al. 2019

Translation
Title Author Year
A framework for English and Malay cross-lingual . . . Nasharuddin et al. 2019
User participation in building language reposi . . . Thamrin et al. 2018
Google vs. Instagram Machine Translation: Mul . . . Larassati et al. 2019
Neural Machine Translation model for University . . . Aneja et al. 2020
Quality translation enhancement using sequence . . . Ayu et al. 2018
Meaning preservation in Example-based Machine . . . Chua et al. 2017
English-Indonesian Neural Machine Translation . . . Dwiastuti 2019
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Title Author Year
Benchmarking multidomain English-Indonesian . . . Guntara et al. 2020
A Neural Machine Translation Approach for . . . Low et al. 2020
IIT Bombay’s English-Indonesian submission at . . . Singh et al. 2016
Source language adaptation approaches for . . . Wang et al. 2016
Hybrid machine translation with multi-source . . . Yeong et al. 2018
Using Dictionary and Lemmatizer to Improve . . . Yeong et al. 2016
Semi-Supervised Low-Resource Style Transfer . . . Wibowo et al. 2020
Morphological analysis of speech translation into . . . Nurilman Baehaqi et al. 2019
Pengaruh Pennambahan Korpus Paralel pada . . . Abidin and Permata 2021
Effect of mono corpus quantity on statistical ma . . . Abidin et al. 2021
Peningkatan Mesin Penerjemah Statistik dengan . . . Darwis et al. 2019
Peningkatan Akurasi Penerjemah Bahasa Daerah . . . Sujaini 2018
Translation Learning Tool for Local Language to . . . Warnars et al. 2021
Leveraging additional resources for improving . . . Trieu et al. 2019
Rule-based Reordering and Post-Processing for . . . Mawalim et al. 2017
A novel Hadith authentication mobile system in . . . Fadele et al. 2020
Translation of idioms from Arabic into Malay via . . . Abidin et al. 2020
Multiple pivots in statistical machine translation . . . Budiwati and Aritsugi 2019
A Parallel Evaluation Data Set of Software Docu . . . Buschbeck and Exel 2020
A Comprehensive Analysis of Bilingual Lexicon . . . Irvine and Callison-Burch 2017
Malay-corpus-enhanced Indonesian-Chinese neu . . . Liu and Wang 2019
Language Resource Extension for Indonesian- . . . Liu et al. 2019b
Development of mobile application for Malay . . . Rahman et al. 2020
Enhancing Pivot Translation Using Grammatical . . . Trieu and Nguyen 2018
Translating Malay Compounds into Arabic Based . . . Wahiyudin and Romli 2021
Generating image description on Indonesian lan . . . Nugraha et al. 2019
Visual question answering for monas tourism ob . . . Siregar and Chahyati 2020
Learning translations via images with a massively . . . Hewitt et al. 2018
Adaptive Attention Generation for Indonesian Im . . . Mahadi et al. 2020
Cross-lingual projection for class-based language . . . Gfeller et al. 2016
Extremely Low-Resource Neural Machine Trans . . . Rubino et al. 2020
Machine translation of Indonesian: A review Septarina et al. 2019
See also - A review on Indonesian machine trans . . . Rahutomo et al. 2019

Spoken Dialogue Systems
Title Author Year
Malay speech corpus of telecommunication call . . . Draman et al. 2017
Detection of Malay phrase breaks using energy . . . Mohamed Hanum and Abu Bakar 2016
A hybrid approach for single channel speech en . . . Jamal et al. 2020
Developing ASR for Indonesian-English Bilin . . . Maxwell-Smith and Foley 2021
Applications of natural language processing in . . . Maxwell-Smith et al. 2020
Robust Feature Extraction Based On Spectral And . . . Ibrahim et al. 2019
Transfer learning with bottleneck feature net . . . Lim et al. 2016
Cross-Lingual Machine Speech Chain for Ja . . . Novitasari et al. 2020
Comparing statistical classifiers for emotion clas . . . Hamzah et al. 2017
Influences of age in emotion recognition of spon . . . Jamil et al. 2017
Influences of languages in speech emotion recog . . . Rajoo and Aun 2016
Voice-Based Malay Commands Recognition by . . . Abu et al. 2020
Automatic Transcription and Captioning System . . . Andra and Usagawa 2020
Improved Transcription and Speaker Identifica . . . Andra and Usagawa 2021
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Speech-to-Text Conversion in Indonesian Lan . . . Dwijayanti et al. 2021
Comparison of feature extraction MFCC and LPC . . . Endah et al. 2017
Development of language identification system . . . Gunawan et al. 2018b
Voiced and unvoiced separation in Malay speech . . . Hanifa et al. 2019
Wavelet based feature extraction for the vowel sound Hidayat et al. 2016
Shared-hidden-layer deep neural network for . . . Hoesen et al. 2018
Classification and clustering to identify spoken . . . Ibrahim and Lestari 2018
Automatic phoneme identification for Malay dialects Khaw et al. 2017
Speech to Text of Patient Complaints for Bahasa . . . Laksono et al. 2019
Malay language speech recognition for preschool . . . Maseri and Mamat 2019
Indonesian audio-visual speech corpus for multi . . . Maulana and Fanany 2018a
Sentence-level Indonesian lip reading with spa . . . Maulana and Fanany 2018b
Sphinx4 for Indonesian continuous speech recog . . . Muljono et al. 2017b
Indonesian graphemic syllabification using a near . . . Parande and Suyanto 2019
Rule-Based Pronunciation Models to Handle . . . Putri et al. 2019a
Speech to Text Translation for Malay Language Rami Ali and Rini 2017
Assessing automatic speech recognition in mea . . . Rosdi et al. 2017
Hybrid methods of Brandt’s generalised likeli . . . Seman and Norazam 2019
Incorporating syllabification points into a model . . . Suyanto 2019b
Flipping onsets to enhance syllabification Suyanto 2019a
Phonological similarity-based backoff smoothing . . . Suyanto 2020
End-to-End Speech Recognition Models for a . . . Suyanto et al. 2020
Indonesian syllabification using a pseudo nearest . . . Suyanto et al. 2016
Recognizing Five Major Dialects in Indonesia . . . Tawaqal and Suyanto 2021
Specific acoustic models for spontaneous and dic . . . Vista et al. 2018
Cloud-based automatic speech recognition sys . . . Wang et al. 2018
Smart presentation system using hand gestures . . . Wardhany et al. 2016
Leveraging Text Data Using Hybrid Transformer- . . . Zeng et al. 2021
Indonesian Corpus Constructing and Text Process . . . Kong and Yang 2018
Utilizing Indonesian Allophones and Intraword . . . Uliniansyah et al. 2019
Developing an online self-learning system of In . . . Muljono et al. 2016
Automatic Pronunciation Generator for Indone . . . Hoesen et al. 2019
Multi Speaker Speech Synthesis System for In . . . Budiman and Lestari 2020
A Bilingual Speech Synthesis System of Standard . . . Chen et al. 2020
Poetry visualization in digital technology Noh et al. 2019
The first Malay language storytelling text-to- . . . Ramli et al. 2017
An Iterated Two-Step Sinusoidal Pitch Contour . . . Ramli et al. 2021
A Tool to Solve Sentence Segmentation Problem . . . Uliniansyah et al. 2016
Enhancing Prosodic Features by Adopting Pre- . . . Zhao et al. 2020
Anita: Intelligent Humanoid Robot with Self- . . . Andreas et al. 2019
A novel model and implementation of humanoid . . . Budiharto et al. 2021
Teach your robot your language! trainable neural . . . Hinaut and Twiefel 2020
The Architecture of Speech-to-Speech Translator . . . Santosa et al. 2019
Development of text and speech corpus for an . . . Teduh Uliniansyah et al. 2018
Chatbot Application on Internet of Things (IoT) . . . Gunawan et al. 2019f
Virtual assistant using lstm networks in Indonesian Mirwan et al. 2018
Forming of Dyadic Conversation Dataset for Ba . . . Tho et al. 2018
Development of Indonesian Language Speech . . . Yossy et al. 2020
GMM based automatic speaker verification sys . . . Stefanus et al. 2017
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Recurrent Neural Network to Deep Learn Conver . . . Chowanda and Chowanda 2017
Virtual phone discovery for speech synthesis with . . . Nayak et al. 2019

Speaker States
Title Author Year
An automatic lexicon generation for Indonesian . . . Ayu et al. 2019
Minimally-supervised sentiment lexicon induc . . . Darwich et al. 2017
Extraction Sentiment Analysis Using naive Bayes . . . Jaka Harjanta and Herlambang 2020
Automatic Semantic Orientation of Adjectives for . . . Riyanti et al. 2018
Enhanced Malay sentiment analysis with an en . . . Al-Moslmi et al. 2017
Aspect and Opinion Extraction of Indonesian Lip . . . Kun Indarta and Romadhony 2021
Identifying deception in Indonesian transcribed . . . Warnita and Lestari 2017
Aspect Extraction for Tourist Spot Review in In . . . Yanuar and Shiramatsu 2020
Framework of sentiment annotation for document . . . Sutabri and Ardiansyah 2017
Evaluation of support vector machine and deci . . . Saad et al. 2018a
Sentiment analysis for low resource languages: A . . . Le et al. 2016
Indonesian Lexicon-Based Sentiment Analysis of . . . Kurniawan et al. 2021
A Simplified Method to Identify the Sarcastic Ele . . . Wijaya et al. 2020
Experiment with lexicon based techniques on . . . Bin Rodzman et al. 2019a
Implementation of a Machine Learning Algo . . . Buntoro et al. 2021
Sentiment Analysis of Malay Social Media Text Chekima and Alfred 2018
Random forest approach fo sentiment analysis in . . . Fauzi 2018
Word embedding comparison for Indonesian lan . . . Imaduddin et al. 2019
Text Mining and Support Vector Machine for Sen . . . Imamah et al. 2020
Unsupervised aspect-based sentiment analysis on . . . Sasmita et al. 2018
Elman recurrent neural network for aspect based . . . Widiastuti and Ali 2021
Multilingual sentiment analysis: A systematic lit . . . Abdullah and Rusli 2021
Polarity classification tool for sentiment analysis . . . Abu Bakar et al. 2019b
Long short term memory convolutional neural . . . Af’idah et al. 2020
Malay sentiment analysis based on combined clas . . . Al-Saffar et al. 2018
An analysis of Malay language emotional speech . . . Apandi and Jamil 2017
Aspect-Based Sentiment Analysis Using Convo . . . Cahyadi and Khodra 2018
Rule-Based Model for Malay Text Sentiment . . . Chekima et al. 2018
Speech-Emotion Detection in an Indonesian Movie Fahmi et al. 2020
A comparative study of sentiment analysis using . . . Fikri and Sarno 2019
Sentiment analysis for Malay language: system . . . Handayani et al. 2018
Sentiment analysis using recurrent neural . . . Kurniasari and Setyanto 2020a
Sentiment Analysis using Recurrent Neural Network Kurniasari and Setyanto 2020b
Aspect-based Opinion Mining on Beauty Product . . . Mahfiz and Romadhony 2020
Aspect-Based Sentiment Analysis on Candidate . . . Manik et al. 2020
Sentiment Analysis Using Word2vec and Long . . . Muhammad et al. 2021
English and Malay cross-lingual sentiment lexi . . . Nasharuddin et al. 2017
Word2vec for Indonesian sentiment analysis to . . . Nawangsari et al. 2019
The Influence of Negation Handling on Sentiment . . . Ningtyas and Herwanto 2018
Sentiment analysis system for movie review in . . . Nurdiansyah et al. 2018
An experimental study of lexicon-based sentiment . . . Pamungkas and Putri 2017
A comparison of the use of several different re . . . Pratama et al. 2019
Pair Extraction of Aspect and Implicit Opinion . . . Setiowati et al. 2019
Sentiment analysis of application user feedback . . . Wiratama and Rusli 2019
Sentiment analysis of economic news in Bahasa . . . Zamahsyari and Nurwidyantoro 2017
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Indonesia Hate Speech Detection Using Deep . . . Sutejo and Lestari 2019
Criminality recognition using machine learning . . . Malim et al. 2019
Personality Measurement Design for Ontology . . . Alamsyah et al. 2020
A preliminary study on hybrid sentiment model . . . Eshak et al. 2018
A Progress on the Personality Measurement . . . Alamsyah et al. 2019
Speech Emotion Recognition for Indonesian Lan . . . Lasiman and Lestari 2019

Social Media
Title Author Year
Opinion QA-Pairs Generation from Indonesian . . . Suwarningsih and Nuryani 2019
Preprocessing for crawler of short message social . . . Ariestya et al. 2018
Pola Penggunaan Bahasa Melayu dalam Twitter . . . Khalid and Rahim 2021
Cyberbullying through intellect-related insults Sood et al. 2020
Formal and Non-Formal Indonesian Word Usage . . . Utami et al. 2019b
Ten-year compilation of #savekpk Twitter dataset Rahutomo et al. 2020
Word Cloud Result of Mobile Payment User Re . . . Dewi et al. 2020
Ensemble method for Indonesian Twitter hate . . . Fauzi and Yuniarti 2018
Event detection in Twitter: A keyword volume . . . Hossny and Mitchell 2019
Multi-label Hate Speech and Abusive Language . . . Ibrohim and Budi 2019a
Identification of hate speech and abusive language . . . Ibrohim et al. 2019
Classification of Radicalism Content from Twitter . . . Idris et al. 2019
Hierarchical multi-label classification to identify . . . Prabowo et al. 2019
Topic classification and clustering on Indonesian . . . Pratama and Purwarianti 2017
Twitter Topic Modeling on Football News Hidayatullah et al. 2018
Topic Summarization of Microblog Document in . . . Jiwanggi and Adriani 2016
Negation handling in sentiment classification us . . . Amalia et al. 2018
A Framework for Sentiment Analysis Implemen . . . Asniar and Aditya 2017
Social Media Analytics using Sentiment and Con . . . Balakrishnan et al. 2021
Multi-Classes Emotion Detection for Unbalanced . . . Farsiah et al. 2020
Twitter sentiment analysis in under-resourced lan . . . Ferdiana et al. 2019
Corpus Usage for Sentiment Analysis of a Hash . . . Herlawati et al. 2019
Sentiment analysis on Bahasa Indonesia tweets . . . Iswanto and Poerwoto 2018
Social tension and crime related events detection . . . Jamil et al. 2019
Bilingual sentiment detection - Investigating im . . . Kaur and Balakrishnan 2016
Comparison of SVM Naïve Bayes Algorithm for . . . Kristiyanti et al. 2019
Indonesian Twitter Sentiment Analysis Using . . . Kurniawan and Maharani 2020
Aspect-level Sentiment Analysis for Social Media . . . Kusumawardani and Maulidani 2020
Sentiment Analysis Using Weighted Emoticons . . . Maulidiah Elfajr and Sarno 2018
Employ Twitter data to perform sentiment analy . . . Mohamad et al. 2020b
Classification of Twitter data by sentiment analy . . . Mohamad et al. 2020a
Detecting candidates of depression, anxiety and . . . Nasrudin et al. 2019
Naive Bayes as opinion classifier to evaluate stu . . . Permana et al. 2017
Sentiment Analysis of BPJS Kesehatan’s Services . . . Rasyada et al. 2020
When Homecoming is not Coming: 2021 Home . . . Sandra and Lumbangaol 2021
Aspect-Based Sentiment Analysis for Posts on . . . Setik et al. 2021
Applying Opinion Mining Technique on Tourism . . . Situmorang et al. 2019
Does it make you sad? A lexicon-based sentiment . . . Suryadi 2021
Emotion analysis using self-training on . . . Tan et al. 2020
Sentiment analysis for telco popularity on Twitter . . . Tan et al. 2016
Hate speech classification in Indonesian language . . . Taradhita and Putra 2021
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Sentiment Analysis of Indonesians Response to . . . Tauhid and Ruldeviyani 2020
Code-mixed sentiment analysis of Indonesian lan . . . Tho et al. 2021
Simulation of marketplace customer satisfaction . . . Turdjai and Mutijarsa 2017
Hashtag Global Surgery: The Role of Social Me . . . Vervoort and Luc 2020
School from home situation in Indonesia: An ex . . . Wahyuni et al. 2020
Measuring happiness in large population Wenas et al. 2016
Sentiment analysis of informal Malay tweets with . . . Ying et al. 2020
Developing cross-lingual sentiment analysis of . . . Zabha et al. 2019
Automatic Labelling of Malay Cyberbullying . . . Maskat et al. 2020
Personality prediction based on Twitter informa . . . Ong et al. 2017
Personality Modelling of Indonesian Twitter . . . Ong et al. 2021
Profiling analysis of DISC personality traits based . . . Utami et al. 2019a
Supervised learning and resampling techniques . . . Utami et al. 2021
D-Loc Apps: A Location Detection Application . . . Fitrianah et al. 2020
Music interest classification of Twitter users us . . . Yusra et al. 2017
Lexical based sentiment analysis - Verb, adverb . . . Shamsudin et al. 2016
Construction of the Malay language psychometric . . . Ahmad et al. 2017
Hate speech detection in Indonesian language on . . . Bunga Batara et al. 2019
Hate speech detection in Indonesian language on . . . Erizal et al. 2019
Hate speech detection on Indonesian Instagram . . . Pratiwi et al. 2019
Hate speech detection in Indonesian language In . . . Putra and Nurjanah 2020
Hate speech detection in Indonesian language on . . . Briliani et al. 2019
Recognizing the sarcastic statement on WhatsApp . . . Afiyati et al. 2018
Construction of Malay abbreviation corpus based . . . Omar et al. 2017
Context-sensitive normalization of social media . . . Kusumawardani et al. 2018
A taxonomy of Malay social media text Maskat and Munarko 2019
Detecting opinion spams through supervised . . . Hazim et al. 2018
The development of Bahasa Indonesia corpora for . . . Jambak and Setiawan 2018
Review on sentiment analysis approaches for so . . . Abdullah et al. 2017
Sentiment Analysis of Noisy Malay Text: State . . . Abu Bakar et al. 2020
Emotion detection of tweets in Indonesian lan . . . Cahyaningtyas et al. 2017
Bias aware lexicon-based Sentiment Analysis of . . . Hijazi et al. 2017
Translated vs non-translated method for multilin . . . Ibrohim and Budi 2019b
Classification and quantification of user’s emo . . . Jamaluddin et al. 2017
A hybrid model for social media sentiment analy . . . Putra et al. 2018b
Natural language processing based features for . . . Suhaimin et al. 2017
Modified framework for sarcasm detection and . . . Suhaimin et al. 2019
Concerns of thalassemia patients, carriers, and . . . Phang et al. 2021
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Abstract 

As high-quality Malay language 
resources are still a scarcity, cross lingual 
word embeddings make it possible for 
richer English resources to be leveraged for 
downstream Malay text classification tasks. 
This paper focuses on creating an English-
Malay cross-lingual word embeddings 
using embedding alignment by exploiting 
existing language resources. We augmented 
the training bilingual lexicons using 
machine translation with the goal to 
improve the alignment precision of our 
cross-lingual word embeddings. We 
investigated the quality of the current state-
of-the-art English-Malay bilingual lexicon 
and worked on improving its quality using 
Google Translate. We also examined the 
effect of Malay word coverage on the 
quality of cross-lingual word embeddings. 
Experimental results with a precision up till 
28.17% show that the alignment precision 
of the cross-lingual word embeddings 
would inevitably degrade after 1-NN but a 
better seed lexicon and cleaner nearest 
neighbours can reduce the number of word 
pairs required to achieve satisfactory 
performance. As the English and Malay 
monolingual embeddings are pre-trained on 
informal language corpora, our proposed 
English-Malay embeddings alignment 
approach is also able to map non-standard 
Malay translations in the English nearest 
neighbours. 

1 Introduction 

Distributional semantic models produce word 
embeddings that allow us to compare the 
relationship between words. In (static) word 
embeddings, each word is associated to a 
continuous real-valued vector such that words that 

are semantically similar to each other will be in 
close proximity when we visualize them. Word 
embeddings that have been adopted extensively 
include but are not limited to CBOW (Mikolov, 
Chen, et al., 2013), Skip-gram (Mikolov, Chen, et 
al., 2013) and GloVe (Pennington et al., 2014).  

Word embeddings that are pre-trained 
monolingually are limited to tasks solely in its own 
language. For this reason, we are unable to 
compare the meaning of words between languages 
or transfer models trained on one language to 
another language (Ruder et al., 2019). Cross-
lingual word embeddings could overcome the 
language constraint and make it possible for the 
more abundant English resources to be leveraged 
for emotion or other text classification in Malay 
(i.e., the resource poor language of interest). In 
cross-lingual word embeddings, words that are 
semantically similar regardless of the languages, 
will appear to be close to each other in the vector 
space.  

The current state-of-the-art multilingual 
language models like mBERT (Devlin et al., 2019) 
and XLM-RoBERTa (Conneau et al., 2020) for 
cross-lingual transfer are computationally 
expensive. Cross-lingual word embeddings offers 
an alternative that is cost-effective for cross-lingual 
transfer requiring a model to be trained only using 
the source language, which can then subsequently 
be applied to perform zero-shot or few-shot 
learning (Ghasemi et al., 2020) on the target 
language. 

In this study, we attempt to align English and 
Malay monolingual static word embeddings pre-
trained on informal text (i.e., tweets or Instagram 
posts) using the transformation method proposed 
by Smith et al. (2017). Corpora used to pre-train the 
embeddings are neither parallel nor aligned, and 
the only bilingual signal comes from the training 
bilingual lexicon. Instead of constructing the 
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training bilingual lexicon from parallel corpora 
(Dinu et al., 2015; Smith et al., 2017), we exploit 
and extend an existing English-Malay bilingual 
lexicon. The drawback of using the set of word 
pairs in this bilingual lexicon is that there are 
numerous invalid word pairs that need to be filtered 
out. However, using the bilingual lexicon, we are 
able to generalize the mapping to word embeddings 
trained on corpora of other domains. We also 
created a new bilingual lexicon that was shown to 
be better than the baseline seed lexicon in 
alignment precision. 

To the best of our knowledge, there is no gold-
standard bilingual lexicon available for our 
evaluation task. We select a portion of the bilingual 
lexicon available on Malaya Documentation 
(Husein, 2018) and manually extracted the Malay 
translations for the English-side seed words from 
Dewan Bahasa dan Pustaka Malaysia 1  (DBP). 
Malaya Documentation offers a current state-of-
the-art Malay-English lexicon, which is currently 
not validated.  

The contributions of this study are three-fold.:  
a) We created a better English-Malay bilingual 

lexicon in terms of alignment precision than 
that the one from Malaya Documentation 
that has been widely used. 

b) We created a gold-standard bilingual 
lexicon containing approximately 1,200 
word pairs to be used as the seed dictionary 
to induce a better embedding mapping or as 
a test set to evaluate the quality of cross-
lingual word embeddings for future 
research. 

c) We aligned monolingual word embeddings 
trained independently on informal corpora 
to create the first English-Malay cross-
lingual word embeddings in the social 
media domain and evaluated its quality 
using bilingual lexicon induction. 

2 Related Work 

Word embeddings alignment is one of the 
approaches used to bridge the language gap 
between the source (resource rich) and target 
(resource poor) languages. Prior studies can be 
categorized into those that require and do not 
require a set of bilingual seed lexicons.  

 
1  A government body that coordinates the use of the 

Malay language in Malaysia. 

Mikolov et al. (2013) were one of the earliest 
and influential studies using bilingual seed lexicons 
for word embeddings alignment. A transformation 
matrix was learnt from the seed word pairs to 
linearly map the source word embeddings to the 
target embeddings space. Dinu et al. (2015) 
enhanced this approach by introducing an L2-
regularization least-squares error in the objective 
function. 

Xing et al. (2015) improved the method 
proposed by Mikolov et al. (2013) by restricting the 
word vectors to a unit length and constraining the 
transformation matrix to be orthogonal. They also 
redefined the objective function by using cosine 
similarity between the transformed source and 
target embeddings. These additional steps solved 
the inconsistency uncovered in Mikolov et al. 
(2013) and achieved better performance. On top of 
these constraints, Artetxe et al. (2016) enforced 
dimension-wise mean centering on the word 
embeddings so that randomly chosen words would 
not be semantically similar. Their study also 
discovered that the improvement attained by Xing 
et al. (2015) was solely from the orthogonal 
constraint instead of solving the inconsistency 
problem. Smith et al. (2017) proved that an 
orthogonal transformation matrix must also be self-
consistent. 

 Faruqui and Dyer (2014) used Canonical 
Correlation Analysis (CCA) to learn the 
transformation matrices from the seed lexicon. 
Unlike Mikolov et al. (2013), a transformation 
matric was learnt for both source language and 
target language, respectively. The source and target 
word embeddings were then mapped to a new 
shared vector space where the seed word pairs from 
a lexicon would be maximally correlated. 

Lu et al. (2015) adopted a non-linear extension 
of CCA to train the transformation matrices. Two 
neural networks were trained to obtain the 
transformation matrices by maximizing the 
correlation of the transformed source and target 
word embeddings in the new vector space. 

Barone (2016) aligned word embeddings by 
eliminating the need for seed lexicons. They 
adopted an adversarial autoencoder in mapping the 
source embeddings to target embeddings. The 
source embeddings were transformed using an 
encoder, and the discriminator then tried to match 
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the latent representations to the distribution of the 
target embeddings. 

Zhang et al. (2017) matched the distribution of 
the transformed source embeddings to target 
embeddings using adversarial training. They learnt 
an orthogonal transformation matrix using the 
generator, and the discriminator would then try to 
distinguish the transformed source embeddings 
from target embeddings. Additionally, they also 
attempted to relax the orthogonality constraint by 
using an adversarial autoencoder. 

Artetxe et al. (2018) induced the initial seed 
word pairs by exploiting the similarity distribution 
between words using an unsupervised method. 
These initial seed word pairs were then refined 
through iterative self-learning. They also enforced 
the transformation matrices used to map the source 
and target embeddings to the new vector space to 
be orthogonal. 

Feng and Wan (2019) proposed an approach to 
nonlinearly map the source word embeddings and 
target word embeddings to a new vector space. 
They induced the seed word pairs using nearest 
neighbour retrieval, and the seed word pairs were 
then refined iteratively using self-learning. Instead 
of orthogonality, they adopted the Euclidean Norm 
to guide the learning of the transformation 
matrices. 

Recent studies proposed to align contextual 
embeddings. Schuster et al. (2019) generalized the 
approach by Mikolov et al. (2013) and Conneau et. 
al (2018) to align embeddings from mBERT. Since 
one word can have different embeddings based on 
the context, Schuster et al. represented each word 
using the embedding anchor that was obtained by 
averaging a subset of its contextual embeddings. 

Aldarmaki and Diab (2019) adopted the 
approach by Mikolov et al. (2013) to map 
contextual embeddings from the ELMo (Peters et 
al., 2018). Instead of using the embedding anchor, 
they constructed a dynamic bilingual lexicon from 
a parallel corpus with word alignment. 
Additionally, they also proposed sentence-level 
mapping in which the transformation matrix was 
learnt on aligned sentences. 

Wang et al. (2020) also extended the method by 
Mikolov et al. (2013) to contextual embeddings. 
Similar to Aldarmaki and Diab (2019), they formed 
the alignment matrix based on aligned word pairs 
extracted from parallel corpora. The 
representations extracted from mBERT were then 
aligned by multiplying with the alignment matrix. 

Existing studies have not explored static or 
contextual word embeddings alignment between 
English and Malay languages. As word 
embeddings alignment has shown promising 
performance in cross-lingual transfer tasks in other 
language pairs, it provides strong motivation for us 
to explore how word embeddings alignment can 
also benefit the English-Malay language pair, and 
subsequently any future study that may require 
English-Malay cross-lingual word embeddings. 

3 Data Sources 

The method requires a monolingual English 
embedding, a monolingual Malay embedding and 
a bilingual English-Malay lexicon to map the two 
monolingual embeddings into a bilingual Malay-
English embedding. The quality of the bilingual 
English-Malay lexicon plays an important role 
because it serves as the only bridge to map two 
separate English and Malay monolingual lexicons 
into a single shared space. Malay is written in the 
Latin alphabet and shares lexical similarities with 
Indonesian as they are from the same language 
family. 

3.1 Word Embeddings 

Our study used the word2vec English 
monolingual word embedding (EWE) pre-
trained on tweets by Godin (2019) using the Skip-
gram architecture and contained approximately 3 
million words. The words were represented by 400-
dimensional vectors. 

Word2vec Malay monolingual word 
embedding (MYWE) were pre-trained on tweets 
and Instagram posts by Husein (2018) using the 
Skip-gram architecture and contained 
approximately 1.3 million words. Normalization 
and spell-check were performed to standardize 
non-standard Malay words in the embeddings.  

We trimmed the vocabulary of the embeddings 
to the top 200,000 most frequent words from the 
subset of the training corpora used to train the word 
embeddings (top200k-MYWE). This naïve filter 
was an attempt to remove non-Malay words from 
the vocabulary. Additionally, we trimmed the 
original embeddings separately to the top 800,000 
most frequent words from the same corpora and 
compared them against the words extracted from 
selected corpora by DBP written in standard Malay 
to remove non-standard Malay words from the 
vocabulary (top800k-MYWE). 
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3.2 Bilingual Lexicon 

An English-Malay bilingual lexicon was 
obtained from Malaya Documentation (Husein, 
2018). Invalid words, non-English words and non-
Malay words were filtered out. We used English 
spell-check in Microsoft Excel to filter English 
words and Dewan Eja Pro2 to filter Malay words. 
We randomly selected 90% of these lexicon word 
pairs for mapping in the training phase (T-BL) and 
regarded it as our baseline, while the remaining 
10% were used to create a set of gold standard test 
English-Malay word pairs. For every word pair, we 
retained its English side, for which we manually 
extracted its corresponding Malay translations 
from the English-Malay dictionary by DBP1 to 
create a gold standard bilingual lexicon (G-BL). G-
BL contains 1273 entries of which one English 
word can have one or many Malay translations 
from G-BL. This bilingual lexicon consists of 3675 
unique Malay words. 

4 Methodology 

4.1 Cross-lingual Word Embeddings 

To create cross-lingual word embeddings, we 
mapped the English embeddings, 𝑬𝑬  to the Malay 
embeddings space using the orthogonal 
transformations approach proposed by Smith et al. 
(2017). Malay embeddings were first made to have 
the same dimensions as English embeddings by 
post-padding with arrays of zeros. We also 
normalized both embeddings to a unit length.  

From the bilingual lexicons (T-BL) containing 𝑛𝑛 
word pairs, two ordered matrices 𝑆𝑆𝐷𝐷 ∈  ℝ𝑛𝑛×400 
and 𝑇𝑇𝐷𝐷 ∈  ℝ𝑛𝑛×400  were formed where 𝑖𝑖𝑡𝑡ℎ  row of 
the matrices corresponded to the English and 
Malay word vectors of the 𝑖𝑖𝑡𝑡ℎword pairs. We then 
performed Singular Value Decomposition (SVD) 
operation on the matrix product 𝑃𝑃 = 𝑆𝑆𝐷𝐷𝑇𝑇𝑇𝑇𝐷𝐷 ∈
 ℝ400×400 and subsequently, 𝑃𝑃 was represented by 
𝑈𝑈∑𝑉𝑉𝑇𝑇 . The English embeddings, 𝑬𝑬 , were then 
aligned to the Malay embeddings space by 
multiplying it with the transformation matrix 𝑶𝑶 =
𝑈𝑈𝑉𝑉𝑇𝑇 that was subject to the orthogonal constraint:  

 max
𝑂𝑂

∑ 𝑡𝑡𝑖𝑖𝑇𝑇𝑶𝑶𝑠𝑠𝑖𝑖𝑛𝑛
𝑖𝑖=1 , subject to 𝑶𝑶𝑇𝑇𝑶𝑶 = 𝜤𝜤  (1) 

 
2 A Malay proofing tool produced by Dewan Bahasa dan 

Pustaka. 

4.2 Experiment Extensions 

We explored three different directions to extend 
the initial embeddings mapping using T-BL. The 
first direction examined how the coverage of the 
Malay words in the training lexicon could affect the 
translation accuracy. The second direction 
investigated if the quality of T-BL is satisfactory, 
and the third direction aimed to improve the quality 
of the training bilingual lexicon used for mapping. 

Direction 1: We hypothesized that a higher 
coverage of the Malay words in the training lexicon 
would improve the translation accuracy of English 
words. To investigate this hypothesis, we 
augmented T-BL by using the English-side words 
from the lexicon as the seed words. A different 
number (1, 5, 10) of nearest neighbours (NN) of the 
seed English words was selected using the dot 
product from their respective embeddings space. 
This is equivalent to using cosine similarity after 
normalizing the embeddings to a unit length as 
shown below: 

𝑐𝑐𝑐𝑐𝑠𝑠(𝜃𝜃) =  
𝑽𝑽𝑖𝑖 ∙ 𝑽𝑽𝑗𝑗

∥ 𝑽𝑽𝑖𝑖 ∥∥ 𝑽𝑽𝑗𝑗 ∥
 𝑓𝑓𝑐𝑐𝑓𝑓 𝑖𝑖 ≠ 𝑗𝑗 (2) 

where 𝑽𝑽𝑖𝑖  is the vector representation of the 𝑖𝑖𝑡𝑡ℎ 
seed word and 𝑽𝑽𝑗𝑗  is the vector representation of 
other English words in the embeddings space. 

 Selected nearest neighbours were then 
translated into Malay language using either Google 
Cloud Translation API or Google Translate 
function in Google Sheets. This comparison is to 
help us determine which tool returns better 
translation as we notice they could return different 
translations for the same English word. Translated 
Malay words that are longer than one token were 
omitted as words in the vocabulary were restricted 
to be one-token long. Furthermore, the English 
nearest neighbours that happened to be in G-BL 
were also discarded to prevent possible data 
leakage.  

Direction 2: We extracted the English-side 
words of T-BL and translated them into Malay 
language using Google Cloud Translation API to 
form a completely new set of seed lexicon (N-BL). 
This resulted in a completely new set of training 
word pairs having the same size as T-BL to allow 
direct comparison of the quality of the word pairs. 

Direction 3: We observed that the English 
nearest neighbours could contain noise as the 

232



 
 
 

vocabulary of the English embeddings was not 
trimmed. Therefore, to remove this noise, we sent 
selected English nearest neighbours through a word 
filter to ensure that the nearest neighbours only 
comprised English words. Two different and 
independent filters were applied, resulting in two 
different sets of augmented training lexicons. 

The first filter was built using words from 
WordNet. WordNet resembles a thesaurus in which 
words were grouped into synonymous sets 
(synsets) based on their concept and these words 
are known as lemmas. This filter gathered lemmas 
extracted from every synset into a list and omitted 
nearest neighbour words that did not match the 
words in the list. 

The second filter was built using words from the 
Words Corpus. Words Corpus is a list of dictionary 
words attainable from /usr/share/dict/words file in 
Unix that some spell checkers use. It is a built-in 
corpus in the Natural Language Toolkit (NLTK) 
(Bird et al., 2009). Similarly, this filter gathered all 
words in this corpus into a list and omitted nearest 
neighbour words that did not have a match in the 
list. 

4.3 Evaluation Metric 

We used bilingual lexicon induction to evaluate 
the quality of our embeddings mapping by finding 
the top-N most semantically similar Malay words 
to the English words in the test set (G-BL) using 
cosine similarity from the shared vector space 
(P@N), where N is 1, 5 or 10. To avoid confusion 
from the translations obtained from Google 
Translate or bilingual English-Malay dictionary, 
we use "induced translation" to specifically 
indicate Malay words from the Malay embeddings 
that are mapped to the corresponding English 
words from the English embeddings. P@N 
measures the proportion of English words in G-BL 
which have at least one true Malay translation 
among the N Malay induced translations. Formally, 
P@N can be computed using the following 
equation: 

𝑃𝑃@𝑁𝑁 =  
∑ 𝐼𝐼𝑖𝑖𝑀𝑀
𝑖𝑖 = 1
𝑀𝑀

 (3) 

where 𝑀𝑀 is the number of English words in G-BL.  
𝐼𝐼𝑖𝑖  is an indicator function that will take 1  if and 
only if 𝑖𝑖𝑡𝑡ℎ English word in G-BL has at least one 
correct Malay translation appearing in its 
corresponding N Malay induced translations, and 
take 0  otherwise. Therefore, the numerator 

indicates the number of English words that have at 
least one correct Malay induced translation. An 
induced translation will not be counted as correct if 
it does not appear in G-BL. 

As our word embeddings were not trained on 
English-Malay parallel or aligned corpora, the 
investigation of a different number of Malay 
nearest neighbours is necessary to determine the 
extent of correct translations from the English 
words,. Furthermore, the word embeddings were 
pre-trained on tweets or Instagram posts known to 
mostly contain informal words. 

5 Results and Discussion 

5.1 Comparing Malay Embeddings 
Coverage 

While we fixed the number of word pairs in G-
BL, top200k-MYWE and top800k-MYWE have a 
smaller vocabulary size, and hence different 
number of effective word pairs for evaluation as 
reflected in the denominator in the P@10 column 
of Table 1. We only adopted P@10 in this 
experiment to justify the choice of the embeddings 
for subsequent experiments and not to compare the 
quality of the bilingual lexicon. 

The improvement when using top200k-MYWE 
and top800k-MYWE was attributed to the reduced 
noise in the cross-lingual space since the filters 
removed numerous non-Malay words from the 
Malay embeddings space. In other words, the 
English words were not obscured by irrelevant 
'Malay' neighbours and could induce the correct 
Malay translations more easily. 

The seemingly higher P@10 from top200k-
MYWE was actually due to the lower number of 
effective word pairs (1177 in the denominator) for 
evaluation than top800k-MYWE when both 
embeddings, in fact, returned an exact number of 
correct translations (299). In this regard, we 
conclude that there is no difference in the mapping 
quality using these embeddings. However, given 
that our downstream task is cross-lingual emotion 
classification, we are inclined towards  

Embeddings P@10 
MYWE 22.2041 (274/1234) 

top200k-MYWE 25.4036 (299/1177) 
top800k-MYWE 24.9167 (299/1200) 

Table 1: Performance comparison between 
embeddings using T-BL 
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top800k-MYWE, which has a broader coverage of 
Malay words. This would ensure that fewer Malay 
words in our downstream task get encoded with 
zero vectors. Thus, for any subsequent extensions 
of the experiment, we would be using top800k-
MYWE. 

5.2 Augmentation of T-BL for Bilingual 
Lexicon Extension 

As shown in Table 2, regardless of the 
translation tools, we managed to obtain a maximum 
P@1 of 9.8%, P@5 of 19.6% and P@10 of 25.5% 
on the test bilingual lexicon (G-BL) after 
augmentation using T-BL. However, the mapping 
quality seems to be generally better when we 
augmented T-BL with its 1-NN and 5-NN using 
Google Cloud Translation API. In other words, 
Google Cloud Translation API returned more 
accurate Malay translations independent of the 
context of English words. For this reason, we used 
it for subsequent translations. 
 The coverage of Malay words will always 
increase with the number of nearest neighbours. In 
other words, the more number of nearest 
neighbours included, the higher the coverage. 
Based on Table 2, our hypothesis positing that 
higher coverage of Malay words in T-BL does not 
hold beyond 1-NN using either translation tool. 
The precisions that initially increased with Malay 
words coverage using 1-NN augmentation are still 
aligned with our hypothesis. 

 However, the precision started to degrade 
afterwards even though our augmentation 
broadened the coverage significantly using either 
translation tool. We speculate that the drop in 
precision after 1-NN is due to the additional noise 
(English nearest neighbours that are not legitimate 
English words) introduced to our training bilingual 
lexicon, thus lowering the quality of T-BL. This 
noise will affect the transformation matrix 
induction adversely when the corresponding Malay 
translation returned by Google happened to be in  

 
 
 
 
 
 
 
 
 
 

the Malay word embeddings vocabulary, as we 
observed that the translation tool would attempt to 
correct the spelling of the noise before translation. 
For example, 'zeroo' was translated to sifar (zero), 
'weeka' to mingguan (weekly), 'talkn' to bercakap 
(talking). 

5.3 Quality of T-BL 

As shown in Table 3, we managed to obtain 
better mapping quality in terms of alignment 
precision using just the naïve approach. 

The new set of word pairs in the bilingual lexicon 
(N-BL) improves P@1 by 1.7%, P@5 by 4.2%, 
and P@10 by 2.4%, suggesting that there is still 
room for improvement in T-BL quality. It is 
possible that the words were paired up imprecisely 
or paired with less frequently used words. In fact, 
we removed a large number of word pairs from the 
original non-validated English-Malay bilingual 
lexicon to form T-BL. This removal gave us the 
signal that T-BL was below par. Hence, for the 
experiments in Section 5.4, N-BL is used as the 
seed lexicon. 

5.4 Augmentation of N-BL for Bilingual 
Lexicon Extension 

As shown in Table 4, we managed to achieve a 
maximum P@1 of 10.9%, P@5 of 23.3% and 
P@10 of 28.2% on the test bilingual lexicon (G-
BL) after filtering the nearest neighbours using the 
WordNet filter. We also observed marginal 
improvement over N-BL in the P@10 when 
augmenting with 1-NN and 5-NN using the NLTK 
filter. However, the best P@10 using the NLTK 
filter (27.8% at 1-NN) is still slightly lower than 

 
 Google Translate function Googletranslate API 

0-NN 1-NN 5-NN 10-NN 1-NN 5-NN 10-NN 
P@1 9.2500 9.4167 9.5000 8.9167 9.7500 9.3333 9.1667 
P@5 19.0833 19.5833 18.7500 19.5000 19.5000 18.6667 18.0000 
P@10 24.9167 25.2500 24.1667 23.6667 25.5000 25.0000 23.1667 

Table 2: Performance comparison using T-BL as the seed lexicon and augmenting using different 
translation tools (0NN: T-BL without augmentation, 1-NN: T-BL augmented with one nearest neighbour, 
5NN: T-BL augmented with 5 nearest neighbours, 10-NN: T-BL augmented with 10 nearest neighbours). 

 

Lexicons P@1 P@5 P@10 
T-BL 9.2500 19.0833 24.9167 
N-BL 10.9167 23.3333 27.3333 

Table 3: Performance comparison between T-
BL and N-BL 
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the best precision using the WordNet filter (28.2% 
at 1-NN). While the precisions generally degraded 
after 1-NN, they are still higher than most of the 
combinations in Section 5.2 without filters. 

Moreover, it is also worth noting from Figure 1 
that the general coverage of the Malay words using 
N-BL is significantly lower than when using T-BL, 
but we managed to achieve better precisions most 
of the time with lower amount of computational 
time. This implies again that our N-BL along with 
the filter, is better in terms of word pairing quality 
than T-BL. We hit a P@10 of 28.2% at a lower 
coverage of about 7.4% when augmenting N-BL 
with 1-NN along with the WordNet filter. However, 
at a higher coverage of about 10%, augmenting T-
BL with 1-NN using Google Translate API only 
resulted in a P@10 of 25.5%. 
 We acknowledged that having an enormous 
training set of English-Malay word pairs is not 
desirable. Using N-BL + 10NN still took us 
significantly longer than N-BL + 5NN and N-BL + 
1NN to perform the embeddings mapping, yet the 
general performance degraded. From the results in 
Table 4, augmentation using 1-nearest neighbour is 
deemed ideal as it required the least translation time 
and training time but yielded the best mapping 
quality based on our experiments.  

Additionally, we also compare our bilingual 
lexicon (N-BL + 1NN with WordNet filter) with the 

 
 
 
 
 
 
 
 
 

bilingual lexicons used for MUSE (Conneau et al., 
2018) and by Anastasopoulos and Neubig (2020), 
which are also currently publicly available. We 
refer to the bilingual lexicons by Anastasopoulos 
and Neubig (2020) as AN-BL. Both MUSE and 
AN-BL have two sets of bilingual lexicons: full and 
train.  

As seen in Table 5, our bilingual lexicon also 
outperformed these bilingual lexicons by a 
minimum of 4.6%. We observe that there are 
bilingual lexicons contain word pairs of identical 
strings in English like your-your, state-state and 
old-old (i.e., the second word in the pair is identical 
to the first English word instead of being paired 
with its corresponding Malay word). While it is 
possible for English words to appear in Malay 
embeddings, these word pairs may disrupt the 
mapping to some extent if the English word also 
appears in the vocabulary of the Malay 
embeddings. In addition, our bilingual lexicon is 
smaller in size and requires 5 times less 
computational time than MUSE-full and AN-BL-
full, but we show that the quality of our bilingual 
lexicon is better in terms of alignment precision. 

5.5 Nearest Neighbours Analysis 

Table 6 shows some interesting Malay 
translations of the English words from our G-BL 
test set. The term "rrc" in Table 6 is not a legitimate 

 
 NLTK filter WordNet filter 

0-NN 1-NN 5-NN 10-NN 1-NN 5-NN 10-NN 
P@1 10.9167 10.5000 8.9167 9.5000 10.9167 9.9167 9.7500 
P@5 22.333 22.5000 21.2500 19.0833 23.2500 21.5000 19.5000 

P@10 27.3333 27.8333 27.4167 25.4167 28.1667 26.2500 24.5000 

Table 4: Performance comparison using N-BL as the seed lexicon and filtering the nearest neighbours 
using different filters. 

 

Figure 1: Comparison of the changes of 
coverage for experiments in Table 2 and 

Table 4.  

 

Lexicons P@1 P@5 P@10 
N-

BL+1NN 10.9167 23.25 28.1667 

MUSE-
full 8.4167 18.3333 23.0000 

MUSE-
train 6.6667 16.0833 20.7500 

AN-BL-
full 8.0000 19.000 23.5833 

AN-BL-
train 7.4167 16.0833 21.0000 

Table 5: Performance comparison between N-
BL + 1NN, MUSE-full, MUSE-train, AN-BL-full 

and AN-BL-train. 
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Malay word as it could be the abbreviation of any 
words depending on the context, or possibly a 
result of typing errors that slipped through the 
cracks in spell-check. Thus, we consider this word 
as noise. Although none of the induced Malay 
translations returned matched the gold-standard 
translation for the word "criminal", some 
translations are related to this word in a way. For 
example, korup (corrupt), pelacur (prostitute), 
siber (cyber), liwat (sodomi) and bersenjata 
(armed). The word kriminal is not a legitimate 
Malay word but it is 'homophonically translated' to 
Malay and has been used to mean "criminal" 
instead of the correct Malay words penjenayah (the 
person) or jenayah (the noun). Such observation 
proves that Malay words that share similar 
semantic meaning to their English counterparts are 
mapped correctly in the bilingual word embedding 
space and is further strengthened by the mapping to 
informal Malay words even though our training 
bilingual lexicon contains only formal words. 
Since kriminal is non-standard and thus not 
included in our gold-standard bilingual lexicon (G-
BL), we did not count this as a correct translation. 
Similarly, for the word "research", the gold 
standard only contains penyelidikan (the noun) or 
menyelidik (the verb) as its translations, completely 
leaving out other correct translations such as 
kajian. Moreover, the word studi is also an informal 
Malay word commonly used to represent "study" 
or "research". 

For the Malay word "vegetable", we observed 
several semantically similar words to "vegetable" 
are returned such as petai (bitter bean), bayam 
(spinach) and sayuran (a variety of vegetables). 
Regardless of the plurality, sayuran is the closest 
Malay word to vegetable among the induced 
translations. Tomat is possibly a result of typing 
error for the word tomato. On the other hand, we 

observed Malay words of negative emotions are 
also returned in addition to the correct translation 
sedih for the word "sad" such as cemburu (jealous), 
kecewa (disappointed), cuak (scared) and rimas 
(uneasy or anxious). Although there are some 
Indonesian words in our Malay embeddings space 
which were not filtered out during the pre-training, 
such as riset and pete, these words will be 
eliminated as Indonesian tweets are removed in our 
downstream task. 

6 Conclusion 

In this study, we attempted to create English-
Malay cross-lingual word embeddings using an 
English-Malay bilingual lexicon to map the 
English and Malay monolingual word embeddings 
into a single representation that was empirically 
and intrinsically evaluated based on word pair 
coverage and alignment precision. Despite the fact 
that the bilingual lexicon from Malaya 
Documentation being the current state-of-the-art, 
we demonstrated that its quality has room for 
improvement. Our bilingual lexicons (N-BL) 
obtained using a naïve approach easily 
outperformed Malaya Documentation in terms of 
the English-Malay alignment precision. We also 
investigated the effect of Malay word coverage on 
bilingual lexicon induction and discovered that a 
higher coverage would not necessarily improve the 
alignment precision. Also, we did not select our 
training or test lexicons based on word frequency 
in any corpora, thus our evaluation is more 
unbiased and generalizable.  

We are aware that there are semi-supervised and 
unsupervised approaches in creating cross-lingual 
word embeddings that require limited or almost no 
bilingual signals. However, we did not adopt such 
an approach because both our embeddings were 
pre-trained on informal corpora, especially our 
Malay monolingual embeddings still containing 
significant noise even after applying the filter. 
Hence, legitimate words would easily be paired up 
with noise, or vice versa, without bilingual 
supervision. We adopted word2vec in this study as 
we were not aware of any existing Malay fastText 
embeddings pre-trained on the social media 
domain, and pre-training it ourselves is not within 
the scope of this study. In the future, we wish to 
pre-train Malay fastText embeddings that may 
work better on informal corpora and subsequently 
explore the feasibility of creating embeddings 
using semi-supervised and unsupervised methods. 

criminal research vegetable sad 
korup pemantauan perasa cemburu 
kriminal penyelidikan makaroni jijik 
rrc analisis pete kecewa 
pelacur penulisan petai menyampah 
siber pembelajaran pindang cuak 
liwat kajian bayam rimas 
zalim riset tomat berdosa 
rasis statistik salmon terharu 
lgbt studi sayuran sebak 
bersenjata penelitian sardin sedih 

Table 6: Nearest neighbours of selected English 
words 
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We also plan to evaluate the performance of our 
English-Malay cross-lingual word embeddings on 
downstream tasks such as emotion classification. 
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Abstract

Political propaganda in recent times has been
amplified by media news portals through bi-
ased reporting, creating untruthful narratives
on serious issues causing misinformed public
opinions with interests of siding and helping
a particular political party. This issue pro-
poses a challenging NLP task of detecting po-
litical bias in news articles. We propose a
transformer-based transfer learning method to
fine-tune the pre-trained network on our data
for this bias detection. As the required dataset
for this particular task was not available, we
created our dataset comprising 1388 Hindi
news articles and their headlines from various
Hindi news media outlets. We marked them
on whether they are biased towards, against, or
neutral to BJP, a political party, and the current
ruling party at the centre in India.

1 Introduction

Biased news reporting is a widespread phenomenon
present in most of the news circulating today .Bias
is detected manually, but that is a tedious and time-
consuming task; therefore, automation of bias de-
tection in media articles can prove helpful in verify-
ing these articles for their validity more efficiently.

Hindi is an Indo-Aryan language spoken mainly
in North India. According to Ethnologue list1 of
most spoken languages worldwide, Hindi ranks
third, and a total of 600.5 million Hindi speakers
exist in the world2. It is also the most spoken lan-
guage in India with a total of 528,3 million native
speakers, which makes up around 43.6 per cent of
India’s population according to the 2011 census of
India3.

∗The authors have contributed equally.
1https://www.ethnologue.com/guides/

ethnologue200
2https://www.ethnologue.com/language/

hin
3https://censusindia.gov.in/

2011Census/Language-2011/Statement-4.pdf

We can observe political bias in news media ar-
ticles by looking at different factors. We observe
biases when the author of the article uses strong lan-
guage trying to sensationalise an event, is partial to
a particular political party, does not give a thorough
review of held events etc. The headline in such an
article is also essential as it is often filled with bias
and is the first thing that catches a reader’s atten-
tion before they start to read the article. As there is
no such dataset annotated for political bias Hindi
language, we created our dataset by collecting arti-
cles and their headlines from different Hindi news
websites. We then annotated the dataset according
to whether the article was biased towards or against
Bhartiya Janta Party (BJP, the current ruling party
at the centre in India) or was neutral.

We present several baseline Machine learning
and Deep Learning approaches to detecting polit-
ical bias on our dataset. We observe that XLM-
RoBERTa (Conneau et al. (2020)), a transformer-
based model, outperforms other baseline models
and achieves a score of 83% accuracy, 76.4% F1-
macro, and 72.1% MCC.

The main contributions of our work are as fol-
lows:

• We present an annotated dataset consisting of
Hindi news articles for political bias detection.

• We propose several baselines using machine
learning and deep learning approaches.

• We achieve an F1-macro score of 76.4%
by fine-tuning XLM-RoBERTa, a multilin-
gual transformer-based model, on the given
dataset.

The rest of the paper is organized as follows. We
discuss prior work related to bias detection. We
describe the proposed dataset and analyse the an-
notations. We describe our baseline models and
compare the performance of our approaches. We
discuss the societal impacts of bias detection. We
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conclude with a direction for future work and high-
light our main findings.

2 Related Work

Detection of bias has been studied before with at-
tempts in detecting media bias and its effects on
public perception of news and its impact on so-
ciopolitical events like elections.

Misra and Basak (2016) developed an LSTM
network model and used it to detect implicit polit-
ical bias even in the absence of words that relates
to either liberal or conservative ideology on two
datasets - The Ideological Books Corpus (IBC) and
ontheissues (OTI).

LIM et al. (2020) introduces a news bias dataset
with sentence-level bias, which allows the devel-
opment of approaches of bias detection on articles
that have subtle bias.

Wei (2020) introduces a dataset of 200,00 sen-
tences regarding Donald Trump and used GloVe
vector embeddings to train CNN and RNN to pre-
dict the news source of the sentence. They analyze
the top 5-grams with their model to gain mean-
ingful insight into Trump’s portrayal by different
media sources.

Gangula et al. (2019) created a dataset of news
articles and headlines collected from Telugu news-
papers for bias detection and annotated them for
bias towards a particular political party. They also
propose a headline attention network model for the
detection of bias on their dataset.

Pant et al. (2020) Worked on detecting subjec-
tive bias in Wiki Neutrality Corpus (WNC). They
propose BERT-based ensemble models for bias de-
tection, which utilizes predictions from multiple
models to get better accuracy results.

Some independent organizations also work to
fight misinformation. Alt News4 is a fact-checking
website that works to debunk misinformation and
disinformation on mainstream social media plat-
forms. Vishwas News5 is another fact-checking
website that is certified by International Fact-
Checking Network (IFCN).

3 Dataset Description

We have looked at two major types of biases present
in an article while annotating: Coverage / visibility
bias and tonality / statement bias (D’Alessio and
Allen, 2006). We have annotated our dataset using

4https://www.altnews.in/
5https://www.vishvasnews.com/english/

these biases into 3 categories, biased towards the
BJP, biased against the BJP, and neutral if these
biases are not visible in the article.

3.1 Target Classes
Coverage bias is concerned with the amount of cov-
erage each side receives over an issue. Articles
would at times present only one side of an argu-
ment and give undue amount of coverage to that
side over the other in order to make viewers side
with a particular party. Tonality bias measures the
evaluation of a particular actor in the media cover-
age. In an article, a politician can either be framed
positively or negatively changing perception of the
general public about them.6

3.2 Data Collection
We collected hindi news articles along with their
headlines from Indian news websites. We collected
these articles from websites of four different news
sources. The Wire, The Quint, OPIndia and The
Frustrated Indian. The former two are known to be
critical of the current government and more liberal
media houses, while the latter are known for their
pro BJP articles and being more right-wing. We
did it to ensure a balance in the number of biased
articles for and against the BJP. We collected the
links to articles from TheWire using tweets from
their Twitter handle @thewirehindi. We used the
advanced search feature of Twitter and used hash-
tags based on the news that was relevant during
data collection; for example, #modi, #yogi, #CAA,
#BJP, #NRC, #covid etc. For the other three media
houses, articles were selected directly from their
websites using words relevant to the BJP like modi,
bjp, yogi etc. Articles were then scraped from the
websites using Selenium7. We collected over 8000
articles from all four media websites. Out of these
articles, we manually removed irrelevant articles.
In the end, a total of 1388 articles were left, which
we then annotated for bias.

3.3 Data Annotation
Two annotators did the annotations. Both the an-
notators are native Hindi speakers and have a good
grasp and proficiency in the language. One of the
annotators is a self-reported liberal and the other
one is a self-reported conservative. Both the anno-
tators were politically up to date with the current

6Examples of these biases in our dataset is given in the
appendix

7https://www.selenium.dev/
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Neutral For Against

Articles 234 593 561
Avg #words in headline 15.5 17.8 14.9
Avg #words in article 844 750.9 1222.5
Avg #sentences in article 37.5 31.5 53.4

Table 1: Dataset statistics
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Figure 1: Confusion matrix of the classes annotated by
both the annotators. The percentages show the ratio of
the ground truth class, which was initially annotated as
that class. NEU: Neutral, FOR: For BJP, AGA: Against
BJP.

affairs of the country. In the annotation process,
we provided both the headline and the article to the
annotators. We asked them to read and annotate
whether the article and the headline are biased to-
wards the BJP, against it or neutral. We also asked
the annotators to do the annotation keeping in mind
whether the article exhibits coverage or tonality
bias and not deciding on it based on whether the
coverage or review is negative or positive. The
observed kappa score of the annotations was 0.65.
Cases where the two annotators disagreed, were
then resolved by a third annotator.

Further, since articles from the same news outlet
might have similar biases, we hide the information
about the news source and shuffle all the articles
before annotating.

3.4 Dataset Analysis

The Dataset contains of 1,388 articles along with
their headlines. The general statistics of the dataset
are demonstrated in Table 1.

To gauge the difficulty level of each class in the
dataset, we analyse the confusion for each class
between the two annotators. The results are demon-
strated in Figure 1. The confusion matrix indicates
that the neutral class is the hardest to detect com-
pared to the other classes. A plausible explanation
is the subjective nature of the class, and an article

might seem biased to a person while unbiased to
another.

4 System Description

In this section, we describe the data splits we use,
the evaluation metrics we consider, and the base-
lines we propose.

4.1 Dataset Splits

The dataset consists of 1,388 articles. We divide the
dataset into train and validation sets in the ratio of
10:1 by randomly choosing articles from the dataset.
We use the same dataset split for all our models
and report the performances on the validation set.

4.2 Evaluation Metrics

We use the following metrics, which are popularly
known for classification tasks.

Accuracy is one of the most popular and easy-
to-understand metrics. It is a good choice for clas-
sification tasks when the data does not suffer from
class imbalance.

F1-Score represents a more balanced view, but
it could still produce a biased result since it does
not consider true negatives. Nonetheless, F1-macro
can also handle class imbalance as it gives equal
weight to all the classes.

MCC Matthews Correlation Coeffi-
cient (Matthews, 1975) takes all parameters
of the confusion matrix into account and is less
vulnerable to bias. It reports a number in the
range −1 to 1, and a key advantage of it is its easy
interpretability.

4.3 Baselines

In this section, we provide an overview of the
baselines we propose. We experiment with pre-
trained language models such as BERT (Devlin
et al., 2019) and XLM-RoBERTa (Conneau et al.,
2020) on our dataset. We also experiment with tra-
ditional machine learning approaches such as SVM,
Random Forest to provide exhaustive baselines on
the dataset.

4.3.1 MBERT
mBERT is the multilingual version of BERT, which
has been trained on a multilingual corpus of 104
languages (including Hindi) using articles from
Wikipedia as its training corpus. We leverage the
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Model Accuracy F1-macro MCC

mBERT 80.2 ±1.4 72.4 ±2.1 67.1 ±2.2
XLM-RoBERTa 83 ±1.1 76.4 ±1.3 72.1 ±1.8
XLM-RoBERTa (Hindi) 79.2 ±1.5 72.5 ±3.1 65.8 ±2.6
IndicBERT 78.9 ±1.2 69.2 ±4.5 65.5 ±2.1
SVM 78.7 59.6 64.6
Logistic Regression 77.1 55.1 61.5
Random Forest 78.7 59.6 64.6

Table 2: Mean and std dev are reported across five runs of all the models.

Hindi pre-training of the model and fine-tune the
model on our dataset.

We use a [SEP] token between the headline
and the contents of the article to prepare the input
for the transformer network. For classification, we
attach a feed-forward network on the [CLS] to-
ken embedding with two linear layers having the
model’s default dropout of 0.1 and Tanh activation
layer in between. To train our model, we use Adam
optimizer with a learning rate of 1e−5 and a batch
size of 16 with a maximum sequence length of 256.
We use the standard cross entropy loss to train our
model.

4.3.2 XLM-ROBERTA

XLM-RoBERTa (Conneau et al., 2020) is the mul-
tilingual version of RoBERTa (Liu et al., 2019)
which is an optimized version of BERT. XLM-
RoBERTa has been pre-trained on 2.5TB of filtered
CommonCrawl data containing 100 different lan-
guages. We leverage the Hindi pre-training of the
model and fine-tune the model on our dataset for
bias detection.

Since multilingual versions often perform
slightly worse than their monolingual counterparts,
we also experiment with a monolingual version of
XLM-RoBERTa (Jain et al., 2020). The model has
been pre-trained on 3GB of Hindi monolingual data
majorly taken from OSCAR (Ortiz Suárez et al.,
2020).

To train the models, we use the same classifica-
tion network and training parameters as mentioned
in Section 4.3.1.

4.3.3 INDICBERT
IndicBERT (Kakwani et al., 2020) is a multilin-
gual model based on ALBERT (Lan et al., 2020)
which has been pre-trained on 12 major Indian lan-
guages. The model has much fewer parameters
than mBERT and XLM-RoBERTa, but it can still

achieve similar performances or even better in most
of the tasks.

To train the model, we use the same classifica-
tion network and training parameters as mentioned
in Section 4.3.1.

4.3.4 SVM
Support Vector Machines are models for classifi-
cation and regression problems. First, the textual
data is transformed to a set of features by using
methods like Bag of words, Bag-of-n-grams, or
Tf-Idf. Later, the classification model is applied
on the transformed features. The kernel we used
is the Radial Basis Function (RBF) kernel which
is a non-linear kernel. The RBF kernel function
computes the similarity between two points (x, x′)
or how close they are to each other. This kernel can
be explained as:

K(x,x′) = exp(−γ‖x− x′‖2) (1)

where γ is a free parameter.
We first generate the count matrix of all the to-

kens in the text. We use Term frequency (TF)-
Inverse Document Frequency (IDF) to normalize
the count matrix and use it to train our model.The
regularization parameter is set to 1. The loss func-
tion used is hinge loss.

4.3.5 LOGISTIC REGRESSION

Logistic Regression is a another supervised learn-
ing approach like SVM which differs by using the
weighted combination of the input features and
passes them through a sigmoid function.

Similar to SVM, here we use TF-IDF to get fea-
tures from the articles which are then given to our
model. We use the standard cross entropy loss to
train our model.

4.3.6 RANDOM FOREST

Random forests is a classification algorithm which
creates an ensemble of decision trees. It uses bag-
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Figure 2: Confusion matrix of the classes predicted by
the best performing model in the validation set. The
percentages show the ratio of the target class, which
was predicted as that class. NEU: Neutral, FOR: For
BJP, AGA: Against BJP.

ging and feature randomness to build each individ-
ual tree and then use the predictions of the forest
of trees which is more accurate than the prediction
of any individual tree.

Similar to SVM, here we again use TF-IDF to
get features from the articles which are then given
to our model. We use the standard cross entropy
loss to train our model. The quality of the split is
measures using the gini criterion. The minimum
sample split was kept at 2.

5 Results and Discussion

We report the results of our models in Table 2. We
observe that the deep learning models perform bet-
ter than the machine learning approaches. The re-
sults further indicate that even simpler models can
give decent performances on the given problem.

To further analyse the results, we compare the
class-wise results of the best models. We show the
confusion matrix of the predictions compared to
the ground truth values in Figure 2. The model
is performing very well on the biased classes but
suffers heavily on the neutral class. We observe the
same pattern during the annotation process and be-
lieve that predicting whether an article is unbiased
is comparatively more challenging than predicting
the type of bias.

5.1 Societal Implications and Limitations

Online news in today’s day and age strongly influ-
ences the general public’s opinion. Ideally, news
media should report the news objectively and from
a neutral standpoint, but that is seldom the case.
The news these days is highly subjective, biased
and thus, these media companies put in a lot of

opinionated information through sections of so-
ciety. Biased news can have long-term and far-
reaching implications for public opinion on soci-
etal issues and how they view government policies,
laws and elections (Baum and Gussin, 2005; Bern-
hardt et al., 2008). People should have access to an
unbiased and objective form of news reporting. In
India, we can see news channels and news websites
online pushing out one-sided and highly opinion-
ated news. Chadha et al. (2019) discuss the dis-
course of several news portals with an inherent bias
towards right-wing politics and how they talk about
their “aims to provide a counter to the mainstream
media narrative about India” which they consider
to be “left-liberal” and “pseudo-secular”. They also
discuss how the members of political parties fund
these websites to carry out propaganda on their
behalf. This shows that instead of news sources
providing unbiased news, we have news portals at
two opposite sides of the political spectrum which
will publish information and make opinion pieces
keeping their political leaning in mind. Such biased
news portals make the detection of political bias
even more important and relevant in today’s times.

Our system is trained on articles from a limited
number of sources and thus might not be fitted well
to make predictions on news articles from other
sources. Also, predictions from our model which
might be incorrect can be used to accuse certain
media houses as biased. Thus, our system should
rather be used as a method to filter out potentially
biased articles from a larger set of articles rather
than using it as a gold standard to mark articles as
being biased.

6 Conclusion

In this paper, we proposed a dataset to detect biases
in Hindi news articles. We analysed the difficulty
level of each class, and our experiments indicate
that detecting whether an article is unbiased is a
more challenging problem than detecting the type
of bias. Further, we provided several baseline mod-
els on the proposed dataset and found out that mul-
tilingual deep learning models outperform other
approaches by a large margin and should be the
choice for performance metrics. We perform error
analysis on the best performing model to further un-
derstand the shortcomings of our proposed system.
Lastly, we also discussed the ethical and societal
implications of the proposed work.

As a part of future work, we aim to extend the
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system by shifting our focus from a particular polit-
ical party and propose a general approach for any
set of political parties.
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Abstract

Restricted machine translation incorporates hu-
man prior knowledge into translation. It re-
stricts the flexibility of the translation to sat-
isfy the demands of translation in specific sce-
narios. Existing work typically imposes con-
straints on beam search decoding. Although
this can satisfy the requirements overall, it
usually requires a larger beam size and far
longer decoding time than unrestricted trans-
lation, which limits the concurrent processing
ability of the translation model in deployment,
and thus its practicality. In this paper, we pro-
pose a general training framework that allows
a model to simultaneously support both unre-
stricted and restricted translation by adopting
an additional auxiliary training process with-
out constraining the decoding process. This
maintains the benefits of restricted translation
but greatly reduces the extra time overhead of
constrained decoding, thus improving its practi-
cality. The effectiveness of our proposed train-
ing framework is demonstrated by experiments
on both original (WAT21 En↔Ja) and simu-
lated (WMT14 En→De and En→Fr) restricted
translation benchmarks.

1 Introduction

Neural machine translation (NMT) has recently
entered use because of rapid improvements in its
performance (Bahdanau et al., 2015; Gehring et al.,
2017; Vaswani et al., 2017). The translation mech-
anism of an NMT model is a black box because
it is a special deep neural network model, which
means that translation generation is uncontrollable
(Moryossef et al., 2019; Mehta et al., 2020; Miy-
ata and Fujita, 2021). Although uncontrollable (or
unguaranteed) translation can satisfy basic require-
ments, it is unacceptable in some formal scenar-
ios, particularly for key numbers, time, and proper

∗Corresponding author. This work was partially funded
by the Key Projects of National Natural Science Foundation
of China (U1836222 and 61733011).

nouns. To address this concern, the restricted trans-
lation task has been proposed (Hokamp and Liu,
2017; Post and Vilar, 2018; Song et al., 2019; Chen
et al., 2020; Chousa and Morishita, 2021; Li et al.,
2021). This restricts translation by forcing the in-
clusion of prespecified words and phrases in the
generation output, which enables explicit control
over the system output.

Lexically constrained (or guided) decoding (CD)
(Post and Vilar, 2018; Hu et al., 2019b,a), a modi-
fication of beam search, has commonly been used
in recent restricted translation studies. Although
CD is a reasonable option for restricted transla-
tion, its slow decoding limits the practicality of
restricted translation. Therefore, we propose a
novel training framework for restricted translation
that requires only minor changes to the ordinary
translation model, to address the inconvenience of
the decoding time overhead caused by additional
constraints. In this framework, restricted machine
translation is achieved by the model structure in-
stead of the CD.

Specifically, we perform translation in two
modes in the training framework: end-to-end trans-
lation and restricted translation, and reuse the self-
attention and cross-attention in the decoder of the
translation model. To make the restricted transla-
tion training mode adapt to the training data sit-
uation with only parallel sentences available, we
propose the Sampled Constraints as Concentration
(SCC) training approach. In this approach, we sam-
ple the target sequence to simulate the constraint
words and impose additional penalties on the loss
of these sampled words.

Because the restricted translation is embedded
with the model structure and training objective
in the translation model trained with our frame-
work, restricted translation is performed without
CD. Consequently, the inference speed is substan-
tially increased, which greatly improves the prac-
ticality of restricted translation. Experimental re-
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sults show that our end-to-end translation model
can achieve approximately the same performance
as the end-to-end translation baseline; moreover,
although it only requires unconstrained decoding,
it can achieve performance competitive or even
superior with that of the baseline with CD.

2 Our Training Framework

Our training framework comprises two training
subprocesses: end-to-end translation and restricted
translation. Recent restricted translation studies
have focused mainly on the decoding phase, but
we set out to integrate restricted translation into
the training phase, which makes the motivation of
our work completely different from that of previ-
ous studies. Our implementation is based on the
existing mainstream Transformer NMT baseline;
however, because the training method is indepen-
dent of the baseline, our training framework can
easily be generalized to other NMT models and lan-
guage generation tasks. Due to space limitations,
please refer to Appendix A.2 for training details.

2.1 End-to-end Translation Training

The most widely adopted form of machine trans-
lation is end-to-end translation, which usually em-
ploys an encoder–decoder architecture. In the train-
ing of end-to-end machine translation, given a
source language input X = {x1, x2, ..., xn} and
target language translation Y = {y1, y2, ..., ym},
the model with parameter θ is trained to gener-
ate the target output sequence Y according to the
source input sequence X.

Taking the Transformer model as an example,
the encoder is composed of the multi-head self-
attention module, whose purpose is to vectorize
and contextualize the source input sequence. This
module can be formalized as:

HX = SelfAttnenc(X+ Pos(X)),

where Pos(·) represents the position encoding of
a sequence, SelfAttnenc denotes the stacked multi-
head self-attention encoder, and HX is the contex-
tualized source representation. A typical decoder
comprises two main components: self-attention
and cross-attention. In the self-attention compo-
nent, the target representation is encoded with sim-
ilar multi-head attention structures,

ĤY = SelfAttndec(IncMask(Ŷ + Pos(Ŷ))),

where Ŷ = {BOS, y1, y2, ..., ym−1} is the shifted
version of the target sequence Y, SelfAttndec de-
notes the stacked multi-head self-attention layers
(similar to the encoder), and IncMask is the extra
incremental mask adopted because the sequence on
the decoder side is generated incrementally. The
target representation is fed to the cross-attention
component, as a query, and the source represen-
tation is used as the key and value to obtain the
final representation, which is then mapped to the
target vocabulary space through a linear and soft-
max layer. The final predicted probabilities can be
written as follows:

P (Y) = Softmax(CrossAttn(ĤY ,HX)).

The model parameter θ is optimized by minimiz-
ing the negative log-likelihood of the gold tokens,
according to their predicted probabilities:

LE2E = −
m∑

i=1

logP (yi)

= −
m∑

i=1

logP (yi|X; Ŷ<i; θ),

(1)

where Ŷ<i indicates the sequence before token yi.
In the inference stage, greedy (or beam) search
is employed to generate the translation sequence
according to predicted probabilities P (yi) =
P (yi|X; Ỹ<i; θ), where Ỹ is the generated token
sequence.

2.2 Restricted Translation Training
In recent work on restricted translation, CD, a modi-
fication of beam search, has generally been adopted.
In CD, P (yi) remains unchanged and external
search processes are employed, which increases the
decoding time overhead. In this paper, we focus on
improving the efficiency of restricted translation by
modifying P (yi) to eliminate the additional search
processes. Given the constrained word sequence
C = {c1, c2, ..., ck}, CD adds additional terms to
the predicted probability of the model, and C is
treated as an additional input prompt. The output
probability P (yi) then becomes:

P (yi) = P (yi|X;C; Ŷ<i; θ).

According to this change in the form of proba-
bility, we made a simple modification to the work-
flow of the model, keeping the model structure un-
changed. First, we encoded the constrained word
sequence with the self-attention component of the
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decoder. Because the input order of the constrained
word sequence is usually inconsistent with the word
order of the target sequence, we removed the posi-
tional encoding, taking advantage of the position
invariance of the self-attention layer. In addition,
these constrained words are visible during the en-
tire translation generation process, so there is no
need to use the incremental mask strategy. Finally,
the constrained words representation is as follows:

HC = SelfAttndec(C).

Regarding such a representation as an additional
context, outside of the source representation, the
predicted probability of the model can be written
as:

P (Y) = Softmax(CrossAttn(ĤY ,HX)+

CrossAttn(ĤY ,HC)).
(2)

2.3 Sampled Constraints as Concentration
The training of end-to-end NMT models generally
uses parallel sentences between source and target
languages, whereas restricted machine translation
requires an additional constraint sequence. To hide
the difference between restricted translation train-
ing and testing, we propose the SCC training strat-
egy.

Because restricted machine translation training
requires additional given constraint sequences, we
randomly sample the target sequence to obtain con-
strained words in this training strategy. However,
this is insufficient. Because these additional target
words are already exposed to the decoder, the gener-
ation of these tokens would become quite easy, and
the goal of fully training the model would not be
accomplished (i.e., there are shortcuts). This would
have an undesirable impact on end-to-end transla-
tion (as when no constrained words are prespec-
ified) and reduce the model’s robustness, which
is incompatible with our general training frame-
work. Therefore, we propose additional concentra-
tion penalties for the losses of these exposed con-
strained tokens. Denoting the sampled sequence as
SY
α , where α is the sampling ratio, and the penalty

factor as γ, the final loss is:

LRT = −
m∑

i=1

(
(1 + γ1(yi ∈ SY

α ))

logP (yi|X;SY
α ; Ŷ<i; θ)

)
,

(3)

where 1(·) is the indicator function. Please refer
to Appendix A.1 for an illustrated figure and more
details.

3 Empirical Evaluation and Analysis

Our method was evaluated on the ASPEC
(Nakazawa et al., 2016) En↔Ja benchmark and the
WMT14 En→De and En→Fr benchmarks. The
constrained words for the ASPEC En↔Ja test set
were provided by the WAT21 restricted translation
shared task and, for WMT14 En→De and En→Fr,
we followed previous work by adopting random
sampling to extract the constraints. We chose two
typical Transformer model settings as our base-
line: Transformer-base and Transformer-big, both
of which are consistent with (Vaswani et al., 2017).
During training, we set α = 0.15 and γ = 1.0. For
a fair comparison, the beam size was set to 10 and
the batch size was fixed at 64.

We reported MultiBLEU scores in our experi-
ments and calculated them using the Moses script.
For En, De, and Fr, we use the default tokenizer pro-
vided by Moses (Hoang and Koehn, 2008), and for
Ja, we adopted Mecab1 for word segmentation. In
the evaluation of WAT21 EN↔JA, we also reported
a consistency metric – the Exact Match (EM) score
- according to the WAT21 official instructions. This
score is the ratio of sentences in the whole corpus
that exactly match the given constraints. For the
EM score evaluation, we use lowercase hypothe-
ses and constraints, then use character-level se-
quence matching (including whitespaces) for each
constraint in En, while for Ja, we use character-
level sequence matching (including whitespaces)
for each constraint without preprocessing. Please
see Appendix A.3 for more preparation details.

3.1 Results and Analysis
We present the performance of the models on the
WAT21 En↔Ja restricted translation tasks in Table
1. First, for both model architectures (Transformer-
base (T-base) and Transformer-big (T-big)), the
end-to-end translation performance (E2E) of our
approach’s models is almost the same as our base-
lines. This demonstrates that our training frame-
work still maintains high end-to-end translation per-
formance, even with restricted translation added,
meaning it effectively supports both end-to-end
translation and restricted translation simultane-
ously.

Second, on our end-to-end baselines, CD can
also be used to accommodate restricted transla-
tion. Its very substantial gain in translation per-
formance suggests that CD is a reasonable op-

1https://taku910.github.io/mecab/
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Model Alg. En→Ja Ja→En Speed (sent./s)

T-base E2E 41.82 [26.49] 28.18 [21.96] 53.98 / 63.39
CD 47.11 [98.29] 31.55 [99.11] 0.74 / 0.78

Ours
E2E 41.87 [26.55] 28.20 [22.01] 53.95 / 63.40
CAC 47.15 [60.26] 35.46 [56.68] 36.01 / 39.32
CD+ 47.30 [98.56] 35.49 [99.30] 0.73 / 0.81

T-big E2E 43.33 [27.51] 29.45 [22.70] 29.68 / 32.53
CD 47.89 [98.30] 32.04 [99.16] 0.68 / 0.71

Ours
E2E 43.40 [27.60] 29.41 [23.25] 29.55 / 32.21
CAC 47.93 [60.77] 35.71 [57.42] 18.13 / 19.32
CD+ 48.01 [98.60] 35.75 [99.44] 0.65 / 0.70

Table 1: Performance on WAT21 En↔Ja test sets. In
the form a[b], a represents the BLEU score and b the
EM score (see Appendix A.3).

tion for restricted translation. However, under the
same conditions, its decoding speed is much lower
than that of ordinary decoding, which prevents it
from being deployed at a large scale. In our pro-
posed framework, restricted translation is success-
fully supported with constraints as context (CAC),
without using CD. Like CD methods, our method
obtains a similar and substantial performance im-
provement, but it does so without sacrificing too
much decoding speed, which demonstrates that our
proposed method is efficient and effective.

Because CAC employs constrained word se-
quences as additional context, it only imposes soft
constraints on the decoder, whereas CD imposes
hard constraints. However, because CAC and CD
do not conflict, we combined the two as CD+ to pro-
duce better results. Our experimental findings attest
to the effectiveness of this practice. Furthermore,
CAC significantly outperforms CD in Ja→En. This
may be due to the beam size of 10, which is insuffi-
cient for longer constrained sequences and limits
CD performance (a larger beam size will be better,
see Figure 1(a)), but our proposed CAC alleviates
this shortcoming obviously. Furthermore, for the
EM score, CD adheres to hard constraints that the
given constrained word must appear in the transla-
tion, whereas CAC leverages soft constraints and
instead focuses on the overall translation, resulting
in a higher BLEU for CAC and a higher EM for
CD. CD+, however, provides higher scores for both
these metrics.

As in previous studies on restricted translation,
we also investigated the impact of constrained
words on restricted translation. The constrained
words were sampled from the translation references
of popular translation datasets (WMT14 En→De
and En→Fr). There are five common sampling

Model En→De En→Fr Speed (sent./s)

(Vaswani et al., 2017) 28.40 41.80 −
T-big (Ours) 28.15 43.12 39.23 / 34.95

+CAC (rand1) 29.95 44.27 31.27 / 29.38
+CAC (rand2) 31.62 45.53 30.63 / 28.37
+CAC (rand3) 33.13 47.21 29.43 / 27.46
+CAC (rand4) 34.51 48.16 28.19 / 26.40
+CAC (phr4) 36.07 48.95 28.26 / 26.38

Table 2: Performance on WMT14 En→De and En→Fr
test sets.

strategies: rand1, rand2, rand3, rand4, and phr4.
randk means that the translation is sampled without
replacement k times, and phrk means that k consec-
utive words are sampled. For a translation length
less than k, an empty string is output because no
constrained words are given.

Table 2 compares the end-to-end translation per-
formance of our T-big model with that of Vaswani
et al. (2017)’s model. Although we used the
same model size and number of training steps, our
model’s performance was inferior on En→De but
superior on En→Fr. This is a consequence of the
use of a larger beam size and the potential bene-
fits of restricted translation training on end-to-end
translation. The results also show that the transla-
tion performance improved dramatically even when
only one constrained word was used. This shows
that our method of using constraints as a soft re-
striction is very effective, and it also demonstrates
that translation can be improved substantially with
some prior knowledge of translation. The dispari-
ties between rand1 and rand4 show that accurate
prior knowledge of translation can lead to more ac-
curate translation, as the translation uncertainty has
been gradually reduced. Additionally, comparing
rand4 and phr4 demonstrates that the continuous
sampling of four constrained words can result in
a greater performance improvement than the dis-
crete sampling of four constrained words. This is
because phr4 generally carries more useful infor-
mation than rand4.

3.2 Ablation Study

To further demonstrate the advantages of our
method, we plotted the performance in BLEU score
and total decoding time with different beam sizes
in Figure 1. The results of BLEU score vs. beam
size show that, for CD methods or variants (CD+),
the translation improves at first as the beam size
increases. However, after the beam size increases
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Model En→Ja Ja→En Speed (sent./s)

T-base (E2E) 41.82 28.18 53.98 / 63.39

Ours (CAC) 47.15 35.46 36.01 / 39.32
- SCC 45.63 33.05 36.05 / 39.25
- RTT 19.42 10.56 36.07 / 39.30
+ CPos 43.36 29.55 35.91 / 39.04
+ IncMask 43.78 29.61 35.79 / 38.93

Table 3: Results of ablation study on WAT21 En↔Ja
test sets.

beyond a certain threshold, the translation perfor-
mance decreases. Moreover, we have also observed
that CD methods require a larger beam size to out-
perform beam search methods, and they perform
worse when beam size is small; because taking
additional constraint words into consideration re-
quires more searching. There is no such issue with
our CAC method that employs beam search, how-
ever.

Figure 1(b) depicts the total decoding time for
various beam sizes. The test set contains 1,812
sentences. We use two y-axes , a larger-scale one
on the right to accommodate and denote CD and
CD+’s longer decoding times, and a smaller-scale
one on the left to denote E2E and CAC’s decoding
times. The decoding time results show that our
CAC method can come close to beam search, a
practical restricted translation solution, but CD and
CD+ are extremely slow in comparison.

T-base (E2E); T-base (CD); Ours (CAC); Ours (CD+)
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Figure 1: BLEU score vs. beam size and Decoding time
vs. beam size on WAT21 En→Ja test set.

We conducted ablation studies on the model
structures and training options of our proposed
framework, as shown in Table 3. Using a general
MLE loss in restricted translation training; without
using SCC loss (-SCC); outperforms the baseline,
which shows that the use of restricted translation
training can effectively support restricted transla-
tion; however, including SCC loss still leads to an

improvement over this. This reveals that impos-
ing additional penalties on the loss of constrained
words exposed to the decoder is an important de-
sign decision. We also evaluated complete removal
of the restricted translation training and directly
using the end-to-end translation training model for
CAC decoding (-RTT). Our results show that the
performance greatly suffered, which illustrates the
necessity of using restricted translation training for
the restricted translation of CAC decoding.

4 Related Work

Lexically constrained (or guided) decoding (CD),
a modification of beam search, has commonly
been used in recent restricted translation studies.
Specifically, some prespecified words or phrases
are forced in translation choice. However, although
these approaches can theoretically achieve the goal
of restricted translation, existing methods are very
expensive in terms of decoding time; this limits the
practicality of CD. Starting from (Post and Vilar,
2018), in which CD was introduced and utilized in
NMT, attempts have been made to reduce the time
overhead of CD by the use of dynamic beam alloca-
tion. Although the time complexity is formally con-
sistent with that of general beam search, it remains
too inefficient to be used on a large scale (Hu et al.,
2019b). Hu et al. (2019a) further extended CD and
improved the throughput of restricted translation
systems by using batching in vectorized dynamic
beam allocation. Although these efforts have im-
proved the practicality of restricted translation, the
decoding speed is still far less than that of ordinary
decoding.

5 Conclusion

In this paper, we proposed novel training and de-
coding methods for restricted translation that do
not use CD. Furthermore, we established a gen-
eral training framework. With our framework, end-
to-end translation and restricted translation can
be implemented in the same model. Compared
to using CD in the end-to-end translation model,
we achieved better translation results, as well as
smaller beam size and consistently higher decoding
speed. We evaluated the framework on multiple
benchmarks, and demonstrated the performance ad-
vantages of restricted translation. Using our train-
ing framework and decoding method, restricted
translation can overcome the limitation of its ex-
tremely slow decoding speed and become practical.
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Abstract
There are limitations in learning language
from text alone. Therefore, recent focus has
been on developing multimodal models. How-
ever, few benchmarks exist that can measure
what language models learn about language
from multimodal training. We hypothesize
that training on a visual modality should im-
prove on the visual commonsense knowledge
in language models. Therefore, we intro-
duce two evaluation tasks for measuring visual
commonsense knowledge in language models1

and use them to evaluate different multimodal
models and unimodal baselines. Primarily, we
find that the visual commonsense knowledge
is not significantly different between the mul-
timodal models and unimodal baseline models
trained on visual text data.

1 Introduction

Language models (LMs) trained on large amounts
of textual data have shown great performance on
several textual tasks (Devlin et al., 2019; Brown
et al., 2020). However, recent work has illumi-
nated limitations with text-only training of LMs.
These limitations arise from a lack of meaning
(Bender and Koller, 2020) and experience (Bisk
et al., 2020), together with the problem of report-
ing bias (Gordon and Van Durme, 2013). Multi-
modal training has been identified as one way to
create models that do not suffer from the aforemen-
tioned limitations (Paik et al., 2021; Huang et al.,
2021). While several multimodal models have been
developed (Tan and Bansal, 2019; Li et al., 2019,
2020), few evaluation methods exist that can tell
us whether multimodal training mitigates text-only
training limits.

If we wish to successfully create multimodal
LMs that learn from more than text, we need a way
to evaluate them for what we expect them to have
learned from their multimodal training.

1Code publicly available at: github.com/lovhag/
measure-visual-commonsense-knowledge

Figure 1: We introduce the two evaluation tasks Mem-
ory Colors and Visual Property Norms for measuring
visual commonsense knowledge in a LM.

One hypothesis is that multimodal training
should aid LMs in learning commonsense knowl-
edge (Zhang et al., 2021). There are several text-
only evaluation tasks that aim to measure the com-
monsense knowledge in LMs (Zellers et al., 2019b;
Zhou et al., 2020), but none of them focus explicitly
on the commonsense knowledge learned through
training on more than text.

In this work, we focus on models trained on im-
ages and text, denoted vision-and-language models.
We reason that if there is any additional information
to be learnt from a visual modality it should firstly
be basic visual commonsense knowledge. That is,
visual conceptual knowledge that is viewed as com-
monsense by humans, and thus not attainable from
text alone due to reporting bias.

We propose a simple method for measuring the
visual commonsense knowledge of a model using
two zero-shot masked language text-only tasks, de-
picted in Figure 1. The first task is the Memory Col-
ors evaluation task (Norlund et al., 2021) and the
second we create based on the visual features in the
Centre for Speech, Language and the Brain (CSLB)
concept property norms dataset (Devereux et al.,
2014). We refer to the latter task as the Visual Prop-
erty Norms evaluation task. We complement our
work with the results of four vision-and-language
models and four baselines on these two tasks.
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2 Evaluation Tasks

Our aim is to evaluate models for visual common-
sense knowledge. To do this we make use of the
existing Memory Colors evaluation task described
in section 2.1, and introduce a new evaluation task,
Visual Property Norms in section 2.2. Memory
Colors is smaller than Visual Property Norms and
specifically focuses on visual information related
to the color of different concepts, so it is potentially
easier. We include both tasks to get a performance
curve over increasing difficulty.

Common for both tasks is that they contain
queries in English relating to visual properties of
tangible concepts and that these queries are based
on the knowledge of multiple human participants.
Therefore, the tasks can be considered to evaluate
a basic aspect of visual commonsense knowledge.

Also common for both tasks is that they use tex-
tual templates containing a [MASK] token to be
predicted by a model in a cloze-style fashion, simi-
larly to the method used by Kassner and Schütze
(2020) and Petroni et al. (2019). The advantages
with querying the models in this fashion is that
most LMs2 already have been exposed to this type
of query format, including most multimodal mod-
els. We can then evaluate any model in a masked
language modelling fashion on these tasks with-
out additional training or having to make model-
specific adaptations, enabling easy evaluation for
researchers who wish to use these evaluation tasks.

This form of cloze-style evaluation is also re-
ferred to as prompt-based retrieval. The reliability
of this method has recently been questioned by
Jiang et al. (2020) and Cao et al. (2021) due to
the query format sensitivity of LMs. To alleviate
this issue, we evaluate the models using several
different prompts for each of the two tasks.

2.1 Memory Colors
The Memory Colors evaluation task is a text-only
zero-shot cloze test in English that evaluates a
model for its knowledge of memory colors. It
queries a model for the color of 109 typical ob-
jects using 13 different query templates. The task
has been created with the help of 11 human partici-
pants, so to some extent it encodes human visual
commonsense knowledge limited to colors. Some
examples of queries can be seen in Figure 1.

We use the same evaluation metric as specified
by Norlund et al. (2021), i.e. the accuracy score

2Excluding autoregressive LMs.

after masking the model output for the 11 possible
colors black, blue, brown, green, grey, orange, pink,
purple, red, white and yellow.

2.2 Visual Property Norms

We also introduce a new cloze task in English
to evaluate for visual commonsense knowledge,
denoted Visual Property Norms. It is the largest
query-based pure-language evaluation task capable
of evaluating LMs for visual commonsense knowl-
edge, containing 6,541 visual conceptual features
produced by human participants.

We base it on the CSLB concept property norms
dataset (Devereux et al., 2014) that contains the
conceptual knowledge of 30 human participants for
each of 541 concrete objects, with 123 participants
in total. This knowledge is represented as a set of
features per object, for which each feature is speci-
fied with a production frequency (PF). The PF de-
scribes how many of 30 participants produced that
feature, so a feature with a high PF can be consid-
ered to be more apparent to the participants, since
more came to think of it. All features are also cate-
gorized as either encyclopaedic, functional, other
perceptual, taxonomic or visual perceptual. Ta-
ble 1 contains some examples of visual perceptual
features in the dataset.

Concept Relation Feature PF
Cherry has a stalk 17
Fern is green 29
Hair is thin 22
Plum has flesh 9

Table 1: Some concepts and their visual perceptual fea-
tures in the concept property norms dataset.

We create our evaluation task from the concept
property norms dataset in a set of steps. Firstly,
since our goal is to measure visual commonsense
knowledge, we only make use of the visual percep-
tual features. Since we wish to perform cloze tests
through masked language modelling, only feature
alternatives describable by one wordpiece from the
BERT base uncased tokenizer are included.

Furthermore, we only include the four most com-
mon feature relations in the task. These are has,
has a, made of and is. We then part the data into
five different segments based on production fre-
quency. This is done by thresholding the features
for each concept such that only features with a PF
above the set threshold for a certain data segment
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are included as gold labels in that segment. The
segments and their PF thresholds are listed in the
appendix.

Lastly, we create queries from the concepts in
each data segment using 8 different query tem-
plates, seen in the appendix. Some examples of
Visual Property Norms queries can be seen in Fig-
ure 1.

Similarly to Weir et al. (2020) we use the mean
average precision (mAP) as our evaluation metric,
since there may be multiple correct answers for
each query in our evaluation data. We calculate
this score for each concept and relation, per query
template and production frequency segment. We
then get a final score for each production frequency
segment by taking the average score over all query
templates and concepts per segment. This metric is
measured over a vocabulary that has been masked
to only contain the 614 possible answer alternatives
in the Visual Property Norms evaluation data.

3 Models

We evaluate four multimodal pre-trained models
for their visual commonsense knowledge. These
are CLIP-BERT both with and without imagina-
tion3(Norlund et al., 2021), a LXMERT base un-
cased (Tan and Bansal, 2019) and VisualBERT (Li
et al., 2019). We also evaluate four unimodal base-
line models. These are a BERT base uncased pre-
trained on English Wikipedia and BookCorpus, a
BERT base uncased further trained on the pure-text
part of the CLIP-BERT training data (BERT-CLIP-
BERT-train) and two BERT base uncased models
trained on the pure-text part of the LXMERT train-
ing data, one from scratch and one initialized from
pre-trained BERT weights (BERT-LXMERT-train-
scratch and BERT-LXMERT-train).

All models are to some extent based on the
BERT base architecture and consequently share
the same vocabulary and tokenizer. They are also
of similar sizes with∼ 110M trainable weights, the
exception being LXMERT with ∼ 230M trainable
weights. Additional information about the models
can be found in the appendix.
Adapting the models for pure-text queries
The majority of current multimodal models have
not been developed to be queried only with text.
In this case, both CLIP-BERT and VisualBERT
should work well with only removing their visual

3The explicit version has the ability to “imagine” visual
features when queried with text.

features input, since they are single-stream mod-
els. However, LXMERT is a dual-stream model
that requires a visual feature input. We handle the
removal of visual information by simply removing
the visual processing chain in LXMERT, making
the language input the only input given to the Cross-
Modality Encoder in the model. This would not
work if we still wanted to use the model in a multi-
modal fashion, but we can make this adaption since
we are only interested in querying the model for
visual commonsense knowledge via language.

4 Results

The results of the models on our two evaluation
tasks can be seen in Figure 2. We format the analy-
sis of the results around a set of questions.

Do the multimodal models display more
memory colors knowledge? The multimodal
CLIP-BERT-explicit model has the best perfor-
mance on this task. So to some extent, yes. But
it is worth noting that the unimodal BERT model
trained on LXMERT training data is second best on
the task, outperforming both LXMERT and Visual-
BERT, indicating a small multimodal advantage.

Is performance on Memory Colors indica-
tive of performance on Visual Property Norms?
The ranking visible in Figure 2a does not entirely
differ from that in Figure 2b. The main exception
being CLIP-BERT-explicit, which has the best per-
formance on Memory Colors, but is outperformed
by most other models on Visual Property Norms.
We perform a closer analysis of how these results
compare by extracting Visual Property Norm re-
sults for colors in the appendix.

Do the models perform better when evalu-
ated on more apparent concept features? We
can observe how the model performance unani-
mously increases with increased production fre-
quency threshold in Figure 2b. Thus, it appears as
though the models agree more with concept fea-
tures that can be regarded as more apparent.

Do the multimodal models contain more vi-
sual commonsense knowledge? The results in
Figure 2b do not really indicate clear advantage of
either unimodal or multimodal models. The multi-
modal model CLIP-BERT-implicit may generally
have the best performance on the task, but the uni-
modal models trained on visual text data do not
differ much in performance. For example, the uni-
modal BERT-LXMERT-train performs almost on
par with CLIP-BERT-implicit.
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Figure 2: The model accuracy on Memory Colors and model scores on Visual Property Norms per production
frequency segment. The multimodal model results are depicted with warmer colors, and the unimodal model
results are depicted in cooler colors. The error bars indicate the standard deviation of the model performance over
the different query templates. The score has been calculated by masking the vocabulary of the models to only
contain the possible answers of the task.

This conclusion is similar to that of Yun et al.
(2021), who also compared vision-and-language
models to text-only models trained on captions.
They found that the models have similar perfor-
mance with respect to their internal linguistic rep-
resentations for general tasks.

These results do not mean that the idea of having
models learn language from more than text has
failed. They do however indicate that there is more
work to be done on developing models that use
multimodal pretraining to improve on their natural
language understanding.

However, we cannot exclude the possibility in
our work that the multimodal models suffer in per-
formance due to a lack of visual feature input. Fu-
ture work investigating this would be valuable.

Are the models sensitive to how they are
queried? Prevalent for all models is that their per-
formance varies greatly with how they are queried.
BERT-LXMERT-train may have the best perfor-

mance on Visual Property Norms if queried dif-
ferently. We evaluate the model performances de-
pending on query template in the appendix. This
highlights the importance of querying the models
with different prompts, since the models may per-
form dissimilarily depending on prompt due to the
degree of prompt-dataset fitness, as reported by
Cao et al. (2021).

Does fine-tuning on visual language develop
visual commonsense knowledge? In both Fig-
ures 2a and 2b it is visible that unimodal model
performance greatly improves with fine-tuning on
visual text corpora. Potential explanations for this
are that the models become more attuned to the
task with fine-tuning, or that corpora from VQA
and image captioning do not suffer as much from
reporting bias compared to more common corpora.
Thus, text that has been curated to explicitly contain
visual information may suffice as a replacement for
images.
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5 Related Work

Weir et al. (2020) also use the CSLB concept prop-
erty norms to probe LMs for commonsense knowl-
edge. Our work differs from theirs in that we focus
on visual commonsense knowledge and evaluate
several multimodal models for whether their multi-
modal training grants them additional visual com-
monsense knowledge.

Norlund et al. (2021) also query a multimodal
model for visual commonsense knowledge but with
a focus on memory colors. Paik et al. (2021)
present similar work but with more focus on prob-
ing and reporting bias. In our work, we include
general visual commonsense knowledge concepts
and evaluate several multimodal models.

Additionally, Iki and Aizawa (2021) evaluate
several vision-and-language models on GLUE, to
investigate the effect of an additional visual modal-
ity on the general linguistic capabilities of a model.
Our work differs in that we evaluate the models
specifically for visual commonsense knowledge.

Other tasks that have been developed to evaluate
the performance of vision-and-language models are
Visual Question Answering (VQA) tasks and Vi-
sual Commonsense Reasning (VCR) tasks (Goyal
et al., 2017; Hudson and Manning, 2019; Zellers
et al., 2019a). Our work differs from these in that
we evaluate for visual knowledge in models without
conditioning on an image, to investigate whether
the linguistic capabilities of a model improve from
training on more than text. In the aforementioned
tasks, the text prompts are always conditioned on
an image provided with the prompt, obstructing
equal comparisons with text-only models.

6 Limitations

Our work is limited to a subset of vision-and-
language models, so the results found may not
translate to all such model types. Also, since
our evaluation utilizes prompt-based retrieval, its
measurement accuracy depends on how well this
method works for LMs. Additionally, as previ-
ously mentioned, we do not investigate how well
the multimodal models adapt to a unimodal input.
Thus, our results depend on whether the models
were functioning adequately with our method of
adapting them to a unimodal input.

7 Ethical Considerations

Our work should not have any direct ethical im-
plications, since we mainly introduce evaluation

tasks and evaluate different models on them. We
do however investigate visual conceptual percep-
tions based on data from a potentially small group
of people whose world-view may be culturally dif-
ferent from that of other individuals. This means
that we may encourage knowledge that benefits
some people more than others. Similar issues are
discussed by Liu et al. (2021). Our investigation is
limited to English-language models and datasets,
limiting the generality of our conclusions.

8 Conclusions

We introduce new evaluation methods for measur-
ing the visual commonsense knowledge in LMs
and evaluate a number of multimodal LMs on these
benchmarks. We find that there are no significant
differences in performance between models trained
on pure text and models trained on images and
text. Most prominently, we find that a unimodal
LM trained on image captions and VQA queries
can attain a visual commonsense knowledge on par
with that of a multimodal model.

We also confirm the results by Jiang et al. (2020)
and Cao et al. (2021), that LMs are sensitive to
query format even when querying for common-
sense knowledge. This casts some doubts on what
is really measured in a model for a cloze task and
whether we can reason about LMs as having knowl-
edge. An interesting future step would be to inves-
tigate this further and see if it would be more appli-
cable to use e.g. probing or some other evaluation
method.

Nonetheless, this is a first step towards measur-
ing the visual commonsense knowledge in multi-
modal as well as unimodal LMs. We hope that
the evaluation tasks introduced here may aid other
researchers in their aim to create models that learn
language from more than text.
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A Additional model information

Additional information about the models used in
our work and their training datasets can be found in
Tables 2 and 3. We can observe that VisualBERT
has been trained on a data amount that is quite small
compared to those of CLIP-BERT and LXMERT.

It is also worth noting on the different backbones
of the models. CLIP-BERT is a single-stream
multimodal model with a CLIP backbone for vi-
sual processing. LXMERT is a dual-stream multi-
modal model with a Faster R-CNN detector back-
bone. While VisualBERT is a single-stream model
that also utilizes Faster R-CNN detector backbone.
Since CLIP has been trained on the immense WIT
dataset, the backbone data sizes differ greatly be-
tween CLIP-BERT and the other multimodal mod-
els.

B Additional information on Visual
Property Norms

Information about the different segments and num-
ber of entries per segment in the Visual Property
Norms can be seen in Table 4.

C Additional results on Visual Property
Norms

Additional model results on the Visual Property
Norms can be found here.

Figure 3 indicates model performance per fea-
ture relation across the production frequency seg-
ments. We can observe how the models show the
best performance for the is made of relation, which
arguably can be associated more with visual per-
ceptual properties.

Figure 4 shows model score per query template
across all production frequency segments, indicat-
ing that CLIP-BERT-implicit benefits from being
more robust to different query templates. Addition-
ally, these results indicate that BERT-LXMERT-
train would have the best overall score on Visual
Property Norms if the queries containing “q: a”
were to be removed.

Lastly, Figure 5 contains the results of the mod-
els on the color part of Visual Property Norms
which has been filtered to only contain queries with
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Model Text Visual text Images+Text Backbone Training objectives
BERT 80M MLM, NSP
CLIP-BERT-implicit 80M 4.7M 400M MLM
CLIP-BERT-explicit 80M 4.7M 400M MLM
BERT-CLIP-BERT-train 80M 4.7M MLM
LXMERT 9.2M 0.1M MLM, RFR, DLC,

ITM, IQA
BERT-LXMERT-train 80M 9.0M MLM
BERT-LXMERT-train-scratch 9.0M MLM
VisualBERT 80M 1.7M 0.1M MLM, ITM

Table 2: An overview of the pre-trained models, the sizes of their training datasets and their pre-training objectives.
The sizes are measured in number of training samples. The backbone column indicates the training data sizes for
the image processing backbones of the models. For the training objectives, ITM refers to Image-Text Matching,
RFR to RoI-Feature Regression, DLC to Detected Label Classification, MVM to Masked Visual Modeling and
IQA to image QA.

Dataset Data sources # of text # of images
CLIP-BERT V+L MS COCO, SBU Captions, VG-QA, CC 4.72M 2.91M
LXMERT V+L MS COCO, VG, VQA, GQA, VG-QA 9.18M 0.18M
VisualBERT V+L MS COCO, VQA 1.27M 0.12M

Table 3: The vision-language datasets on which the multimodal models originally were trained. More information
about the datasets can be found in the articles that introduced the models.

PF entries has has a made of is
2 6,541 1,675 1,190 1,176 2,500
5 3641 1,016 642 760 1,223

10 2001 583 347 509 562
20 613 169 88 209 147
30 27 5 2 10 10

Table 4: The data segments segmented based on pro-
duction frequencies together with their number of en-
tries. The entries are calculated as the number of
feature-concept-label entries, where there can be sev-
eral features belonging to the same feature and con-
cept. The PF column indicates the production fre-
quency threshold for each segment, all features with a
production frequency higher or equal to this threshold
are included in the segment. We also list the number of
labels per feature relation type.

gold labels describing colors. Here, we see some
indications of a better performance of CLIP-BERT-
explicit for colors. Potentially, the imagination
capacity of this model is more helpful for queries
with answers relating to more basic visual proper-
ties, such as color.
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Figure 3: The model scores on Visual Property Norms per feature relation. The error bars indicate the standard
deviation of the model performance over the different query templates. The score has been calculated by masking
the vocabulary of the models to only contain the possible answers of the task.
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Figure 4: The score for each model on Visual Property Norms per query template. The score has been calculated
by masking the vocabulary of the models to only contain the possible answers of the task.
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Figure 5: The score for each model per production frequency segment on Visual Property Norms that has been
filtered to only contain samples for which the correct answer is one or more out of 11 possible colors. The score
has been calculated by masking the vocabulary of the models to only contain the possible answers of the task.
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Abstract

Named Entity Recognition (NER) is a success-
ful and well-researched problem in English due
to the availability of resources. The transformer
models, specifically the masked-language mod-
els (MLM), have shown remarkable perfor-
mance in NER in recent times. With growing
data in different online platforms, there is a
need for NER in other languages too. NER
remains underexplored in Indian languages due
to the lack of resources and tools. Our contri-
butions in this paper include (i) Two annotated
NER datasets for the Telugu language in mul-
tiple domains: Newswire Dataset (ND) and
Medical Dataset (MD), and we combined ND
and MD to form a Combined Dataset (CD) (ii)
Comparison of the finetuned Telugu pretrained
transformer models (BERT-Te, RoBERTa-Te,
and ELECTRA-Te) with other baseline mod-
els (CRF, LSTM-CRF, and BiLSTM-CRF) (iii)
Further investigation of the performance of
Telugu pretrained transformer models against
the multilingual models mBERT (Devlin et al.,
2018), XLM-R (Conneau et al., 2020), and
IndicBERT (Kakwani et al., 2020). We find
that pretrained Telugu language models (BERT-
Te and RoBERTa) outperform the existing pre-
trained multilingual and baseline models in
NER. On a large dataset (CD) of 38,363 sen-
tences, the BERT-Te achieves a high F1-score
of 0.80 (entity-level) and 0.75 (token-level).
Further, these pretrained Telugu models have
shown state-of-the-art performance on various
Telugu NER datasets. We open-source our
dataset, pretrained models, and code1.

1 Introduction

Named Entity Recognition (NER) aims to identify
various named entities from the raw text. Typically
these named entities are broadly categorized into
person names, locations, organizations, and other
categories depending on the domain. Identifying

1https://github.com/mors-ner/
anonymous_telner

these named entities is necessary and is proven to
be very helpful in Natural Language Processing
(NLP), Information Retrieval (IR), and Informa-
tion Extraction (IE). Moreover, when so much data
is generated daily today, NER becomes very im-
portant in processing and extracting meaningful
information from the text. However, most NER
work is limited to the resource-rich English lan-
guage due to the availability of annotated datasets,
efficient feature representations, and tools to pro-
cess the data.

English has many huge annotated datasets
like CoNLL-2003 (Sang and De Meulder,
2003), OntoNotes (Weischedel et al., 2013) and
WNUT (Derczynski et al., 2017). Traditional mod-
els like Conditional Random Fields (CRF) (Laf-
ferty et al., 2001) have been used for NER model-
ing by training them on these datasets. With the
development in deep learning, solutions like Lam-
ple et al. (2016) and Ma and Hovy (2016) used
Long Short-Term Memory (LSTMs) for sequence-
labelling tasks like NER. Further, the combination
of the LSTM-CRF model proposed by Huang et al.
(2015) has achieved even better performance. Re-
cently, transformer models (Devlin et al., 2019)
have proven to be achieving similar results to the
state-of-the-art models (Akbik et al., 2018; Pe-
ters et al., 2018). Hence, we can infer that there
has been extensive and rapid research in NER for
English with significant advancements. However,
NER developed in English cannot be generalized
and extended due to the rich morphological nature
of Indian languages.

Unlike English, most of the resources created for
Indian languages are for machine translation. How-
ever, in the NER task, the meaning of context, the
roles of named entities, differentiations amongst
categories, and syntactic and semantic structures
will be lost if we translate English sentences to
Telugu. Examples of Telugu language NER sen-
tences, their WX notation (a standard notation used
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Figure 1: Example sentences of NER tags in Telugu
(top), WX notation (middle) and their English transla-
tions (bottom) with NER tagging using CoreNLP (Man-
ning et al., 2014) respectively.

for Indian languages)2, and their English transla-
tions are reported in Figure 1. From the examples,
we can notice that Telugu’s context and the actual
NER tags are not captured by English-translated
sentences when given to the Stanford CoreNLP
NER tool 3. Therefore, we understand the need for
NER to address these challenges even in morpho-
logically rich languages like Telugu. Hence, we
created an annotated dataset for NER in Telugu,
which will be a good resource for those working
in Telugu NLP areas such as Dialog Systems, Text
Summarization, Machine Translation, and Ques-
tion Answering. Furthermore, we used pretrained
Telugu transformer models (Marreddy et al., 2021)
and finetuned on the Telugu NER dataset to achieve
NER in multiple domains.

In this paper, we aim at creating resources for
NER in Telugu. Overall, we make the following
contributions to this paper: (1) We publicly re-
lease two diverse annotated NER datasets, which
will be pioneering resources for building automated
NER systems in Telugu, (2) We build NER mod-
els using Telugu pretrained transformer models to
analyze the entity-level and token-level class per-
formance across the multi-domain datasets and (3)
We achieve the state-of-the-art results on existing
NER datasets.

Our extensive experiments also lead us to these
crucial insights: (i) Telugu pretrained transformer

2https://en.wikipedia.org/wiki/WX_
notation

3https://corenlp.run/

models fine-tuned for the NER task outperform
the existing baseline methods. (ii) It is widely
known that language-specific models (BERT-Te and
RoBERTa-Te) outperform the existing pretrained
multilingual models (mBERT, XLM-R, and In-
dicBERT), this holds to be true for Telugu as well.
(iii) ELECTRA-Te performs on par with the existing
pretrained multilingual models.

2 Related Work

Traditional Methods: The early NER experi-
ments were studied to identify specific categories
of named entities like Proper Names (Wakao et al.,
1996), Organizations, and Locations (Grishman,
1995). They were based on rules, heuristics, and
gazetteers. However, they could not handle out-
of-gazetteer and ambiguous cases. Unlike earlier
work, Lafferty et al. (2001) and Rabiner (1989)
proposed CRF and HMM models to handle numer-
ous sequence to sequence tasks such as NER and
POS tagging. Nevertheless, the main limitation of
these models is the computational complexity and
that they cannot handle unknown words.

Later, it was found that deep learning (DL) based
models like LSTM-CRF (Lample et al., 2016) and
BiLSTM-CRF (Huang et al., 2015) focused on
long-term dependencies and handled the feedback
mechanism on sequence labeling tasks with high
accuracy. However, these models compute token
representation one by one (sequentially), which hin-
ders the full exploitation of parallel computation
and bidirectional context.

Transformers Based NER: In recent years,
Transformers (Vaswani et al., 2017) have suc-
cessfully performed various NLP tasks like Ma-
chine Translation, Language Modelling, and Se-
mantic Role Labeling. Recently introduced Bidi-
rectional Encoder Representations from Transform-
ers (BERT), developed by Devlin et al. (2019), is
a powerful language modeling technique to han-
dle Masked-Language Modelling (MLM) and next-
sentence prediction tasks. Furthermore, by fine-
tuning the BERT model on the CoNLL dataset, a
high F1 score of 92.8% was reported in Devlin
et al. (2019) for NER. The success of BERT led
to other variations like RoBERTa (Liu et al., 2019)
and ELECTRA (Clark et al., 2019).

NER for Telugu: Though NER is a well-
researched problem in English, very few works
describe NER for Telugu. Existing NER sys-
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Figure 2: Frequency of named entities across three datasets: (a) Newswire (b) Medical, and (c) Combined Dataset

tems mainly use small datasets and limited cat-
egories like Person, Location, and Organisation.
In addition, these systems are developed based
on heuristics (Sasidhar et al., 2011), traditional
ML (Shishtla et al., 2008; Srikanth and Murthy,
2008) or DL (Reddy et al., 2018) methods.

To the best of our knowledge, we are the first to
create such a large and diverse annotated dataset
of 38,363 sentences for the NER task in Telugu.
Further, we create a multi-domain dataset that in-
corporates both Newswire and Medical domains.
Finally, we take inspiration from the transformer
models and use BERT-Te to model NER in Telugu.

3 Annotated Dataset for NER task

Existing NER datasets are small and mainly focus
on limited categories like Person (PER), Location
(LOC), and Organisation (ORG). There are two
significant existing datasets for NER in Telugu: (i)
WikiAnn (Pan et al., 2017) (ii) LREC-NER (Reddy
et al., 2018). The WikiAnn dataset has PER, LOC,
and ORG entity types, with a total of 6, 495 anno-
tated sentences. On the other hand, even though the
LREC-NER dataset has 32, 610 sentences, it con-
sists only of PER, ORG, LOC, and Miscellaneous
Named Entity category (MISC).

Hence, we came up with three datasets consist-
ing of diverse named entity categories for NER
in Telugu: (i) Newswire Dataset (ND), (ii) Med-
ical Dataset (MD), and (iii) Combined Dataset
[Newswire+Medical] (CD).

The ND focuses on the general named entity
categories in the news domain, while the MD fo-
cuses on data related to the biomedical domain.
Ultimately, by combining ND and MD, we form
the CD. Detailed statistics of the three datasets are
shown in Figures 2a, 2b, and 2c. Further, details
regarding the dataset have been discussed below.

Data Collection and Preprocessing: For the
ND, we crawled around 50,000 sentences from

Telugu3604, GreatAndhra5, and Eenadu6 websites
that generally publish articles related to current af-
fairs, sports, movies, gossips, and the latest news.
However, while doing so, we noticed that in the pre-
vailing COVID-19 situation, much information on
the Telugu websites focuses on health and diseases.
So then, we created a separate dataset by crawling
20,000 sentences for MD. We collected this data
from Boldsky7 and Telugu-Wikipedia8 websites.
After crawling, we cleaned and preprocessed the
data by removing the unwanted URLs, hashtags,
hyperlinks, English text, and duplicate sentences.

Entity Types in Datasets: After analyzing the
preprocessed data, we identified the following
named entity categories that would best suit to de-
scribe the data:

1. Diseases and Symptoms (DIS): Names of
diseases and symptoms comprise this cate-
gory (Patil, 2020). It is a part of MD and CD.
Ex: Tuberculosis is an airborne disease.

2. Cardinal (CARDINAL): The number based
entities that represent quantities fall into this
category (Weischedel et al., 2013). It is a part
of ND, MD and CD. Ex: Mahua tree reaches
20 meters height.

3. Medical and Pharmacological Terms
(MED): Names of medical procedures, treat-
ments and medicines fall under MED (Patil,
2020). It is a part of MD and CD. Ex:
Laparoscopy is a safe procedure.

4. Organisms (ORGANISM): Names of all
living organisms, along with their biolog-
ical equivalent terms constitute ORGAN-

4https://www.telugu360.com
5https://telugu.greatandhra.com
6https://www.eenadu.net
7https://telugu.boldsky.com/health/
8https://te.wikipedia.org/wiki/
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ISM (Patil, 2020). It is a part of MD and
CD. Ex: Coronavirus causes COVID-19.

5. Location (LOC): The names of places can
be classified as LOC (Sang and De Meulder,
2003). It is a part of ND, MD and CD. Ex:
India is a beautiful country.

6. Organization (ORG): The names of orga-
nizations belong to this category (Sang and
De Meulder, 2003). It is a part of ND, MD
and CD. Ex: Vodafone is a telecom company.

7. Person (PER): The names of people fall under
PER (Sang and De Meulder, 2003). It is a part
of ND and CD. Ex: Priyanka is an actress.

8. Date and Time (TIME): The words used to
specify particular time and other precise tem-
poral objects can be classified into this cate-
gory (Loper and Bird, 2002). It is a part ND,
MD and CD. Ex: I have a party on June 20.

9. Other Miscellaneous Named Entities
(OTH): Other named entities that do not fit
into the above categories form OTH (Sang
and De Meulder, 2003). Ex:- Names of
currencies. It is a part of ND and CD.

Data Annotation and Statistics: Usually,
named entities can be of a single word or multiple
words (chunks). Hence, we used the IOB2
tagging format for annotation to capture these
types of named entities. IOB2 is similar to the
BIO (Ramshaw and Marcus, 1999) format. The
only difference is that in IOB2, the B- tag is used
at the start of all chunks.

Dataset Sentences Words Named
Entities

Entity
Types

Newswire Data 34,109 345,202 60,491 12
Medical Data 4,254 40,352 14,260 14

Combined Data 38,363 385,554 74,751 18

Table 1: Dataset Statistics for the NER task

We provided the data to an Elancer IT Solutions
Private Limited9 company for NER annotation. In
order to perform the annotation process, Elancer IT
Solutions Private Limited chose five native speak-
ers of Telugu with excellent fluency, the company
itself properly remunerates all the annotators. We
provided the annotators with detailed annotation
guidelines and example sentences. As a first step,
we gave 100 sentences to all the annotators to ver-
ify their proficiency in the annotation. The Fleiss

9http://elancerits.com/

Kappa Score (Fleiss and Cohen, 1973) for this step
was 0.92, and any minor issues found were con-
veyed as feedback to the annotator. After this step,
five qualified native Telugu speakers provided an-
notations for 58, 712 sentences using provided an-
notation guidelines. As part of the annotation, we
requested annotators to provide the named entities
for every sentence. However, 20, 349 sentences are
removed from the final dataset due to the follow-
ing reasons: (i) redundant sentences, (ii) sentences
that do not have one or no named entity, and (iii)
sentences with bad quality tags. Finally, there were
38, 363 annotated sentences for the dataset, out
of which 4, 254 sentences belong to the MD, and
34, 109 sentences belong to the ND. Table 1 in-
cludes the detailed statistics of all datasets. The
Inter-Annotator agreement for this annotation was
0.91. Finally, we performed our experiments on
the ND, MD, and CD datasets.

4 Methodology

4.1 Approaches

This section presents the eight models we investi-
gated for the NER study in more detail and their
configuration.
CRF: The CRF (Lafferty et al., 2001) concept
has been successfully adopted as a popular solu-
tion for sequence tagging tasks and is also a pri-
mary solution in NER. We use One-Hot Vector
representations as input for the CRF model, and
the output is a sequence of tags associated with
each input word. The following hyperparameters
were used for training the CRF model viz obtained
from sklearn_crfsuite 10 library:- (i) Training Algo-
rithm: Gradient Descent with L-BFGS method (Liu
and Nocedal, 1989), (ii) Coefficients of L1 and
L2 regularization: c1 = 0.1 and c2 = 0.1, and (iii)
Maximum iterations: 1000.

LSTM-CRF: In this model, we combined
the LSTM with CRF to form an LSTM-CRF
model (Huang et al., 2015). We used LSTM and
other required layers from the Keras library 11,
while the CRF layer from keras_contrib 12 library.
For input, we compare the performance of both
One-Hot vectors, which are trained from scratch,
and Telugu FastText embeddings (Marreddy et al.,

10https://sklearn-crfsuite.readthedocs.
io/en/latest/

11https://keras.io
12https://github.com/keras-team/

keras-contrib
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2021) (each word dimension is 200), while the out-
put is a sequence of tags associated with each input
word.

The following hyperparameters were used to
train the model:- (i) Activation function: Sigmoid,
(ii) Recurrent Dropout: 0.5, (iii) Loss: Negative
log-likelihood, (iv) Number of epochs: 50, (v) Opti-
mizer: RMSProp, (vi) Batch size: 64, (vii) Hidden
units in LSTM layer: 128, and (viii) Hidden units
in Dense Layer: 128.

BiLSTM-CRF: We combine BiLSTM with CRF
to form a BiLSTM-CRF model (Huang et al., 2015).
Due to the additional context that BiLSTM re-
ceives, it generally performs better than the LSTM-
CRF model. We used the same setup and hyperpa-
rameters as the LSTM-CRF model.

BERT-Telugu (BERT-Te): Like Pretrained
BERT (Devlin et al., 2019) (a pretrained model
trained on the BooksCorpus (Zhu et al., 2015)
and English Wikipedia), we chose a model based
on the Transformer structure of BERT-base-
cased for Telugu (large corpora of 8 million
sentences) (Marreddy et al., 2021). The BERT-
base-cased model consists of 12 transformer
blocks, 768 hidden layers, 12 self-attention blocks,
and 110 million parameters in total. For this study,
we finetune a BERT-Te model on each dataset
separately. In order to finetune a BERT-Te model,
we observe that the following hyper-parameters
yields best performances: (i) Batch size: 32, (ii)
Learning rate: 3e−5, (iii) Number of training
epochs: 10, (iv) ϵ constant set to 1e−8 to avoid
division by zero in the AdamW calculation when
the gradient approaches zero, and (iv) AdamW as
optimizer. We stopped training to overcome the
over-fitting problem if the validation loss did not
decrease for five consecutive epochs.

RoBERTa-Telugu (RoBERTa-Te): Similar to
BERT-Te, we chose RoBERTa-Te, a pretrained
RoBERTa-base model for Telugu (Marreddy et al.,
2021). We then finetuned this Telugu RoBERTa
model on NER datasets as well. Testing on the ND,
MD, and CD, we found that parameters similar to
BERT-Te reported the best macro-F1 score.

ELECTRA-Telugu (ELECTRA-Te): Here, we
used a pretrained model created on Telugu Cor-
pus (Marreddy et al., 2021) called ELECTRA-
Te, and then we made it more relevant by fine-
tuning it on NER datasets. We use the same

hyper-parameters as BERT-Te when finetuning the
ELECTRA-Te model.

It is to be noted that casing has no impact in
Telugu script.

4.2 Dataset Splitting

To make sure our model is time sensitive, we used
the data from the most recent articles of the dataset
for testing (7,672 sentences), and the older data for
training (30,691 sentences). We achieve this by
dividing our data into 20% and 80% ratio based on
the recency. We then use the latest data (20%) for
testing and the remaining data (80%) for training
and validation. We calculated the average of 5-
folds on the 80% of train data and reported the
results on the 20% of the latest data for each model.

4.3 Evaluation Metrics

Seqeval (Entity-Level): To assess the perfor-
mance of the chunking task i.e. NER, we use the
seqeval (Nakayama, 2018) tool to measure classi-
fication metrics for sequence labeling evaluation.
For measuring these classification metrics, the first
step is to predict all the sequences of NER tags
on the test dataset using each trained model. To
understand how each class performs, we choose
macro averaging that gives each class equal weight
for evaluating the system’s performance across the
9-classes. Here, we report the macro-average preci-
sion, recall, and F1-score to measure the per entity
classification performance.

Token-Level: We measure the NER system using
the most typical evaluation method to calculate
precision, recall, and F1-score at a token level. The
final macro-average precision, recall, and F1-score
values are reported at token level between empirical
and predicted tokens on the test dataset.

5 Results
This section presents the entity and token-level
macro-averaged classification metrics for models
trained on ND, MD, and CD in Tables 2 and 3. To
further examine each class’s performance, we show
the performance of eight models on each dataset in
section 5.1 and answer several research questions.

Entity-Level Results: We make the following
observations from Table 2: (i) The CRF model,
LSTM-CRF and BiLSTM-CRF models are on par
in performance, where the input representations of
LSTM models are One-hot and FastText (FT). (ii)
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Model Type→ CRF LSTM-CRF LSTM-CRF-FT BiLSTM-CRF BiLSTM-CRF-FT BERT-Te RoBERTa-Te ELECTRA-Te
Dataset↓ P R F1 P R F1 P R F1 P R F1 P R F1 P R F1 P R F1 P R F1
Newswire Dataset 0.72 0.54 0.61 0.57 0.69 0.62 0.61 0.62 0.61 0.59 0.69 0.63 0.63 0.61 0.62 0.83 0.83 0.83 0.80 0.79 0.79 0.78 0.78 0.78
Medical Dataset 0.71 0.46 0.54 0.64 0.52 0.56 0.51 0.52 0.51 0.60 0.54 0.56 0.55 0.47 0.51 0.71 0.74 0.72 0.74 0.73 0.73 0.72 0.73 0.72
Combined Dataset 0.83 0.60 0.68 0.72 0.67 0.69 0.69 0.58 0.63 0.69 0.68 0.68 0.69 0.64 0.66 0.79 0.81 0.80 0.78 0.78 0.77 0.76 0.77 0.76

P = Precision, R = Recall, F1 = F1-score

Table 2: Telugu NER Results Entity-Level classification.
Model Type→ CRF LSTM-CRF LSTM-CRF-FT BiLSTM-CRF BiLSTM-CRF-FT BERT-Te RoBERTa-Te ELECTRA-Te
Dataset↓ P R F1 P R F1 P R F1 P R F1 P R F1 P R F1 P R F1 P R F1
Newswire Dataset 0.69 0.52 0.58 0.53 0.55 0.54 0.59 0.51 0.53 0.60 0.58 0.58 0.60 0.52 0.56 0.72 0.72 0.72 0.69 0.72 0.70 0.71 0.70 0.70
Medical Dataset 0.67 0.53 0.52 0.49 0.45 0.44 0.59 0.40 0.48 0.44 0.40 0.42 0.63 0.35 0.49 0.71 0.79 0.75 0.68 0.75 0.71 0.69 0.73 0.71
Combined Dataset 0.78 0.53 0.60 0.62 0.57 0.59 0.62 0.54 0.57 0.59 0.62 0.60 0.60 0.56 0.58 0.74 0.76 0.75 0.72 0.72 0.72 0.73 0.72 0.72

P = Precision, R = Recall, F1 = F1-score

Table 3: Telugu NER Results: Token-Level classification.
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Figure 3: Distribution of F1 scores across three datasets: (a) Combined Dataset, (b) Newswire Dataset, and (c)
Medical Dataset.

Wrt to precision, recall & f1-score, finetuned Tel-
ugu pretrained transformer models such as BERT-
Te, RoBERTa-Te, and ELECTRA-Te show an im-
proved performance than CRF, LSTM-CRF, and
BiLSTM-CRF models. (iii) Specifically, the BERT-
Te, RoBERTa-Te, and ELECTRA-Te models yield
the highest, second-highest, and third-highest recall
and F1 scores for all the classes except for OTH and
CARDINAL categories, as shown in Figures 3(a)
and 3(b). (iv) We observe that the BERT-Te model
is better than all the models for ND (0.83) and
CD (0.80) in terms of F1-score, whereas RoBERTa-
Te model performs the best on MD (0.73). This
demonstrates that the pre-training models capture
the word context better. (v) The performance of
all models on MD is comparatively low compared
to ND and CD. This can be explained by analyz-
ing entity class differences across the eight training
models as discussed in 5.1.
Token-Level Results: Table 3 illustrates the
token-level classification performance for three
NER datasets using eight trained models. We ob-
serve from Table 3 that: (i) For all three datasets,
the F1-scores (0.65, 0.73, 0.75) show that the BERT-
Te model predicts the NER tags with high accuracy
at token level. (ii) Similar to entity-level results,
Telugu pretrained transformer models outperform
the baseline CRF and LSTM-CRF based models.
(iii) Since the number of classes in token-level is
2X than entity-level classes, we observe a compara-

tively low F1-score at token-level than entity-level.

5.1 Do Telugu pretrained transformer models
outperform the baseline models for the
NER task?

Class Distribution Performance: To understand
the performance of models on each class, we show
the individual class performance wrt entity-level
macro-average classification metrics, including pre-
cision, recall, and F1-score.
Entity-Level Class Distribution: Fig-
ures 3(a), 3(b), and 3(c) display each class
performance at entity-level wrt F1-score on three
datasets. We also report the F1-score of three best
performing models such as BERT-Te, RoBERTa-Te,
and ELECTRA-Te for each class at entity-level on
three datasets in Figures 4, 5, and 6. Further, we
showcase the recall of each class at entity-level
on three datasets (refer to Figures 10, 11, and 12
in Appendix). Overall, the results indicate that
the transformer-based models outperform CRF
and LSTM-CRF based models in terms of recall
and F1 score across the three datasets. BERT-Te
achieves the highest recall and F1-score in 7 out of
the 9 classes. However, the CRF and LSTM-CRF
based models have similar performance but
display relatively lower class performance in terms
of recall and F1-score when compared to the
finetuned Telugu pretrained models. Specifically,
LSTM-CRF and BiLSTM-CRF models with FT as
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Figure 4: Distribution of F1 scores across three best-
performing systems on Combined Dataset.
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Figure 5: Distribution of F1 scores across three best-
performing systems on Newswire Dataset.

input have shown a trend of lower performance in
most classes.
Token-Level Class Distribution: Figure 7
shows the token-level class performance wrt F1-
score across eight models on CD. Similar to
entity-level, the transformer-based models BERT-
Te, RoBERTa-Te, and ELECTRA-Te outperform the
other models wrt F1-score in Figure 7. BERT-Te
and RoBERTa-Te show an increasing F1-score per-
formance for every class, while LSTM-CRF-FT
and BiLSTM-CRF-FT report an overall lower F1-
score across all the classes.

Model #Sentences #Parameters
mBERT 2.5TB 110M
XLM-R 2.5TB 125M
IndicBERT 452.8M 11M
BERT-Te 8.2M 108M
RoBERTa-Te 8.2M 125M
ELECTRA-Te 8.2M 14M

Table 4: Models and their Training Corpus size for the
NER task

5.2 Do Telugu pretrained transformer models
outperform the existing multilingual
transformer models for the NER task?

Here, we compare the performance of three
finetuned Telugu pretrained models (BERT-Te,
RoBERTa-Te, and ELECTRA-Te) with existing
multilingual transformer models (mBERT (Devlin
et al., 2018), XLM-R (Conneau et al., 2020), and
IndicBERT (Kakwani et al., 2020)) for the NER
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Figure 6: Distribution of F1 scores across three best-
performing systems on Medical Dataset.

task. Figure 8 showcases the entity-level class per-
formance across the three datasets. From Figure 8,
we observe that BERT-Te, and RoBERTa-Te outper-
form mBERT, XLM-R, and IndicBERT across the
three datasets. On the other hand, the ELECTRA-Te
model has a similar performance as mBERT and
XLM-R. Further, we report the pretrained model
parameters of each model, as depicted in Table 4.
Here, we noticed that ELECTRA-Te and IndicBERT
models have comparatively fewer parameters than
other models.

5.3 Do Telugu pretrained transformer models
outperform the state-of-the-art Telugu
NER systems?

In this section, we evaluate the performance of
the Telugu Transformer models on the existing
NER datasets: (i) WikiAnn (Pan et al., 2017) and
(ii) LREC-NER (Reddy et al., 2018) and com-
pare it with the previous state-of-the-art results.
We report the various models and their perfor-
mance against the datasets mentioned above in
Table 5. From Table 5, we observe that BERT-
Te and RoBERTa-Te deliver state-of-the-art perfor-
mance on the WikiAnn dataset. Due to the simplic-
ity of the LREC-NER dataset, all the Transformer
models display 100% accurate predictions.
5.4 Quantitative Analysis

Figure 9 shows the macro F1-score of the BERT-Te
model with varying training data set sizes across
three datasets: CD, ND, and MD. We ran the model
with three different settings - 25%, 50%, and 75%
of the data for training and subsequently tested
with the remaining data. As expected, the macro
F1-score of the proposed model increases with the
size of the training set. At 25% of the data, it is
0.74, at 50% of the data, it stands at 0.77, and
finally, at 75% of the data, it stands at 0.80 for the
CD. Similarly, we can observe an increasing level
of performance for the ND and MD by varying the
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Figure 8: Entity-Level: Comparison of F1-score perfor-
mance of (i) mBERT, (ii) XLM-R, (iii) IndicBERT, (iv)
BERT-Te, (v) RoBERTa-Te, and (vi) ELECTRA-Te em-
beddings across three datasets: CD, ND, and MD. The
BERT-Te fine-tuned on NER shows a higher F1-score
compared to all the models.

Dataset WikiAnn LREC-NER
Model F1-score F1-score
LSTM-CRF (Reddy et al., 2018) 57.03 85.13
mBERT (Kakwani et al., 2020) 84.31 100
XLM-R (Kakwani et al., 2020) 81.71 100
IndicBERT base (Kakwani et al., 2020) 84.38 100
IndicBERT large (Kakwani et al., 2020) 80.12 100
BERT-Te 87.03 100
RoBERTa-Te 87.16 100

Table 5: Models comparison on existing Telugu NER
datasets

size of the training set. However, the increase in
performance is marginal as the BERT-Te model
yields a similar level of performance with a smaller
training dataset, possibly because the pretrained
transformer captures the named entities mentioned
in unstructured text into predefined categories.

5.5 Error Analysis

We analyzed the error cases in detail for three
datasets using our best-performing model - BERT-
Te. Tables 6, 7, and 8 reports the entity-level con-
fusion matrices for the CD, ND, and MD. Table 6
shows that 2.8% of the LOC class were predicted as
ORG and 1.45% as PER. Similarly, 4.5% were pre-
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Figure 9: Entity-Level: Effect of changing the training
set size on the BERT-Te model performance across three
datasets: CD, ND, and MD.

Predicted
CARDINAL DIS LOC MED ORG ORGANISM OTH PER TIME

CARDINAL 6386 14 1 0 0 0 14 20 108
DISL 10 10153 1 110 23 121 17 5 2
LOC 12 0 8809 8 268 44 4 138 20
MED 0 24 6 692 14 7 19 2 6

Actual ORG 22 0 442 10 9077 0 0 106 3
ORGANSIM 0 134 23 54 0 2763 12 14 0
OTH 3 23 0 0 0 4 326 4 0
PER 30 52 124 0 85 9 0 29895 5
TIME 87 5 7 0 0 0 4 14 5162

Table 6: Combined: Confusion matrix for BERT-Te

dicted as LOC for the ORG class, and 1.09% were
predicted as PER. We can even observe a similar
analysis from Table 7, where the model confused
LOC, PER, and ORG tags. It is mainly because
many last names derive from places in Telugu, and
many Organisations are named after Person Names.

In the medical dataset, we observe from Table 8
that, for the DIS class, 1.1% were predicted as
MED, and 1.7% were predicted as ORGANISM
which indicates that the BERT-Te model gets con-
fused with DIS, MED, and ORGANISM classes.

6 Conclusion

This paper presented annotated datasets and an em-
pirical study of the performance of various fine-
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Predicted
CARDINAL LOC ORG OTH PER TIME

CARDINAL 5729 1 25 2 22 104
LOC 5 7308 194 5 106 12
ORG 34 552 8417 0 79 3

Actual OTH 4 11 0 302 0 0
PER 30 133 112 11 29293 21
TIME 72 18 0 0 17 4608

Table 7: Newswire: Confusion matrix for BERT-Te
Predicted

CARDINAL DIS LOC MED ORG ORGANISM TIME
CARDINAL 474 4 0 0 0 9 8
DIS 3 10333 2 127 10 185 0
LOC 5 7 1044 11 17 39 0

Actual MED 8 103 16 735 7 66 0
ORG 0 16 3 0 250 0 0
ORGANISM 0 179 32 43 0 2995 0
TIME 6 0 8 0 0 0 404

Table 8: Medical: Confusion matrix for BERT-Te

tuned Telugu pretrained transformer models for the
NER task. We compare these results with the com-
monly used architectures like CRF, LSTM-CRF,
and BiLSTM-CRF models in all three datasets. We
even compare these pretrained Telugu models to
existing multilingual models like mBERT, XLM-
R, and IndicBERT. We conclude that finetuned
Telugu pretrained transformer models outperform
all the other models across multiple domains and
they give state-of-the-art performance on existing
datasets. We also notice that ELECTRA-Te yields
significantly equal performance when compared
with multilingual models even after being trained
on a much smaller corpus. In the future, we would
like to perform Fine-Grained NER and also expand
NER to more domains for the Telugu language.

7 Ethical Statement

We created two Telugu NER datasets corre-
sponding to two different domains (Newswire
and Medical), and we open source the two
datasets. The code and datasets can be
downloaded from https://github.com/
mors-ner/anonymous_telner.

We reused publicly available datasets (WikiAnn
and LREC-NER) to compare state-of-the-art meth-
ods.

WikiAnn dataset can be down-
loaded from https://drive.
google.com/drive/folders/
1Q-xdT99SeaCghihGa7nRkcXGwRGUIsKN?
usp=sharing. WikiAnn dataset is licensed
under https://opendatacommons.org/
licenses/by/. Please read their terms of use13

for more details.

13https://elisa-ie.github.io/wikiann/

LREC-NER dataset can be downloaded
from http://ltrc.iiit.ac.in/
ner-ssea-08/index.cgi?topic=5.
LREC-NER dataset is licensed under a Creative
Commons License. Please read their terms of
use14 for more details.
Fair Compensation: We provided the data to an
Elancer IT Solutions Private Limited15 company
for NER annotation. In order to perform the annota-
tion process, Elancer IT Solutions Private Limited
chose five native speakers of Telugu with excellent
fluency, the company itself properly remunerates
all the annotators.
Privacy Concerns: We have gone through the
privacy policy of various websites mentioned in
the paper. For example, the website privacy policy
of www.greatandhra.com is provided here 16.
We do not foresee any harmful uses of using the
data from these websites.

8 Limitations & Social Impact

Multilingual pretrained models are usually eval-
uated by their capacity for knowledge transfer
across languages. This can be done either by
training the NER model on English data only or
English+Telugu NER data using (for example)
mBERT representations. It allows the model to
benefit from high resource languages. During the
testing phase, the NER model is evaluated in Tel-
ugu only. However, this paper evaluated the NER
model where training and testing on Telugu data
only. In the future, it would be interesting to eval-
uate how the knowledge transfer from the high
resource languages model performs in Telugu to as-
sess the usefulness of the proposed datasets better.

This paper studies NER with two large, strongly
annotated datasets corresponding to two different
domains. Further, we compared our model to ex-
isting small labeled Telugu NER datasets. Our
investigation neither introduces any social/ethical
bias to the model nor amplifies any bias in the data.
We do not foresee any direct social consequences
or ethical issues.
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Figure 10: Combined Dataset: Distribution of Recall
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Abstract

We examine methods and techniques, proven
to be helpful for the text-to-text translation of
spoken languages in the context of gloss-to-text
translation systems, where the glosses are the
written representation of the signs. We present
one of the first works that include experiments
on both parallel corpora of the German Sign
Language (PHOENIX14T and the Public DGS
Corpus). We experiment with two NMT ar-
chitectures with optimization of their hyperpa-
rameters, several tokenization methods and two
data augmentation techniques (back-translation
and paraphrasing). Through our investigation
we achieve a substantial improvement of 5.0
and 2.2 BLEU scores for the models trained on
the two corpora respectively. Our RNN mod-
els outperform our Transformer models, and
the segmentation method we achieve best re-
sults with is BPE, whereas back-translation and
paraphrasing lead to minor but not significant
improvements.

1 Introduction

Sign languages (SL), the main medium of exchang-
ing information for the deaf and the hard of hearing,
are visual-spatial natural languages with their own
linguistic rules. In contrast to the spoken ones,
they lack a written form, on one hand, and use
face, hands and body to convey meaning, on the
other. However, in our society, spoken languages
are used by and large, leading to social exclusion
in the everyday life of the deaf and hard of hear-
ing. Therefore, recent research is making the most
out of the technical advances in the fields of Natu-
ral Language Processing (NLP), Deep Neural Net-
works (DNN), and Machine Translation (MT), with
the aim to develop systems that are able to trans-
late between signed and spoken languages in order
to fill the gap of communication between the SL
speaking communities and the people using vocal
language. Most latest approaches tackle the prob-
lem, dividing it into two sub-tasks: Sign Language

Recognition (SLR), also called video-to-gloss, and
Sign Language Translation (SLT), also known as
gloss-to-text translation. The latter uses as an in-
termediate representation the glosses, described
in Section 3.1 and Section 4.2.1. Isolating gloss-
to-text translation serves as a building block of a
bigger project, which considers SL as a whole and
is done in direct co-operation with members of the
SL community.

For the rest of this work, we focus on the gloss-
to-text sub-task and treat it as a low-resource text-
to-text machine translation problem. We explore
different known techniques for MT of written lan-
guages on the glosses, and report our findings dur-
ing our experiments with:

• two neural architectures (RNN and Trans-
former)

• several tokenization and sub-word segmen-
tation methods (BPE, unigram and custom
tokenization of the gloss annotations)

• two data augmentation techniques (back-
translation and paraphrasing)

Preprocessing scripts and data are publicly avail-
able.1

The rest of our work is organized as follows: In
Section 2, there is a review of previous related work
in the field. In Section 3, we describe the essence of
the gloss-to-text translation task, and briefly present
the neural machine translation methods we have
used throughout our experiments on the two cor-
pora, both of them introduced in Section 4. Further,
we present the experiments in Section 5 as well as
all our results and findings, described in Section 6.
In the last Section 7 we conclude our work and
discuss possibilities for future research.

2 Related work

Sign language translation is a relatively new re-
search field with recent findings made possible

1https://github.com/DFKI-SignLanguage/
gloss-to-text-sign-language-translation
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thanks to the continuous advances in neural ma-
chine translation (NMT). Several experiments with
SL gloss-to-text translation have taken place in the
previous decade using statistical phrase-based ma-
chine translation (Stein et al., 2012; Morrissey et al.,
2013). Camgoz et al. (2018) and Camgoz et al.
(2020) use the Transformer architecture for SL
translation, and are the first to realize an end-to-end
system, combining SLR and SLT, jointly training
based on both video embeddings, glosses and text,
being currently the state-of-the-art work in the field.
Yin and Read (2020) employ the Spatial-Temporal
Multi-Cue (STMC) Network (Zhou et al., 2020) for
the task. There have also been several experiments
on the opposite direction: text-to-gloss (Othman
and Jemni, 2011; Egea Gómez et al., 2021).

To the best of our knowledge, currently
Moryossef et al. (2021) is the only published work
experimenting with back-translation in the context
of gloss-to-text translation. Their research has been
conducted parallel and independent from our stud-
ies, and has concluded similar results concerning
the use of back-translation in a low-resource SL set-
ting. The main difference is that we further focus
on other machine translation techniques, e.g. dif-
ferent models and tokenization schemes, whereas
they explore in more detail the gloss-text pairs and
their linguistic properties, proposing their own rule-
based heuristics with the purpose to generate SL
glosses, bearing in mind the specifics of the signed
languages. The recent work of Yin et al. (2021),
focusing on the problems related to the machine
translation between signed and spoken language
pairs, reports the first BLEU score on the Public
DGS corpus, but contrary to our work, no details
are given on how the models were trained and eval-
uated and therefore there can be no direct compari-
son of the results.

3 Methods

3.1 The gloss-to-text task

Glosses are the most commonly used written form
for annotating SL, where each sign has a written
gloss transcription. However, a limitation of using
them is the fact that they do not sufficiently capture
all the information, expressed through body pos-
ture, movement of the head and mimics, which also
occur in parallel. As a result, there is a loss of infor-
mation on a semantic level (Camgoz et al., 2020;
Yin et al., 2021). Moreover, each SL corpus, offer-
ing gloss annotations, uses its own way of glossing,

Source: HUND3* AUCH1A SPRINGEN1
Target: Der Hund springt hinterher.

Table 1: Example of a parallel gloss sentence - German
sentence pair.

therefore the annotation is not standardized, and
as a consequence different SL corpora cannot be
concatenated.

In contrast to the classical text-to-text transla-
tion task, where the pairs consist of pre-aligned
sentences - one in the source language and one in
the target language, for our gloss-to-text translation
models we work with matching pairs of gloss sen-
tences on the source side, and German sentences
on the target side (see Table 1). Hence the name
gloss-to-text.

3.2 Architectures for neural machine
translation

In our work we investigate two model architectures
implementing different types of attention mecha-
nisms - RNN and Transformer.

RNN is an encoder-decoder architecture with at-
tention suggested by Sennrich et al. (2017b) (imple-
mented in Nematus), similar to the one proposed
in Bahdanau et al. (2014). A key difference is the
initialization of the decoder hidden state with the
averaged sum of the encoder concatenated hidden
states, instead of with the last backward encoder
state.

The Transformer is another encoder-decoder ar-
chitecture (Vaswani et al., 2017), implementing
the self-attention function. Without using RNNs
the neural system computes representations of the
input and output sequences. The encoder and de-
coder of the Transformer both consist of 6 identical
layers, and each of these layers has two sub-layers.
The decoder adds one additional sub-layer, which
is using multi-head decoder-encoder attention on
the encoder output helping the decoder to focus on
the relevant parts of the input sequence.

3.3 Tokenization

Tokenizing text can be done at word, subword
or character level. Investigation of possible to-
kenization variations for the glosses is particu-
larly relevant in our work, because of the different
gloss annotations in the two used corpora (Sec-
tions 4.2.1 and 5.2).
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Train Dev Test

PHOENIX14T 7,096 519 642
DGS 54,325 4,470 5,113

Table 2: Statistics of the two corpora.

Byte Pair Encoding (BPE) is a simple data com-
pression technique that has been succesfully ap-
plied to NMT (Sennrich et al., 2016b). The idea
behind this algorithm is to replace the most com-
mon pairs of consecutive bytes with one single new
byte. In order to rebuild the original data, a table
of all the replacements is needed (Gage, 1994).

Unigram sub-word segmentation (Kudo, 2018)
considers multiple segmentation variations of a
word with their respective probabilities calculated
based on a unigram language model.

3.4 Back-translation
Back-translation is a semi-supervised method for
improving the quality of translation relying on
monolingual data (Edunov et al., 2018). It allows
using a big amount of monolingual target data,
when available, in order to produce synthetic data
for the source side. This technique may be benefi-
cial in cases where the bilingual data is scarce, as
is the case of the gloss-to-text task.

3.5 Paraphrasing
Paraphrasing is the task of using an alternative
formulation to express the same semantic content
(Madnani and Dorr, 2010). By using paraphrased
sentences in the training set, we hope that the model
may be lexically enriched by the provided varia-
tions. Here, we follow the paraphrasing method
known as bilingual pivoting (Mallinson et al., 2017;
Turkerud and Mengshoel, 2021).

4 Datasets

For our experiments we utilize the following cor-
pora of the German SL, which due to the different
gloss annotations are used only separately for our
experiments. Statistics of the two corpora can be
seen in Table 2.

4.1 RWTH-PHOENIX-Weather 2014T
Introduced by Camgoz et al. (2018), the corpus con-
tains sign language videos with gloss annotations
as well as their corresponding German sentences,
and is a popular benchmark in SL translation. The

Gloss Meaning

ZUˆ3 to squeeze, squeezed
ZU7 closed
ZU9 towards

Table 3: Meaning of different variants of the German
word “zu”.

project consists of a training set of 7,097 parallel
sentences. For our experiments we used the already
publicly available annotated data.2 Contrary to the
DGS corpus, this corpus doesn’t contain any gloss
suffix annotations.

4.2 The Public DGS Corpus

DGS is the result of a long-term project, conducted
at the Institute for German Sign Language and
Communication of the Deaf at the Hamburg Uni-
versity. The corpus, introduced by Hanke et al.
(2020), is a subset of the full project. All resources
are publicly accessible3 via two formats. Our work
will focus on the second one, MY DGS-annotated4.
The data was extracted via the ELAN5 format of
the files (see Appendix, Figure 3). In the follow-
ing sub-sections we describe the nature and the
format of the DGS corpus as well as the required
pre-processing steps. The final version of the cor-
pus consists of 63,908 parallel sentence pairs.

4.2.1 DGS gloss annotation conventions
The gloss annotations of the DGS corpus are far
more complex and comprehensive than the ones
of the PHOENIX14T corpus. Konrad et al. (2020)
give a detailed explanation of the glossing conven-
tions. We use this information to construct the
gloss sentences and to build our parallel data set.
The glosses are written in capitalized letters - a
common convention used for annotating SL. An es-
sential part of the annotations are the gloss suffixes.
For instance, they are used to represent lexical vari-
ants or to indicate different meanings of a word, as
can be seen in the example with the German word
“zu” (Konrad et al., 2020). It can be used as a prepo-
sition - locative, temporal or causal, as an adverb or
as a conjunction. In order to differentiate between

2https://www-i6.informatik.rwth-aachen.
de/~koller/RWTH-PHOENIX/

3https://www.sign-lang.uni-hamburg.de/
dgs-korpus/index.php/welcome.html

4http://ling.meine-dgs.de
5https://archive.mpi.nl/tla/elan
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these meanings, a combination of the word itself
with a number and, in some cases, a sign, is used
(see Table 3).

Focusing in depth on all of the linguistic rules
used to create the different gloss annotations is out
of scope for this work. Therefore, here we mention
briefly some of the main sign categories. The lexi-
cal signs are approximately equivalent to the com-
monsense notion of the words, and also form the
corpus dictionary. The productive signs in combi-
nation with other signs illustrate intended meaning,
but they do not convey meaning of their own. The
pointing signs indicate orientation or movement.
There are also fingerspelling signs for annotating
when the signers sketch the form of letters in the
air. The number type forms a special system for
easily representing different kind of numbers.

4.2.2 Creating the parallel corpus
The annotation of the sign language videos is struc-
tured in parallel channels, the tiers, supporting
multi-level and multi-participant annotations (Ap-
pendix, Figure 3). The tiers we used to form the
parallel sentence pairs are the ones containing the
German sentences for each signer and those con-
taining the glosses for the right and for the left hand
of each signer. The first step was to access the tex-
tual data from all videos, using Beautiful Soup.6

For this purpose we created a python script, which
extracted the links to the files, read the content, and
created an XML parse tree of each recording.

The ordering of glosses to a gloss sentence was
achieved by considering the starting and the ending
time of the corresponding German sentence and of
the individual glosses. One particular obstacle we
encountered during the formation of the parallel
data set were the overlapping timestamps of some
glosses done with both hands. Such is the case of
the fingerspelling signs. Because signers have a
“dominant” and a “non-dominant” hand, the domi-
nant one is usually used for one-handed signs and
for fingerspellings (Crasborn, 2011). For the pur-
pose of constructing our gloss sentences we chose
a uniform way to order the overlapping signs. We
counted all the “left-handed” glosses and all the
“right-handed” glosses for each file, and considered
files with more “left-handed” ones to have signers
with a dominant left hand, whereas files with more
“right-handed” glosses to have signers with a dom-

6https://www.crummy.com/software/
BeautifulSoup/bs4/doc/

inant right hand. We refer to the glosses as “left”
and “right” because of the annotations used in the
corpus, although the distinction between “left” and
“right” does not seem to have any linguistic role
in any SL (Crasborn, 2011). Moreover, the native
signers usually don’t remember if a new signer is
left-handed or right-handed. Thus, we decided to
choose a convention for our work so that the gloss
sentences formation is consistent, and therefore we
always placed the glosses of the dominant hand in
front of those of the non-dominant one.

5 Experiments

We separate our experiments in three main groups.
In the first one, described in Section 5.1 we initially
train two baseline models for both corpora and con-
secutively make changes to them with the goal to
investigate how different model architectures and
known configurations of neural MT systems influ-
ence them. Therefore, we use the best performing
models from the first group to further continue
our experiments in the second one, described in
Section 5.2, where we apply three different tok-
enization schemes - BPE, unigram and custom to-
kenization, on the gloss and on the German sides
of the corpora. Ultimately, we utilize the models,
which produce the best translations up to this point,
in the third group of experiments in Section 5.3,
where we separately look into two data augmenta-
tion techniques - back-translation and paraphrasing.
All models are trained using MarianNMT (Junczys-
Dowmunt et al., 2018) and all configuration param-
eters are detailed in our repository.

5.1 Neural MT architecture

Our initial motivation to approach the gloss-to-text
translation task as a classical low-resource MT
problem were the findings by Koehn and Knowles
(2017) and Sennrich and Zhang (2019). Therefore,
we compare Transformer and RNN (Sennrich et al.,
2017b) on which is the optimal model architecture
for gloss-to-text translation. As baselines we train
two off-the-shelf models on the PHOENIX14T and
the Public DGS corpora separately, using the de-
fault parameters of MarianNMT.

We continue the first set of experiments using
techniques for improving the MT quality in a low-
resource setting (Sennrich and Zhang, 2019). We
perform an extensive hyperparameter search, ini-
tiating from the configurations suggested by the
above authors in order to reduce the chances that
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other hyperparameters can lead to different conclu-
sions. We achieve the best configuration when we
reduce the size of the encoder to 1 layer, and the
size of the decoder to 2 for both types of mod-
els. Furthermore, we implement an aggressive
dropout of 0.5 and a word dropout of 0.4 on the
source and the target sides. We reduce the beam
size to 2, as suggested by Camgoz et al. (2018),
and keep the learning rate 0.0005, the batch size
32, and the vocabulary size 1,010 and 2,600 for
the PHOENIX14T and the DGS corpora, respec-
tively. We use simple word tokenization. For the
next group of experiments we continue only with
the improved RNN configuration, following our
conclusions regarding the best architecture (Sec-
tion 6.2).

5.2 Tokenization experiments

During the tokenization experiments, using the best
performing models up to this point, we investigate
if and to what extend existing tokenization methods
- BPE, unigram and custom tokenization - proven to
be effective for NMT of written natural languages,
could be beneficial in the gloss-to-text setting. The
tokenization of BPE and unigram was done using
SentencePiece (Kudo and Richardson, 2018) with
the parameters that have been established as default,
due to their good performance in WMT shared
tasks (Sennrich et al., 2017a, e.g. 2 BPE iterations).

5.2.1 Tokenizing the PHOENIX14T corpus

On the PHOENIX14T corpus we train RNN sys-
tems using the same parameters as the ones from
the previous group of experiments. The only dif-
ference is the way the input and output sentences
are tokenized. We conduct additional experiments
where we reduce the vocabulary size of the BPE
models and compare the translation scores.

5.2.2 Tokenizing the DGS corpus

The DGS corpus has groups of glosses that are
more complicated and rich in annotations, which
we describe in Section 4. A comparison can be
seen in Figure 1. Thus we make the assumption
that there should be a difference in the translation
quality of the models in favor of the subword to-
kenization. For our first experiment we use word
tokenization and compare the results with the ones
of the following models which use either BPE, uni-
gram or custom tokenizations. The vocabulary size
is 2,600.

Stripping the gloss parameters In a different,
more naive, experiment on the DGS corpus we
decide to strip the gloss parameters - such as signs
or numbers, as shown in Figure 2, to see if they are
making our model too complex, aware of the fact
that they convey meaning to each annotation.

Custom tokenization for the glosses For our
custom tokenization experimenent on the DGS cor-
pus, we choose to add the token “@@” to separate
prefix, suffix and compound glosses without losing
this information in difference to the above case of
leaving only the stem. The chosen custom token is
not a part of the gloss parameters.

5.3 Data augmentation

For the last group of experiments we make the as-
sumption that, according to Edunov et al. (2018),
on one hand, back-translation has proven to be
effective when using strong baselines with a big
amount of data, but, on the other hand, it could
also have a positive effect in low-resource NMT
settings. Thus we decide to try this method for our
corpora, together with one additional data augmen-
tation technique - paraphrasing.

5.3.1 Back-translation on the PHOENIX14T
corpus

We start with the PHOENIX14T corpus. As a first
step, we train a model in the opposite direction,
German sentences on the source side and gloss
sentences on the target side. Based on the sugges-
tions on back-translation in previous work (Sen-
nrich et al., 2016a; Dou et al., 2019), we focus
on in-domain data and we consider filtering sen-
tences from an out-of-domain (ood) corpus sepa-
rately, as too many out-of-domain sentences would
result in adding a lot of noise, which may not be
helpful for the translation quality. To confirm our
hypothesis for the back-translation experiments,
we mainly investigate the quality of the translation
when adding in-domain data, different amounts of
out-of-domain data or a mixture of in-domain and
out-of-domain data.

In-domain back-translation A major challenge
for the purpose of using back-translation is to
find a big monolingual corpus of the target lan-
guages, given the very specific domain of the
PHOENIX14T corpus, because it contains strictly
weather-related sentences. Our first idea is to try
and find weather-related corpus, but unfortunately,
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Figure 1: Comparison between gloss annotations for the two different corpora. The specific DGS gloss parameters
are shown in orange.

Figure 2: Example of the two manual tokenizations of a
gloss in the DGS corpus

popular crawled monolingual corpora do not con-
tain such specific sentences. We collect data man-
ually by selecting sentences from online German
weather-related articles or German weather web-
sites. We pay attention to not only choose recent
articles, but also to search sentences from some
available archive sources. Additionally, we manu-
ally process the sentences which includes splitting
them in shorter ones, removing some words we
know are out-of-vocabulary for our models, rewrit-
ing complex verb forms. Needless to say, this pro-
cess is slow and not scalable. Hence, we stop at
1,202 sentences and add their back-translated vari-
ants to our training data.

In the first of the two following experiments we
observe the effect of adding filtered out-of-domain
back-translated sentences to our training data, and
in the second one we combine in-domain and out-
of-domain sets.

Filtered sentences from out-of-domain corpus
We use crawled data from the German part of the
News Crawl corpus (Barrault et al., 2019). We
extract 5,000 sentences from the whole dataset
using a custom python script. Further, we filter
sentences, containing the most frequently used
weather-related words in the PHOENIX data set.
For example, words or phrases such as: "wetter",
"wettervorhersage", "temperatur", "es regnet", "es
scheint", "wolken", "böen", "gewitter". It is impor-
tant to mention here, that even though our filtered
sentences contain one of the following words or
phrases, these sentences cannot be fully considered
in-domain. One reason for this is the fact that the

crawled sentences are still different in structure and
style than our original training data. Another rea-
son is the fact that many of the words we use for
filtering could also have a different not weather-
related meaning, depending on the context.

Mixing in and out-of-domain sentences Here
we mix our 1,202 in-domain and a part of the out-
of-domain back-translated sentences (3,418) from
the previous two experiments.

Usage of back-translation tag Since Sennrich
et al. (2016a) mix their synthetic data with their
original data without distinguishing between them,
we conduct a further experiment to investigate if the
bt tag, indicating synthetic data, is actually helping
the neural system or worsening the performance.

5.3.2 Back-translation experiments on the
DGS corpus

Considering our low scores on the DGS corpus and
the conclusions of Moryossef et al. (2021) regard-
ing the limitations of the back-translation in low
resource SL settings, we conduct only one experi-
ment as a proof of our premise that back-translation
is not beneficial in a very low-resource setting in
combination with a poor model to back-translate.
For this purpose we filter the first 10,000 sentences
from the news-crawl without taking into account
their domains, because the DGS Corpus also does
not have a specific domain.

5.3.3 Data augmentation using paraphrasing
For the last experiment we add 3,612 translated sen-
tences from our original training set, using DeepL
Translate7, from German to English and then back
from English to German. The paraphrased sen-
tences are firstly reviewed to guarantee their gram-
matical correctness. Here, our goal is to create
more variety in the words (synonyms) on the target
side or in their order.

7https://www.deepl.com/en/translator
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6 Results

In this section we report the results from the three
groups of experiments we have conducted.

6.1 Evaluation

We evaluate all our models using SacreBLEU (Post,
2018). We also use the original dev and test sets
of the PHOENIX14T corpus. For the DGS corpus
we separate our own dev and test sets using 15%
of the collected data - 4,470 sentences for the dev
set, and 5,113 sentences for the test set.

6.2 Model architecture results

The results from our first group of experiments,
described in Section 5.1, where we compare two
types of model architecture, combined with adjust-
ment of hyperparameters for improving the trans-
lation quality in a low-resource setting, are shown
in Table 4. Whereas the baseline models perform
better with a Transformer architecture for both cor-
pora, we observe substantial improvements in the
BLEU scores for the RNN models, trained on the
PHOENIX14T corpus, after optimizing the hyper-
parameters. These results confirm our hypothesis
that the architecture is also a suitable choice for the
task of NMT of sign languages.

6.3 Tokenization results

After conducting the first tokenization experiments,
described in Section 5.2, we observe the results,
shown in Table 5, and conclude that using BPE and
unigram, compared to word tokenization, does not
lead to a substantial difference in the translation
quality of the PHOENIX14T models. We believe
that this is a result of the low word inflection in
the corpus, and because of that the low number of
unique glosses in the training set. Therefore, we
decrease the size of the vocabulary for the model
with BPE tokenization from 2,600 to 2,000 and
gain an increase of 0.5 on the test set. In contrast,
in the DGS corpus we have more complicated and
rich in annotations different groups of glosses. Our
assumption that there should be a greater difference
in the translation quality of the models in favor of
the subword tokenization is verified by the score
we achieve on the test set with BPE (3.7 BLEU)
substantially higher score than the previous one
(2.7 BLEU) for the model trained with word to-
kenization, and the highest score we manage to
obtain on that corpus. This confirms our hypoth-
esis that subword tokenization is a more suitable

choice for machine translation of signed languages
with more complex and diverse annotations.

Stripping The BLUE score we achieve on the
DGS corpus after stripping the parameters from the
glosses is only 2.8 which, we assume, is due to the
fact that each gloss annotation consists of impor-
tant parameters, both contributing to the meaning,
and communicating nuances. Removing this in-
formation, makes it impossible for our model to
learn meaningful and correct representations as the
stems of many glosses may be the same, but with
added parameters the annotations may have very
different meanings.

Custom tokenization By adding a custom token
to split the parameters from the stem of the glosses
we achieve 3.3 BLEU score on the test set, which
is the second best score we manage to obtain. Un-
fortunately, the translation performance remains
low.

6.4 Data augmentation results
Before conducting the back-translation experi-
ments based on previous work (Sennrich et al.,
2016a), we consider that (a) when having a very
narrow domain, it is useful that the sentences, used
for back-translation, are similar in structure and do-
main to the original ones, and (b) adding a number
of sentences less than half of the training set size
could not lead to substantial improvements. We
also add a tag to each back-translated sentence -
{bt}, to indicate for the neural system that this data
is synthetic. After we train a model with added
in-domain synthetic data, we manage to obtain a
BLEU score of 22.3 on the test set, which is very
close to our current best model (22.5 BLEU), and
22.2 BLEU score on the dev set, where we have a
small improvement of 0.3 BLEU, compared to 21.9
BLEU. Results are shown in Table 6. We believe
that this is a sign that the performance of our model
does not get worse, confirming (a), although with
such a small number of data it cannot get substan-
tially better, confirming (b). On the contrary, it is
possible that the model is less prone to overfitting,
compared to the one without noise from synthetic
data.

The model trained with only out-of-domain back-
translated data reaches 22.2 BLEU on the test set,
and does not improve the BLEU score on the dev
set. With these results and the small amount of
sentences we have in our original training set, com-
bined with the rather poor quality of translation of

279



Model BLEU dev BLEU test

phoenix-baseline-rnn 18.3 17.7
phoenix-baseline-transformer 18.6 18.2

phoenix-rnn-improved 21.6 22.2
phoenix-transformer-improved 18.8 18.5

dgs-baseline-rnn 1.8 1.6
dgs-baseline-transformer 2.5 2.0

dgs-rnn-improved 2.9 2.7
dgs-transformer-improved 1.9 1.9

Table 4: Model architecture comparison for the baseline and improved systems.

Model Tokenization BLEU dev BLEU test Vocab size

phoenix-word-tok word 21.6 22.2 1,010
phoenix-unigram-tok unigram 22.4 21.5 1,010
phoenix-bpe-tok bpe 22.5 22 2,600
phoenix-bpe-tok* bpe 21.9 22.5 2,000

dgs-word-tok word 2.9 2.7 2,600
dgs-bpe-tok bpe 4.2 3.7 2,600
dgs-unigram-tok unigram 3.5 3.2 2,600
dgs-bpe-tok-stemmed bpe 3.1 2.8 2,600
dgs-custom-tok word 3.5 3.3 2,600

Table 5: Tokenization experiments on PHOENIX14T and The Public DGS Corpus. The last bpe model, marked
with *, is indicating the one with reduced vocabulary size.

our back-translating model, our intuition is that
adding more sentences, which are poorly back-
translated, will not lead to any improvements. It
will rather add more noise to the model, which is
not beneficial anymore for the diversity of the data.

Our last model that combines in-domain and out-
of-domain data, achieves 22.7 BLEU on the test set,
which is our best score. It is +0.2 over phoenix-bpe-
tok - the best performing model with no synthetic
data, but unfortunately, it is not significantly better,
based on a bootstrap resampling significance test.
It improves the score on the dev set - from 21.9
BLEU to 23.4 BLEU confirming our assumption
that this noise is creating some diversity in the data
without worsening the performance.

Results from the comparison of models with syn-
thetic sentences, using a tag and not, can also be
seen in Table 6. Since they show no substantial
difference, we decide that at least in our case the
tag does not play an important role for the quality
of the translation.

Using back-translation on the DGS corpus we

achieve only a small improvement of +0.1 on the
test set (results are also shown in Table 6), confirm-
ing our hypothesis and the findings of Moryossef
et al. (2021) and Edunov et al. (2018) that in a
very low-resource setting back-translation cannot
be clearly beneficial for the translation quality of
the neural systems.

Finally, our model with added grammatically
correct paraphrased sentences reaches 22.5 BLEU
score on the test set - the same as the PHOENIX14T
model without added synthetic data. We believe
that the technique does not lead to worse perfor-
mance. On the contrary, we suppose that it makes
a small improvement, which can be again noticed
on the dev set in Table 6.

7 Conclusion and Future work

In this work we investigated the effect of several
methods used in NMT on the gloss-to-text transla-
tion task for a sign language. We present one of the
first works that does extensive experiments on both
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Model #added sentences dev test

phoenix-bpe-tok 0 21.9 22.5
phoenix-indomain 1,202 23.3 22.3
phoenix-ood 5,000 22.1 22.2
phoenix-mixed 1,202 + 3,418 23.4 22.7

phoenix-paraphrasing 3,612 23.1 22.5

phoenix-mixed-no-tag 1,202 + 3,418 23 22.3

dgs-bpe-tok 0 4.2 3.7
dgs-bt-10000 10,000 4.2 3.8

Table 6: Data augmentation experiments on the PHOENIX14T corpus and the DGS corpus. The “ood” in the names
stands for “out-of-domain”, the “bt” - for “back-translation”.

existing corpora for the German Sign Language -
PHOENIX14T and the DGS Corpus. Further, we
ran three successive groups of experiments:
Neural MT architectures, contrasting RNN and
Transformer, with extensive search of hyperparame-
ters and techniques, proven to be effective in a low-
resource setup. In contrary to previous research,
we found that RNN performs better than the Trans-
former.
Tokenization schemes, where our findings were
in favor of the BPE tokenization for both corpora.
This improved our PHOENIX14T model by 0.3
BLEU on the test set (reaching 22.5 BLEU), and
our DGS model by 1 BLEU on the test set (reaching
3.7 BLEU).
Data augmentation techniques, i.e. back-
translation and paraphrasing via bilingual pivoting,
with the intention to create variance in the data.
Back-translation gave small improvements: +0.2
on the PHOENIX14T corpus and +0.1 on the DGS
corpus. Further investigation on the reasons for
the limited contribution of the above augmentation
techniques may be directed to the extremely low-
resource scenario, the amount and domain of the
data, or the particular nature of the sign language
glosses.

All above methods allowed an improvement of
5 BLEU points on the test set (22.7 BLEU) for the
PHOENIX14T model, and 2.2 BLEU points on the
test set (3.8 BLEU) for the DGS one.

In conclusion, in line with previous research (Yin
et al., 2021; Moryossef et al., 2021), we believe that
in order to achieve better translation performance,
research and experiments should concentrate on
two major problems - collecting and annotating
more resources, and better understanding the nature

of the sign languages with the intention to develop
new SL-specific tools.
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Appendix

Figure 3: Sample of a short sentence form the DGS corpus in the ELAN software. Video with participants is shown
above, and the different tiers can be seen underneath - e.g. “Deutsche_Übersetzung_A” for the German sentence,
“Lexem_Gebärde_l_A” and “Lexem_Gebärde_r_A” for the gloss annotations for the left and right hands of signer A.
Source: Hanke et al. (2020)
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Abstract

Existing visual grounding datasets are artifi-
cially made, where every query regarding an
entity must be able to be grounded to a corre-
sponding image region, i.e., answerable. How-
ever, in real-world multimedia data such as
news articles and social media, many entities in
the text cannot be grounded to the image, i.e.,
unanswerable, due to the fact that the text is
unnecessarily directly describing the accompa-
nying image. A robust visual grounding model
should be able to flexibly deal with both an-
swerable and unanswerable visual grounding.
To study this flexible visual grounding prob-
lem, we construct a pseudo dataset and a so-
cial media dataset including both answerable
and unanswerable queries. In order to handle
unanswerable visual grounding, we propose a
novel method by adding a pseudo image re-
gion corresponding to a query that cannot be
grounded. The model is then trained to ground
to ground-truth regions for answerable queries
and pseudo regions for unanswerable queries.
In our experiments, we show that our model
can flexibly process both answerable and unan-
swerable queries with high accuracy on our
datasets.1

1 Introduction

Starting from conventional vision-and-language
tasks such as image captioning (Vinyals et al.,
2015) and visual question answering (Wu et al.,
2017), many studies have been conducted to pro-
mote joint vision-and-language understanding. Vi-
sual grounding, which aims to find a specific region
in an image given a query regarding an entity, is a
fundamental task for enhancing the performance of
various joint vision-and-language tasks (Plummer
et al., 2015). For instance, in image captioning, it
is important to ground to the corresponding image
region while generating words for that region; in

1The social media dataset is available at https://
github.com/ku-nlp/SMD4FVG.

Figure 1: A comparison between previous visual
grounding work and our flexible visual grounding work.
In previous work, a query must be able to be grounded
(see the left sub-figure), while our work can deal with
both answerable and unanswerable visual grounding
flexibly (in the right sub-figure, “two wonderful horses”
can be grounded, while “my favorite picture,” “a beau-
tiful sunrise,” and “a frosty day” cannot be grounded).
The green bounding boxes are the ground-truth for an-
swerable queries.

VQA, it is crucial to understand to which image
region the question is referring. Because of the im-
portance of visual grounding, many research efforts
have been dedicated to improve its accuracy (Plum-
mer et al., 2015; Wang et al., 2016a; Fukui et al.,
2016; Rohrbach et al., 2016; Wang et al., 2016b;
Yeh et al., 2017; Plummer et al., 2017; Chen et al.,
2017; Yu et al., 2018b; Yang et al., 2020a,b; Dong
et al., 2021).

Previous visual grounding work assume that
a query must be able to be grounded to an im-
age region and create many datasets such as the
Flickr30k entities (Plummer et al., 2015), RefClef
(Kazemzadeh et al., 2014), RefCOCO, RefCOCO+
(Yu et al., 2016), RefCOCOg (Mao et al., 2016),
and Visual7W datasets (Zhu et al., 2016) for the
task. However, this assumption is not true in real-
world multimedia data such as news, TV dramas,
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and social media, where entities in the text are not
always able to be grounded to the visual data due to
the fact that text and visual data in these multime-
dia data are unnecessarily directly corresponding
to each other.

We name the case that a query can be grounded
to an image region as answerable visual ground-
ing; otherwise, unanswerable visual grounding
from here. The ignorance of unanswerable visual
grounding in previous work can lead to problems
for downstream tasks. For instance, in VQA, if
the VQA model cannot understand the case that
entities in the question cannot be grounded to the
image, it cannot deal with the case that a question
cannot be answered given the image either. There-
fore, a robust visual grounding model should be
able to flexibly deal with both answerable and unan-
swerable visual grounding. In this work, we study
this flexible visual grounding problem. Figure 1
compares our work with previous work.

To study flexible visual grounding, we construct
two types of datasets. The first one is a pseudo
dataset, which is constructed by randomly selecting
queries from other images and combining it with a
target image in the RefCOCO+ dataset (Yu et al.,
2016). The second one is a social media dataset
(SMD4FVG), which contains unanswerable real-
world queries. We construct the SMD4FVG dataset
by crawling tweets consisting of both images and
text and annotating answerable and unanswerable
queries via crowdsourcing.

Previous visual grounding models cannot han-
dle unanswerable visual grounding. To give a
model the ability to flexibly identify whether the
input query can be grounded or not, we propose
a novel method for unanswerable visual ground-
ing by adding a pseudo region corresponding to
a query that cannot be grounded. The model is
then trained to ground to ground-truth regions for
answerable queries and pseudo regions for unan-
swerable queries. Experiments conducted on both
the pseudo and SMD4FVG datasets indicate that
our model can flexibly process both answerable
and unanswerable queries with high accuracy. In
addition, we study the possibility of the usage of
using the pseudo dataset to improve the accuracy
on the SMD4FVG dataset.

The contributions of this paper are in three-folds:

• We propose a flexible visual grounding task
that includes unanswerable visual ground-
ing, where the unanswerable visual grounding

problem has not been studied before.

• We construct a pseudo dataset based on the
RefCOCO+ dataset and a social media dataset
based on tweets consisting of both images
and text via crowdsourcing for studying the
flexible visual grounding task.

• We propose a flexible visual grounding model,
which can deal with both answerable and
unanswerable queries and achieves high accu-
racy on our datasets.

2 Related Work

Previous visual grounding studies have been con-
ducted on different datasets. In the Flickr30k enti-
ties dataset (Plummer et al., 2015), a query corre-
sponds to a noun phrase (i.e., entity) containing in a
caption of an image. In the RefClef (Kazemzadeh
et al., 2014), RefCOCO, RefCOCO+ (Yu et al.,
2016), and RefCOCOg (Mao et al., 2016) datasets,
a query is an phrase referring to an object in an im-
age. In the Visual7W dataset (Zhu et al., 2016), a
query corresponds to a question regarding an image
region. However, all these datasets do not consider
unanswerable visual grounding. In contrast, we
propose flexible visual grounding and construct a
pseudo dataset and a social media dataset.

Regarding visual grounding models, Plummer
et al. (2015) proposed a method based on canoni-
cal correlation analysis (Hardoon et al., 2004) that
learns joint embeddings of phrases and image re-
gions. Wang et al. (2016a) proposed a two-branch
neural network for joint phrasal and visual em-
beddings. Fukui et al. (2016) used multimodal
compact bilinear pooling to fuse phrasal and vi-
sual embeddings. Rohrbach et al. (2016) proposed
a method to first detect a candidate region for a
given phrase and then reconstruct the phrase using
the detected region. Wang et al. (2016b) proposed
an agreement-based method, which encourages se-
mantic relations among phrases to agree with vi-
sual relations among regions. Yeh et al. (2017)
proposed a framework that can search over all pos-
sible regions instead of a fixed number of region
proposals. Plummer et al. (2017) used spatial re-
lationships between pairs of phrases connected by
verbs or prepositions. Chen et al. (2017) proposed
a reinforcement learning-based model that rewards
the grounding results with image-level context. Yu
et al. (2018b) improved the region proposal net-
work by training it on the Visual Genome dataset
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(Krishna et al., 2016) to increase the diversity of
object classes and attribute labels. Sadhu et al.
(2019) proposed to combine object detection and
grounding models to deal with unseen nouns during
training. Yang et al. (2020a) propagated relations
among noun phrases in a query based on the linguis-
tic structure of it. Yang et al. (2020b) addressed the
long and complex queries by recursive sub-query
construction. Dong et al. (2021) proposed a cross-
lingual visual grounding task, which transfers the
knowledge from an English model to improve the
performance of a French model.

Inspired by the success of pre-training language
models such as BERT (Devlin et al., 2019), vision-
and-language pre-training on large image caption
datasets such as the conceptual captions dataset
(Sharma et al., 2018) has been proposed such as
ViLBERT (Lu et al., 2019) VL-BERT (Su et al.,
2020; Lu et al., 2020), and UNITER (Chen et al.,
2020). Those vision-and-language pre-training
models differ from the model architecture. Vision-
and-language pre-training is evaluated on tasks in-
cluding visual grounding. However, same to pre-
vious studies, the visual grounding task does not
consider unanswerable cases (Lu et al., 2019; Su
et al., 2020; Chen et al., 2020). Our flexible vi-
sual grounding model is based on the multi-task
ViLBERT model (Lu et al., 2020), which achieves
state-of-the-art performance on visual grounding.

3 Dataset Construction

Because there are no existing visual grounding
datasets where unanswerable queries are contained,
we present two ways to construct two types of
datasets to study the flexible visual grounding prob-
lem.

3.1 RefCOCO+ Pseudo Dataset

As the construction of a new large-scale dataset is
costive and time-consuming, firstly, we constructed
a pseudo dataset based on the RefCOCO+ dataset
(Yu et al., 2016) using the negative pair sampling
method presented in (Yu et al., 2018a). To gen-
erate unanswerable data, we randomly select an
image and a query of another image from the Re-
fCOCO+ dataset and combine them as a pair of
visual grounding data. Because the query is from a
different image, we can assume that the query can-
not be grounded to the selected image. However,
there is still a possibility that the randomly selected
query can be grounded to the image, which may

lead to noise. We will discuss this problem in Sec-
tion 6.1. Next, we combined the generated unan-
swerable data to the original RefCOCO+ dataset to
make a pseudo dataset containing both answerable
and pseudo unanswerable queries.

3.2 Social Media Dataset (SMD4FVG)

Unanswerable visual grounding exists in real-world
multimedia data consisting of both text and visual
information such as news, TV dramas, and social
media. Among these, social media is one typical
case where there are many unanswerable visual
grounding data because the text and visual infor-
mation posted by users are not necessarily closely
related to each other. Due to this characteristic, in
social media, there could be more unanswerable
visual grounding data than answerable ones. This
might result in an unbalanced dataset, making train-
ing and evaluation difficult. In order to construct
a balanced dataset, we propose a pipeline shown
in Figure 2. We describe each step in detail in this
section.

Data Crawling

To construct the SMD4FVG dataset, we first
crawled image and text pairs from Twitter. We
will follow the fair use policy of Twitter regarding
copyright of the crawled data.2 We used Twitter’s
official library tweepy3 for this process. In order
to inherit previous visual grounding studies, we
decided to crawl data from the same domain as the
RefCOCO+ dataset. To this end, we searched the
hashtags in Twitter that match the object classes in
the RefCOCO+ dataset and only crawled the data
that hit. As a result, 20, 941 tweets of images and
text pairs were crawled.

Image Filtering

In order to construct a visual grounding dataset
balanced on both answerable and unanswerable
queries, we further conducted image filtering from
the crawled tweets. For the image filtering process,
we used EfficientnNet (Tan and Le, 2019) to clas-
sify images, Yolov4 (Bochkovskiy et al., 2020) to
detect objects and CRAFT (Baek et al., 2019) to
detect text in images.

The EfficientNet model was pre-trained on the
ImageNet dataset (Deng et al., 2009). With the

2https://help.twitter.com/en/
rules-and-policies/fair-use-policy

3https://www.tweepy.org/

287



Crowdsourcing

Image
Classification

web-site

Similarity 
with 

RefCOCO+
< 0.85

Object
Detection

The
Number of

Objects
< 2

Optical
Character

Recognition

Text Area

The Whole 
Ratio of

Text Area
> 0.05

I think my favourite picture of 
the morning, two wonderful 
horses, Angel and Rannoch 
and a beautiful sunrise on a 
frosty day.

Box Requirement
&

Annotation

Filtered Tweets Unfiltered Tweets

Crawled
Tweet

Text & Image 
Tweets

⋯

Text & Image 
Tweets

Text Pre-processing
&

Extraction of queries

I think my favourite picture of 
the morning, two wonderful 
horses, Angel and Rannoch
and a beautiful sunrise on a 
frosty day.

Figure 2: The pipeline for constructing the social media dataset. After crawling tweets containing both images
and text, we first filter images that do not belong to the RefCOCO+ classes, contain less than two objects, or are
dominated with text in the image step by step. After that, we extract noun phrases as queries in the tweet text.
Finally, we annotate answerable and unanswerable queries via crowdsourcing in two steps where in the first step,
unanswerable queries are identified, and in the second step, bounding boxes are annotated for answerable queries.

same purpose of inheriting previous visual ground-
ing studies, from the ImageNet classes output by
EfficientNet, we only chose the classes similar
to RefCOCO+ classes and removed the others.
When determining the similarities between the Re-
fCOCO+ classes, we calculated the Wu & Palmer
similarity (Wu and Palmer, 1994) and chose classes
that surpassed a similarity score of 0.85. It calcu-
lates similarity by considering the depths of the
two synsets (s1, s2) within the WordNet (Feinerer
and Hornik, 2020) hierarchy, along with the depth
of the least common subsumer (LCS) as:

Wu− Palmer = 2 ∗ depth(LCS(s1, s2))

depth(s1) + depth(s2)
(1)

As a result of the image classification-based filter-
ing, the crawled 20, 941 tweets decreased to 6, 813
tweets.

For the next step, we filtered more tweets using
the Yolov4 object detection model. The object de-
tection model was pre-trained with the Microsoft
COCO dataset (Lin et al., 2014). We chose images
that had two or more objects because images with
only one single object or background are consid-
ered to be too easy for our task. As a result, 4, 028
tweets were chosen from the 6, 813 tweets.

In the crawled tweets, we found that many im-
ages consisted of mostly text and website informa-
tion. As visual grounding is almost impossible for
text/website-dominated images, we further filtered
those images. To this end, we used the optical char-
acter recognition model of CRAFT. Based on the
results of the optical character recognition model,

we calculated a text proportion ratio in an image.
We only kept images that had a proportion ratio
lower than 0.05 with respective to the entire image.
As a result, 3, 425 images were left.

Due to the limitations of the above image pro-
cessing models, advertisement, inappropriate, and
duplicate images were still left in the dataset after
the above filtering process. Therefore, we further
manually checked the data and discarded them. As
a result, 988 tweets were finally left.

Query Extraction

Tweets contain emoji, links, and mentions, which
make query extraction difficult. Therefore, we pre-
processed the data and eliminated those expres-
sions. From the pre-processed text, we extracted
sentences and used the chunking model (Akbik
et al., 2018) to chunk the noun phrases within the
sentences. We did not use the pronoun (such as he,
her, she) and relative pronoun (such as which, who,
that) as queries. As for complex noun phrases that
contain other noun phrases within them, we split
them and only used single noun phrases as queries.
As a result, we obtained 8, 827 queries for the 988
images.

Crowdsourcing Annotation

From the 8, 827 pairs of image and query obtained,
we annotated image regions that can be grounded
by queries and finally constructed the SMD4FVG
dataset. For the annotation, we used Amazon Me-
chanical Turk. The compensation was 8-9 dollars
per hour.
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The annotation process consists of two steps.4

The first step is the “bounding box requirement”
task. In this step, we asked workers if a query can
be grounded, and if not, which of the following
cases it belongs to: 1) What the query refers to
cannot be seen in the image. 2) The query does not
refer to something specific in the image but rather
to the background. 3) The query is an abstract noun
that might be confusing based on the contents of
the image.

In case 1, the query refers to an entity, but the
image does not contain that entity. For instance, in
the right part of Figure 1, the query “my favorite
picture” entity does not appear in the image. In
case 2, if the query is the background of an image,
it might make the annotation regions different by
different workers, or as there are many objects in
the background, it might make the definition of
background vague. For instance, in the right part
of Figure 1, it is hard to clearly determine the re-
gion for the query “a beautiful sunrise.” Also, there
might be many objects in the annotation. There-
fore, we asked workers to annotate this case as
unanswerable. In case 3, if the query is an abstract
noun, the judgment of annotation might differ from
workers. For instance, if the query is “sport,” and
some workers might define “sport” as a person do-
ing a sport and determine the query as answerable
based on the contents of an image, and some work-
ers might define “sport” as something invisible and
determine the query as unanswerable. Thus, we
set this case as unanswerable. As a result of the
crowdsourcing annotation for this step, we obtained
6, 941 unanswerable queries in total.

The second step is the “drawing the bounding
box” task. In this step, the annotation was done for
data that were not annotated as unanswerable in
the first step. Workers were asked to draw a bound-
ing box for an image region corresponding to a
query. The difficult part of this process was when
there were multiple instances that corresponded to
one query in an image. In this case, we instructed
the workers to annotate multiple instances to one
bounding box if the instances are not clearly sepa-
rated; otherwise, we annotate them with individual
bounding boxes. Besides that, queries in social
media data can contain proper nouns, which are
special compared to previous datasets and could
be interesting to study; thus, we asked workers to

4The screenshot of the interfaces for these two steps can
be found in Appendix A.

indicate if an answerable query belongs to these.
In total, 1, 886 answerable queries were annotated,
among which 576 queries belong to proper nouns.

Finally, we manually checked the results of the
two steps. We checked 100 unanswerable pairs and
found that 7 of them were wrongly labeled. Most
of them were simple misses where the entity that
the query refers to does exist in an image, which
we plan to improve as our future work. In addition,
we checked and corrected the bounding boxes that
were miss-labeled by workers of all answerable
pairs. As a result, we obtained 8, 827 annotated
query and image pairs for our SMD4FVG dataset.

4 Flexible Visual Grounding Model

We propose to add a pseudo region to a visual
grounding model to achieve flexible visual ground-
ing for both answerable and unanswerable queries.
An overview of our proposed model is shown in
Figure 3. In this section, we first present our vi-
sual grounding model, followed by the way to add
pseudo regions for unanswerable queries.

4.1 Visual Grounding Model
Our visual grounding model follows (Lu et al.,
2020), which consists of 2 stages. In the first stage,
we extract region proposals and feature vectors of
all regions with an object detection model. We
employ the Faster RCNN (Ren et al., 2015) model
in the first stage. In the second stage, a similarity
score between a region proposal and an input query
is calculated. We utilize the multi-task ViLBERT
(Lu et al., 2020) for the calculation of the similarity
between a region proposal and the input query. Our
model is trained to minimize a binary cross-entropy
(BCE) loss between a label vector and a similar-
ity score vector similar to (Sadhu et al., 2019). In
inference, the input query will be grounded to the
region with the highest similarity score.

In detail, after extracting a feature vector fv ∈
Rdv for a region proposal by Faster RCNN, a spa-
tial vector fs ∈ R5 is incorporated to it. The spatial
vector is encoded to a 5-d vector from normalized
top-left and bottom-right coordinates as:

fs =
[
xtl
W , ytlH , xbr

W , ybrW , wh
WH

]
, (2)

where (xtl, ytl) is the top-left coordinate, (wbr, ybr)
is the bottom-right coordinate, w and h are the the
width and the height of the region, and W and H
are the width and the height of the image, respec-
tively. The spatial vector is then projected to match
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Figure 3: The proposed flexible visual grounding model. For an unanswerable query, we add a pseudo region and
train the model to ground the query to the pseudo region.

the dimension of the visual feature by a learnable
weight matrix Ws ∈ R5×dv and then added to fv to
generate the final region feature vector vr as:

vr = fv +Wsfs. (3)

The query is given in both training and inference.
It is denoted as q. Next, vr and q are input to
the multi-task ViLBERT model, which generates a
representation hi ∈ Rdi for the ith region and the
query as:

hi = ViLBERT(vr,q). (4)

hi is then used to calculate a similarity score for
the ith region by:

si = Wihi, (5)

where Wi ∈ Rdi×1 is a learnable weight matrix.
The ground-truth label score is set to 1 if the IoU

between a region proposal and the ground-truth
region is larger than 0.5; otherwise, it is set to 0.
The similarity score vector sji and the ground-truth
label vector lji for the ith region in the jth image
are then used to minimize a BCE loss as:

BCE = − 1

N

N∑

j=1

M∑

i=1

ljilog(sji)+(1−lji)log(1−sji), (6)

where N is the number of image and query pairs in
a dataset, and M is the number of region proposals
for an image.

4.2 Pseudo Region
To make our visual grounding model deal with
unanswerable queries, we propose to incorporate a
pseudo region corresponding to an unanswerable

query into the region proposals. An example is
shown in Figure 3. In Figure 3, the input query
“man is playing baseball" is not related to the input
image, where the image is about feet and clocks;
thus, the query cannot be grounded to the image.
For this query, we add a pseudo region to the re-
gions proposed by Faster RCNN (Ren et al., 2015).
The position of the pseudo region is set to the top-
left of the input image, and all the x and y coordi-
nate values of its spatial vector are set to 0 in Eq.
(2). All components of the feature vector fv ∈ Rdv

for the pseudo region are set to +1.
Our visual grounding model calculates the simi-

larity score between the pseudo region incorporated
region vectors and the query same as Section 4.1.
The model is then trained to give the highest simi-
larity score for the pseudo region when the query
cannot be grounded. During inference, the model
will output the region with the highest score as the
prediction. For instance, in the example of Figure
3, the pseudo region will be chosen for the input
query because the input query is not corresponding
to the input image.

5 Experimental Settings

In our experiments, we verify the effectiveness of
the proposed model on both the RefCOCO+ pseudo
and SMD4FVG datasets. Here, we first describe
the statistics of each dataset and settings, followed
by training details.

5.1 Settings on the RefCOCO+ Pseudo
Dataset

For the pseudo dataset, based on the RefCOCO+
dataset, we generated unanswerable data and com-
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Dataset Split Answerable Unanswerable

Pseudo
Train 42,278 21,139
Validation 3,805 1,905
Test 3,773 1,886

SMD4FVG
Train 1,270 4,775
Validation 330 1,097
Test 286 1,069

Table 1: Statistics of our datasets (i.e., number of query
and image pairs).

bined them with the original dataset with the ratio
of 1:2. The upper part of Table 1 shows the statis-
tics of the pseudo dataset.

For the pseudo dataset, we investigated the per-
formance of our model with the following settings:

• RefCOCO+: A baseline that trained our vi-
sual grounding model in Section 4 on the orig-
inal RefCOCO+ dataset to evaluate answer-
able visual grounding only, and compared the
performance with (Lu et al., 2020).

• RefCOCO+Thres: A baseline based on the
RefCOCO+ setting but sets a threshold accord-
ing to the similarity score (Eq. (4)) distribu-
tion for all queries during inference. Queries
with the highest similarity scores below the
threshold were treated as unanswerable oth-
erwise answerable. The threshold was tuned
on the validation split of the pseudo dataset to
achieve the highest accuracy for all queries.

• Pseudo: We directly trained and evaluated our
model on the pseudo dataset.

• SM→Pseudo: We first trained our model on
the training data of the SMD4FVG dataset and
then further fine-tuned it on the pseudo dataset.
We hope that the annotated SMD4FVG
dataset could boost the performance on the
pseudo dataset.

5.2 Settings on the SMD4FVG Dataset

The lower part of Table 1 shows the statis-
tics of the SMD4FVG dataset, where we split
the annotated 8, 827 query and image pairs into
train/validation/test with a 69%:16%:15% distri-
bution. We evaluated the performance on the
SMD4FVG dataset with the following settings:

• RefCOCO+Thres: A baseline similar to
the RefCOCO+Thres setting on the pseudo

dataset, but the threshold was tuned on the
validation split of the SMD4FVG dataset.

• Pseudo: Aiming to investigate the difference
between the pseudo and SMD4FVG datasets,
we trained our model on the training data of
the pseudo dataset and evaluated it on the
SMD4FVG dataset.

• SM: This is a straightforward setting that di-
rectly trained and evaluated our visual ground-
ing model on the SMD4FVG dataset.

• Pseudo→SM: We first trained our model on
the training data of the pseudo dataset and
then further fine-tuned it on the SMD4FVG
dataset. We hope that the large scale of the
pseudo dataset could boost the performance
on the SMD4FVG dataset.

5.3 Training Details
Visual features and region proposals were extracted
from the ResNeXT-152 Faster-RCNN model (Ren
et al., 2015) trained on the Visual Genome dataset
(Krishna et al., 2016) with an attribute loss. It
was not fine-tuned during training. We used the
multi-task ViLBERT model (Lu et al., 2020) for
calculating the similarity score between region pro-
posals and the query, which contains a 6 / 12 layer
of transformer blocks for visual/linguistic streams
individually. The multi-task ViLBERT was trained
simultaneously with 4 vision-and-language tasks
on 12 datasets. We set the region feature dimen-
sion dv to 2, 048, the joint ViLBERT representation
dimension di to 1, 024, and the number of region
proposals N to 100. We trained our model on 8
TitanX GPUs with a batch size of 256, 20 epochs,
and the AdamW optimizer with a linear warmup
and linear decay learning rate scheduler following
(Lu et al., 2020) for all settings.

6 Results

6.1 Results on the Pseudo Dataset
The upper part of Table 2 shows the accuracy of our
model on the pseudo dataset. For the RefCOCO+
setting, our model achieves an accuracy of 73.3%,
which is almost the same as the result 73.2% when
we evaluated the original model of (Lu et al., 2020)
using their codes. This indicates that adding a
pseudo region has little effect on the performance
for answerable visual grounding. However, it can-
not deal with unanswerable queries due to the ab-
sence of such data in the RefCOCO+ dataset. The
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Dataset Setting Ans. Unans. All

Pseudo

RefCOCO+ 73.3 N/A 73.3
RefCOCO+Thres 90.3 46.9 75.9
Pseudo 69.7 91.2 76.8
SM→Pseudo 70.3 89.9 76.9

SMD4FVG

RefCOCO+Thres 0 100.0 78.9
Pseudo 49.7 65.6 62.2
SM 31.8 95.0 81.7
Pseudo→SM 41.3 91.3 80.7

Table 2: Visual grounding results on the pseudo and
SMD4FVG datasets. Ans., Unans., and All denote the
accuracy for answerable, unanswerable, and all queries,
respectively.

RefCOCO+Thres setting works well for answer-
able queries but fails for answerable ones. The
similarity score distribution is in Appendix B.

For the pseudo setting, our model achieves an
accuracy of 69.7% and 91.2% for answerable and
unanswerable queries, respectively. Our model
can ground unanswerable queries with high accu-
racy. However, it drops 2.6% point for answerable
queries compared to the RefCOCO+ setting. We
think the reason for this is due to the mixture of
unanswerable queries to the original RefCOCO+
dataset, leading the judgment to answerable visual
grounding be more complex. SM→Pseudo only
slightly boots the All accuracy due to the small-
scale of the SMD4FVG dataset. Some incorrect
predictions for unanswerable queries are due to the
randomness of the dataset, and qualitative exam-
ples can be found in Appendix C.

6.2 Results on the SMD4FVG Dataset

The lower part of Table 2 shows the accuracy of
our model on the SMD4FVG dataset. We can see
that the RefCOCO+Thres setting forces all queries
to be unanswerable ones. The similarity score dis-
tribution can be found in Appendix B.

Among the other three settings, the pseudo set-
ting achieves the highest accuracy of 49.7% for
answerable queries. We think the reason for this
is that there are only a few answerable queries in
the SMD4FVG dataset, while both the amount and
ratio for that are higher in the pseudo dataset, mak-
ing the model learn answerable grounding well.
However, the accuracy for unanswerable queries
is only 65.6%, which is significantly worse than
the other two settings that use the SMD4FVG
dataset for training. We think this is due to the
different characteristics of unanswerable queries in

the pseudo and SMD4FVG datasets, wherein the
pseudo dataset the unanswerable queries are unre-
lated to the images, but in the SMD4FVG dataset
they are more complex. The SM setting achieves
high accuracy of 95.0% for unanswerable queries
and the best accuracy of 81.7% for all queries. The
reason for this can be that our model is optimized
in the SMD4FVG dataset directly with the SM
setting. However, the accuracy for answerable
queries with the SM setting is the lowest due to
the small ratio of answerable queries and complex
answerable queries in the SMD4FVG dataset. The
Pseudo→SM setting achieves a trade-off between
the pseudo and SM settings, where there is an im-
provement for answerable queries compared to the
SM setting and a big improvement for unanswer-
able queries compared to the pseudo setting. We
think the reason for this is that Pseudo→SM can
take the balance between the pseudo and SM set-
tings via fine-tuning the model pre-trained on the
pseudo dataset to the SMD4FVG dataset. We also
observe a 1% accuracy drop of all queries from SM
to Pseudo→SM. We think it is caused by the big
ratio of unanswerable queries in the SMD4FVG
dataset. The SM model was more biased to unan-
swerable queries and thus performed better in ac-
curacy for all queries because of the big ratio of
unanswerable queries. Qualitative examples can be
found in Appendix C.

For both the pseudo and SMD4FVG datasets,
we observe better performance on unanswerable
queries than answerable queries besides Ref-
COCO+Thres on the pseudo dataset. We think
the reason could be that it is much easier to learn
that a query is unrelated to an image (i.e., unan-
swerable) instead of finding the exact region that a
query refers to (i.e., answerable) by our models.

7 Conclusion

Previous studies on visual grounding ignored the
case of unanswerable queries, which is common in
real-world such as social media data. In this paper,
we proposed flexible visual grounding to address
both answerable and unanswerable visual ground-
ing. To this end, we constructed a pseudo dataset
based on the RefCOCO+ dataset and a social media
dataset based on tweets consisting of both images
and text via crowdsourcing. In addition, we pro-
posed a flexible visual grounding model, which
can deal with both answerable and unanswerable
queries. Experiments on our datasets indicated that
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our model could achieve high accuracy, especially
for unanswerable queries, but there is still room for
further improvement.

To make our social media dataset balanced, we
constrained it to the RefCOCO+ classes, which
may also limit the ability of our model on real-
world data. In the future, we plan to construct a
dataset without such constraints.
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A Annotation Interfaces

Figure 4 shows the screenshot of the first step of
crowdsourcing. This step is the “bounding box re-
quirement" task. We instruct workers to check if
the given query is answerable or not. For unan-
swerable queries, we further ask workers to check
which unanswerable type the query is.

Figure 5 shows the screenshot of the second step
of crowdsourcing. This step is the “drawing bound-
ing box" task. For an answerable query, we instruct
workers to draw bounding boxes to which the query
refers.

B Similarity Score Distribution

Figure 6 shows the similarity score distribution
of the RefCOCO+Thres setting on the testsets of
the pseudo dataset and SMD4FVG dataset, respec-
tively. We can see that the similarity score and the
grounding possibility have a very low correlation.

C Qualitative Examples

Figure 7 shows examples of our model with the
RefCOCO+ setting on unanswerable queries in the
pseudo dataset. We can see that the RefCOCO+ set-
ting cannot identify unanswerable queries, which
gives wrong predictions for them. However, there
are also some ambiguous queries, such as the ones
in examples 1, 6, and 7, for which we cannot con-
fidently claim that the predictions are wrong due
to the random combination characteristics of unan-
swerable queries in the pseudo dataset.

Figure 8 shows example outputs of our model
with the pseudo setting. Examples 1 and 2 in Fig-
ure 8 are two successful examples for answerable
visual grounding; we can see that our model can
ground queries with and without modifiers. Exam-
ples 3 and 4 in Figure 8 are two successful exam-
ples for unanswerable visual grounding; we can
see that for the queries that are unrelated to the
images, our model can correctly identify that they
cannot be grounded. Examples 5 and 6 in Figure
8 are two unsuccessful examples for answerable
visual grounding; our model fails on example 5 in
Figure 8 where the ground-truth is the other person
with the number 160 on the vest; for example 6 in
Figure 8, the query “taller one” itself is actually
ambiguous, and our model makes the judgment
that it cannot be grounded, while the ground-truth
is annotated for the “taller refrigerator” in the Re-
fCOCO+ dataset. Although our model achieves

91.2% accuracy for unanswerable queries, it still
makes some mistakes. Examples 7 and 8 in Figure
8 show two unsuccessful examples for unanswer-
able visual grounding; we can see that for example
7 in Figure 8, the query “lady” actually can be
grounded, but it is annotated as unanswerable in
our pseudo dataset due to the fact that the query is
taken from another image randomly and it could
be grounded in coincidence; the query for example
8 in Figure 8 is again ambiguous, and thus it is
actually difficult to claim that our model is wrong
here.

Figure 9 shows example outputs of our model
with the SNS setting, which achieves the best over-
all accuracy among the three settings. Examples
1 and 2 in Figure 9 are two successful examples
for answerable visual grounding; we can see that
our model can do grounding for both a single ob-
ject (example 1) and multiple objects (example 2).
Examples 3 and 4 in Figure 9 are two successful
examples for unanswerable visual grounding; we
can see that our model correctly identifies that the
abstract noun query “sport” and the query “the east
coast” that cannot be inferred from the image di-
rectly, cannot be grounded. Examples 5 and 6 in
Figure 9 are two unsuccessful examples for answer-
able visual grounding; for example 5, the query
“airbus320ceo” is a proper noun, which is difficult
for grounding; while for example 6, “coach” is dif-
ficult to infer from the image though “bus” is clear.
Examples 7 and 8 in Figure 9 show two unsuccess-
ful examples for unanswerable visual grounding;
for example 7, due to the failure of our query ex-
traction model, an adjective query “automotive” is
generated, which should not be grounded; for ex-
ample 8, it is a human dressed up as a bear but not
a real bear, and thus should not be grounded.
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Figure 4: The bounding box requirement interface. This is the first step of crowdsourcing. In this step, we instruct
workers to check whether the given query is answerable or not. If the query is unanswerable, we ask workers to
further check which unanswerable type the query is.

296



More Instruction

Figure 5: The drawing bounding box interface. This is the second step of crowdsourcing. In this step, we instruct
workers to draw bounding boxes to which the query refers. The annotation is done for query and image pairs that
are classified as answerable in the first step.
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Pseudo dataset SMD4FVG dataset

Figure 6: The similarity score distribution of the RefCOCO+Thres setting on the testsets of the pseudo dataset and
SMD4FVG dataset, respectively. X-axis and Y-axis denote the similarity/confidence score and density, respectively.
The solid blue and orange curves represent answerable and unanswerable queries, respectively. The vertical dotted
red lines denote the thresholds.

1 pizza furtherest
way 2 woman

5 red shirt 6 Person without
goggles

3 white shirt 4 green white bus 

7 closer one 8 girl smiling with
pink pants

Figure 7: Examples of visual grounding for unanswerable queries in the pseudo dataset. The blue bounding boxes
are the prediction of our model with the RefCOCO+ setting.
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1 taxi 2 kid sitting

5 160 6 taller one

3 white shirt man 
standing 4 person cutting 

the cake

7 lady 8 smallest one

Answerable Unanswerable

Figure 8: Examples of successful (top) and unsuccessful (bottom) visual grounding for answerable and unanswerable
queries in the pseudo dataset. The green and blue bounding boxes are ground-truth and the prediction of our model
with the pseudo setting, respectively.

1 a male cat 2 toys

5 airbus320ceo 6 coach buses

3 sport 4 the east coast 

7 automotive 8 bear

Answerable Unanswerable

Figure 9: Examples of successful (top) and unsuccessful (bottom) visual grounding for answerable and unanswerable
queries in the SMD4FVG dataset. The green and blue bounding boxes are ground-truth and the prediction of our
model with the SNS setting, respectively.
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Abstract

Text style transfer and paraphrasing of texts
are actively growing areas of NLP, dozens of
methods for solving these tasks have been re-
cently introduced. In both tasks, the system is
supposed to generate a text which should be
semantically similar to the input text. There-
fore, these tasks are dependent on methods of
measuring textual semantic similarity. How-
ever, it is still unclear which measures are the
best to automatically evaluate content preserva-
tion between original and generated text. Ac-
cording to our observations, many researchers
still use BLEU-like measures, while there ex-
ist more advanced measures including neural-
based that significantly outperform classic ap-
proaches. The current problem is the lack of a
thorough evaluation of the available measures.
We close this gap by conducting a large-scale
computational study by comparing 57 measures
based on different principles on 19 annotated
datasets. We show that measures based on
cross-encoder models outperform alternative
approaches in almost all cases. We also intro-
duce the Mutual Implication Score (MIS), a
measure that uses the idea of paraphrasing as
a bidirectional entailment and outperforms all
other measures on the paraphrase detection task
and performs on par with the best measures in
the text style transfer task.

1 Introduction

Text style transfer (TST) and paraphrases genera-
tion (PG) are active areas of research in NLP, with
dozens of papers proposing new methods. These
methods could be applied for practical purposes,
such as supporting human writers, personalizing
digital assistants, or even creating artificial person-
alities.

Research and development of TST models re-
quire fast feedback loops, and they require fast and
reliable automatic quality measures. TST is hard
to evaluate for several reasons. First, golden an-
swers, even if available, are not the only valid way

to rewrite the text. Second, parallel corpora with
different styles do not emerge naturally and are
hard to find. This means that reference-based eval-
uation is often prohibitive and creates a need for
manual evaluation of TST or for clever automatic
measures.

The basic desired properties of TST are style
accuracy, content preservation, and fluency (Mir
et al., 2019). For many methods of unsupervised
TST, keeping the content of the original text and
automatically measuring its preservation is one of
the most difficult tasks (see e.g. Dale et al. (2021)).

During development, the only way to control
content preservation is to use automatic measures.
Such measure takes two sentences and return the
value which indicates the similarity of their con-
tent. More formally, the measure sim quantifies
semantic relatedness of two utterances, an original
text x and a style-transferred or paraphrased text y
: sim(x, y)→[0; 1]. The measure sim yields high
score for the pairs with similar content and low
score for ones with different content.

As Krishna et al. (2020) and Yamshchikov et al.
(2021) show, most TST works evaluate the content
preservation with BLEU (Papineni et al., 2002) or
similar measures based on word overlap between
two texts. The situation in PG is almost identical.
Most works including the most recent ones (Sun
et al., 2021; Fu et al., 2020) also still rely on BLEU.

Even though measures like BLEU, based on a
word or character-level n-grams are pretty intuitive
and straightforward, they don’t take into account
synonyms and distributively related words. More-
over, there already exist several pieces of evidence
that correlation of standard BLEU-like automatic
measures is relatively low (Briakou et al., 2021).
The recent development of vector representations
of textual information (Mikolov et al., 2013; Zhang
et al., 2019) and various ways to handle these vec-
tors provides room for improvement of the ap-
proaches to scoring the content preservation. It
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is, therefore, crucial to perform a thorough analysis
of all existing content preservation measures and
to gather best practices from the top-performing
approaches to create a new approach that could
demonstrate stable performance in terms of both
PG and TST tasks.

In this work, we further extend a comprehensive
study of Yamshchikov et al. (2021) by analyzing
a much more diverse set of measures including re-
cently developed transformers-based ones, and also
by proposing a new measure specially developed
for TST and PG content preservation scoring. The
contributions of our paper are as follows:

• We perform a large-scale evaluation of auto-
matic content preservation measures for text
style transfer and paraphrase generation tasks,
which includes 57 measures applied to 9 para-
phrasing datasets and 10 text style transfer
datasets. To the best of our knowledge, this is
the largest and the most comprehensive evalu-
ation of this kind;

• We introduce Mutual Implication Score
(MIS): a measure of content preservation
based on predictions of NLI models in two
directions. We show that it outperforms all
known measures in paraphrase detection and
shows consistently high results for TST. We
opensource the model on Huggingface Model
Hub.1

The code for measures and experiments is re-
leased publicly.2

2 Related work

2.1 Measures of content preservation
There exists a large number of content preservation
measures that can be classified into several groups.
In this section, we describe all of these approaches.
Refer to Figure 1 for a schematic description of all
approaches.

Words or characters n-grams (ngram) The
most simple and intuitive way to compare two
texts is based on the overlap of word or charac-
ter n-grams. The standard method used to evalu-
ate the quality of a generated text is to compare
it with a human-written reference text via BLEU

1https://huggingface.co/
SkolkovoInstitute/Mutual_Implication_
Score

2https://github.com/skoltech-nlp/
mutual_implication_score

score (Papineni et al., 2002), which is the preci-
sion of word n-grams. In TST and PG papers,
BLEU is often used to evaluate content preser-
vation relative to the original text or a reference.
Other popular measures based on words or n-grams
are ROUGE (Lin, 2004), METEOR (Banerjee
and Lavie, 2005), chrF (Popović, 2015). Such
approaches as Levenshtein distance (Levenshtein
et al., 1966), Jaro-Winkler distance (Jaro, 1989)
also work at the subword level by calculating the
edit distance between two sequences, so we also
refer them to the ngram group. Panchenko and
Morozova (2012) provided a comparative study of
classic word similarity measures and their combina-
tions. The ngram measures are simple and intuitive
but do not handle well such linguistic phenomena
as synonyms, negation, and issues with word order.

Similarity between static embeddings (emb-
static) Another family of measures partially over-
comes these difficulties by representing texts with
their embeddings and calculating the distance (e.g.
cosine similarity) between the embeddings of two
texts. This group of measures can be further di-
vided by the way the embeddings are generated.
The basic way of obtaining the embedding of a
text is by averaging across static word embeddings:
Word2vec (Mikolov et al., 2013), GloVe (Penning-
ton et al., 2014), FastText (Bojanowski et al., 2017).

Similarity between contextualized embeddings
(emb-context) Special distance function (e.g.
WMD (Kusner et al., 2015), POS-distance (Tian
et al., 2018a)) can be also applied to context-
dependent vectors: BERTScore (Zhang et al.,
2019), MoverScore (Zhao et al., 2019).

Similarity between embeddings from bi-
encoders (emb-bi-enc) Embeddings of a text
can be generated by encoding a text with a
pre-trained encoder. If the two texts are encoded
separately, and then we compute the cosine
similarity between their embeddings, we refer to
such models as bi-encoders. This group of models
is usually trained in a supervised manner. The
encoders can be trained on the translation task
(Laser (Artetxe and Schwenk, 2019), LaBSE (Feng
et al., 2020)), paraphrase identification task
(SIMILE (Wieting et al., 2019)), or text generation
task (BARTScore (Yuan et al., 2021)). They
potentially can compare the meanings of texts
that are very different in terms of structure and
vocabulary.
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Figure 1: Different approaches to calculating content preservation between two sentences.

Symmetric and asymmetric cross-encoders
(sym/asym-cross-enc) The models called cross-
encoders process both texts simultaneously using
cross-attention and directly predict the relationship
between the texts. They can perform symmetrically
(score is independent of the order of the texts be-
ing compared) or asymmetrically (score strongly
depends on the order of the texts). Due to their
supervised nature, such models can reflect content
preservation more accurately than word-based ap-
proaches, but they depend on labeled data and may
not generalize well to new domains. The pres-
ence of symmetry is defined by the task the model
was trained on. Thus, models trained on the Nat-
ural Language Inference (NLI) task data (such as
BLEURT (Sellam et al., 2020) or NUBIA (Kane
et al., 2020)) are asymmetric, while cross-stsb-
base model trained solely on STS-B dataset (Cer
et al., 2017) for semantic textual similarity, or APD
model (Nighojkar and Licato, 2021) trained on
paraphrase datasets perform symmetrically.

Two-folded asymmetric cross-encoders (2x-
asym-cross-enc) A textual entailment model can
be used for scoring semantic relations between two

phrases. Nighojkar and Licato (2021) propose to
use a natural language inference (NLI) model for
paraphrase identification, and Deng et al. (2021)
suggest a similar model for evaluation of summa-
rization and text style transfer. The main idea of
these works is to use NLI models in a two-fold
manner (direct and reverse). NLI models are gen-
erally asymmetric cross-encoders, so we classify
this group of approaches as a two-fold asymmetric
encoder.

As shown in Figure 2, despite the wide variety
of measures, n-gram-based measures are still used
most often, while embedding-based measures and
cross-encoders are much less popular. In some
papers, no automatic content preservation measures
are used.

2.2 Evaluation of content preservation
measures

Our work in many respects follows the setup
of Yamshchikov et al. (2021) and extends it in
several directions. In this work, the authors col-
lected crowdsource estimates of content preser-
vation for 14,000 sentence pairs from 14 sources
and compared these estimates with 13 automatic
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Figure 2: The number of research papers on TST and
PG which use automatic content preservation measures
from different groups, based on 58 publications listed
in Appendix (Table 7).

measures. They evaluated the quality of automatic
measures by the correlation between rankings pro-
vided by these measures and rankings created by
human scores. This scoring showed that the WMD
over GloVe embeddings and L2 distance between
the ELMo embeddings outperform other measures.
However, no supervised sentence encoders or cross-
encoders were considered in this work.

In the work by Briakou et al. (2021), the authors
evaluated measures of formality transfer in four lan-
guages. The main subject of this work is a thorough
analysis of multilingual formality style transfer, in-
cluding a high-level analysis of all aspects of style
transfer quality: style accuracy, content preserva-
tion, and fluency. The authors used chrF and a
cross-encoder (XLM-R) trained on a semantic text
similarity dataset to calculate content preservation.
They also cautioned against using BLEU in this
context, because it has a lower correlation with
human judgments than many other measures. How-
ever, automatic measures of content preservation
were not the main focus of this work, so we extend
its results by applying more diverse measures on
the English part of their dataset, among others.

3 Datasets used in comparative study

We run our analysis of measures on parallel
datasets manually labeled for semantic similarity
or content preservation. To make the comparison
more generalizable, we fetch a large number of
datasets generated by different models.

3.1 Text style transfer datasets
The text style transfer task is aimed at transforming
a text to change its style (a particular attribute of
its text) while keeping the content intact. Since in
some cases the style cannot be separated from the
content (e.g. if the style is positive/negative sen-
timent), strict preservation of all content is some-
times impossible in the TST task. Therefore, we
consider the parallel TST datasets separately from
other data used for the analysis.

In many TST works, outputs were evaluated with
human judgments, but the raw similarity labels are
rarely published. We managed to find datasets that
include human similarity scores for various TST
tasks

• Detoxification:
– Tox600 (Dale et al., 2021),
– CAE (Laugier et al., 2021)

• Formality transfer:
– xformal-FoST (Briakou et al., 2021),
– STRAP_form, (Krishna et al., 2020)
– Yam. GYAFC (Yamshchikov et al.,

2021)3

• Sentiment transfer:
– PG-YELP (Pang and Gimpel, 2019)
– Yam. Yelp (Yamshchikov et al., 2021)

• Transfer to Old English:
– Yam. Bible (Yamshchikov et al., 2021),
– STRAP_coha (old American En-

glish), (Krishna et al., 2020)
– STRAP_SP (Shakespearean En-

glish) (Krishna et al., 2020)

3.2 Paraphrases datasets
Unlike TST, the paraphrase generation task re-
quires full preservation of content. There ex-
ist a large number of parallel datasets of para-
phrases manually labelled for content preserva-
tion. The majority of them have binary labels
(“same”/“different”). We use the following datasets
in our analysis:

• MSRP (Dolan and Brockett, 2005),
• Twitter-URL (Lan et al., 2017),
• PIT (Xu et al., 2014),
• PAWS (Yang et al., 2019b),
• ETPC (Kovatchev et al., 2018),
3We use the datasets collected and/or used in the analysis

by Yamshchikov et al. (2021). For clarity, we prepend their
names with “Yam.” prefix.
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• APT (Nighojkar and Licato, 2021),
• Yam. Para (Yamshchikov et al., 2021).

We provide detailed information about the
datasets in the Appendix tables 5 and 6.

4 Mutual Implication Score (MIS)

The goal of our research is not only to analyze the
existing measures of content preservation but also
to suggest a new measure that can outperform the
existing ones. We devise a new measure that is
based on measuring content similarity with NLI,
as described by Nighojkar and Licato (2021). In
this work, the authors exploit the assumption that
implies the two sentences with the same mean-
ing should be equivalent in their inferential proper-
ties, i.e. each sentence should textually entail the
other. This means that the NLI model is supposed
to return similar entailment scores when applied
to semantically equal sentences regardless of the
sequence these sentences are sent to the input of
the model. The authors used this assumption to
propose an adversarial method of dataset creation
for paraphrase identification.

NLI models predict whether one text logically
entails another, and are, therefore, asymmetric.
High entailment probability in the forward direc-
tion means that the second text accurately follows
the first one and does not contain hallucinated infor-
mation. A high entailment score in the backward
direction means that all the information from the
first text is retained in the second text.

The most natural way to aggregate scores from
both directions is to multiply them or compute their
arithmetic or harmonic mean. We use this approach
as a baseline. We yield NLI scores from the follow-
ing models:

PG TST
Measure ρ Measure ρ

MIS 0.61 MIS 0.54
DeBERTa 0.60 RobNLI 0.47
RobNLI 0.59 DeBERTa 0.46
FBrobNLI 0.55 FBrobNLI 0.43

Table 1: Mean Spearman correlations of MIS and
baseline NLI-based measures on PG and TST datasets.
For baseline NLI measures, the forward and backward
scores are averaged.

• RobNLI (Nie et al., 2020) — RoBERTA-
Large (Zhuang et al., 2021) pre-trained on
SNLI (Bowman et al., 2015), MNLI (Williams
et al., 2018), FEVER-NLI (Nie et al., 2019),
and ANLI (Nie et al., 2020),

• FBrobNLI (Liu et al., 2019) — RoBERTA-
Large pre-trained only on MNLI,

• DeBERTa (He et al., 2021) pre-trained on the
MNLI dataset.

Although these NLI models are a good starting
point, they might not be fully suitable for measur-
ing content preservation, because they were trained
for a different task. We suggest that further fine-
tuning them on the data annotated with content
preservation scores might yield better models.

Thus, we modify the RoBERTA architecture
used for NLI. Namely, we use the original encoder
in both forward and backward directions, concate-
nate the last hidden states, and then send them to
the classification module which is tuned on data an-
notated with content preservation scores. We refer
to this model as Mutual Implication Score (MIS).
The scheme of our model is given in Figure 3.

We initialize the model with pre-trained weights
from the RobNLI model. We tune it on Quora
Question Pairs dataset (Sharma et al., 2019) for 2
epochs with a learning rate 4e−6 and all but the last
encoder layer and classifier layer frozen.

We evaluate the model with the Spearman rank
correlation coefficient of the automatic content
preservation scores with human judgments. We
evaluate all TST and PG datasets introduced in
Section 3. We evaluate MIS and baseline NLI-
based measures (we aggregate the NLI scores for
both directions with the arithmetic mean because it
showed the best results in our preliminary experi-
ments).

The results are shown in Table 1. Fine-tuning the
(slightly modified) NLI model on content preser-
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vation data slightly improves its performance on
datasets generated by paraphrasing models and
yields significantly higher correlation on TST
datasets.

5 Measures analysis

We compute the content preservation scores for
paraphrasing and style transfer datasets using mea-
sures of different types. We analyze the perfor-
mance of individual measures and compare the per-
formance of different groups of measures. We also
look into the difference in measures performance
on PG and TST tasks and analyze the individual
datasets.

5.1 Experimental setting

We analyze 57 content preservation measures of
different types. As described in Section 2.1, the
measures can be divided into the following groups:
a word or character n-gram based (ngram), the mea-
sures based on the distance between static (emb-
static) or contextualized (emb-context) embed-
dings, or embeddings from bi-encoders (emb-bi-
enc), different groups of encoders-based measures:
symmetric (sym-cross-enc), asymmetric (asym-
cross-enc) or two-fold asymmetric (2x-asym-cross-
enc) cross-encoders. This grouping is used explic-
itly during analysis. The full list of measures is
given in Table 8.

We compute the content preservation scores for
19 datasets listed in Section 3. The full information
about the datasets is given in Appendix Tables 5
and 6.

We evaluate measures using the Spearman rank
correlation coefficient of the automatic scores with
human judgments. Since we use a large number
of measures and datasets, we report only aggre-
gated results. The full results are available in the
Appendix Figures 7 and 8.

5.2 Measure-level analysis

Figure 4 shows the correlations of the best-
performing measures from different groups for indi-
vidual datasets. The last columns of the plots show
the performance of each measure averaged across
datasets. The plot shows that MIS and similar
measures based on two-folded asymmetric cross-
encoders have the best average performance on
the paraphrase datasets. For TST datasets, there is
no clear winner: symmetric cross-encoders (cross-
stsb-large/base), bi-encoders (SIMCSE-SL/SB),

Toxic Old_Eng Form Sent
Measure

BLEURT-B128 0.47 0.52 0.61 0.39
BLEURT-L128 0.54 0.57 0.64 0.35
MIS 0.50 0.60 0.69 0.28
NUBIA 0.43 0.60 0.66 0.33
SIMCSE-SL 0.46 0.60 0.69 0.36

Table 2: Mean Spearman correlation of measures which
perform best on different text style transfer tasks. Tasks:
Toxic — detoxification, Old_Eng — old-style to modern
English, Form — formal to informal, Sent — sentiment
transfer. The best scores are shown in bold.

Paraphrase Generation (PG)
ρmax ρavg #wins

2x-asym-cross-enc 0.61 0.56 3
sym-cross-enc 0.55 0.51 5
asym-cross-enc 0.54 0.49 2
emb-bi-enc 0.54 0.45 2
emb-context 0.47 0.42 0
ngram 0.42 0.34 0
emb-static 0.32 0.27 0

Text Style Transfer (TST)
ρmax ρavg #wins

sym-cross-enc 0.55 0.51 3
emb-bi-enc 0.55 0.49 3
asym-cross-enc 0.54 0.46 3
2x-asym-cross-enc 0.54 0.45 0
emb-context 0.5 0.45 2
emb-static 0.4 0.36 1
ngram 0.41 0.35 1

Table 3: Spearman correlations of measures belong-
ing to different groups: ρmax — correlation of the
best-performing in the group, ρavg — correlation aver-
aged over the group, #wins — the number of times
the model from the group performs best on any of the
datasets.

asymmetric cross-encoders (BLEURT, NUBIA),
and two-folded asymmetric cross-encoder (MIS)
demonstrate almost equal performance.

The performance of content preservation mea-
sures on TST datasets varies from style to style.
The TST datasets we use contain style transforma-
tions of four types: detoxification, formal to infor-
mal, positive to negative sentiment, and modern to
old-style English. Thus, it seems natural to aver-
age the measures performance not only by all TST
datasets but also by TST datasets of different styles.
The averaged scores are shown in Table 2. There is
no clear winner for old-style English and formality
transfer: MIS and SIMCSE-SL show almost equal
performance. However, we can see that BLEURT
measures are clear leaders in detoxification and
sentiment transfer.
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5.3 Group-level analysis

To get more generalizable results of the analysis,
we perform a group-level comparison of measures
in Table 3. We report the Spearman correlation
scores averaged over datasets of PG and TST tasks
(as before, we do not merge all datasets and con-
sider the two tasks separately). We report the mean
and maximum correlations of all measures of a
group. We also compute the number of times when
a measure of a group performs best on the particu-
lar dataset. This indicator can be somewhat biased
due to the nature of each dataset, however, it can
still serve as an additional source of information.
If the difference between correlations is not sig-
nificant (by Williams test (Graham and Baldwin,
2014)) we assign one winning time to each group.

From this point of view, we can even better see
that two-folded asymmetric models are the best
choice for paraphrases detection because the mean
correlation outperforms the next best-performing
group by 0.05. Symmetric cross-encoders can also
be an alternative option for this task because they
show the largest number of wins. Symmetric cross-
encoders show the highest mean correlation on the
TST task. At the same time, the number of wins
and correlations of the best models from this class
are similar for all encoder-based classes.

Finally, from the measure-level and group-level
perspective, we can see that encoder-based mea-
sures outperform ngrams-based measures in the
absolute majority of datasets on TST and PG tasks.

5.4 Data-level analysis

So far we relied on the correlations averaged across
different datasets. However, it is also natural to
have a closer look at how the behavior of different
measures changes across datasets.

For this purpose, we represent each dataset as
a vector of correlations of each measure with the
human judgments and plot a dendrogram (see Fig-
ure 5) to show the clustered structure of the ob-
tained vectors. The dendrogram should be inter-
preted as follows. The height at which each dataset
is connected to another dataset or group of datasets
indicates the distance between the dataset vectors.
We additionally plot a heatmap of cosine similari-
ties of these datasets vectors in Appendix Figure 9.

Datasets related to sentiment transfer (PG-YELP,
Yam. Yelp) look different from others, thus, they
form a separate cluster in the dendrogram. The
reason for this dissimilarity is probably the fact
that in this type of TST task (sentiment transfer)
the content of the utterance changes more signif-
icantly than in other tasks. Moreover, PG-YELP
is originally distributed as a pairwise comparison
dataset. To yield sentence-level scores, we apply
Luce Spectral Ranking (Maystre and Grossglauser,
2016). This preprocessing might affect the quality
of labels.

In general, the datasets are clustered into two
rather dense groups and this clustering does not
match the separation of the datasets among TST
and PG tasks. The different behavior of the tested
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Figure 5: Dendrogram of vectors of measures correla-
tions on a dataset. The height of the bar indicates the
distance between vectors or groups of vectors. Postfixes
‘p’ and ‘t’ denote the datasets for PG and TST tasks,
respectively.

measures might be explained by the way the data is
annotated. For example, the PAWS datasets were
collected in an adversarial manner (by shuffling the
words in sentences), STRAP datasets were gener-
ated with TST models, and Yam. datasets were
annotated by a similar group of workers — these
three sets form clusters in the dendrogram.

6 Using automatic measures to rank text
style transfer systems

While above we compared automatic and human
ranking of individual text pairs, our final goal is
to find a measure to rank TST or PG systems.
Six TST datasets used in our analysis were cre-
ated by running several TST models on the same
dataset and manually assessing the degree of con-
tent preservation in the resulting text pairs. They
cover diverse tasks: formality transfer (xformal-
FoST and STRAP_form datasets), text detoxifica-
tion (Tox600 and CAE datasets), Shakespeare style
transfer (STRAP_SP), and sentiment transfer (PG-
YELP). We use the human judgments on content
preservation from these datasets to rate the abil-
ity of various measures to rank text style transfer
systems.

For brevity and clarity, we do not report the
results of this analysis for all measures. Instead,
we select the best-performing measure from each
group:

• cross-encoders: MIS, RobNLI/mean,
BLEURT-L128 and cross-stsb-base,

• bi-encoders: LaBSE and SIMCSE-SL (super-
vised, using ROBERTa-large),

Measure Measure type ρ acc

MIS 2x-asym-cross-enc 0.93 0.50
BLEURT-L128 asym-cross-enc 0.92 0.83
RobNLI/mean 2x-asym-cross-enc 0.83 0.50
cross-stsb-base sym-cross-enc 0.63 0.50
SIMCSE-SL emb-bi-enc 0.60 0.50
LaBSE emb-bi-enc 0.58 0.67
bertscore-Mic-Deberta emb-context 0.55 0.50
SIMILE emb-bi-enc 0.38 0.33
BLEU ngram 0.10 0.17
w2v_wmd emb-static 0.03 0.17
chrf ngram 0.03 0.17

Table 4: Mean rank correlation (ρ) of text style transfer
system-level automatic scores with human judgments,
and percentage of cases when they correctly identify the
best system (acc).

• embedding-based models: SIMILE,
BERTScore (with microsoft/deberta-xlarge-
mnli model), and WMD,

• ngram-based measures: BLEU and ChrF.

We show the results aggregated across the
datasets in Table 4. The scores for individual
datasets and measures and a list of measures man-
aged to identify the best-performing model for a
given dataset are given in Appendix C.

No measure can fully match the system rankings
produced by humans. However, our MIS measure
and BLEURT have the highest correlations with
human judgments. BLEURT performs best on this
task because it correctly identifies the winner on
5 datasets out of 6. The popular measures BLEU,
ChrF, and WMD identify the best system only on
the xformal-FoST dataset.

7 Computational efficiency of the
measures

While the correlation of measures with human judg-
ments is important, the usability of the measure in
real tasks can not be treated in isolation from its
computational efficiency. The main capabilities of
such measures are robustness and inference speed.

One of the key functions of content preservation
measures is to compare different TST or PG ap-
proaches with each other and ensure that different
runs of the learning-based measure yield similar
results. This problem does not apply to words or
character n-grams-based models. However, this
could yield some issues with trainable model-based
measures. That is why it is crucial for all such mea-
sures to open-source trained weights. Moreover,
when using such measures for comparison it is nec-
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measure on text style transfer and paraphrases generation tasks.

essary to put the model into inference mode and
freeze all layers. In such a case the model-based
measures yield similar scores to similar text pairs
regardless of the number of attempts or any hard-
ware properties.

Another blocker to the usage of a certain mea-
sure could be a long inference time. We conduct
additional experiments by calculating the average
inference time per sample for a subset of measures
representing each class w.r.t. the average correla-
tion of the measure on the task. We concatenate
texts from both tasks into two united datasets. For
trainable measures, we use a data loader with a
batch size equal to eight. We load all trainable
models to NVIDIA GeForce RTX 2080 Ti. All
other measures are calculated sample-wise on In-
tel(R) Xeon(R) Gold 5217 CPU @ 3.00GHz . We
plot the results on Figure 6.

The most optimal measures are located at the
bottom right corner of these plots, which means
that the measure requires the least possible compu-
tational time and at the same time demonstrates a
high correlation with human judgments. For the
PG task, the MIS measure demonstrates the best
performance and its average inference time is at
the approximately same level as most of the other
model-based measures. For TST task symmetric
and asymmetric cross-encoders are the most opti-
mal.

8 Conclusions

As our experiments show, encoder-based mea-
sures of content preservation correlate with human
judgments much better than the traditional word

or character-based measures such as BLEU on a
wide range of datasets. In all paraphrase datasets
and 9 out of 10 text style transfer datasets, the
best-performing measures are based on the cross-
encoder or bi-encoder architecture.

We suggest a measure called MIS which is based
on the idea that texts with similar meanings mutu-
ally entail each other. We show that the proposed
architecture outperforms other measures in the eval-
uation of paraphrases and performs on par with the
top-performing measures in the evaluation of text
style transfer. More specifically, it is particularly
successful in transferring between contemporary
and old English and between formal and informal
styles. Thus, we recommend using this measure for
content preservation scoring for paraphrases and
TST tasks in the aforementioned tasks and to use
BLEURT for other TST tasks.

While the best measures in our analysis improve
over the popular ones (e.g. BLEU) by a large mar-
gin, their correlation with human judgments is still
far from perfect. We expect that even better mea-
sures of content preservation will be proposed in
the nearest future. We also hope that the MIS mea-
sure and the performed large scale computational
study could be applied to other NLP tasks, such as
machine translation, text summarization, etc.
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Maja Popović. 2015. chrF: character n-gram F-score
for automatic MT evaluation. In Proceedings of the
Tenth Workshop on Statistical Machine Translation,
pages 392–395, Lisbon, Portugal. Association for
Computational Linguistics.

Shrimai Prabhumoye, Yulia Tsvetkov, Ruslan Salakhut-
dinov, and Alan W Black. 2018. Style transfer
through back-translation. In Proceedings of the 56th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 866–876,
Melbourne, Australia. Association for Computational
Linguistics.

Alec Radford, Rafal Józefowicz, and Ilya Sutskever.
2017. Learning to generate reviews and discovering
sentiment. CoRR, abs/1704.01444.

Chinmay Rane, Gaël Dias, Alexis Lechervy, and Asif
Ekbal. 2021. Improving neural text style transfer by
introducing loss function sequentiality. In SIGIR ’21:
The 44th International ACM SIGIR Conference on
Research and Development in Information Retrieval,
Virtual Event, Canada, July 11-15, 2021, pages 2197–
2201. ACM.

Sudha Rao and Joel Tetreault. 2018. Dear sir or madam,
may I introduce the GYAFC dataset: Corpus, bench-
marks and metrics for formality style transfer. In
Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long Papers), pages 129–140, New Or-
leans, Louisiana. Association for Computational Lin-
guistics.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence embeddings using Siamese BERT-
networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
3982–3992, Hong Kong, China. Association for Com-
putational Linguistics.

Parker Riley, Noah Constant, Mandy Guo, Girish
Kumar, David Uthus, and Zarana Parekh. 2021.
TextSETTR: Few-shot text style extraction and tun-
able targeted restyling. In Proceedings of the 59th
Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1:

312



Long Papers), pages 3786–3800, Online. Association
for Computational Linguistics.

Thibault Sellam, Dipanjan Das, and Ankur Parikh. 2020.
BLEURT: Learning robust metrics for text genera-
tion. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
7881–7892, Online. Association for Computational
Linguistics.

Lakshay Sharma, Laura Graesser, Nikita Nangia, and
Utku Evci. 2019. Natural language understanding
with the quora question pairs dataset.

Shikhar Sharma, Layla El Asri, Hannes Schulz, and
Jeremie Zumer. 2017. Relevance of unsupervised
metrics in task-oriented dialogue for evaluating natu-
ral language generation.

Tianxiao Shen, Tao Lei, Regina Barzilay, and Tommi S.
Jaakkola. 2017. Style transfer from non-parallel text
by cross-alignment. In Advances in Neural Informa-
tion Processing Systems 30: Annual Conference on
Neural Information Processing Systems 2017, De-
cember 4-9, 2017, Long Beach, CA, USA, pages
6830–6841.

Tianxiao Shen, Jonas Mueller, Regina Barzilay, and
Tommi S. Jaakkola. 2020a. Educating text autoen-
coders: Latent representation guidance via denoising.
In Proceedings of the 37th International Conference
on Machine Learning, ICML 2020, 13-18 July 2020,
Virtual Event, volume 119 of Proceedings of Machine
Learning Research, pages 8719–8729. PMLR.

Tianxiao Shen, Victor Quach, Regina Barzilay, and
Tommi Jaakkola. 2020b. Blank language models.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 5186–5198, Online. Association for Computa-
tional Linguistics.

Yukai Shi, Sen Zhang, Chenxing Zhou, Xiaodan
Liang, Xiaojun Yang, and Liang Lin. 2021. GTAE:
graph transformer-based auto-encoders for linguistic-
constrained text style transfer. ACM Trans. Intell.
Syst. Technol., 12(3):32:1–32:16.

Eric Michael Smith, Diana Gonzalez-Rico, Emily Di-
nan, and Y-Lan Boureau. 2019. Zero-shot fine-
grained style transfer: Leveraging distributed con-
tinuous style representations to transfer to unseen
styles. CoRR, abs/1911.03914.

Matthew Snover, Bonnie Dorr, Rich Schwartz, Linnea
Micciulla, and John Makhoul. 2006. A study of trans-
lation edit rate with targeted human annotation. In
Proceedings of the 7th Conference of the Association
for Machine Translation in the Americas: Technical
Papers, pages 223–231, Cambridge, Massachusetts,
USA. Association for Machine Translation in the
Americas.

Sandeep Subramanian, Guillaume Lample,
Eric Michael Smith, Ludovic Denoyer, Marc’Aurelio
Ranzato, and Y-Lan Boureau. 2018. Multiple-
attribute text style transfer. CoRR, abs/1811.00552.

Akhilesh Sudhakar, Bhargav Upadhyay, and Arjun Ma-
heswaran. 2019. “transforming” delete, retrieve, gen-
erate approach for controlled text style transfer. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 3269–
3279, Hong Kong, China. Association for Computa-
tional Linguistics.

Jiao Sun, Xuezhe Ma, and Nanyun Peng. 2021. AESOP:
Paraphrase generation with adaptive syntactic control.
In Proceedings of the 2021 Conference on Empiri-
cal Methods in Natural Language Processing, pages
5176–5189, Online and Punta Cana, Dominican Re-
public. Association for Computational Linguistics.

Youzhi Tian, Zhiting Hu, and Zhou Yu. 2018a. Struc-
tured content preservation for unsupervised text style
transfer. arXiv preprint arXiv:1810.06526.

Youzhi Tian, Zhiting Hu, and Zhou Yu. 2018b. Struc-
tured content preservation for unsupervised text style
transfer. CoRR, abs/1810.06526.

Ke Wang, Hang Hua, and Xiaojun Wan. 2019. Con-
trollable unsupervised text attribute transfer via edit-
ing entangled latent representation. In Advances in
Neural Information Processing Systems 32: Annual
Conference on Neural Information Processing Sys-
tems 2019, NeurIPS 2019, December 8-14, 2019,
Vancouver, BC, Canada, pages 11034–11044.

Su Wang, Rahul Gupta, Nancy Chang, and Jason
Baldridge. 2018. A task in a suit and a tie: paraphrase
generation with semantic augmentation. CoRR,
abs/1811.00119.

John Wieting, Taylor Berg-Kirkpatrick, Kevin Gimpel,
and Graham Neubig. 2019. Beyond BLEU:training
neural machine translation with semantic similarity.
In Proceedings of the 57th Annual Meeting of the As-
sociation for Computational Linguistics, pages 4344–
4355, Florence, Italy. Association for Computational
Linguistics.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume
1 (Long Papers), pages 1112–1122, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

Chen Wu, Xuancheng Ren, Fuli Luo, and Xu Sun.
2019a. A hierarchical reinforced sequence opera-
tion method for unsupervised text style transfer. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4873–
4883, Florence, Italy. Association for Computational
Linguistics.

313



Xing Wu, Tao Zhang, Liangjun Zang, Jizhong Han, and
Songlin Hu. 2019b. "mask and infill" : Applying
masked language model to sentiment transfer. CoRR,
abs/1908.08039.

Jingjing Xu, Xu Sun, Qi Zeng, Xiaodong Zhang, Xu-
ancheng Ren, Houfeng Wang, and Wenjie Li. 2018.
Unpaired sentiment-to-sentiment translation: A cy-
cled reinforcement learning approach. In Proceed-
ings of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 979–988, Melbourne, Australia. Association
for Computational Linguistics.

Peng Xu, Jackie Chi Kit Cheung, and Yanshuai Cao.
2020. On variational learning of controllable rep-
resentations for text without supervision. In Pro-
ceedings of the 37th International Conference on
Machine Learning, ICML 2020, 13-18 July 2020, Vir-
tual Event, volume 119 of Proceedings of Machine
Learning Research, pages 10534–10543. PMLR.

Ruochen Xu, Tao Ge, and Furu Wei. 2019. Formality
style transfer with hybrid textual annotations. CoRR,
abs/1903.06353.

Wei Xu, Alan Ritter, Chris Callison-Burch, William B.
Dolan, and Yangfeng Ji. 2014. Extracting lexically
divergent paraphrases from Twitter. Transactions of
the Association for Computational Linguistics, 2:435–
448.

Ivan P. Yamshchikov, Viacheslav Shibaev, Nikolay
Khlebnikov, and Alexey Tikhonov. 2021. Style-
transfer and paraphrase: Looking for a sensible se-
mantic similarity metric. Proceedings of the AAAI
Conference on Artificial Intelligence, 35(16):14213–
14220.

Qian Yang, Zhouyuan Huo, Dinghan Shen, Yong
Cheng, Wenlin Wang, Guoyin Wang, and Lawrence
Carin. 2019a. An end-to-end generative architec-
ture for paraphrase generation. In Proceedings of
the 2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 3132–3142, Hong Kong,
China. Association for Computational Linguistics.

Yinfei Yang, Yuan Zhang, Chris Tar, and Jason
Baldridge. 2019b. PAWS-X: A cross-lingual ad-
versarial dataset for paraphrase identification. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 3687–
3692, Hong Kong, China. Association for Computa-
tional Linguistics.

Zichao Yang, Zhiting Hu, Chris Dyer, Eric P Xing, and
Taylor Berg-Kirkpatrick. 2018. Unsupervised text
style transfer using language models as discrimina-
tors. In Advances in Neural Information Processing
Systems, volume 31. Curran Associates, Inc.

Weizhe Yuan, Graham Neubig, and Pengfei Liu. 2021.
Bartscore: Evaluating generated text as text genera-
tion.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q
Weinberger, and Yoav Artzi. 2019. Bertscore: Eval-
uating text generation with bert. arXiv preprint
arXiv:1904.09675.

Yi Zhang, Tao Ge, and Xu Sun. 2020. Parallel data aug-
mentation for formality style transfer. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 3221–3228, On-
line. Association for Computational Linguistics.

Yi Zhang, Jingjing Xu, Pengcheng Yang, and Xu Sun.
2018a. Learning sentiment memories for sentiment
modification without parallel data. In Proceedings of
the 2018 Conference on Empirical Methods in Nat-
ural Language Processing, pages 1103–1108, Brus-
sels, Belgium. Association for Computational Lin-
guistics.

Zhirui Zhang, Shuo Ren, Shujie Liu, Jianyong Wang,
Peng Chen, Mu Li, Ming Zhou, and Enhong Chen.
2018b. Style transfer as unsupervised machine trans-
lation. CoRR, abs/1808.07894.

Junbo Jake Zhao, Yoon Kim, Kelly Zhang, Alexander M.
Rush, and Yann LeCun. 2018. Adversarially regu-
larized autoencoders. In Proceedings of the 35th In-
ternational Conference on Machine Learning, ICML
2018, Stockholmsmässan, Stockholm, Sweden, July
10-15, 2018, volume 80 of Proceedings of Machine
Learning Research, pages 5897–5906. PMLR.

Wei Zhao, Maxime Peyrard, Fei Liu, Yang Gao, Chris-
tian M. Meyer, and Steffen Eger. 2019. MoverScore:
Text generation evaluating with contextualized em-
beddings and earth mover distance. In Proceedings
of the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th Interna-
tional Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 563–578, Hong
Kong, China. Association for Computational Lin-
guistics.

Liu Zhuang, Lin Wayne, Shi Ya, and Zhao Jun. 2021. A
robustly optimized BERT pre-training approach with
post-training. In Proceedings of the 20th Chinese
National Conference on Computational Linguistics,
pages 1218–1227, Huhhot, China. Chinese Informa-
tion Processing Society of China.

314



A Datasets

Name Comment Size

ETPC all data from textual_np_pos and textual_np_neg files 6004
PAWS-qqp dev_and_test.tsv from qqp part used 677
PAWS-wiki Test split from PAWS-Wiki Labeled (Final) 8000
Twitter-URL Test split used 10120
PIT Test split used 972
MSR Test split used 1630
APT Test split used (ap-h-test) 1252
Yam. para Data from Paralex,Parphrase folder used 3223
SICK Test split form SICK_test_annotated used 4927

Table 5: Paraphrase generation (PG) datasets used in the experiments.

Name Comment Size Style

Tox600 All data used 600 Toxic
Yam. Yelp Yelp subset of annotated data 2000 sentiment
Yam. GYAFC GYAFC subset of annotated data 6000 Formality
Yam. Bible Bible subset of annotated data 2000 Old-style

English
xformal-FoST English subset of annotated data use (meta_gyafc_en.tsv) 2458 Formality
CAE All data used. For each sentence pair, the mean human score

was used. The dataset was obtained by direct request to Laugier
et al. (2021)

500 Toxic

PG All data used. Individual ranks were induced from side-by-side
comparisons using the Luce spectral ranking model. The dataset
was obtained by direct request to Pang and Gimpel (2019).

886 Sentiment

STRAP_coha
For each sentence pair, the mean human score was used. All
data used

100 Historical
American
English

STRAP_form 684 Formality
STRAP_SP 550 Old-style

English

Table 6: Text style transfer (TST) datasets used in the experiments.

B Measures analysis
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Citation Measure Task

Hu et al. (2017) Automatic content preservation measures are not used CG
Shen et al. (2017) Automatic content preservation measures are not used TST
Mueller et al. (2017) Edit distance CG
Jhamtani et al. (2017) PINC (Chen and Dolan, 2011), BLEU TST
Radford et al. (2017) Only style accuracy analyzed TST
Logeswaran et al. (2018) round-trip BLEU CG
Subramanian et al. (2018) self-BLEU TST
Zhang et al. (2018b) BLEU TST
Prabhumoye et al. (2018) Manual pairwise comparison only TST
Tian et al. (2018b) self-BLEU, POS-distance - noun difference between the original and transferred sentences TST
Yang et al. (2018) self-BLEU TST
Rao and Tetreault (2018) STS CNN model (He et al., 2015) TST
Carlson et al. (2018) PINC, BLEU TST
Zhao et al. (2018) BLEU TST
Fu et al. (2018) Cossim between averaged or max/min-pooled GloVe (Pennington et al., 2014) embeddings TST
Xu et al. (2018) BLEU TST
Zhang et al. (2018a) BLEU TST
Gupta et al. (2018) BLEU, ROUGE, METEOR PG
Pang and Gimpel (2019) Cossim between GloVe (Pennington et al., 2014) embeddings weighted by inverse document frequency TST
Li et al. (2018) BLEU TST
Smith et al. (2019) self-BLEU TST
Sudhakar et al. (2019) self-BLEU TST
Wu et al. (2019b) BLEU TST
John et al. (2019) Cossim between averaged or max/min-pooled GloVe (Pennington et al., 2014) embeddings TST
Luo et al. (2019) BLEU TST
Dai et al. (2019) self-BLEU TST
Jain et al. (2019) BLEU, spacy.docsim TST
Lai et al. (2019) self BLEU TST
Wang et al. (2019) BLEU TST
Xu et al. (2019) BLEU TST
Kajiwara (2019) BLEU, F1-score over added, deleted, adn kept words PG
Wu et al. (2019a) Case insensitive BLEU TST
Li et al. (2019a) BLEU TST
Li et al. (2019b) BLEU, ROUGE PG
Chen et al. (2019) BLEU, ROUGE, METEOR PG
Yang et al. (2019a) BLEU, METEOR, TER (Snover et al., 2006) PG

Egonmwan and Chali (2019)
BLEU, ROUGE, METEOR,GMS
and EACS (Sharma et al., 2017)

PG

Wang et al. (2018) BLEU, METEOR, TER (Snover et al., 2006) PG
Krishna et al. (2020) SIMILEWieting et al. (2019) TST
Shen et al. (2020b) self-BLEU CG
Li et al. (2020) self-BLEU TST
Xu et al. (2020) self-BLEU TST
Gong et al. (2020) Cossim between averaged or max/min-pooled GloVe embeddings TST
Zhang et al. (2020) BLEU TST
Shen et al. (2020a) BLEU CG
He et al. (2020) self-BLEU TST
Goyal and Durrett (2020) BLEU PG
Fu et al. (2020) BLEU, ROUGE PG
Laugier et al. (2021) BLEU, cosine sinilarity of USE (Cer et al., 2018) TST
Lai et al. (2021) BLEU, BLEURT (Sellam et al., 2020) TST
Shi et al. (2021) WMD (Kusner et al., 2015), BLEU, BERTScore (Zhang et al., 2019) TST
Riley et al. (2021) self-BLEU TST
Krause et al. (2021) Only detoxicifcation and fluency analyzed CG
Lee et al. (2021) BLEU, BERTScore (Zhang et al., 2019) TST
Cao et al. (2020) BLEU TST
Rane et al. (2021) BLEU TST

Hu and He (2021)
Word Overlap, BLEU, cosine similarity between avearged or max/min-pooled GloVe (Pennington et al.,
2014) embeddings TST

Sun et al. (2021) BLEU, ROUGE, METEOR PG

Table 7: Automatic content preservation measures used in recent works on text style transfer (TST), paraphrase
generation (PG), and controllable generation (CG).
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Measure name in report Comment Article

RobNLI/* Combination or separate use of NLI scores in direct or reverse direction Nie et al. (2020)
SIMILE Cosine similarity between embeddings generated with LSTM-based model Wieting et al. (2019)
w2v_wmd_norm Word mover distance with word2vec normalized Kusner et al. (2015)
w2v_wmd Word mover distance with word2vec
w2v_l2 Euclidean distance vetween word2vec
w2v_cossim Cosine similarity over word2vec
USE Cosine similarity between embeddings generated with Universal Sentence

Encoder
Cer et al. (2018)

SIMCSE-UL
Unsupervised and supervised version of SIMCSE:Simple Contrastive
Learning of Sentence Embeddings. Unsupervised version trained to pre-
dict the input sentence itself with only dropout used as noise. Supervised
version trained to produce embeddings on NLI data in contrastive manner
using entailing sample as positive sample and contradiction as negative.

Gao et al. (2021)

SIMCSE-UB
SIMCSE-ULu
SIMCSE-UBu
SIMCSE-SL
SIMCSE-SB
SIMCSE-SBertUnc
LaBSE Cosine similarity between language-agnostic cross-lingual sentence em-

beddings
Feng et al. (2020)

BERT-base-NLI-STSB Reimers and
Gurevych (2019)

ROUGEL ROUGE Longest Common Subsequence

Lin (2004)
ROUGE3 ROUGE with trigram
ROUGE2 ROUGE with bigram
ROUGE1 ROUGE with unigram
NUBIA Multi-module pipeline consisting of Feature Extraction, Aggregation and

Calibration for semantic similarity scoring
Kane et al. (2020)

FBrobNLI/* Combination or separate use of Facebook roberta NLI model’s scores in
direct or reverse direction

Liu et al. (2019)

MoverScore Special case of Earth Mover’s Distance applied to BERT embeddings Zhao et al. (2019)
METEOR The measure is based on the harmonic mean of unigram precision and

recall
Banerjee and Lavie
(2005)

Levenshtein The minimum number of single-character edits Levenshtein et al.
(1966)

Jaro_winkler String measure measuring an edit distance between two sequences with
special modification giving more rating to strings that match from the
beginning for a set prefix

Jaro (1989)

fasttext_wmd_norm Normalized word mover distance over fasstext vectors Kusner et al. (2015)
fasttext_wmd Word mover distance over fasstext vectors
fasttext_l2 Euclidean distance between fasttext vectors
fasttext_cossim Cosine similarity between fasttext vectors

facebook/bart-large-cnn
Weighted log probability of one text y given another text x. The weights
are used to put different emphasis on different tokens Lewis et al. (2020)

BLEURT-L512
BERT fine-tuned for semantic similarity evaluation task in cross-encoder
manner on sythetic data

Sellam et al. (2020)
BLEURT-L128
BLEURT-B512
BLEURT-B128

deberta/* Combination or separate use of NLI scores from deberat model in direct
or reverse direction

He et al. (2021)

cross-stsb-large
Base and Large version of CrossEncoder trained on STSb

Reimers and
Gurevych (2019)cross-stsb-base

APD Paraphrase detector trained on the Adversarial Paraphrasing dataset from
the correponding paper

Nighojkar and Licato
(2021)

chrf Character n-gram F-score Popović (2015)
BLEU Modified unigram precision score Papineni et al. (2002)
bertscore/roberta-large F1-score over BERT-embeddings between tokens from initial and target

setneces. The packages are: roberta-large, Bert base multilingal cased,
microsoft/deberta-xlarge-mnli correspondingly

Zhang et al. (2019)bertscore_Bert-bmc
bertscore-Mic-Deberta

Table 8: The full list of the automatic measures of content preservation used in the analysis.
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ETPC PAWS-qqp PAWS-wiki Twitter-URL PIT MSRP APT SICK Yam. para mean

MIS (2x-asym-cross-enc)
deberta/mean (2x-asym-cross-enc)
 RobNLI/mean (2x-asym-cross-enc)

RobNLI/prod (2x-asym-cross-enc)
deberta/prod (2x-asym-cross-enc)

FBrobNLI/mean (2x-asym-cross-enc)
RobNLI/f1 (2x-asym-cross-enc)

cross-stsb-base (sym-cross-enc)
SIMCSE-SL (emb-bi-enc)

FBrobNLI/prod (2x-asym-cross-enc)
deberta/f1 (2x-asym-cross-enc)

NUBIA (asym-cross-enc)
cross-stsb-large (sym-cross-enc)

deberta/reverse (asym-cross-enc)
RobNLI/reverse (asym-cross-enc)
deberta/direct (asym-cross-enc)

SIMCSE-SB (emb-bi-enc)
RobNLI/direct (asym-cross-enc)

BERT-base-NLI-STSB (emb-bi-enc)
SIMCSE-SBertUnc (emb-bi-enc)
BLEURT-L128 (asym-cross-enc)

FBrobNLI/f1 (2x-asym-cross-enc)
BLEURT-L512 (asym-cross-enc)

SIMCSE-ULu (emb-bi-enc)
bertscore-Mic-Deberta (emb-context)

FBrobNLI/reverse (asym-cross-enc)
SIMCSE-UL (emb-bi-enc)

USE (emb-bi-enc)
BLEURT-B128 (asym-cross-enc)

FBrobNLI/direct (asym-cross-enc)
SIMCSE-UBu (emb-bi-enc)

BLEURT-B512 (asym-cross-enc)
APD (sym-cross-enc)

bertscore/roberta-large (emb-context)
ROUGEL (ngram)

SIMCSE-UB (emb-bi-enc)
SIMILE (emb-bi-enc)

facebook/bart-large-cnn (emb-bi-enc)
bertscore_Bert-bmc (emb-context)

MoverScore (emb-context)
chrf (ngram)

ROUGE2 (ngram)
ROUGE1 (ngram)

BLEU (ngram)
METEOR (ngram)
ROUGE3 (ngram)

fasttext_wmd (emb-static)
LaBSE (emb-bi-enc)

w2v_wmd (emb-static)
w2v_cossim (emb-static)

fasttext_wmd_norm (emb-static)
w2v_wmd_norm (emb-static)

Levenshtein (ngram)
fasttext_l2 (emb-static)

Jaro_winkler (ngram)
w2v_l2 (emb-static)

fasttext_cossim (emb-static)

m
et

ric

0.56 0.48 0.60 0.66 0.63 0.47 0.59 0.81 0.67 0.61
0.68 0.53 0.63 0.52 0.44 0.51 0.71 0.70 0.65 0.60
0.69 0.50 0.57 0.54 0.44 0.48 0.81 0.66 0.64 0.59
0.67 0.51 0.57 0.53 0.42 0.51 0.82 0.65 0.62 0.59
0.67 0.53 0.62 0.49 0.42 0.53 0.71 0.65 0.64 0.58
0.69* 0.40 0.57 0.46 0.40 0.49 0.69 0.64 0.62 0.55
0.63 0.51 0.56 0.46 0.32 0.47 0.82* 0.62 0.59 0.55
0.58 0.21 0.19 0.73 0.68 0.58* 0.47 0.82 0.70 0.55
0.40 0.45 0.34 0.73 0.61 0.48 0.37 0.82* 0.70 0.54
0.67 0.40 0.56 0.43 0.36 0.52 0.70 0.61 0.59 0.54
0.64 0.53 0.61 0.39 0.32 0.47 0.71 0.57 0.60 0.54
0.57 0.27 0.32 0.65 0.59 0.55 0.42 0.80 0.67 0.54
0.44 0.10 0.18 0.74 0.71* 0.56 0.50 0.81 0.72* 0.53
0.64 0.49 0.61 0.37 0.38 0.39 0.62 0.53 0.62 0.52
0.63 0.48 0.56 0.47 0.35 0.39 0.65 0.51 0.59 0.51
0.63 0.54* 0.64* 0.40 0.24 0.41 0.45 0.66 0.60 0.51
0.38 0.31 0.27 0.72 0.55 0.48 0.34 0.81 0.70 0.51
0.63 0.49 0.56 0.39 0.27 0.41 0.48 0.66 0.58 0.50
0.43 0.33 0.27 0.67 0.45 0.54 0.35 0.77 0.68 0.50
0.38 0.30 0.25 0.72 0.50 0.46 0.35 0.80 0.71 0.50
0.37 0.26 0.35 0.64 0.51 0.50 0.39 0.73 0.70 0.49
0.63 0.40 0.56 0.29 0.22 0.46 0.70 0.53 0.54 0.48
0.27 0.23 0.31 0.62 0.53 0.49 0.39 0.72 0.69 0.47
0.36 0.22 0.25 0.69 0.54 0.47 0.30 0.74 0.68 0.47
0.14 0.40 0.46 0.66 0.55 0.49 0.31 0.63 0.59 0.47
0.64 0.38 0.56 0.31 0.31 0.36 0.62 0.48 0.57 0.47
0.40 0.25 0.12 0.68 0.57 0.48 0.30 0.71 0.70 0.47
0.35 0.16 0.09 0.72 0.55 0.44 0.34 0.76 0.71 0.46
0.27 0.23 0.31 0.60 0.48 0.48 0.34 0.71 0.67 0.45
0.63 0.39 0.56 0.32 0.19 0.39 0.41 0.62 0.56 0.45
0.43 0.21 0.15 0.68 0.48 0.43 0.29 0.72 0.67 0.45
0.32 0.21 0.28 0.58 0.43 0.48 0.33 0.73 0.66 0.45
0.55 0.10 0.20 0.75* 0.27 0.35 0.61 0.54 0.63 0.44
0.25 0.31 0.32 0.64 0.47 0.48 0.26 0.62 0.59 0.44
0.31 0.14 0.49 0.66 0.45 0.42 0.16 0.53 0.63 0.42
0.35 0.14 0.08 0.67 0.49 0.43 0.24 0.68 0.67 0.42
0.44 -0.13 -0.02 0.71 0.52 0.42 0.29 0.67 0.70 0.40
0.18 0.32 0.45 0.50 0.39 0.37 0.12 0.63 0.55 0.39
0.20 0.19 0.31 0.59 0.33 0.42 0.21 0.53 0.64 0.38
0.25 0.25 0.30 0.23 0.37 0.47 0.26 0.61 0.68 0.38
0.26 0.16 0.24 0.63 0.36 0.39 0.18 0.55 0.61 0.38
0.32 0.23 0.36 0.63 0.42 0.35 0.13 0.54 0.40 0.37
0.32 -0.02 -0.00 0.67 0.49 0.45 0.22 0.58 0.63 0.37
0.21 0.06 0.07 0.63 0.38 0.47 0.23 0.54 0.62 0.36
0.30 -0.05 0.17 0.64 0.46 0.39 0.11 0.57 0.59 0.35
0.30 0.15 0.43 0.56 0.40 0.29 0.10 0.48 0.25 0.33
0.18 -0.09 -0.03 0.62 0.35 0.45 0.21 0.57 0.64 0.32
0.31 0.16 0.09 0.32 0.27 0.36 0.25 0.53 0.54 0.31
0.03 -0.07 -0.04 0.62 0.32 0.43 0.20 0.57 0.60 0.30
0.09 -0.07 -0.04 0.53 0.32 0.39 0.16 0.61 0.61 0.29
0.34 -0.09 -0.03 0.52 0.23 0.40 0.16 0.51 0.51 0.29
0.05 -0.07 -0.04 0.51 0.25 0.43 0.20 0.58 0.60 0.28
0.24 0.32 0.37 0.27 0.08 0.26 0.06 0.37 0.52 0.28
0.28 0.12 -0.03 0.42 0.21 0.32 0.12 0.45 0.35 0.25
0.16 0.06 0.13 0.47 0.28 0.20 0.15 0.34 0.43 0.25
-0.03 -0.06 -0.05 0.39 0.25 0.41 0.15 0.55 0.40 0.22
0.16 -0.07 -0.04 0.39 0.19 0.29 0.16 0.47 0.43 0.22
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Figure 7: Spearman correlations of all the evaluated measures with human judgments for paraphrase generation (PG)
datasets. The measures are sorted by the mean correlation across all datasets. The top correlations for individual
datasets are marked with *. The color palette of the heatmap is based on the regret, which is the difference between
the correlation of the measure on a particular dataset and the best correlation on this dataset. The lower the value of
regret, the higher quality.
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Tox600 STRAP_coha STRAP_SP CAE Yam. Bible STRAP_form Yam. GYAFC PG-YELP Yam. Yelp xformal-FoST mean

SIMCSE-SL (emb-bi-enc)
cross-stsb-base (sym-cross-enc)
cross-stsb-large (sym-cross-enc)

MIS (2x-asym-cross-enc)
SIMCSE-SB (emb-bi-enc)

BLEURT-L128 (asym-cross-enc)
BLEURT-L512 (asym-cross-enc)

NUBIA (asym-cross-enc)
SIMCSE-SBertUnc (emb-bi-enc)

SIMCSE-UL (emb-bi-enc)
BLEURT-B128 (asym-cross-enc)
BLEURT-B512 (asym-cross-enc)

USE (emb-bi-enc)
SIMCSE-UB (emb-bi-enc)

bertscore-Mic-Deberta (emb-context)
BERT-base-NLI-STSB (emb-bi-enc)

SIMCSE-ULu (emb-bi-enc)
SIMCSE-UBu (emb-bi-enc)

SIMILE (emb-bi-enc)
 RobNLI/mean (2x-asym-cross-enc)

RobNLI/prod (2x-asym-cross-enc)
deberta/mean (2x-asym-cross-enc)

MoverScore (emb-context)
deberta/prod (2x-asym-cross-enc)

RobNLI/f1 (2x-asym-cross-enc)
bertscore/roberta-large (emb-context)

APD (sym-cross-enc)
FBrobNLI/mean (2x-asym-cross-enc)

deberta/f1 (2x-asym-cross-enc)
RobNLI/reverse (asym-cross-enc)

RobNLI/direct (asym-cross-enc)
deberta/direct (asym-cross-enc)

deberta/reverse (asym-cross-enc)
facebook/bart-large-cnn (emb-bi-enc)

FBrobNLI/prod (2x-asym-cross-enc)
BLEU (ngram)

FBrobNLI/direct (asym-cross-enc)
chrf (ngram)

w2v_cossim (emb-static)
FBrobNLI/f1 (2x-asym-cross-enc)

bertscore_Bert-bmc (emb-context)
fasttext_wmd (emb-static)

ROUGE1 (ngram)
w2v_wmd (emb-static)

FBrobNLI/reverse (asym-cross-enc)
w2v_wmd_norm (emb-static)

ROUGEL (ngram)
METEOR (ngram)

w2v_l2 (emb-static)
fasttext_wmd_norm (emb-static)

ROUGE2 (ngram)
LaBSE (emb-bi-enc)

fasttext_l2 (emb-static)
ROUGE3 (ngram)

fasttext_cossim (emb-static)
Levenshtein (ngram)
Jaro_winkler (ngram)

m
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ric

0.46 0.45 0.74 0.46 0.62 0.70 0.69* 0.34 0.37 0.68* 0.55
0.54 0.44 0.73 0.42 0.62 0.73 0.69 0.30 0.40* 0.62 0.55
0.52 0.37 0.77* 0.44 0.62 0.74 0.69 0.34 0.39 0.62 0.55
0.61 0.47 0.73 0.40 0.61 0.77* 0.69 0.29 0.28 0.62 0.54
0.47 0.43 0.72 0.43 0.63 0.68 0.69 0.35 0.38 0.65 0.54
0.61* 0.36 0.71 0.46 0.63 0.62 0.68 0.33 0.38 0.63 0.54
0.56 0.32 0.68 0.48* 0.63 0.60 0.67 0.42 0.36 0.65 0.54
0.54 0.46 0.72 0.32 0.62 0.70 0.67 0.31 0.35 0.62 0.53
0.44 0.33 0.69 0.46 0.62 0.61 0.69 0.34 0.37 0.62 0.52
0.37 0.37 0.68 0.46 0.63 0.62 0.68 0.38 0.35 0.62 0.52
0.50 0.26 0.67 0.43 0.63 0.54 0.66 0.42 0.35 0.62 0.51
0.53 0.28 0.68 0.41 0.63 0.57 0.65 0.37 0.35 0.61 0.51
0.31 0.29 0.66 0.46 0.63 0.62 0.69 0.43 0.34 0.61 0.50
0.38 0.32 0.65 0.43 0.62 0.59 0.67 0.39 0.35 0.59 0.50
0.42 0.37 0.56 0.45 0.63 0.48 0.69 0.42 0.33 0.65 0.50
0.42 0.30 0.67 0.46 0.63 0.62 0.66 0.24 0.35 0.61 0.50
0.38 0.28 0.65 0.43 0.62 0.54 0.68 0.39 0.34 0.58 0.49
0.36 0.24 0.63 0.46 0.62 0.52 0.67 0.37 0.34 0.57 0.48
0.34 0.28 0.65 0.40 0.63 0.49 0.67 0.38 0.33 0.61 0.48
0.54 0.44 0.67 0.22 0.60 0.74 0.69 -0.05 0.17 0.63 0.47
0.51 0.40 0.65 0.25 0.60 0.72 0.68 -0.04 0.18 0.63 0.46
0.50 0.44 0.67 0.26 0.60 0.74 0.68 -0.04 0.13 0.58 0.46
0.27 0.26 0.48 0.47 0.63 0.39 0.68 0.42 0.33 0.57 0.45
0.46 0.41 0.65 0.29 0.60 0.71 0.68 -0.03 0.12 0.58 0.45
0.46 0.36 0.61 0.25 0.60 0.68 0.68 -0.02 0.18 0.63 0.44
0.27 0.25 0.47 0.45 0.63 0.38 0.66 0.39 0.32 0.59 0.44
0.27 0.31 0.52 0.24 0.58 0.62 0.67 0.30 0.29 0.59 0.44
0.49 0.45 0.64 0.23 0.60 0.72 0.67 -0.10 0.02 0.61 0.43
0.42 0.38 0.60 0.29 0.60 0.67 0.67 -0.02 0.12 0.58 0.43
0.41 0.33 0.54 0.28 0.59 0.65 0.67 0.02 0.15 0.62 0.43
0.53 0.42 0.65 0.14 0.60 0.67 0.66 -0.06 0.17 0.46 0.42
0.52 0.51* 0.64 0.19 0.58 0.67 0.66 -0.05 0.10 0.40 0.42
0.38 0.35 0.55 0.31 0.60 0.66 0.67 0.00 0.13 0.54 0.42
0.37 0.07 0.51 0.35 0.59 0.42 0.60 0.39 0.31 0.57 0.42
0.45 0.40 0.59 0.23 0.60 0.67 0.67 -0.09 0.02 0.61 0.41
0.19 0.28 0.30 0.42 0.64* 0.26 0.68 0.37 0.31 0.61 0.41
0.52 0.44 0.63 0.16 0.58 0.64 0.63 -0.10 0.01 0.46 0.40
0.15 0.20 0.34 0.44 0.63 0.26 0.67 0.36 0.32 0.58 0.40
0.24 0.10 0.38 0.42 0.60 0.39 0.63 0.33 0.31 0.54 0.40
0.42 0.36 0.54 0.23 0.59 0.62 0.64 -0.07 0.01 0.61 0.39
0.16 0.15 0.37 0.39 0.63 0.30 0.66 0.43* 0.32 0.52 0.39
0.15 0.16 0.31 0.44 0.63 0.27 0.68 0.38 0.32 0.56 0.39
0.15 0.19 0.31 0.43 0.63 0.27 0.68 0.33 0.31 0.55 0.39
0.15 0.17 0.31 0.41 0.64 0.26 0.67 0.39 0.31 0.55 0.39
0.40 0.34 0.49 0.24 0.58 0.61 0.63 -0.04 0.01 0.59 0.38
0.17 0.11 0.31 0.40 0.63 0.33 0.66 0.36 0.31 0.56 0.38
0.15 0.10 0.28 0.42 0.64 0.24 0.68 0.33 0.31 0.55 0.37
0.11 0.06 0.37 0.39 0.62 0.27 0.66 0.36 0.31 0.44 0.36
0.25 0.12 0.26 0.37 0.56 0.34 0.59 0.27 0.29 0.53 0.36
0.10 0.24 0.15 0.42 0.61 0.18 0.62 0.36 0.30 0.52 0.35
0.13 0.10 0.21 0.43 0.64 0.20 0.67 0.30 0.31 0.51 0.35
0.18 0.24 0.26 0.25 0.57 0.29 0.48 0.30 0.24 0.48 0.33
0.12 0.16 0.08 0.43 0.54 0.14 0.54 0.31 0.26 0.49 0.31
0.12 0.02 0.17 0.42 0.64 0.15 0.58 0.24 0.26 0.49 0.31
0.08 -0.02 0.13 0.41 0.57 0.18 0.57 0.27 0.27 0.49 0.30
0.12 0.01 0.17 0.13 0.53 0.19 0.48 0.29 0.23 0.59 0.27
-0.02 0.13 -0.06 0.31 0.59 0.16 0.59 0.25 0.29 0.39 0.26

0.75

0.60

0.45

0.30

0.15

0.00

Figure 8: Spearman correlations of all the evaluated measures with human judgments for text style transfer (TST)
datasets. The measures are sorted by the mean correlation across all datasets. The top correlations for individual
datasets are marked with *. The color palette of the heatmap is based on the regret, which is the difference between
the correlation of the measure on a particular dataset and the best correlation on this dataset. The lower the value of
regret, the higher quality.
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Figure 9: Cosine similarities of vectors of measures’ correlations on individual datasets. The last column shows the
mean cosine similarity of a dataset vector and vectors of all other dataset (excluding self-similarity). Postfixes ‘p’
and ‘t’ indicate datasets for to PG and TST tasks, respectively.
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C System-level ranking

human MIS RobNLI/mean BLEURT-L128 cross-stsb-base LaBSE SIMCSE-SL bertscore-Mic-Deberta SIMILE w2v_wmd BLEU chrf
system

paragedi 0.65 0.52 0.39 -0.25 0.82 0.95 0.68 0.76 0.67 -0.67 0.48 0.41
condbert 0.64 0.41 0.27 -0.26 1.07 0.96 0.75 0.83 0.76 -0.34 0.72 0.73
mask_infill 0.59 0.39 0.29 -0.29 0.96 0.99 0.82 0.87 0.82 -0.21 0.79 0.80

Table 9: System ranking on Tox600 (Dale et al., 2021), text detoxification.
human MIS RobNLI/mean BLEURT-L128 cross-stsb-base LaBSE SIMCSE-SL bertscore-Mic-Deberta SIMILE w2v_wmd BLEU chrf

system

nmt_combined 4.67 0.91 0.90 0.78 4.35 0.98 0.96 0.95 0.93 -0.15 0.88 0.85
pbmt 4.64 0.89 0.88 0.71 4.08 0.98 0.95 0.94 0.91 -0.17 0.85 0.81
ref 4.56 0.87 0.84 0.32 2.98 0.95 0.89 0.86 0.76 -0.44 0.64 0.59
nmt_copy 3.99 0.74 0.72 0.40 3.04 0.97 0.88 0.88 0.82 -0.26 0.77 0.73
nmt_baseline 3.90 0.73 0.70 0.40 3.00 0.96 0.87 0.89 0.82 -0.25 0.77 0.74

Table 10: System ranking on xformal-FoST (Briakou et al., 2021), formality transfer.
human MIS RobNLI/mean BLEURT-L128 cross-stsb-base LaBSE SIMCSE-SL bertscore-Mic-Deberta SIMILE w2v_wmd BLEU chrf

system

CAET rephras-
ing

2.63 0.34 0.28 -0.63 0.56 0.92 0.62 0.70 0.56 -0.66 0.47 0.44

IE rephrasing 2.20 0.37 0.36 -0.73 0.55 0.96 0.60 0.73 0.56 -0.56 0.58 0.56
ST (multi)
rephrasing

2.10 0.26 0.22 -1.16 -0.22 0.91 0.52 0.63 0.60 -0.67 0.46 0.46

ST (cond)
rephrasing

2.08 0.25 0.23 -1.11 -0.07 0.92 0.53 0.66 0.62 -0.65 0.49 0.47

CA rephrasing 1.88 0.05 0.08 -1.54 -2.22 0.90 0.18 0.51 0.16 -0.95 0.23 0.18

Table 11: System ranking on CAE (Laugier et al., 2021), text detoxification.
human MIS RobNLI/mean BLEURT-L128 cross-stsb-base LaBSE SIMCSE-SL bertscore-Mic-Deberta SIMILE w2v_wmd BLEU chrf

system

m7 3.41 0.16 0.09 -1.03 -0.84 0.95 0.45 0.76 0.52 -0.56 0.52 0.45
m6 3.03 0.18 0.11 -1.16 -0.58 0.95 0.45 0.74 0.56 -0.52 0.58 0.53
m2 3.03 0.14 0.07 -1.23 -1.10 0.94 0.37 0.73 0.47 -0.56 0.53 0.46
m0 2.31 0.10 0.06 -1.50 -1.80 0.91 0.28 0.64 0.30 -0.80 0.34 0.29

Table 12: System ranking on PG-YELP (Pang and Gimpel, 2019), sentiment transfer.
human MIS RobNLI/mean BLEURT-L128 cross-stsb-base LaBSE SIMCSE-SL bertscore-Mic-Deberta SIMILE w2v_wmd BLEU chrf

system

paraphrase_base 0.79 0.64 0.53 -0.39 1.19 0.94 0.77 0.74 0.65 -0.69 0.45 0.39
paraphrase_0.0 0.76 0.73 0.64 -0.08 1.91 0.94 0.82 0.77 0.71 -0.63 0.50 0.43
paraphrase_0.9 0.59 0.56 0.44 -0.45 1.04 0.93 0.73 0.71 0.61 -0.74 0.42 0.35
unmt 0.31 0.23 0.19 -0.95 -0.31 0.93 0.50 0.69 0.51 -0.61 0.51 0.43
he_2020 0.26 0.21 0.19 -0.99 -0.82 0.90 0.45 0.67 0.46 -0.65 0.45 0.40

Table 13: System ranking on STRAP_form, (Krishna et al., 2020), formality transfer.
human MIS RobNLI/mean BLEURT-L128 cross-stsb-base LaBSE SIMCSE-SL bertscore-Mic-Deberta SIMILE w2v_wmd BLEU chrf

system

paraphrase_0.0 0.81 0.62 0.58 -0.11 1.48 0.95 0.79 0.76 0.72 -0.69 0.44 0.37
paraphrase_base 0.58 0.44 0.43 -0.52 0.77 0.94 0.69 0.70 0.62 -0.79 0.37 0.31
he_2020 0.35 0.19 0.21 -1.07 -0.28 0.93 0.49 0.68 0.49 -0.65 0.46 0.40
unmt 0.26 0.12 0.13 -1.23 -0.92 0.93 0.41 0.66 0.41 -0.72 0.42 0.34

Table 14: System ranking on STRAP_SP (Krishna et al., 2020), Shakespeare style transfer.

dataset measures

Tox600 MIS, BLEURT-L128
xformal-FoST BLEURT-L128 , cross-stsb-base, SimCSE, BERTScore, and all other models
CAE BLEURT-L128 , cross-stsb-base, SimCSE
PG-YELP BLEURT-L128 , LaBSE, BERTScore
STRAP_form LaBSE
STRAP_SP MIS, BLEURT-L128 , cross-stsb-base, LaBSE, SimCSE, BERTScore, SIMILE

Table 15: The measures that correctly identify the best text style transfer system for each dataset.
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Abstract

In this paper, we investigate the problem of vi-
sion and language navigation. To solve this
problem, grounding the landmarks and spa-
tial relations in the textual instructions into
visual modality is important. We propose a
neural agent named Explicit Object Relation
Alignment Agent (EXOR), to explicitly align
the spatial information in both instruction and
the visual environment, including landmarks
and spatial relationships between the agent and
landmarks. Empirically, our proposed method
surpasses the baseline by a large margin on
the R2R dataset. We provide a comprehensive
analysis to show our model’s spatial reasoning
ability and explainability.

1 Introduction

Vision and Language Navigation (VLN) prob-
lem (Anderson et al., 2018) requires the agent to
carry out a sequence of actions in an indoor photo-
realistic simulated environment in response to cor-
responding natural language instructions. The first
VLN benchmark to appear was Room-to-Room
navigation (R2R) (Anderson et al., 2018) , as
shown in Figure 1, the agent needs to generate
a navigation trajectory in a visual environment ren-
dered from real images following an instruction.

This task is challenging because, apart from un-
derstanding the language and vision modalities, the
agent needs to learn the connection between them
without explicit intermediate supervision.

To address this challenge, several recent work
started to consider the semantic structure from both
language and vision sides. Hong et al. (2020a) train
an implicit entity-relationship graph allowing an
agent to learn the latent concepts and relationships
between different components (scene, object and
direction). They use the object features extracted
from Faster-RCNN (Ren et al., 2015) instead of
only using ResNet visual features which can easily
overfit on the training environment (Hu et al., 2019).

Go to the clock on the wall. Go between the blue 
couch and counter. Go to the table with a plant on it.Instruction

Navigable
Viewpoints

Panoramic
Images

Navigation
Steps

Figure 1: VLN Task Demonstration. The agent gen-
erates a navigation trajectory composed of navigable
viewpoints selected based on the given instruction and
the panoramic images at each step. The red arrow shows
the ground-truth navigable viewpoint.

Although the grounding ability of their agent im-
proves, their experimental results show that the
object features do not help the navigation indepen-
dently unless their relationships to the scene and
direction are modeled. This issue indicates their
loosely modeled latent space and motivates us to
explore the ways the object features can be further
exploited.

The recent research finds that indoor navigation
agents rely on both landmark and direction tokens
in the instruction when taking actions (Zhu et al.,
2021). However, it is difficult to identify which
landmarks the agent should pay attention to at each
navigation step. Previous works (Tan et al., 2019;
Ma et al., 2018; Wang et al., 2019; Zhu et al., 2020)
mainly use the surrounding visual information as a
clue to indicate the landmark tokens that the agent
should focus on. However, the semantics of in-
struction should also play an important role. For
example, with the understanding of the instruction
“go to the table with chair, and then walk towards
the door", the agent needs to give the same atten-
tion to “table” and “chair”, and less attention to
“door” at the first navigation step. In terms of di-
rection tokens, the prior works concentrate most
on the direction tokens related to motions, such
as “turn left”, and ignore the spatial description of
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landmarks, such as “table on the left”. We believe
distinguishing those different direction tokens can
benefit the navigation performance. The last but
not least, modeling the landmarks and their spa-
tial relations can improve the explainability of the
agent’s actions.

In this paper, we propose a neural agent, called
Explicit Object Relation Alignment Agent (EXOR),
to explicitly align the spatial semantics between
linguistic instructions and the visual environment.
Specifically, we first split the long instruction into
spatial configurations (Dan et al., 2020; Zhang
et al., 2021), and then we select the important land-
marks based on such configurations. After that,
in the visual environment, we retrieve the most
relevant objects according to their similarity with
the selected landmarks in the instructions. More-
over, we obtain textual spatial relation encoding
to model the spatial relations between the agent
and landmarks in the textual instructions, and use
visual spatial relation encoding to represent the
relation between agent and the image in the visual
environment. We then establish a mapping between
the two encodings to achieve a better alignment.
Finally, we use the representations of the aligned
objects and spatial relations to enrich the image rep-
resentations. To the best of our knowledge, none of
the previous work modeled the explicit spatial re-
lations considering the agent’s perspective for this
task.

Our contribution is summarized as follows:
1. Our model achieves the explicit alignments

between textual and visual spatial information, and
such alignments guide the agent to pay more atten-
tion to the objects in the visual environment given
landmark mentions in the instructions.

2. We explicitly model the spatial relations be-
tween the agent and landmarks from both instruc-
tion and visual environments, which enhance their
alignments and improve the overall navigation per-
formance.

3. Our method surpasses the baseline perfor-
mance by a large margin. Also, we provide a com-
prehensive analysis to show the spatial reasoning
ability and explainability of our model.

2 Related Work

Vision and Language Navigation The vision-
language navigation problem nowadays has gained
an increasing popularity, and various navigation
datasets and platforms(Savva et al., 2019; Kolve

et al., 2017) are proposed to assist the develop-
ment of this topic in the community, for example,
R2R (Anderson et al., 2018) and Touchdown (Chen
et al., 2019) datasets, which have extended navi-
gation to the photo-realistic simulation environ-
ments. More broadly, there are work also re-
lated to instruction-guided household task bench-
marks such as ALFRED (Shridhar et al., 2020).
RXR (Ku et al., 2020) is a multilingual navigation
dataset with spatial-temporal grounding, CVDN
and HANNA are a dialog-based interactive naviga-
tion dataset (Thomason et al., 2020; Nguyen and
Daumé III, 2019), and REVERI (Qi et al., 2020b)
navigates to localize a remote object.

Accompanied with these benchmark works, nu-
merous deep learning methods (Tan et al., 2019;
Hong et al., 2021, 2020a) have been proposed.
For R2R task, Anderson et al. (2018) propose
a Sequence-to-Sequence baseline model to encode
the instructions and decode the embeddings to the
low-level action sequence with the observed im-
ages. Speaker-Follower agent proposed by Fried
et al. (2018) trains a speaker model to generate the
augmented samples to improve the generalizabil-
ity. They also start modeling a panoramic action
space for navigation, which further promotes fast
iteration of different VLN approaches.

Grounding in VLN It has been observed that the
connection between linguistic instruction and vi-
sual environment can yield a great improvement in
VLN task, hence many research efforts for mod-
eling such visual-linguistic relation have recently
been developed. In general, we categorize these
research works into three directions.

The first main thread (Anderson et al., 2018; Ma
et al., 2018; Tan et al., 2019; Wang et al., 2019; Ma
et al., 2019) tends to adopt attention mechanisms
for establishing language and vision connections
in neural navigation agents. For instance, Ma et al.
(2019) apply a visual-textual co-grounding mod-
ule and a progress monitor to guide the execution
progress. The second branch of prior works (Hu
et al., 2019; Hao et al., 2020; Majumdar et al., 2020;
Hong et al., 2021; Shen et al., 2021) explores the
pre-trained Vision and Language (VL) represen-
tation from the transformer-based models. Hong
et al. (2021) design a recurrent unit on the VL trans-
former models, and fine-tune them on the down
stream VLN task. Notably, the increased model
size and additional training process help improve
navigation performance and surpass the previous
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performance by a large margin.
The third branch works model the semantic struc-

ture, based on both language and vision perspec-
tives, to improve the grounding ability, such as
(Qi et al., 2020a; Zhang et al., 2021; Hong et al.,
2020a,b; Li et al., 2021), and our work also follows
such paradigm. From the language side, Hong
et al. (2020b) segment the long instruction into
sub-instructions and annotate their corresponding
trajectories to supervise the agent to learn the align-
ments. From the image side, instead of using only
the ResNet visual features that easily over-fits on
the training environment, some recent work (Hu
et al., 2019; Qi et al., 2020a; Zhang et al., 2020)
use object representations to improve the general-
izability. Most importantly, one should bridge both
linguistic and visual semantics, and Ent-Rel (Hong
et al., 2020a) obtains the best results in the third
branch of work by building an implicit language-
visual entity relation graph to learn the connections
between the two modalities. Our work serves as a
new method in the third method category. We ex-
plicitly model the alignments between landmarks
and visual objects and model the spatial relations to
improve the spatial reasoning ability of the agent.

3 Method

3.1 Problem Description
In our study, the agent is given an instruction with
length l, denoted as w =< w1, w2, · · · , wl >.
At each time step t, the agent observes its
surrounding and receives 360-degree panoramic
views of images, which are denoted as vp =<
vp1 , v

p
2 , · · · , vp36 >.1 In those panoramic views,

there are q candidate navigable viewpoints which
the agent can navigate. We denote the viewpoints
as vc =< vc1, v

c
2, · · · , vcq >. The goal of the task is

to select the next viewpoint among the navigable
viewpoints for generating a trajectory that takes the
agent close to a goal destination. The agent termi-
nates when the current viewpoint is selected, or a
predefined maximum number of navigation steps
have been reached.

3.2 Base Model
We follow the modeling approach of (Tan et al.,
2019) which uses an Long short-term Memory
(LSTM) based sequence-to-sequence architecture.
The encoder is a bidirectional LSTM-RNN with an
embedding layer to obtain language representation,

112 headings and 3 elevations with 30 degree intervals.

denoted as, [s1, s2, · · · , sl] = BiLSTM(F (<
w1, w2, · · · , wl >), where F represents the em-
bedding function. The decoder is also an atten-
tive LSTM-RNN. At each decoding step t of nav-
igation, the agent first attends to the panoramic
image representation fp with the previous hid-
den context feature h̃t−1. The visual representa-
tion of ith panoramic image is denoted as fp

i =
[ResNet(vpi ); di], which is the concatenation of
the ResNet visual features ResNet(vpi ) and the
corresponding 128 dimensional direction encoding
di. The direction encoding for panoramic images
di is the replication of [cosθi, sinθi, cosϕi, sinϕi]
by 32 times, where θi and ϕi are the angles of head-
ing and elevation of ith panoramic image. The
attentive panoramic visual feature f̃p

t is computed
by f̃p

t = SoftAttn(Q = h̃t−1,K = fp
t , V = fp

t ),
and then is used as input to the LSTM of the de-
coder to represent the agent’s current state as,

ht = LSTM([at−1; f̃
p
t ], h̃t−1), (1)

where at−1 is the selected action direction of the
previous navigation step, and h̃t−1 is the hidden
context after considering the grounded objects. The
details will be discussed in the following sections.

3.3 Landmark-object alignment and spatial
relations modeling

The proposed model has been shown in Figure 2,
and we describe its four components as follows.

Spatial Configuration Representation
We split the long instructions into smaller sub-
instructions, called spatial configurations. A spatial
configuration contains fine-grained spatial roles,
such as motion indicator, landmark, spatial indica-
tor, and trajector (Dan et al., 2020). For example,
the instruction "go to the bathroom and stop" can
be split into two spatial configurations, which are
"go to the bathroom" and "stop". In the first config-
uration, "go" is the motion indicator; "bathroom" is
the landmark. In the second configuration, "stop"
is the motion indicator.

We follow Zhang et al. (2021) to split a navi-
gation instruction w into m spatial configurations
based on the verbs or verb phrases. Each spatial
configuration contains the flexible number of to-
kens and a [SEP] token as the last token. For-
mally, we re-organize the contextual embeddings
of tokens into the array of spatial configurations
representation C = [C1, C2 . . . Cm], where m is
the number of configurations. Each configuration
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LSTM

table window

Pass the table with chairs on the right 
and stop near the bookshelf.

C1: pass the table with 
chairs on the right; 
C2: stand near the window. chair

chair-right

%"!"#
"!

Spatial Configuration

Selected top-K Landmarks left
left

right

chair-left

chair-left

Initial heading

Landmark-Object Relation
Alignment

Panoramic Images

Instruction

Object Relation Alignment Module

chair-wall

chair-chair

Landmark-Object
Alignment

chair-chair
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Softattn.

&' (%&Aligned object
feature

Aligned relation 
feature

Candidate Images
#!'

))#!'
Concat.

Figure 2: Model Architecture. The model has four sub-modules, (1) Spatial Configuration (2) Select top-k
landmark selection (3) Landmark-Object alignment (4) Landmark-Object Spatial Relation relation alignment. The
text highlighted in green and yellow in (1) shows motion indicators and landmarks, respectively. The red arrow in
(4) is the initial agent heading (i.e. orientation).

is composed of tokens generated by the encoder,
denoted as [s1, s2, · · · sp], where sp is the embed-
ding of [SEP] token that contains the most com-
prehensive contextual information about the pre-
ceding words. This is because LSTM encoder is
used for propagating the information throughout
the sequence. Also, to enrich the spatial config-
uration representations, we consider the spatial
semantic elements. We extract the verbs or verb
phrases as motion indicators, sm, and nouns or
noun phrases as landmarks, sl. Then we apply
soft attention to each configuration representation
with the representations of the [SEP] token sp, the
motion indicator sm, and landmark sl separately.
The enriched spatial configuration is represented
as C̄ =

[
C̄1, C̄2 . . . C̄m

]
. In the base model, we

attend the current hidden context ht of the LSTM
to the spatial configuration features C to form the
weighted spatial configurations output C̃. This pro-
cess is defined as follows,

βt,j = softmax(C̄T
j Wcht), (2)

C̃t =
∑

j

βt,jCj , (3)

where β is the attended configuration weights, j
is the index of spatial configuration and Wc is the
learned weights.

Landmark Selection

Landmark phrases in instructions are split into
groups according to the spatial configuration. We
assign the attention weights of each spatial config-
uration to all its included landmarks. The attention
weights of landmarks are the same once they ap-
pear in the same configuration. Then we sort all
weighted landmarks and select the top-k important
ones for the agent to focus on at each navigation
step. Formally, each configuration contains n land-
marks, denoted as L =< L1, L2, · · · , Ln >. The
total number of landmarks is m ∗ n in m spatial
configurations. After sorting all landmarks based
on the spatial configuration weights β, we can ob-
tain top-k selected landmark representations, as
L̃ =< L̃1, L̃2, · · · , L̃k >. We obtain the best result
when k is 3 (see 5.1 for the experiment).

Landmark-Object Alignment

After selecting top-k landmarks, the next step is to
align them with the corresponding objects in the
image. We use Faster-RCNN to detect 36 objects
in each image, and the object representation of
the i-th image is Oi = [oi,1, oi,2, · · · , oi,36]. We
compute the cosine similarity scores between the
j-th landmark in top-k landmarks and all objects in
the i-th image, and select the object with the highest
similarity score as the most relevant object to the j-
th landmark, as Ôi,Lj = max(cos_sim(L̃j , Oi)).
The aligned objects in the i-th image are denoted as
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Ôi = [Ôi,L1 , Ôi,L2 , · · · , Ôi,Lk
]. We get k aligned

objects since we have top-k landmarks. Finally, we
concatenate the aligned object representations with
the candidate image features f c. The ith candidate
image is represented as fp

i = [ResNet(vci ); di].
After aligned with the corresponding objects, its
representation is updated as f̂ c

i = [f c
i ; Ô

c
i ].

Landmark-Object Spatial Relation Alignment
We model both textual spatial relations and visual
spatial relations. On the text side, there are mainly
three different cases of spatial relations described
in the navigation instructions.

• Case 1. Motions verbs, such as “turn left to
the table";

• Case 2. Relative spatial relationships between
agent and landmarks, such as “table on your
left";

• Case 3. Spatial relationships between land-
marks, such as “vase on the table".

This work mainly investigates the spatial relations
from the agent’s perspective, and we only model
the first two cases. We extract "landmark-relation"
pairs for each landmark in the instructions (based
on syntactic rules). For Case 1, we pair the spatial
relation with all landmarks in the configuration.
For example, “turn left to the table with chair",
the extracted pairs are {table-left} and {chair-left}.
For Case 2, we pair the relation with the related
landmark. For example, “go to the sofa on the
right.”, the extracted pair is {sofa-right}.

We encode the spatial relations for the landmarks
in six bits [left, right, front, back, up, down] as
the textual spatial relation encoding. Each bit is
set to 1 for the landmark if its paired relation has
the corresponding relation. On the image side, we
encode the same six spatial relations as the visual
spatial relation encoding. We obtain the spatial
relations of objects in the visual environment based
on the relative angle, the differences between the
agent’s initial direction and the navigable direction.
The spatial relations are the same for all objects if
they are in the same image.

Formally, for the obtained top-k land-
marks, we denote their spatial encoding as
RL̂ = [RL̂

1 , R
L̂
2 , · · · , RL̂

k ]. For the top-k objects
aligned with those landmarks, the spatial rela-
tions in i-th navigable image are represented
as RÔ

i = [RÔ
i,1, R

Ô
i,2, · · · , RÔ

i,k]. We compute

the inner product of the spatial encoding be-
tween top-k landmarks and the top-k aligned
objects to obtain the spatial similarity score
between the instruction and the i-th image, that
is, simR

i = RL̂ · RÔ
i . Then we concatenate

each aligned object spatial encoding with the
corresponding similarity score, denoted as Ôi,R =

[[RÔ
i,1; sim

R
i,1], [R

Ô
i,2; sim

R
i,2], · · · , [RÔ

i,k; sim
R
i,k]].

Finally, we further concatenate Ôi,R with the
candidate image features f̂ c

i which is concatenated
with the aligned object features , and i-th candidate

images features is updated as ˆ̂
f c
i = [f̂ c

i ; Ôi,g]. The
updated image representations are then used to
make action decisions for the agent.

3.4 Action Prediction
After modeling alignment between landmark to-
kens in the instruction and visual objects, the
panoramic image feature is enriched with the
aligned visual objects, and candidate image feature
is enriched with both visual objects and their spatial
relations. Then based on the backbone sequence
to sequence agent, the probability of moving to
the k-th navigable viewpoint pt(at,k) is calculated
as softmax of the alignment between the naviga-
ble viewpoint features and a context-aware hidden
output h̃t, which can be calculate as

h̃t = tanh(Wc̃h[C̃;ht]) (4)

pt(at,k) = softmax(
ˆ̂
f c
i Wĉh̃t) (5)

where Wc̃h and Wĉ are learnt weights.

3.5 Training and Inference
We follow the work of (Tan et al., 2019) for train-
ing the model with a mixture of Imitation Learn-
ing (IL) and Reinforcement Learning (RL). Imi-
tation Learning minimizes the cross-entropy loss
of the prediction and always samples the ground-
truth navigable viewpoint at each time step, and
Reinforcement Learning samples an action from
the action probability pt and learns from the re-
wards. During inference, we use a greedy search
with the highest probability of the next viewpoints
to generate the trajectory.

4 Experimental Setups

Dataset
We use Room-Room(R2R) dataset (Anderson et al.,
2018) that is built upon the Matterport3D dataset.
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Val Seen Val Unseen Test(Unseen)
Method SR ↑ SPL ↑ SDTW ↑ SR ↑ SPL↑ SDTW↑ SR ↑ SPL ↑

1 Speaker-Follower (Fried et al., 2018) 0.54 - - 0.27 - - - -
2 Env-Drop (Tan et al., 2019) 0.55 0.53 - 0.47 0.43 - - -
3 Env-Drop* (Tan et al., 2019) 0.63 0.60 0.53 0.50 0.48 0.37 0.50 0.47
4 SpC-NAV* (Zhang et al., 2021) 0.65 0.61 - 0.45 0.42 - 0.46 0.44
5 OAAM* (Qi et al., 2020a) 0.65 0.62 0.53 0.54 0.50 0.39 0.53 0.50
6 Entity-Relation (Hong et al., 2020a) 0.62 0.60 0.54 0.52 0.50 0.46 0.51 0.48
7 EXOR (ours) 0.60 0.58 0.53 0.52 0.49 0.46 0.49 0.46

Table 1: Experimental Results Comparing with Baseline Models (* means data augmentation).

Ent-Rel EXOR(ours)
SR↑ SPL↑ SR↑ SPL↑

1 Mask Scene 0.47 0.44 0.48 0.46
2 No Mask 0.52 0.50 0.50 0.48

Table 2: Results on Scene & Object Alignment.

Val Seen Val Unseen
Method SR↑ SPL↑ SDTW↑ SR↑ SPL↑ SDTW↑

1 Baseline 0.55 0.53 0.49 0.47 0.43 0.37
2 Lan-Obj 0.59 0.55 0.52 0.50 0.48 0.43
3 Lan-Obj+Rel 0.60 0.58 0.53 0.52 0.49 0.46
4 Lan-Obj+Rel_v 0.59 0.56 0.52 0.52 0.47 0.44

Table 3: Ablation Study.

R2R dataset contains 7198 paths and 21567 in-
structions with an average length of 29 words. The
whole dataset is partitioned into training, seen vali-
dation, unseen validation, and unseen test set. The
seen set shares the same visual environments with
the training set, while unseen sets contain different
environments.

Evaluation Metrics
We mainly report three evaluation metrics. (1) Suc-
cess Rate (SR): the percentage of the cases where
the predicted final position lays within 3 meters
from the goal location. (2) Success rate weighted
by normalized inverse Path Length (SPL) (Ander-
son et al., 2018): normalizes Success Rate by tra-
jectory length. It considers both the effectiveness
and efficiency of navigation performance. (3) the
Success weighted by normalized Dynamic Time
Warping (SDTW) (Ilharco et al., 2019): penalizes
deviations from the referenced path and also con-
siders the success rate.

Baseline Models
Env_Drop (Tan et al., 2019) proposes a neural
agent trained with the method of the mixture of
Imitation Learning and Reinforcement Learning.
Our model is built based on Env_Drop.
SpC-NAV (Zhang et al., 2021) models instructions
using spatial configurations and designs a state at-

tention to guarantee the sequential execution. Be-
sides, it uses a similarity score between landmarks
in the instruction and objects in the image to con-
trol this attention.
OAAM (Qi et al., 2020a) proposes an object-and-
action aware model to learn the object and action at-
tention separately, and also learns the object-vision
and action-orientation matching.
Ent-Rel (Hong et al., 2020a) proposes a language
and visual entity relation graph to exploit the con-
nection among the scene, objects, and direction
clues during navigation.

Implementation Details

We use PyTorch to implement our model2. We use
768 dimensional BERT-base (Devlin et al., 2018)
(frozen) as the embedding of the raw instruction,
and get its 512 dimensional contextual embedding
by LSTM. We encode the representations of the
motion indicator and the landmark in each config-
uration with 300 dimensional GloVe embedding
respectively, and concatenate them with the 512
dimensional configuration representation to obtain
the enriched configuration representation (1112 di-
mensional). We use 300 dimensional GloVe (Pen-
nington et al., 2014) embedding to represent mo-
tion indicator, landmark, and object label. The
optimizer is ADAM, and the learning rate is 1e− 4
with a batch size of 32.

5 Results and Analysis

Table 1 shows the performance of our model com-
pared with baselines and the competitive models of
the third branch of work as aforementioned in the
related work (section 2) on unseen validation and
test set. Our result is better than the baseline (Env-
Drop) even with their augmented data (Tan et al.,
2019) (Row#1 and Row#2), showing our improved
generalizability. We obtain significantly improved

2Our code is available at https://github.com/
HLR/Object-Grounding-for-VLN
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results compared to SpC-NAV which models the
semantic structure in language and image modal-
ities. Compared with OAAM, which learns the
object-vision matching with the augmented data,
we get better SDTW, indicating that our agent can
genuinely follow the instruction to the destination.
However, Ent-Rel achieves better results that ours,
for which we provide further analysis in the next
section.

5.1 The Number of Selected Landmarks

We experimentally validated the best number of im-
portant landmarks the agent should select. Figure 3
shows the SPL results with different k values on
validation seen and unseen dataset. We find that the
best result is obtained when k is 3. It also shows
that letting the agent focus on only one landmark
or all landmarks in the instruction will hinder their
navigation performance. Table4 shows the statis-
tics of the extracted spatial configurations in train
and validation seen/unseen dataset. On average,
each instruction can be split into about four spatial
configurations, and about 76% of spatial configu-
rations contain landmarks. In fact, selecting top 3
landmarks means that the agent mainly focuses on
the landmark-object alignment in 3 spatial configu-
rations at most at each navigation step.

Figure 3: SPL Results with Different K Values.

5.2 Scene & Object Alignment

Ent-Rel(Hong et al., 2020a) distinguishes the land-
marks which are scenes from objects. Scene to-
kens describe the location at a coarse level, such as
“bathroom", while object tokens describe the exact
landmarks, such as “table". To evaluate the agent’s
performance given the instructions with only object
tokens, we mask all scene tokens in the instructions
and evaluate on Ent-Rel and our model. Table 2
shows the experimental results in the unseen val-
idation set. Compared with Ent-Rel, our model
performs slightly better given the instruction with

only object tokens but worse with scene and object
tokens. One of the reasons for such a phenomenon
is that Faster-RCNN often fails to detect the scenes
correctly. For example, the aligned object labels in
the image for the landmark "bedroom" are “floor",
“roof", “wall", which are parts of the bedroom. The
explicitly modeling makes our model more sensi-
tive to the wrong alignments, which further impacts
the navigation performance.

5.3 Ablation Study
Table 3 shows the ablation study results. Row#1
is the baseline model. Row#2 (Lan-Obj) shows
that explicitly modeling important landmarks and
aligned objects improves the performance com-
pared to the baseline. Rel (row#3) is the result af-
ter modeling the spatial relation tokens describing
the relative relation between agent and landmark.
Rel_v (row#4) is the result after modeling the spa-
tial relations in motions. The improved SDTW
shows the modeling of spatial relations can help
the agent to follow the instructions. However, the
spatial terms directly describing the landmark are
more helpful than the spatial terms in motions.

5.4 Qualitative Analysis
Figure 4 shows qualitative analysis examples. The
selected k-important landmarks are “door”, “table”,
“painting” in Figure 4a. The agent makes a correct
decision by selecting the viewpoint that contains
the objects aligned with all three landmarks. Fig-
ure 4b shows an example after modeling spatial re-
lations. Although three navigable viewpoints have
the object "door", the agent selects the aligned ob-
ject with the “left” direction. Also, in Figure 5,
we provide an example to visualize the navigation
process using the selected landmark based on the
spatial configurations.

However, we find that relation alignments will
be helpful when the object alignments are done cor-
rectly. Figure 4c shows another example of land-
mark and object alignments. It contains two spatial
configurations: “walk past the kitchen towards the
dining room” and “stop before you reach the ta-
ble”. In the first configuration, the landmarks are
“kitchen’ and “dining room”; in the second config-
uration, the landmark is “table”. By merely using
the visual environment as a clue for viewpoint se-
lection, the agent will select the second navigable
viewpoint because of its detected “kitchen” view.

Nevertheless, based on the instruction semantics,
the “kitchen” is an object the agent passes by, and
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(a) Enter the “door” to the small “table” with a “painting” above.
v1: [door-door; table-table; painting-wall]
v2: [door-door; table-wall; painting-wall]
v3: [door-door; table-table; painting-picture]

(b) Head towards the “doors” on the left towards “kitchen”.
v1:left; v2:right; v3:right

(c) Walk past the “kitchen” towards the “dining room”. Stop before you reach the
“table”.
v1: [kitchen-room; dining room-room; table-table]
v2: [kitchen-kitchen; dining room-room; table-kitchen]

(d) Turn right toward “bathroom”. Stop at the top of the steps.
v1:left; v2:right;

Figure 4: Qualitative Examples. Blue bounding boxes
are the aligned objects. Green arrow is the selected
correct viewpoint. v is the viewpoint, the alignment
between landmarks and objects is [landmark-object].

the "table" is the final goal. In some cases, our
method can handle such situations by using the
selected landmarks. In this example, the model
allows the agent to focus on the aligned object
such as “table”, which appear later in the spatial
configuration. It increases the probability of select-
ing the first viewpoint. Also, we find that relation
alignments modeling will be helpful only when the
object alignments are done correctly. If the object
alignments fail, for example, when the agent makes
mistakes during navigation or the aligned objects
can not be detected, modeling relations can worsen
the situation. For instance, in Figure 4d, for both
navigable viewpoints, the object “bathroom” can
not be detected, and in this case, further modeling
relations leads to making wrong decisions.

Train Val Seen Val Unseen
1 Instructions 14025 1021 2349
2 Configs 58277 4301 9625

3 Configs with
Landmark 44053 3225 7303

4 Configs with
Relation 13543 1142 2566

Table 4: Statistics of Spatial Configuration

Go straight. Pass the piano and the pictures on the wall

Head down to the bedroom. Stop by bed.

step1
Viewpoints:

Instructions:

Go straight. Pass the piano and the pictures on the wall

Head down to the bedroom. Stop by bed.

step3

Viewpoints:

Instructions:

step4
Viewpoints:

Go straight. Pass the piano and the pictures on the wall

Head down to the bedroom. Stop by bed.Instructions:

step5
Viewpoints:

Go straight. Pass the piano and the pictures on the wall

Head down to the bedroom. Stop by bed.Instructions:

step2

Go straight. Pass the piano and the pictures on the wall

Head down to the bedroom. Stop by bed.
Instructions:

Viewpoints:

Figure 5: The green boxes are spatial configurations;
darker green means higher weights; yellow boxes are
the selected landmarks; the orange arrows are the path.

6 Conclusion

In this work, we propose a neural architecture to
solve the vision and language navigation problem.
Our method achieves the alignments between tex-
tual landmarks and visual objects. In particular, we
first select important landmarks based on spatial
configurations, and then encourage the agent to
concentrate on the relevant objects in the visual en-
vironment given the selected landmarks. Besides,
We are the first to explicitly model the spatial rela-
tions between the agent and the landmarks from the
agent’s perspective on both instruction and image
sides. Our experiments show that explicit object-
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landmark alignments and the perspective informa-
tion are important factors and lead to competitive
results compared with strong baselines. We have
conducted comprehensive analysis to support our
conclusion that explicitly modeling the objects and
spatial relation alignments improving the spatial
reasoning ability, generalizability and explainabil-
ity of the model. Though we do not achieve the
SOTA compared to transformer-based models that
rely on pre-training, we plan to apply the same
ideas on top of such recent models in the future.
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Abstract

We present NESL (the Neuro-Episodic Schema
Learner), an event schema learning system that
combines large language models, FrameNet
parsing, a powerful logical representation of
language, and a set of simple behavioral
schemas meant to bootstrap the learning pro-
cess. In lieu of a pre-made corpus of stories,
our dataset is a continuous feed of “situation
samples” from a pre-trained language model,
which are then parsed into FrameNet frames,
mapped into simple behavioral schemas, and
combined and generalized into complex, hier-
archical schemas for a variety of everyday sce-
narios. We show that careful sampling from the
language model can help emphasize stereotypi-
cal properties of situations and de-emphasize ir-
relevant details, and that the resulting schemas
specify situations more comprehensively than
those learned by other systems.

1 Introduction

Work on the task of event schema acquisition is
largely separable into two main camps: the sym-
bolic camp, with its structurally rich but infamously
brittle representations (Lebowitz, 1980; Norvig,
1987; Mooney, 1990); and the statistical camp,
which utilizes complex models and vast amounts
of data to produce large numbers of conceptually
varied event schemas at the cost of representa-
tional richness and control over what schemas are
learned (Chambers and Jurafsky, 2008; Pichotta
and Mooney, 2016; Wanzare et al., 2017).

In an attempt to bridge these camps together,
we introduce the Neuro-Episodic Schema Learner
(NESL), a composite pipeline model bringing to-
gether (1) a large, pre-trained language model; (2)
word vector embedding techniques; (3) a neural
FrameNet parsing and information extraction sys-
tem; (4) a formal logical semantic representation
of English; and (5) a hierarchical event schema
framework with extraordinary expressive power.

Neural Components

Language
Model

LOME

Stories

Symbolic Components

Episodic Logic 
Parser

FrameNet 
Frames

Logical
Forms

Protoschema 
Matcher

Protoschemas

Schema 
Composer

Single-story 
Schemas

Logical Formula 
Vectorizer

Schema Step 
Embeddings

Clustering & 
Formula 

Unification

Figure 1: A diagram of the NESL schema learning
pipeline. Peach-colored rounded rectangles represent
data, while gray rectangles represent NESL’s neural and
symbolic components.

Besides the enriched schema framework, a key
contribution of NESL is the idea of latent schema
sampling (LSS), in which a pre-trained language
model is induced, via prompt-engineering, into act-
ing as a distribution over stories, parameterized by
an implicit latent schema coarsely established by
the prompt. By finding commonalities between
multiple samples from this distribution and discard-
ing infrequent details, NESL attempts to generate
more accurate, less noisy schemas. In addition to
eliminating NESL’s need for its own training cor-
pus, LSS allows NESL to generate schemas for
user-provided situation descriptions on demand,
greatly increasing the control over what sorts of
event schemas are generated.

The remainder of this paper is organized into
a description of our chosen semantic representa-
tion and event schema framework (Section 2); a
description of each of NESL’s components (Sec-
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tion 3); and a description of future evaluation work
we intend to complete in the near future (Section 4).

2 Schema Model

2.1 Episodic Logic

We use Episodic Logic (EL) (Hwang and Schubert,
1993) as our semantic representation of stories and
of schema formulas. EL is an intensional semantic
representation that is both well-suited to inference
tasks and structurally similar in its surface form to
English. A unique feature of EL is its treatment
of episodes (events, situations) as first-class indi-
viduals, which may be characterized by arbitrary
formulas. For a formula ϕ and an episode denoted
by E, (ϕ ∗∗ E) expresses that E is characterized
by ϕ; i.e., E is an “episode of” ϕ occurring. In the
EL schema in Figure 2, for example, each formula
in the STEPS section implicitly characterizes an
episode (not displayed). The “header” formula at
the top of that figure also characterizes an episode
variable, ?E. EL can temporally relate episodes
using predicates implementing the Allen Interval
Algebra (Allen, 1983), allowing for complex and
hierarchical situation descriptions.

2.2 EL Schemas

Past approaches to statistical schema learning have
largely represented schemas as sequences of lex-
ical event tuples (Chambers and Jurafsky, 2008;
Pichotta and Mooney, 2016). Seeking a richer rep-
resentation, we adopt the rich, EL-based schema
framework presented by Lawley et al. (2021),
henceforth referred to in this paper as EL schemas.
EL schemas are section-based: the main two sec-
tions, STEPS and ROLES, enumerate the temporal
events (“steps”) that make up the schema, and the
type and relational constraints on the schema’s par-
ticipants, respectively (see Figure 2).

Designed as a suitable representation of human-
centric events, EL schemas can also specify precon-
ditions, postconditions, arbitrary temporal relation-
ships between steps, and the goals of individual
participants in the schema. All schema participants
are represented as typed variables, all sharing a
scope within the same schema, and formulas may
include any number of variables as arguments. EL
schemas also allow for recursive nesting: a schema
may be embedded as a step in another schema, and
implicitly expanded to check constraints or gener-
ate inferences.

ROLES

(?X_I LONELY.A)  

(?X_K MOTHER.N)  

(?X_K MOM.N)  

(?X_H SAD.A)  

(?X_J BOY.N)  

(?X_K (PERTAIN-TO ?X_J))

STEPS

The boy feels something.

(?X_J (FEEL.V ?X_H))  

The boy cries.

(?X_J CRY.1.V)  

The boy misses his mom.

(?X_J (MISS.V ?X_K))  

The boy feels something.

(?X_J (FEEL.V ?X_I))  

The boy wishes that his mother can talk to him.

(?X_J (WISH.V (THT (?X_J (CAN.MD ((ADV-A (TO.P ?X_K)) TALK.V))))))

Learned Schema (?X_I CRY.V) ** ?E 

 
 
 
 

Figure 2: A schema generated by NESL from a single
GPT-J 6B story sample. Note that the second step’s verb
predicate, CRY.1.V, contains a number: this identifies
it as the header of a unique protoschema instance that
was matched to the story.

For more information on the EL schema frame-
work, see (Lawley et al., 2019) and (Lawley et al.,
2021).

2.2.1 Protoschemas
The schema system we use here, due to Lawley
et al. (2021), is designed to acquire schemas in the
manner a very young child might. In his theory of
the origin of intelligence in children, Jean Piaget
hypothesized that event generalization, in babies,
“always proceeds from the undifferentiated schema
to the individual and to the general, combined and
complementary” (Piaget and Cook, 1952). While
we don’t assert any particular theory of child de-
velopment in this work, we follow the spirit of
Piaget’s claim and propose a system wherein com-
plex schemas are learned from simple, universal
ones.

As a way of modeling general actions a very
young child would be likely to understand, we start
with a handwritten corpus of several dozen “proto-
schemas”, such as “X helps Y with action A”, “X
eats food F to alleviate hunger”, etc.; the aim of
this schema learning framework is to first match
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ROLES

(?A BOY.N)  

(?A PERSON.N)  

(?B NOISE.N)  

(?C BETTER.N)  

(?C LONELY.N)  

(?C SAD.N)  

(?E FRIEND.N)  

(?E MOM.N)  

(?E PERSON.N)

STEPS

The person feels sad.

(?A FEEL.V ?C)  

The person misses someone.

(?A MISS.V ?E)  

The person cries noise.

(?A CRY.V ?B)

Learned Schema (?X NEW_SCHEMA.V) ** ?E 

Figure 3: A schema generated by NESL combining
multiple single-story schemas, such as the one shown
in Figure 2. Note that some details from the single-
story schema have been removed, and that variables
have multiple possible types, sometimes conflicting;
displaying these as certainty-weighted disjunctions is
intended for a future version of NESL.

these protoschemas to stories, and then build pro-
gressively more complicated schemas from them.

The schemas built using protoschema matches
may add complexity to them in two dimensions: the
compositional dimension, in which new schemas
temporally compose sequences of matched pro-
toschemas to describe a new situation; and the
taxonomic dimension, in which a protoschema is
conceptually narrowed by additional type and rela-
tional constraints on its participants, such as “eat-
ing something” being narrowed to “eating an apple
from a tree”.

Protoschemas provide a rich semantic basis for
understanding complex situations in terms of ba-
sic human behaviors, and this benefit is also re-
flected in an immediate practical convenience: pro-
toschemas can be employed as a way of canonical-
izing multiple distinct linguistic phrasings of the
same basic action type. For more information on
how we use protoschemas for this in NESL, see
Section 3.2.

3 Learning Pipeline

NESL learns schemas using a multi-step pipeline,
briefly described in order here, and further ex-
pounded upon in following subsections:

1. Using a procedure we call latent schema
sampling, N short stories are sampled from
the same topic-parameterized distribution de-
fined by a language model and a task-specific
prompt. (Section 3.1)

2. The N stories are then parsed into Episodic
Logical Form (ELF), the formal semantic rep-
resentation underlying the event schemas.

3. Simple protoschemas are then matched to
each of the N EL-parsed stories with the help
of LOME, a state-of-the-art neural FrameNet
parser, whose identified FrameNet frames are
mapped to corresponding EL protoschemas.
(Section 3.2)

4. For each of the N stories, all identified pro-
toschemas, and all unmatched ELF episodes
and type formulas from the story, are com-
posed into a single-story schema, in which
constants are abstracted to variables and type-
constrained, and events are related with a time
graph. (Section 3.3)

5. The N single-story schemas are generalized
into a single schema, incorporating common
details and excising specious, incidental infor-
mation from the entire set. (Section 3.4)

3.1 Latent Schema Sampling

Any story may have a generic schema formed from
it. However, stories often contain incidental details:
the sequence of going to school, taking an exam,
and waving hello to a friend should likely have its
third event discarded in a suitably general “school”
schema. We adopt the hypothesis that the language
model can generate stories according to a distri-
bution implicitly parameterized by one or more
latent schemas, from which it may deviate, but ac-
cording to which it abstractly “selects” subsequent
events. By inducing the language model into this
distribution via prompt-engineering, and then sam-
pling from it, we hypothesize that high-probability
events will occur frequently across samples, and
that incidental details will occur less frequently.
By generating schemas for each sampled individ-
ual story, and generalizing them based on shared
events and properties, we may approximate the lan-
guage model’s latent schemas and encode them
into interpretable Episodic Logic schemas.

We implement latent schema sampling (LSS)
with a sequence of two passes through the GPT-J
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6B language model (Wang and Komatsuzaki, 2021)
1, each pass performing a different task induced by
a “prompt-engineering” approach, in which the lan-
guage model is not fine-tuned, but instructed in nat-
ural language to perform a task on some input via
its context window. The two language model-based
tasks of LSS are described below, and illustrated in
the top half of Figure 4.

3.1.1 Topic Extraction
To ensure that the stories generated by LSS share
common and salient topics, and that the story topics
conform to a degree of conceptual simplicity that
will work well with the child-like protoschemas and
the early-stage EL parsing pipeline, we estimate
the set of topics from a known collection of simple
stories. We assemble a collection of short, five-
sentence stories by filtering the ROCStories dataset
(Mostafazadeh et al., 2016), taking the 500 stories
with the highest proportion of words shared with a
classic collection of child-level stories (McGuffey,
1901).

We created a few-shot task prompt for GPT-J
6B to extract one to three simple topics, such as

“going to a store” or “playing baseball”, for a given
story. We inserted each filtered ROCStory into this
prompt and saved the generated topics for use in
the next step.

3.1.2 Story Sampling
Adopting the hypothesis that story topics encode
latent schemas instantiated by the story, we created
a second few-shot prompt for the task of story gen-
eration given an extracted topic. For each topic
generated in the previous step, we sample N sto-
ries from the language model with a temperature
setting of 0.4 and a repetition penalty of 0.11. Sam-
pled stories are filtered through a blacklist of 375
inappropriate words (Inflianskas, 2019), and stories
caught in the content filter are “re-rolled” until N
content-appropriate stories have been generated.

3.2 Protoschema Matching as FrameNet
Parsing

To begin forming schemas, we bootstrap by match-
ing general behavioral protoschemas to the stories.
Protoschema matching is complicated by several
issues, including the large number of actions that
may evoke a general protoschema (e.g. walking,

1We chose GPT-J 6B due to its number of parameters; at
the time of this work, we believe it to be the largest publicly-
downloadable auto-regressive language model.

Topic Summary 
Prompt Language 

Model Story 
Generation 

Prompt

Story Topics

Single ROCstory

LM 
Story 1 … LM 

Story N

Schema 
Generator

…Schema 1 Schema N

Schema 
Generalizer

General 
Schema

Figure 4: A diagram of the Latent Schema Sampling
(LSS) procedure used to generate stories from a fixed-
topic distribution.

running, driving, riding, and flying are all kinds
of self-motion), and the large number of phras-
ings that express the same action. To help address
these concerns, we first observe that the FrameNet
project (Baker et al., 1998) contains many concep-
tual frames with protoschema analogs, such as self-
motion, ingestion, and possession frames. While
FrameNet frames lack hierarchical, compositional,
and formal internal semantics, and are thus not suit-
able for the mechanistic inferences these schemas
are meant to enable, these frames may be mapped
to analogous protoschemas as a way to leverage
existing work on FrameNet frame parsing.

Using LOME (Xia et al., 2021), a state-of-the-
art neural FrameNet parsing system, we identify
FrameNet frames in sampled stories. The invoking
actions and roles of the frames are given as spans
of text, which we reduce to single tokens using
a dependency parser, selecting the first token in
each span with a NSUBJ, DOBJ, or POBJ tag. The
token indices are then aligned with those in the
Episodic Logic parser to identify individuals in the
logical domain whose type predicates were derived
from those tokens. Finally, the frame, now with
EL domain individuals as its roles, is mapped to
a corresponding protoschema with hand-written
mapping rules.

This FrameNet-based protoschema matching
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Coreference 
Resolver

ELF Semantic 
Parser

FrameNet Span 
Finding (LOME)

Dependency 
Parser

Token Index 
Alignment

“Jenny’s mom went 
to Jenny’s friend’s 

house.”

(MOM.SK PERTAIN-TO JENNY)
(FRIEND.SK PERTAIN-TO JENNY)
(HOUSE.SK PERTAIN-TO FRIEND.SK)
(MOM.SK ((ADV-A (TO.P HOUSE.SK)) GO.V)

MOTION “went” 
  THEME “Jenny’s mom”
  GOAL  “her friend’s house”

MOTION “went” 
  THEME “mom”
  GOAL  “house”

MOTION “went” -> GO.V
  THEME “mom” -> MOM.SK
  GOAL  “house” -> HOUSE.SK

“Jenny’s mom went 
to her friend’s 

house.”

Figure 5: A presentation of the process by which FrameNet parsing with LOME is used for protoschema matching.
The coreference resolver is provided by AllenNLP (Gardner et al., 2017), and the dependency parser is provided by
spaCy (Honnibal and Montani, 2017).

process is illustrated, with an example, in Figure 5.

3.3 Single-Story Schema Formation
After parsing a story into Episodic Logic and using
LOME to find protoschema matches in the story,
we create a single-story schema to encapsulate the
story’s events and participants. This schema will
be general in that the story’s specific individuals
will be abstracted to variables, and also in that the
story’s exact verbiage will be “normalized” into the
semantic representations of EL and protoschemas.
However, the schema will be non-general in that
all of the story’s details, without regard to what
“usually” happens in the latent schema that gen-
erated it, will be kept, and only removed during
multi-schema generalization (see Section 3.4).

The process of single-story schema generation
is fairly simple:

1. The event formulae of the story are ordered
as steps in a schema. If any of those steps
matched to protoschemas, we instead substi-
tute the header of that protoschema as the
step; the full specification of the nested proto-
schema will be output separately, and may be
freely expanded.

2. All individual constants that are arguments to
any of the verbs of those steps are replaced
with variables.

3. All type and relational constraints on those
variables are extracted from the EL parse of
the story, as well as from any recursively
nested protoschema steps, and enumerated in
the ROLES section of the schema.

4. A verbalization of the schema, generated with
the GPT-2 model described in Section 3.5,
is fed to a GPT-J 6B model with a prompt
designed for single-sentence story summaries.
The summary sentence is then parsed back
into EL, and its arguments are aligned, based
on type, with participants in the schema. This
formula is then used as the “header” episode
of the schema, as seen in the generated header
of the schema in Figure 2.

3.4 Multi-Story Schema Generalization
Once N stories have been sampled and N cor-
responding schemas obtained from them, those
schemas must be generalized into a single schema.
The remainder of this section describes the four
main steps of the multi-schema generalization pro-
cess:

1. Schema step clustering: similar steps of each
of the N un-merged schemas are general-
ized together using vector embeddings. (Sec-
tions 3.4.1 and 3.4.2)

2. Step argument co-reference resolution: the
verb arguments of the events of each gen-
eral step are linked to one another based on
co-reference information in the N un-merged
schemas. (Section 3.4.3)

3. Temporal step ordering: the general schema’s
steps are put into a partial “happens-before”
order. (Section 3.4.4)

4. Occurrence frequency filtering: infrequent de-
tails across the N un-merged schemas are as-
sumed to be unimportant to the latent schema
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( ?x eat.v ?y )

(?x boy.n)
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Figure 6: The procedure for embedding EL formulas
as vectors. word2vec embeddings for each argument’s
lexical predicates are averaged together to form vector
representations of each argument. These are concate-
nated, in subject-verb-object order, with verb predicates,
to form vector representations of event formulas. Here,
⊕ denotes an element-wise vector mean operation.

and discarded from the general schema ap-
proximating it. (Section 3.4.5)

Figure 3 shows a schema generalized from
multiple single-story schemas, such as the one
shown in Figure 2.

3.4.1 Logical Formula Vector Embeddings
When generalizing several schemas sampled from
the same “latent schema”, we would like to com-
bine and generalize non-identical, but functionally
similar, steps, e.g. “the boy eats cake” and “the girl
eats pie”.

To do this, we define a function va(a, S), which
takes an argument symbol a and a schema S and
returns the element-wise mean of the word vectors
of all lexical predicates in S applied to argument a:

va(a, S) =
⊕

i

[vw(predi(S, a))]

We also define a function vs(ϕ, S), which takes a
step formula ϕ and a schema S and returns vector
concatenation of ϕ’s verb predicate and the vector
representations of each of ϕ’s arguments:

vs(ϕ, S) = vw(ϕverb) ++ ++
i
[va(ϕargi , S)]

Figure 6 illustrates this vectorization process using
three “argument type” formulas as the values of the
pred function. The lexical word vector function,

vw, is implemented by word2vec. ⊕ and ++ refer
to element-wise mean and vector concatenation
operations, respectively.

3.4.2 Formula Vector Clustering

After vector embeddings have been created for the
EL formulas for each step of each of the N sam-
pled schemas, we form clusters of similar formula
embeddings. Because the vector elements for the
formula’s verb and for each argument are indepen-
dent, clusters can correlate not only similar actions,
like “boy draws tree” and “boy sketches tree”, but
also similar argument types, like “boy eats cake”
and “girl eats pie”. When suitably similar steps
have been clustered from across each of the sam-
pled schemas, the clusters form the basis for steps
in a new, generalized schema.

Given N schemas, each generated from one of
N sampled stories, we denote the sets of step
vectors for schema 0 < i < N as STi =
{s⃗i,0, ..., s⃗i,M}. For each step vector s⃗i,a, we con-
struct a list L of each step vector in each other
schema, s⃗j ̸=i,b, and sort the elements of L in de-
scending order according to their cosine similar-
ity with s⃗i,a. Steps suitably similar to s⃗i,a are
defined as the set of all elements Li≤k where
k = argmax

k
[sim(Lk) − sim(Lk+1)], that is, all

steps prior to the largest drop in cosine similarity
values in the ordered list.

Once each step s has an associated cluster Ls

of suitably similar steps, symmetricity is enforced
by merging all similarity clusters with shared ele-
ments: each Ls1 and Ls2 are set to Ls1 ∪Ls2 if and
only if Ls1∩Ls2 ̸= ∅. When this is done, each final
cluster Ls represents one step in the generalized
schema.

3.4.3 Schema Slot Co-Reference Resolution

After forming clusters of similar steps across N
schemas, we would like to use these clusters as
abstract steps in the merged, general schema. How-
ever, some clustered steps may not have specific
instances in some schemas, even if they should ul-
timately share arguments with other steps in those
schemas. Furthermore, specious co-reference may
occur in LM-generated stories or in imperfect ELF
parses, e.g., a person incorrectly being equivo-
cated with their dog in the parsed logical domain;
we would like to exclude such co-references from
our merged, general schema on the basis of their
(hoped-for) infrequency among the N samples.
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A baker sold a cake to a boy.
The boy ate it.

A baker baked a pie.

He sold the pie to a girl.

A girl ate it.

A baker baked a cookie.
A man ate it.

X0 action Y0

boy eat cake

girl eat pie

man eat cookie

X1 action Y1

baker bake pie

baker bake cookie

X2 action Y2 Z2

baker sell cake boy

baker sell pie girl

Cluster C

X1 X2

Cluster A

X0 Z2

Cluster B

Y0
Y1

Y2

Figure 7: An illustration of the multigraph argument co-reference technique used to merge multiple sampled schemas
into one general schema. Each action-argument table represents a cluster of steps obtained by the vector clustering
approach in Section 3.4.2. Lines between pairs of argument columns correspond to an argument co-reference in one
specific story instance. Each story instance is assigned a unique line pattern, color, and font, for easy identification.
The transitive closures of the multigraph’s edge relation form the clusters seen at the bottom of the figure; these
clusters will form the variables of the eventual merged, generalized schema, whose abstracted steps will be, in
no particular order, (A eat B), (C bake B), and (C sell B A). Note that this final sell action is only
present in two of the three story instances.

To address these concerns, we perform argument
co-reference resolution across step clusters by con-
structing a multigraph G = (V,E) where V is
the set of all unique argument positions across all
clusters, and a single edge between cluster argu-
ments argi ∈ V and argj ∈ V signifies that, in
at least one of the N sampled schemas, formulas
from each cluster existed and shared an argument
value in those two positions. One such edge be-
tween any two vertices may exist for each schema
being merged.

After construction, the multigraph is reduced to
a standard graph, G′ = (V ′, E′) with weighted
edges: the set of all edges Ei,j between each pair
of vertices argi and argj is converted to a single
edge E′

i,j ∈ E′ whose weight is given by:

WE′
i,j

=
|Ei,j |

|S(argi) ∩ S(argj)|
where S(vx) is the set of all schemas with a step
found in the step cluster for which argx is an
argument. Informally, this weight is the ratio of
the number of schemas in which the argument co-
reference was detected to the number of schemas
in which it could have been detected. To remove

specious, infrequent co-references, E′ is filtered to
remove edges with WE′

i,j
< 0.25.

Argument clusters are formed by the transitive
closure of the edge relation given by E′, and each
argument cluster then forms a final variable for
the merged, general schema. The types for each
of the final variables are taken from the union of
all possible types across all schema instances, and
each type predication is assigned a certainty score
proportional to its frequency across all N schemas.

An example of the multigraph and final argument
clusters generated by this process is illustrated in
Figure 7.

3.4.4 Temporal Sorting of Schema Steps
Once steps from specific schema instances have
been clustered into general steps, and shared argu-
ments have been created across these general steps,
we must finally derive their temporal order in the
general schema. Episodes in Episodic Logic may
be continuous intervals, and EL schemas support
complex temporal relations between the episodes
characterized by their steps. The schema step inter-
vals, however, are slightly simplified from the full
semantics of EL, and represented as a “time graph”
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specifying before- and after-relationships between
the start and end times of each episode.

Much like the argument co-reference resolution
done in Section 3.4.3, we solve this with a tem-
poral multi-graph. To build the graph, we further
simplify the temporal model by assuming that step
episodes never overlap and are defined solely by
their start times. This assumption is desirable for its
simplicity and computational efficiency, and suit-
able because the current version of the EL parser
makes the same assumption. However, this algo-
rithm could, in theory, be extended to operate on
both start and end times.

We define the temporal multi-graph GT =
(V T , ET ) such that the vertices V T are the start
times of each step in the merged, general schema,
and, for all steps i and j in the general schema,
one edge exists between each V T

i and V T
j for each

occurrence of an instance of V T
i happening before

an instance of V T
j in the same un-merged schema.

Similarly to how edges were assigned weights in
the argument co-reference graph based on the ratio
of the number of edges to the number of possible
edges, we say that, in the general schema, step i
happens before step j if and only if:

|ET
i,j | >

|S(i) ∩ S(j)|
2

Informally, step i happens before step j if and only
if the majority of un-merged schemas that con-
tain both also have a happens-before edge between
them.

3.4.5 Occurrence Frequency Filtering
Recall that the idea behind latent schema sampling
is to filter out events that are unimportant to a
core schema by exploiting their low frequency of
generation by a large language model. Therefore,
to finish our general schema, we must finally re-
move general steps that do not occur in enough of
the N sampled schemas to distinguish themselves
from “noise”. We currently define this threshold
for “enough” as N

3 : at least one third of sampled
schemas must contain an instance of a general step
for the step to remain in the general schema.

3.5 Verbalization and Rendering

Once finalized, we post-process learned general
schemas for human readability. To verbalize the
formal ELF representations of the schema steps,
we first apply rule-based transductions to serialize

the formula’s lexical EL predicates into a pseudo-
English representation. Then, using a pre-trained,
fine-tuned, 774M-parameter GPT-2 model (Rad-
ford et al., 2019), we convert these pseudo-English
symbol sequences into proper English. Using
the Huggingface Transformers library (Wolf et al.,
2020), we fine-tuned this GPT-2 model on 1,200
pairs, manually annotated by a research assistant,
for this task 2.

After verbalizing the steps, we render the general
schemas into an HTML representation for human
review, automatically color-coding the variables
with maximum mutual contrast for enhanced read-
ability. An example of a verbalized and rendered
schema is shown in Figure 2.

4 Future Evaluation

This project is a work in progress; although NESL
can generate one general schema every 10 minutes,
and has generated several hundred to date, qualita-
tive evaluation of the generated schemas has not yet
been performed. Imminently, we intend to carry out
two human-judged studies: one evaluating the qual-
ity of inferences generated by the learned schemas
when given unseen stories, and another evaluating
the quality of the schemas themselves.

Logical schemas enable consistent, structured,
and interpretable inferences about novel text, by
matching pieces of the text to pieces of the schema,
replacing schema variables with entities from the
story, and treating other formulas in the schema
that use those newly-filled variables as inferences.
It is crucial that we demonstrate the inferential ca-
pacity of these learned schemas, and as future work,
we will be sourcing suitable inference datasets, de-
signing a means of presenting inferences to human
judges, and collecting quality evaluations.

In addition to inferences, we would like to eval-
uate whether the schemas we obtain are both top-
ically cohesive, i.e., focused descriptions of one
kind of situation; and interesting, i.e., capable of
generating useful and novel inferences about situa-
tions, rather than obvious or redundant ones.

Using our GPT-2 verbalization model and
schema rendering software, described in Sec-
tion 3.5, to make our schemas and inferences read-
able to untrained human judges, we intend to imme-
diately move forward with the design and execution

2Our work on GPT-2 for formula verbalization is prelim-
inary; as we continue this work, a more robust annotation
protocol may be required, employing multiple annotators.
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of these quality evaluation studies to complete the
work.

5 Conclusion

We have described NESL, a hybrid neural and
formal-logical schema learning system with which
we aim to combine a richly structured schema rep-
resentation, a human learning-inspired approach to
schema acquisition, the linguistically flexible sen-
tence understanding characteristic of neural NLP
systems, and the large amount of knowledge con-
tained in large language models.

By bringing a large and varied number of com-
ponents from across the literature to bear, we have
shown that general, semantically rich, and seem-
ingly sensical schemas may be extracted from large
language models and represented interpretably. In
the immediate future, we also plan to demonstrate
that these schemas are useful for inference tasks.

References
James F. Allen. 1983. Maintaining knowledge about

temporal intervals. Commun. ACM, 26(11):832–843.

Collin F. Baker, Charles J. Fillmore, and John B. Lowe.
1998. The berkeley framenet project. In Proceedings
of the 36th Annual Meeting of the Association for
Computational Linguistics and 17th International
Conference on Computational Linguistics - Volume
1, ACL ’98/COLING ’98, pages 86–90. Association
for Computational Linguistics.

Nathanael Chambers and Dan Jurafsky. 2008. Unsuper-
vised learning of narrative event chains. Proceedings
of ACL-08: HLT, pages 789–797.

Matt Gardner, Joel Grus, Mark Neumann, Oyvind
Tafjord, Pradeep Dasigi, Nelson F. Liu, Matthew
Peters, Michael Schmitz, and Luke S. Zettlemoyer.
2017. Allennlp: A deep semantic natural language
processing platform.

Matthew Honnibal and Ines Montani. 2017. spaCy 2:
Natural language understanding with Bloom embed-
dings, convolutional neural networks and incremental
parsing. To appear.

Chung Hee Hwang and Lenhart K Schubert. 1993.
Episodic logic: A situational logic for natural lan-
guage processing. Situation Theory and its Applica-
tions, 3:303–338.

Roman Inflianskas. 2019. profanity-filter: A
python library for detecting and filtering pro-
fanity. https://github.com/rominf/
profanity-filter/blob/master/
profanity_filter/data/en_profane_
words.txt.

Lane Lawley, Gene L. Kim, and Lenhart Schubert. 2019.
Towards natural language story understanding with
rich logical schemas. In Proceedings of the IWCS
workshop on Natural Language and Computer Sci-
ence.

Lane Lawley, Benjamin Kuehnert, and Lenhart K. Schu-
bert. 2021. Learning general event schemas with
episodic logic. In NALOMA.

Michael Lebowitz. 1980. Generalization and Mem-
ory in an Integrated Understanding System. Ph.D.
thesis, Yale University, New Haven, CT, USA.
AAI8109800.

William Holmes McGuffey. 1901. The New McGuffey
First Reader. American Book Company.

Raymond J Mooney. 1990. A general explanation-
based learning mechanism and its application to nar-
rative understanding. Morgan Kaufmann.

Nasrin Mostafazadeh, Nathanael Chambers, Xiaodong
He, Devi Parikh, Dhruv Batra, Lucy Vanderwende,
Pushmeet Kohli, and James Allen. 2016. A corpus
and cloze evaluation for deeper understanding of
commonsense stories. In Proceedings of the 2016
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 839–849, San Diego,
California. Association for Computational Linguis-
tics.

Peter Norvig. 1987. Inference in text understanding. In
AAAI, pages 561–565.

Jean Piaget and Margaret Cook. 1952. The origins
of intelligence in children, volume 8. International
Universities Press New York.

Karl Pichotta and Raymond J Mooney. 2016. Learning
statistical scripts with lstm recurrent neural networks.
In Thirtieth AAAI Conference on Artificial Intelli-
gence.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Ben Wang and Aran Komatsuzaki. 2021. GPT-
J-6B: A 6 Billion Parameter Autoregressive
Language Model. https://github.com/
kingoflolz/mesh-transformer-jax.

Lilian Wanzare, Alessandra Zarcone, Stefan Thater, and
Manfred Pinkal. 2017. Inducing script structure from
crowdsourced event descriptions via semi-supervised
clustering. In Proceedings of the 2nd Workshop on
Linking Models of Lexical, Sentential and Discourse-
level Semantics, pages 1–11.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le

340



Scao, Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander M. Rush. 2020. Transform-
ers: State-of-the-art natural language processing. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Patrick Xia, Guanghui Qin, Siddharth Vashishtha,
Yunmo Chen, Tongfei Chen, Chandler May, Craig
Harman, Kyle Rawlins, Aaron Steven White, and
Benjamin Van Durme. 2021. LOME: Large ontology
multilingual extraction. In Proceedings of the 16th
Conference of the European Chapter of the Associa-
tion for Computational Linguistics: System Demon-
strations, pages 149–159, Online. Association for
Computational Linguistics.

341



A Learned Schema Examples

The following are additional examples of schemas
learned by NESL.

A.1 From the prompt “going fishing”

LeaUQed ScKePa (?; NE:BSCHEMA.V) ** ?E
ROLES

(?B 6EAF22D.1)  

(?G 3E5621.1)  

(?K F22D.1)  

(?L 6833E5.1)  

(?0 L27.1)  

STEPS

The SeUVRn cRRkV Whe Vea fRRd fRU Whe fRRd.

(?G ((AD9-A (F25.3 ?K)) COOK.V) ?B)  

The SeUVRn cleanV Whe Vea fRRd.

(?G CLEANBPROTO.V ?B)  

The SeUVRn cRRkV Whe Vea fRRd.

(?G COOK.V ?B)  

The SeUVRn eaWV Vea fRRd.

(?G EATBPROTO.V ?B)  

The SeUVRn gReV VRmeZheUe.

(?G GO.V)  

The SeUVRn caWcheV Whe Vea fRRd.

(?G CATCHBPROTO.V ?B)  

The SeUVRn caWcheV Whe lRW.

(?G CATCH.V ?0)  

GOALS

The SeUVRn ZanWV Whe Vea fRRd WR be nRW diUW\.

(?G (:ANT.V (7HA7 (127 (?B DI57<.A)))))  

The SeUVRn ZanWV WR nRW be hXngU\.

(?G (:ANT.V (7HA7 (127 (?G H81G5<.A)))))  

A.2 From the prompt “going to the library”

LeaUQed ScKePa (?; NE:B6CHEMA.9) ** ?E
ROLES

(?A B22K.1)  

(?E 3E5621.1)  

(?I LIB5A5<.1)  

(?J E17I7<.1)  

(?L B2<.1)  

(?L2 L2CA7I21.1)  

(?L; L2CA7I21.1)  

(?7 E9E17.1)  

STEPS

The peUVon lookV foU a book.

(?E ((AD9-A (F25.3 ?A)) LOOKBP5O7O.9))  

The peUVon UeadV a book aboXW an eYenW.

(?E ((AD9-A (AB287.3 ?7)) 5EADBP5O7O.9) ?A)  

The peUVon likeV Whe book.

(?E LIKEBP5O7O.9 ?A)  

The peUVon ÀndV a book.

(?E FINDBP5O7O.9 ?A)  

The peUVon goeV Wo Whe libUaU\.

(?E ((AD9-A (F520.3 ?J)) GOBP5O7O.9) ?I)  

The peUVon UeadV a book.

(?E 5EAD.9 ?A)  

GOALS

The peUVon ZanWV Wo Ànd Whe book.

(?E (:AN7.9 (KA (FIND.9 ?A))))  

The peUVon ZanWV Wo poVVeVV a book.

(?E (:AN7.9 (KA (PO66E66.9 ?A))))  

The peUVon ZanWV Wo be aW Whe libUaU\.

(?E (:AN7.9 (KA ((AD9-A (A7.3 ?I)) BE.9))))  
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A.3 From the prompt “mailing a letter”

LeaUQed ScKePa (?; NE:BSCHEMA.9) ** ?E
ROLES

(?A 3E5621.1)  

(?B D2C80E17.1)  

(?C /E77E5.1)  

(?D E19E/23E.1)  

(?F /2CA7I21.1)  

(?G 67A03.1)  

(?J 3A3E5.1)  

STEPS

The SeUVon ZUiWeV on Whe SaSeU.

(?A ((AD9-A (21.3 ?J)) :RITE.9) ?A)  

The SeUVon SXWV Whe leWWeU in Whe enYeloSe.

(?A PUTBPROTO.9 ?C ?D)  

The SeUVon ZUiWeV a leWWeU Wo Whe SeUVon.

(?A ((AD9-A (72.3 ?F)) MAIL.9) ?C)  

The SeUVon SXWV Whe VWamS on Whe enYeloSe.

(?A PUTBPROTO.9 ?G ?D)  

The SeUVon ZUiWeV on Whe enYeloSe.

(?A ((AD9-A (21.3 ?D)) :RITE.9))  

The SeUVon ZUiWeV Wo Whe SeUVon.

(?A MAIL.9 ?A)  

The SeUVon'V docXmenW iV fUom Whem.

(?B ((AD9-A (F520.3 ?A)) BE.9))  

GOALS

The SeUVon ZanWV Whe leWWeU Wo be aW Whe enYeloSe.

(?A (:ANT.9 (7HA7 (?C (A7.3 ?D)))))  

The SeUVon ZanWV Whe VWamS Wo be aW Whe enYeloSe.

(?A (:ANT.9 (7HA7 (?G (A7.3 ?D)))))  

B Language Model Prompts

B.1 Story Topic Summarization Prompt

This is the story generation prompt provided to
GPT-J to obtain latent story schemas, or topics,
from given stories. The format string at the end, %s,

is replaced with the input story, and a completion
from the language model is truncated at a newline
to obtain a topic. The prompt stories and latent
schemas were written by research assistants and
chosen based on subjective downstream schema
acquisition quality on a development set of schema
topics estimated from ROCstories.�
Story:

Tom loved playing baseball.
He had a big game.
He was up to hit.
He hit a long drive.
He made a run and won the game.

Core story schemas:

playing a game
playing baseball
winning a game
--------
Story:

The man took a shower.
The hot water went cold.
He still had soap in his hair.
He washed his hair quickly.
He was shivering when he got out of the

shower.

Core story schemas:

bathing
taking a shower
--------
Story:

Oran bought binoculars.
He took them outside.
He saw birds.
He watched them.
They became his friends.

Core story schemas:

watching animals
using binoculars
buying something
--------
Story:

Emma went to school.
She studied math.
She ate lunch.
Her teacher gave her a lot of homework.
Later, she went home.

Core story schemas:

going to school
studying something
--------
Story:

A farmer got up in the morning.
He put his boots on.
He went outside.
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He milked the cow.
He went back to bed.

Core story schemas:

farming
milking a cow
--------
Story:

My son is a little child.
He ran outside to play.
His friend was out there with him.
They played together with sticks.
My son came in from outside.

Core story schemas:

children playing
playing with a friend
playing outside
--------
Story:

I went to my door yesterday.
I saw there was a new book.
It came right to me.
I was pretty happy about that.
I couldn’t wait to read it.

Core story schemas:
getting mail
reading a book
--------
Story:

The hedge started to grow.
Spring came around.
The hedge started to bud flowers.
The flowers grew.
The roses were very beautiful.

Core story schemas:

springtime
plants growing
--------
Story:

%s

Core story schemas:� �
B.2 Story Generation Prompt
This is the story generation prompt provided to
GPT-J to obtain a story given a topic as input. The
format string at the end, %s, is replaced with the
input topic, and a completion from the language
model is truncated at a double-newline to obtain
a story. The prompt stories were written by re-
search assistants and chosen based on subjective
downstream schema acquisition quality on a de-
velopment set of schema topics estimated from
ROCstories.�

Stories about baseball:

Tom loved playing baseball.
He had a big game.
He was up to hit.
He hit a long drive.
He made a run and won the game.

Bob went to see a baseball game.
The players had nice bats.
The players swung at the ball.
One player hit the ball.
He hit a home run.

Jenny was playing baseball.
She took a bat and got ready.
She swung her bat at the ball.
She hit the ball.
She won the game.

--------
Stories about showers:

The man took a shower.
The hot water went cold.
He still had soap in his hair.
He washed his hair quickly.
He was shivering when he got out of the

shower.

Jenny took a shower.
She used soap to wash her body.
She washed her hair.
The water was warm.
She dried off with a towel.

Jack was dirty.
He needed to get clean.
He took a long shower.
The shower water was very hot.
He used plenty of soap.

--------
Stories about plants:

Jessie loved plants.
She had plants in her apartment.
She watered the plants every day.
Her favorite plant was her fern.
Jessie wanted to buy more plants.

Alan bought a plant at the store.
The plant died.
He bought another plant.
He watered it.
It didn’t die.

Plants are usually green.
Some plants are different colors.
Sometimes people keep plants in their

houses.
They water those plants.
People like plants.

--------
Stories about school:

Emma went to school.
She studied math.
She ate lunch.
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Her teacher gave her a lot of homework.
Later, she went home.

Jason was at school.
He ate lunch in the cafeteria.
After lunch, he went to class.
His teacher taught him about math.
He went home and ate dinner.

Abhishek loved to go to school.
His teacher gave him fun homework.
He finished his homework and gave it

back to the teacher.
The teacher said Abhishek did a good job

.
The teacher gave him a good grade.

Stories about %s:� �
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Abstract
Detoxification is a task of generating text in po-
lite style while preserving meaning and fluency
of the original toxic text. Existing detoxifica-
tion methods are designed to work in one exact
language. This work investigates multilingual
and cross-lingual detoxification and the behav-
ior of large multilingual models like in this
setting. Unlike previous works we aim to make
large language models able to perform detoxifi-
cation without direct fine-tuning in given lan-
guage. Experiments show that multilingual
models are capable of performing multilingual
style transfer. However, models are not able to
perform cross-lingual detoxification and direct
fine-tuning on exact language is inevitable.

1 Introduction

The task of Textual Style Transfer (Textual Style
Transfer) can be viewed as a task where cer-
tain properties of text are being modified while
rest retain the same1. In this work we focus
on detoxification textual style transfer (dos San-
tos et al., 2018a; Dementieva et al., 2021a). It
can be formulated as follows: given two text
corpora DX = {x1, x2, . . . xn} and DY =
{y1, y2, . . . , yn}, where X , Y - are two sets of all
possible text in styles sX , sY respectively, we want
to build a model fθ : X → Y , such that the prob-
ability p(ygen|x, sX , sY ) of transferring the style
sX of given text x (by generation ygen) to the style
sY is maximized (where sX and sY are toxic and
non-toxic styles respectively).

Some examples of detoxification presented in
Table 1.

Textual style transfer gained a lot of attention
with a rise of deep learning-based NLP methods.
Given that, Textual Style Transfer has now a lot of
specific subtasks ranging from formality style trans-
fer (Rao and Tetreault, 2018; Yao and Yu, 2021)

1Hereinafter the data-driven definition of style is used.
Therefore, we call style a characteristic of given dataset that
differs from a general dataset (Jin et al., 2020).

and simplification of domain-specific texts (De-
varaj et al., 2021; Maddela et al., 2021) to emotion
modification (Sharma et al., 2021) and detoxifica-
tion (debiasing) (Li et al., 2021; Dementieva et al.,
2021a).

There exist a variety of Textual Style Transfer
methods: from totally supervised methods (Wang
et al., 2019b; Zhang et al., 2020; Dementieva et al.,
2021a) which require a parallel text corpus for train-
ing to unsupervised (Shen et al., 2017; Wang et al.,
2019a; Xu et al., 2021) that are designed to work
without any parallel data. The latter sub-field of re-
search is more popular nowadays due to the scarcity
of parallel text data for Textual Style Transfer. On
the other hand, if we address Textual Style Trans-
fer task as a Machine Translation task we get a
significant performance boost (Prabhumoye et al.,
2018).

The task of detoxification, in which we focus
in this work, is relatively new. First work on
detoxification was a sequence-to-sequence collabo-
rative classifier, attention and the cycle consistency
loss (dos Santos et al., 2018b). A recent work by
(Laugier et al., 2021) introduces self-supervised
model based on T5 model (Raffel et al., 2020) with
a denoising and cyclic auto-encoder loss.

Both these methods are unsupervised which is an
advantage but it comes from the major current prob-
lem of the textual style transfer. There is a lack of
parallel data for Textual Style Transfer since there
exist only few parallel datasets for English (Rao
and Tetreault, 2018) and some other languages (Bri-
akou et al., 2021). When it comes to detoxification
there are only two parallel detoxification corpora
available now and they both appeared only last year
(Dementieva et al., 2021b). Most state-of-the-art
methods rely on large amounts of text data which is
often available for some well-researched languages
like English but lacking for other languages almost
entirely. Therefore, it is important to study whether
cross-lingual (or at least multilingual) detoxifica-
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Source text Target text
What the f*ck is your problem? What is your problem?

This whole article is bullshit. This article is not good.
Yeah, this clowns gonna make alberta great again! Yeah, this gonna make Alberta great again

Table 1: Examples of desired detoxification results.

tion is possible.
Multilingual language models such as mBART

(Liu et al., 2020), mT5 (Xue et al., 2021) have
recently become available. This work explores the
possibility of multilingual and cross-lingual textual
style transfer (Textual Style Transfer) using such
large multilingual language models. We test the
hypothesis that modern large text-to-text models
are able to generalize ability of style transfer across
languages.

Our contributions can be summarized as fol-
lows2:

1. We introduce a novel study of multilingual
textual style transfer and conduct experiments
with several multilingual language models and
evaluate their performance.

2. We conduct cross-lingual Textual Style Trans-
fer experiments to investigate whether multi-
lingual language models are able to perform
Textual Style Transfer without fine-tuning on
a specific language.

2 Methodology

We formulate the task of supervised Textual Style
Transfer as a sequence-to-sequence NMT task and
fine-tune multilingual language models to translate
from "toxic" to "polite" language.

2.1 Datasets

In this work we use two datasets for Russian and
English languages. Aggregated information about
datasets could be found in Table 2, examples from
datasets can be found in A.1 and A.2.

Language Train Dev Test
English 18777 988 671
Russian 5058 1000 1000

Table 2: Aggregated datasets statistics.

2All code is available online: https://github.
com/skoltech-nlp/multilingual_detox

Russian data We use detoxification dataset3

which consists of 5058 training sentences, 1000
validation sentences and 1000 test sentences.

English data We use ParaDetox (Dementieva
et al., 2021b) dataset. It consists of 19766 toxic
sentences and their polite paraphrases. This data is
split into training and validation as 95% for training
and 5% for validation. For testing we use a set of
671 toxic sentences.

2.2 Experimental Setup

We perform a series of experiments on detoxifica-
tion using parallel data for English and Russian.
We train models in two different setups: multilin-
gual and cross-lingual.

Multilingual setup In this setup we train models
on data containing both English and Russian texts
and then compare their performance with baselines
trained on these languages solely.

Cross-lingual setup In cross-lingual setup we
test the hypothesis that models are able to perform
detoxification without explicit fine-tuning on exact
language. We fine-tune models on English and
Russian separately and then test their performance.

2.3 Models

Scaling language models to many languages has
become an emerging topic of interest recently (De-
vlin et al., 2019; Tan et al., 2019; Conneau and
Lample, 2019; Conneau et al., 2020). We adopt
several multilingual models to textual style transfer
in our work.

Baselines We use two detoxification methods as
baselines in this work - Delete method which sim-
ply deletes toxic words in the sentence according
to the vocabulary of toxic words and CondBERT.
The latter approach works in usual masked-LM
setup by masking toxic words and replacing them
with non-toxic ones. This approach was first pro-
posed by (Wu et al., 2019) as a data augmentation

3https://github.com/skoltech-nlp/
russe_detox_2022
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method and then adopted to detoxification by (Dale
et al., 2021).

mT5 mT5 (Xue et al., 2021) is a multilingual
version of T5 (Raffel et al., 2020) - a text-to-text
transformer model, which was trained on many
downstream tasks. mT5 replicates T5 training but
now it is trained on more than 100 languages.

mBART mBART (Liu et al., 2020) is a multi-
lingual variation of BART (Lewis et al., 2020) -
denoising autoencoder built with a sequence-to-
sequence model. mBART is trained on mono-
lingual corpora across many languages. We
adopt mBART in sequence-to-sequence detoxifica-
tion task via fine-tuning on parallel detoxification
dataset.

2.4 Evaluation metrics
Unlike other NLP tasks, one metric is not enough
to benchmark the quality of style transfer. The
ideal Textual Style Transfer model output should
preserve the original content of the text, change the
style of the original text to target and the generated
text also should be grammatically correct. We
follow Dale et al. (2021) approach in Textual Style
Transfer evaluation.

2.4.1 Content Preservation
Russian Content preservation score (SIM) is
evaluated as a cosine similarity of LaBSE (Feng
et al., 2020) sentence embeddings. The model is
slightly different from the original one, only En-
glish and Russian embeddings are left.

English Similarity (SIM) between the embed-
ding of the original sentence and the generated one
is calculated using the model presented by Wiet-
ing et al. (2019). Being is trained on paraphrase
pairs extracted from ParaNMT corpus (Wieting and
Gimpel, 2018), this model’s training objective is
to select embeddings such that the similarity of
embeddings of paraphrases is higher than the simi-
larity between sentences that are not paraphrases.

2.4.2 Grammatic and language quality
(fluency)

Russian We measure fluency (FL) with a BERT-
based classifier (Devlin et al., 2019) trained to dis-
tinguish real texts from corrupted ones. The model
was trained on Russian texts and their corrupted
(random word replacement, word deletion and in-
sertion, word shuffling etc.) versions. Fluency is
calculated as a difference between the probabilities

of being corrupted for source and target sentences.
The logic behind using difference is that we ensure
that the generated sentence is not worse than the
original one in terms of fluency.

English We measure fluency (FL) as a percent-
age of fluent sentences evaluated by the RoBERTa-
based4 (Liu et al., 2019) classifier of linguistic ac-
ceptability trained on CoLA (Warstadt et al., 2019)
dataset.

2.4.3 Style transfer accuracy
Russian Style transfer accuracy (STA) is evalu-
ated with a BERT-based (Devlin et al., 2019) tox-
icity classifier5 fine-tuned from RuBERT Conver-
sational. This classifier was additionally trained
on Russian Language Toxic Comments dataset col-
lected from 2ch.hk and Toxic Russian Comments
dataset collected from ok.ru.

English Style transfer accuracy (STA) is calcu-
lated with a style classifier - RoBERTa-based (Liu
et al., 2019) model trained on the union of three
Jigsaw datasets (Jigsaw, 2018). The sentence is
considered toxic when the classifier confidence is
above 0.8. The classifier reaches the AUC-ROC of
0.98 and F1-score of 0.76.

2.4.4 Joint metric
Aforementioned metrics must be properly com-
bined to get one Joint metric to evaluate Textual
Style Transfer. We follow Krishna et al. (2020) and
calculate J as an average of products of sentence-
level fluency, style transfer accuracy, and content
preservation:

J =
1

n

n∑

i=1

STA(xi) · SIM(xi) · FL(xi) (1)

2.5 Training

There is a variety of versions of large multilingual
models available. In this work we use small and
base versions of mT56,7 (Xue et al., 2021) and large
version of mBART8 (Liu et al., 2020).

4https://huggingface.co/roberta-large
5https://huggingface.co/

SkolkovoInstitute/russian_toxicity_
classifier

6https://huggingface.co/google/
mt5-base

7https://huggingface.co/google/
mt5-large

8https://huggingface.co/facebook/
mbart-large-50-many-to-many-mmt
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STA↑ SIM↑ FL↑ J↑ STA↑ SIM↑ FL↑ J↑
Russian English

Baselines
Delete 0.532 0.875 0.834 0.364 0.81 0.93 0.64 0.46
condBERT 0.819 0.778 0.744 0.422 0.98 0.77 0.82 0.62

Multilingual Setup
mT5 base 0.772 0.676 0.795 0.430 0.833 0.826 0.830 0.556
mT5 small 0.745 0.705 0.794 0.428 0.826 0.841 0.763 0.513
mT5 base∗ 0.773 0.676 0.795 0.430 0.893 0.787 0.942 0.657
mBART 5000 0.685 0.778 0.841 0.449 0.887 0.889 0.866 0.640

Cross-lingual
mT5 base ENG 0.838 0.276 0.506 0.115 0.860 0.834 0.833 0.587
mT5 base RUS 0.676 0.794 0.846 0.454 0.906 0.365 0.696 0.171
mT5 small ENG 0.805 0.225 0.430 0.077 0.844 0.858 0.826 0.591
mT5 small RUS 0.559 0.822 0.817 0.363 0.776 0.521 0.535 0.169
mBART 3000 RUS 0.699 0.778 0.858 0.475 0.547 0.778 0.888 0.299
mBART 5000 RUS 0.724 0.746 0.827 0.457 0.806 0.484 0.864 0.242
mBART 10000 RUS 0.718 0.735 0.827 0.448 0.517 0.840 0.903 0.342
mBART 3000 ENG 0.923 0.395 0.552 0.202 0.842 0.856 0.876 0.617
mBART 5000 ENG 0.900 0.299 0.591 0.160 0.857 0.840 0.873 0.616

Table 3: Results of evaluation of Textual Style Transfer models. Numbers in bold indicate the best results. ↑
describes the higher the better metric. Results of unsuccessful Textual Style Transfer depicted as italic. ENG and
RUS depicts the data model have been trained on (English and Russian data respectively). mT5 base∗ was trained
on all English and Russian data available (datasets were not equalized).

Multilingual training In multilingual training
setup we fine-tune models using both English and
Russian data. We use Adam (Kingma and Ba,
2015) optimizer for fine-tuning with different learn-
ing rates ranging from 1 · 10−3 to 5 · 10−5 with
linear learning rate scheduling. We also test dif-
ferent number of warmup steps from 0 to 1000.
We equalize Russian and English data for train-
ing and use 10000 toxic sentences and their polite
paraphrases for multilingual training in total. We
train mT5 models for 40 thousand iterations9 with
a batch size of 8. We fine-tune mBART (Liu et al.,
2020) for 1000, 3000, 5000 and 10000 iterations
with batch size of 8.

Cross-lingual training In cross-lingual training
setup we fine-tune models using only one dataset,
e.g.: we fine-tune model on English data and check
performance on both English and Russian data.
Fine-tuning procedure was left the same: 40000
iterations for mT5 models and 1000, 3000, 5000
and 10000 iterations for the mBART.

9According to (Xue et al., 2021) mT5 was not fine-tuned
on downstream tasks as the original T5 model. Therefore,
model requires more fine-tuning iterations for Textual Style
Transfer.

3 Results & Discussion

Table 3 shows the best scores of both multilin-
gual and cross-lingual experiments. In multilingual
setup mBART performs better than baselines and
mT5 for both English and Russian. Note that the
table shows only the best results of the models. It
is also notable that for mT5 increased training size
for English data provides better metrics for English
while keeping metrics for Russian almost the same.
We also depict some of the generated detoxified
sentences in the Table 3 in the part B of Appendix.

As for cross-lingual style transfer, results are
negative. None of the models have coped with the
task of cross-lingual Textual Style Transfer. That
means that models produce the same or almost the
same sentences for the language on which they
were not fine-tuned so that toxicity is not elimi-
nated. We provide only some scores here in the
Table 6 for reference.

Despite the fact that our hypothesis about the
possibility of cross-language detoxification was not
confirmed, the presence of multilingual models pre-
trained in many languages gives every reason to
believe that even with a small amount of parallel
data, training models for detoxification is possible.
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A recent work by (Lai et al., 2022) shows that
cross-lingual formality Textual Style Transfer is
possible. Lai et al. (2022) achieve this on XFOR-
MAL dataset (Briakou et al., 2021) by adding
language-specific adapters in the vanilla mBART
architecture (Liu et al., 2020) - two feed-forward
layers with residual connection and layer normal-
ization (Bapna and Firat, 2019; Houlsby et al.,
2019).

We follow the original training procedure de-
scribed by Lai et al. (2022) by training adapters
for English and Russian separately on 5 million
sentences from News Crawl dataset10. We use
batch size of 16 and 200 thousand training iter-
ations. We also then train cross-attentions on our
parallel detoxifcation data in the same way. How-
ever, models tend to duplicate input text without
any detoxification. Thus, while the exact same
original setup did not work for detoxification, more
parameter search and optimization could lead to
more acceptable results and we consider the ap-
proach by Lai et al. (2022) as a promising direction
of a future work on multilingual and cross-lingual
detoxification.

4 Conclusion

In this work we have tested the hypothesis that
multilingual language models are capable of per-
forming cross-lingual and multilingual detoxifica-
tion. In the multilingual setup we experimentally
show that reformulating detoxification (Textual
Style Transfer) as a NMT task boosts performance
of the models given enough parallel data for train-
ing. We beat simple (Delete method) and more
strong (condBERT) baselines in a number of met-
rics. Based on our experiments, we can assume that
it is possible to fine-tune multilingual models in
any of the 100 languages in which they were origi-
nally trained. This opens up great opportunities for
detoxification in unpopular languages.

However, our hypothesis that multilingual lan-
guage models are capable of cross-lingual detoxifi-
cation was proven to be false. We suggest that the
reason for this is not a lack of data, but the model’s
inability to capture the pattern between toxic and
non-toxic text and transfer it to another language by
itself. This means that the problem of cross-lingual
textual style transfer is still open and needs more
investigation.

10https://data.statmt.org/news-crawl/
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A Data

A.1 English Dataset
Table 4 shows examples of sentence pairs from ParaDatex parallel detoxification corpora. There are
several polite paraphrases for each toxic sentence in this dataset (Dementieva et al., 2021b), this is a
consequence of the way these parallel data are collected. Leaving only one paraphrase for one source
sentence we could get 6000 unique pairs of toxic sentences and their polite paraphrases. However, in this
work we use data as is.

Original my computer is broken and my phone too!! wtf is this devil sh*t???
Detoxed My computer is broken and my phone too! So disappointed!

My computer is broken and my phone too, what is this?
Both my computer and phone are broken.

Original sh*t is crazy around here
Detoxed It is crazy around here.

Stuff is crazy around here.
Something is crazy around here.

Original delete the page and shut up
Detoxed Delete the page and stay silent.

Please delete the page.
Delete the page.

Original massive and sustained public pressure is the only way to get these b*stards to act.
Detoxed Massive and sustained public pressure is the only way to get them to act.

Massive and sustained pressure is the only way to get these people to act.
Original f*ck you taking credit for some sh*t i wanted to do
Detoxed You are taking credit for something I wanted to do

You’re taking credit fro something i wanted to do.
Original you gotta admit that was f*ckin hilarious though!
Detoxed you got to admit that was very hilarious though!

you gotta admit that was hilarious though!

Table 4: Example sentences from ParaDetox parallel detoxification corpora. Sentence in red is original (toxic)
sentence, below are its polite paraphrases. Note that for the purpose of an overall correctness explicit words are
masked with "*".
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A.2 Russian Dataset
Table 5 shows examples from Russian parallel detoxification corpus.

Original Х*рню всякую пишут,из-за этого лайка.v Долбо**изм.
Translation They write all sorts of bullshit, because of this like. Stupidity.
Detoxed Чушь всякую пишут, из- за этого лайка.
Translation They write all sorts of nonsense, because of this like.
Original А нахрена тогда ты здесь это писал?
Translation Why the f*ck did you post it here?
Detoxed Зачем ты это писал?
Translation Why did you post it?
Original Е*анутые. Отобрать оружие и лодку и штраф тысяч 500
Translation F*ckers. Take away weapons, boat and give a fine of 500 thousand.
Detoxed Отобрать оружие и лодку и штраф тысяч 500.
Translation Take away weapons, boat and give a fine of 500 thousand.
Original Не поверишь, сколько е**нутых на планете.
Translation You won’t believe how many f*cked up people are on the planet.
Detoxed Не поверишь сколько таких на планете.
Translation You won’t believe how many people like that are there on the planet.

Table 5: Example sentences from Russian parallel detoxification corpora. Sentence in red is original (toxic) sentence,
below are its polite paraphrases.

B Generation Examples

Table 6 contains detoxification examples for different models. It is notable that in some cases models
generate almost the same results. This can be explained by the similarity of the training procedure and the
fact that the reference answer was the same.

Original After all its hard to get a job if you’re stupid.
mBART 5000 ENG After all its hard to get a job if you don’t understand.
mBART 3000 ENG After all its hard to get a job if you are not smart.
mT5 base (multilingual) It’s hard to get a job if you don’t know.
Original Fuck minimum security, put him in real prison.
mBART 5000 ENG Put him in a real prison with minimum security.
mBART 3000 ENG I don’t care about minimum security, put him in real prison.
mT5 base I don’t care about minimum security, put him in real prison.
Original Sure he should get punished ,but three f*cking years?
mBART 5000 ENG Sure he should get punished, but three years?
mBART 3000 ENG He should get punished, but three years?
mT5 base He’d get punished, but three years?
Paraphrase Что у этих людей в башке!? походу насрато!
Translation What’s going on in these people’s heads!? It looks like shit!
mBART 5000 ENG Что у этих людей в голове!? Походу бесчеловечно.
mBART 3000 ENG Что у этих людей в голове? Походу ненормально!
mT5 base походу этих людей!? походу!

Table 6: Some detoxified sentences produced by our fine-tuned models. Gray text refers to the original sentence,
below are its paraphrases.
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Abstract

Knowledge Graphs (KGs) are symbolically
structured storages of facts. The KG em-
bedding contains concise data used in NLP
tasks requiring implicit information about the
real world. Furthermore, the size of KGs
that may be useful in actual NLP assignments
is enormous, and creating embedding over it
has memory cost issues. We represent KG
as a 3rd-order binary tensor and move be-
yond the standard CP decomposition (Hitch-
cock, 1927) by using a data-specific general-
ized version of it (Hong et al., 2020). The
generalization of the standard CP-ALS algo-
rithm allows obtaining optimization gradients
without a backpropagation mechanism. It re-
duces the memory needed in training while
providing computational benefits. We propose
a MEKER, a memory-efficient KG embedding
model, which yields SOTA-comparable per-
formance on link prediction tasks and KG-
based Question Answering.

1 Introduction

Natural Language Processing (NLP) models have
taken a big step forward over the past few years.
For instance, language models can generate flu-
ent human-like text without any problems. How-
ever, some applications like question answering
and recommendation systems need correct, pre-
cise, and trustworthy answers.

For this goal, it is appropriate to leverage
knowledge graphs (KG) (Bollacker et al., 2008;
Rebele et al., 2016) a structured repository of es-
sential facts about the real world. For convenience,
the knowledge graph can be represented as a set of
triples. A triple is two entities bound with rela-
tion and describes the fact. It takes the forms of
⟨es, r, eo⟩, where es and eo represent objects and
subject entities, respectively.

For efficient use of information from KG, there
is a need for the low-dimensional embedding of

graph entities and relations. KG embedding mod-
els usually use a standard Neural Networks (NN)
backward mechanism for parameter tuning, dupli-
cating its memory consumption. Hence, existing
approaches to embedding learning have substan-
tial memory requirements and can be deployed
only on small datasets under a single GPU card.
Processing large KGs appropriate for the custom
downstream task is a challenge.

There are several libraries designed to solve this
problem. Framework LibKGE (Ruffinelli et al.,
2020) allows the processing of large datasets by
using sparse embedding layers. Despite the mem-
ory saving, sparse embedding has several limita-
tions - for example, in the PyTorch library, they are
not compatible with several optimizers. PyTorch-
BigGraph (Lerer et al., 2019) operates with large
knowledge graphs by dividing them into partitions
- distributed subgraphs. Subgraphs need a place
for storing, embedding models need modifications
to work with partitions and perform poorly.

The main contribution of our paper is a
memory-efficient approach to learning Knowledge
Graph embeddings MEKER (Memory Efficient
Knowledge Embedding Representation). It allows
more efficient KG embedding learning, maintain-
ing comparable performance to state-of-the-art
models. MEKER leverages generalized canonical
Polyadic (CP) decomposition (Hong et al., 2020),
which allows a better approximation of given data
and analytical computation of the parameters’ gra-
dient. MEKER is evaluated on a link predic-
tion task using several standard datasets and large
datasets based on Wikidata. Experiments show
that MEKER achieves highly competitive results
on these two tasks. To demonstrate downstream
usability, we create a Knowledge Base Question
Answering system Text2Graph and use embed-
dings in it. The system with MEKER embeddings
performs better as compared to other KG embed-
dings, such as PTBG (Lerer et al., 2019).
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Figure 1: The CP decomposition scheme in the case of entity and relation KG embedding in MEKER. This is a
binary 3-dimensional tensor X of knowledge graph facts that introduces objects, relations, and subjects indexes
along the three axes. B contains relation embedding, while A represents entity vectors for the subject and object
simultaneously. Λ is the diagonal core tensor, identity in our case.

2 Related Work

There are three types of approaches for learn-
ing KG embedding: distance-based, tensor-based,
and deep learning-based models. The first group
is based on the assumption of translation invari-
ance in the embedding vector space. In model
TransE (Bordes et al., 2013) relations are repre-
sented as connection vectors between entity rep-
resentations. TransH (Wang et al., 2014) implies
relation as a hyperplane onto which entities are be-
ing projected. QuatE (Zhang et al., 2019) extends
the idea with hypercomplex space and represents
entities as embeddings with four imaginary com-
ponents and relations as rotations in the space.

Tensor-based models usually represent triples
as a binary tensor and look for embedding matri-
ces as factorization products. RESCAL (Nickel
et al., 2011) employs tensor factorization in the
manner of DEDICOM (Harshman et al., 1982),
which decomposes each tensor slice along the re-
lationship axis. DistMult (Yang et al., 2015)
adapts this approach by restricting the relation em-
bedding matrix to diagonal. On the one hand,
it reduces the number of relation parameters, on
the other hand, it losses the possibility of describ-
ing asymmetric relations. The ComplEX (Trouil-
lon et al., 2016) represents the object and subject
variants of a single entity as complex conjugates
vectors. It combines tensor-based and translation-
based approaches and solves the asymmetric prob-
lem. TuckER (Balazevic et al., 2019) uses Tucker
decomposition (Tucker, 1966c) for finding repre-
sentation of a knowledge graph elements. This
work can also be considered a generalization of
several previous link prediction methods.

Standard Canonical Polyadic (CP) (Hitchcock,
1927) decomposition in the link prediction task

does not show outstanding performance (Trouil-
lon et al., 2017). Several papers address this
problem by improving the CP decomposition ap-
proach. SimplIE (Kazemi and Poole, 2018) states
that low performance is due to different represen-
tations of subject and object entity and deploys CP
decomposition with dependently learning of sub-
jects and objects matrices. CP-N3 (Lacroix et al.,
2018) highlights the statement that the Frobenius
norm regularizing is not fit for tensors of order
more than 3 (Cheng et al., 2016) and proposes a
Nuclear p-norm instead of it. Our approach also
uses CP decomposition with enhancement. We
consider remark from SimplIE and set the ob-
ject and subject representations of one entity to be
equals. At the same time, inside the local step of
the CP decomposition algorithm, the matrices of
subjects and objects consist of different elements
and are different (see Appendix). In contradistinc-
tion to CP-N3, we do not employ a regularizer to
improve training but change the objective. Instead
of squared error, we use logistic loss, which is ap-
propriate for one-hot data. We abandon the gra-
dient calculation through the computational graph
and count gradient analytically, which makes the
training process less resource-demanding.

Approaches based on Deep Learning convo-
lutions and attention mechanisms ConvE, GAT,
GAAT (Dettmers et al., 2017; Nathani et al., 2019;
Wang et al., 2020) achieve high performance in
link prediction. Besides, they have their disad-
vantages - it necessitate more time and memory
resources than other types of models and usually
needs pre-training.
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3 MEKER: Memory Efficient
Knowledge Embedding Representation

Our approach to entity embeddings relies on
generalized CP tensor decomposition (Hitchcock,
1927). Namely, R-rank CP decomposition ap-
proximates an N-dimensional tensor as a sum of
R outer products of N vectors. Every product can
also be viewed as a rank-1 tensor. This approx-
imation is described by the following formula:
X ≈ M = [|A,B,C|], where X ∈ RI×J×K is
original data andM ∈ RI×J×K is its approxima-
tion. Factors have the following shape A ∈ RI×R,
B ∈ RJ×R, C ∈ RK×R. The scheme of CP de-
composition applied to the KG elements represen-
tation task is in Figure 1. We set matrix A equal
to matrix C and simultaneously corresponding to
subject and object entities.

3.1 Generalization of Canonical Poliyadic
(CP) Decomposition

Following the determination of the approxima-
tion type, the next task is to find the parameters
of the factor matrices that best match the ground
truth data. Battaglino et al. (2018); Dunlavy et al.
(2011) describe the most widely used CP decom-
position algorithm, CP-ALS. The update rules for
the factor matrices are derived by alternating be-
tween minimizing squared error (MSE) loss. Hong
et al. (2020) demonstrates that MSE corresponds
to Gaussian data and is a particular case of a more
general solution for an exponential family of dis-
tributions. In general, the construction of optimal
factors originates the minimization problem:

minF (M;X ) ≡
∑

i∈Ω
f(xi,mi),

f(x,m) ≡ log p(x|l−1(m)),

(1)

where f - elementwise loss function, Ω - set of in-
dices of known elements of X , l - link function, xi
and mi - the i-th elements of X and M, respec-
tively. We also introduce Y - the tensor of deriva-
tives of the elementwise loss with the same size as
X and being filled by zeros for i ̸∈ Ω. The data
in the sparse one-hot triple tensor has a Bernoulli
distribution. The link function for Bernoulli is
l(ρ) = log(ρ/(1 − ρ)) and associated probability
is ρ = exp(m)(1 − exp(m)) so the loss function

and elements of the Y are defines as follows:

f(xi,mi) = log(1 + expmi)− ximi,

y(xi,mi) =
∂f(xi,mi)

∂mi
=

expmi

1 + expmi
− xi.

(2)
Hong et al. (2020) derives partial derivatives of

F w.r.t. factor matrices and presents gradients G
of it in a form similar to standard CP matrix update
formulas:

GA = Y[0](B ⊙ C)T †,

GB = Y[1](A⊙ C)T †,

GC = Y[2](A⊙B)T †,

(3)

where † - pseudo-inverse matrix, ⊙ - Khartri-Rao
operator, X[n] - mode-n matricization, a reshaping
of tensor X along the n axis. The importance of
representation (3) is that we can calculate the gra-
dients via an essential tensor operation called the
matricized tensor times Khatri-Rao product (MT-
TKRP), implemented and optimized in most pro-
gramming languages. Algorithm 1 describes the
procedure for computing factor matrices gradi-
ents (3) in a Bernoulli distribution case (2).

3.2 Implementation Details
We use PyTorch (Paszke et al., 2019) to implement
the MEKER model. We set the object and subject
factors equal and correspond to matrix A for the
decomposition of the one-hot KG triplet tensor.
Sparse natural and reconstructed tensors are stored
in Coordinate Format as a set of triplets (COO).
We combine actual triples and sampled negative
examples in batches, and process them. The corre-
sponding pieces from the ground-truth tensor and
current factor matrices are cut out for each batch.
Then the pieces are sent to Algorithm 1 for the cal-
culation of gradients of the matrix elements with
appropriate indexes. Algorithm 2 describes the
pseudocode of factorization KG tensor using GCP
gradients.

We train the MEKER model using Bayesian
search optimization to obtain the optimal training
parameters. We use the Wandb.ai tool (Biewald,
2020) for experiment tracking and visualizations.
The complete sets of tunable hyperparameters are
in the Appendix. Table 2 shows the best combina-
tions of it for the proposed datasets.

3.3 Baselines
As a comparison, we deploy related link predic-
tion approaches that meet the following criteria:
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1) it should learn KG embedding from scratch 2) it
should report high performance 3) the correspond-
ing paper should provide a runnable code. We
use the Tucker, Hyper, ConvKB, and QuatE im-
plementations from their respective repositories.
For TransE, DistMult, ComplEx, and ConvE, we
use LibKGE (Ruffinelli et al., 2020) library with
the best parameter setting for reproducing every
model. We run each model five times for each ob-
served value and provide means and sample stan-
dard deviation.

Algorithm 1 GCP GRAD Bernuilli
Input: X ▷ Ground Truth Tensor
A, B, C ▷ Factor matrices

Output: F , GA, GB , GC

M = {A,B,C} ▷ Model Restored tensor

F =
∑

i f(xi,mi) =
∑

log(1 + emi )− ximi ▷ Loss

Y =
∑

i
δf(xi,mi)

δmi
= ▷ Derivative tensor

=
∑

1

1+e(−mi)
− xi

GA = Y[0](B ⊙ C)T†. ▷ Element-wise gradient for A
GB = Y[1](A⊙ C)T† ▷ Element-wise gradient for B
GC = Y[2](A⊙B)T† ▷ Element-wise gradient for C

Algorithm 2 Factorization of the KG tensor using
GCP gradients
Input: X ▷ Ground Truth Tensor
Triplets ▷ List of triplets
LR ▷ learning rate
R ▷ Desired size of embeddings
N ▷ Number of epoch

Output: A, B ▷ Updated factor matrices

Initialize factor matrices A ∈ RR×ne , B ∈ RR×nr

for i = 1 . . . N do
for [indsa, indsb, indsc] in Triplets do
Xbatch = X [indsa, indsb, indsc]
ga, gb, gc, loss =

GCP_GRAD(Xbatch, A[indsa], B[indsb], A[indsc])
A[indsa].grad = ga
B[indsb].grad = gb
A[indsc].grad = gc
UPDATE(A, B, LR)

4 Experiments on Standard Link
Prediction Datasets

4.1 Experimental settings
The Link prediction task estimates the quality of
KG embedding. Link prediction is a classification
predicting if triple over graph elements is true or
not. The scoring function Φ(es, rel, eo) returns the
probability of constructing a true triple. We test

our model on this task using standard Link predic-
tion datasets.

FB15k237 (Toutanova and Chen, 2015) is a
dataset based on the FB15k237 adapted Freebase
subset, which contains triples with the most men-
tioned entities. FB15k237 devised the method of
selecting the most frequent relations and then fil-
tering inversions from test and valid parts. The
WN18RR (Bordes et al., 2013) version of WN18
is devoid of inverse relations. WN18 is a WordNet
database that contains the senses of words as well
as the lexical relationships between them. Table 3
shows the number of entities, relations, and train-
valid-test partitions for each dataset used in the
proposed work. As an evaluation, we obtain com-
plementary candidates from the entity set for each
pair entity-relation from each test triple and esti-
mate the probability score of the received triple be-
ing true. The presence of a rising real supplement
entity at the top indicates a hit. Candidate rank-
ing is provided using a filtered setting, which was
first used in (Bordes et al., 2013). In a filtered set-
ting, all candidates who completed a true triple on
the current step are removed from the set, except
for the expected entity. We use Hit@1, Hit@3,
Hit@10 as evaluation metrics. We also use mean
reciprocal rank (MRR) to ensure that true comple-
mentary elements are ranked correctly.

4.2 Link Prediction
Table 1 shows the mean value of the experiment
on small datasets for the embedding of size 200.
The Hit@10 standard deviation for MEKER is
0.0034 for the FB15k237 dataset and 0.0026 for
the WNRR18 dataset. Due to space constraints,
the table with deviations from all experiments,
comparable to Table 1, is in Appendix.

The best score belongs to QuatE (Zhang et al.,
2019) model due to its highly expressive 4-
dimensional representations. Among the remain-
ing approaches, MEKER outperforms its contes-
tants’ overall metrics except for the Hit@10 -
Tucker model surpasses MEKER for Fb15k237,
ComplEX by LibKGE for WNRR18. In gen-
eral, MEKER shows decent results comparable
to strong baselines (Zhang et al., 2019; Balazevic
et al., 2019). It is also worth noting that MEKER
significantly improves MRR and Hit@1 metrics
on freebase datasets, whereas on word sense, ac-
cording to data, it has been enhanced in Hit@10.
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Dataset FB15k237 WNRR18

Model MRR Hit@10 Hit@3 Hit@1 MRR Hit@10 Hit@3 Hit@1

ConvKB (Nguyen et al., 2018) 0.2985 0.4785 0.3270 0.2296 0.2221 0.5074 0.3777 0.0347
HypER (Balazevic et al., 2018) 0.3423 0.5228 0.3774 0.2536 0.4653 0.5228 0.4774 0.4361
TuckER (Balazevic et al., 2019) 0.3455 0.5408 0.3899 0.2606 0.4654 0.5215 0.4784 0.4368
QuatE (Zhang et al., 2019) 0.3614 0.5538 0.4014 0.2711 0.4823 0.5719 0.4955 0.4360
CP-N3 (Lacroix et al., 2018) 0.3514 0.5294 0.3876 0.2646 0.4402 0.4858 0.4485 0.4207

LibKGE ConvE (Dettmers et al., 2017) 0.3367 0.5213 0.3682 0.2381 0.4282 0.5049 0.4492 0.3934
LibKGE TransE (Bordes et al., 2013) 0.3121 0.4962 0.3175 0.2195 0.2274 0.5189 0.3677 0.0516
LibKGE DistMult (Yang et al., 2015) 0.3331 0.5185 0.3673 0.2410 0.4505 0.5215 0.4634 0.4162
LibKGE ComplEx (Trouillon et al., 2016) 0.3390 0.5265 0.3724 0.2468 0.4752 0.5467 0.4809 0.4366

MEKER 0.3588 0.5393 0.3915 0.2682 0.4768 0.5447 0.4875 0.4371

Table 1: Link Prediction scores for various models on the FB15k237 and WN18RR datasets. The embedding size
is 200. The winner scores are highlighted in bold font, and the second results are underlined.

Dataset FB15k237 WN18RR

Optimizer AdamW AdamW
LR 0.01 0.009
Batch Size 156 128
L2 reg 0.001 0.0
Number of negative 6 8
Step of decay LR 3 15
Gamma of decay LR 0.8 0.6

Table 2: The best hyperparameters of the MEKER.

Number of Triplets
Dataset #ents #rels Train Valid Test

Fb15k237 14,541 237 27.2·104 17,535 20,466
WN18RR 40,943 11 8.6·104 30,034 3,134
Wiki4M 4,316·104 1,245 1,367·104 30,000 35,815
Wikidata5m 4,594·104 822 2,061·104 5,163 5,133

Table 3: Statistics of link prediction datasets.

4.3 Model efficiency in case of parameter size
increasing

With a strong memory assumption, we can reduce
the size of pre-trained MEKER embeddings by
tenfold while losing only a few percent of perfor-
mance.

Figures 2, 3 show MRR and Hit@1 scores for
MEKER, TuckER, and ComplEX models at var-
ious embedding sizes. Each model approaches a
constant value on both metrics around rank 100.
For ranks 200 and 300, the performance difference
between the three models is approximately con-
sistent for both metrics, with MEKER scoring the
highest on rank 20. It means that the number of
MEKER parameters can be reduced while main-
taining or improving quality. The quality loss is
significant for other presented models.

4.4 Memory Complexity Analysis
The theoretical space complexity of models men-
tioned in the current work is shown in the right col-
umn of Table 4. In the context of the Link Predic-
tion task, all approaches have asymptotic memory
complexity O((ne + nr)d), which is proportional
to the size of the full dictionary of KG elements,
i.e. the embedding layer or look-up table. Other
aspects of the proposed models are less signifi-
cant: the convolutional layers are not very exten-
sive. The implementation determines the amount
of real memory used by the model during the train-
ing process. The Neural Network backpropagation
mechanism is used to tune parameters in the most
related work. Backpropagation in Figure 4 creates
computational graph in which all model parame-
ters are duplicated. It results in a multiplicative
constant 2, insignificant in a small dictionary but
becomes critical in a large one. To summarize,
the following factors account for the decrease in
MEKER’s required memory:

1. In the MEKER algorithm gradients are com-
puted analytically.

2. MEKER does not have additional neural net-
work layers (linear, convolutional, or atten-
tion).

To measure GPU RAM usage, we run each con-
sidered embedding model on FB15k-237 into a
single GPU and print peak GPU memory usage
within the created process. The left column of a
Table 4 demonstrates that MEKER has objective
memory complexity that is at least twice lower
than that of other linear approaches. This prop-
erty reveals the possibility of obtaining represen-
tations of specific large databases using a single
GPU card.
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Figure 2: MRR score in dependence of embed-
ding ranks

Figure 3: Hit@1 score in dependence of embed-
ding ranks
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Figure 4: The scheme of the augmented computational
graph of the Neural Network.

5 Experiments on Large-Scale KG
Datasets

5.1 Experimental settings
To test the model on large KG, we employ
two WikiData-based datasets. The first English
dataset, Wikidata5m (Wang et al., 2021)1, is se-
lected due to the presence of related works and re-
producible baseline (Ruffinelli et al., 2020). This
dataset is created over the 2019 dump of WikiData
and contains of elements with links to informative
Wikipedia pages. Our experiments use the trans-
ductive setting of Wikidata5m - triplet sets to dis-
joint across training, validation, and test.

The second English-Russian dataset is formed
since its suitability for the NLP downstream task.
We leverage KG-based fact retrieval over Russian
Knowledge Base Questions (RuBQ) (Rybin et al.,
2021) benchmark. This benchmark is a subset of
Wikidata entities with Russian labels. Some ele-
ments in RuBQ are not covered with Wikidata5m,
so we created a link-prediction Wiki4M dataset
over RuBQ. We select triples without literal ob-
jects and obtain approximately 13M triples across
4M entities (see Table 3). Wiki4M also fits the

1https://deepgraphlearning.github.io/
project/wikidata5m

Model GPU Memory Theoretical Approximation
Usage, MB of Space Complexity

TuckER 357 2 · ((ne + nr + c · lin) · d)
HypER 208 2 · ((ne + nr + c · lin) · d)
ConvKB 3 563 2 · ((ne + nr) · d+ c · conv)
ConvE 229 2 · ((ne + nr) · d+ c · conv)
ComplEX 252 2 · (ne + nr) · d
DistMult 174 2 · (ne + nr) · d
QuatE 2 367 2 · 4 · (ne + nd + c · lin)
CP (N3) 138 2 · (ne + nr) · d
MEKER 79 ((ne + nr) · d)

Table 4: Memory, reserved in the PyTorch Framework
during the training process and theoretical approxima-
tion of given implementations’ complexity. On the
FB15k237 dataset, we train 200-size representations
with a batch size of 128. Lin denotes the number of
output features in a linear layer, conv denotes the size
of convolutional layer parameters. The constant c rep-
resents the number of different layers.

concept of multilingualism is intended to be used
in a cross-lingual transfer or few-shot learning.

5.2 Link Prediction
We embed the datasets for ten epochs on a 24.268
Gb GPU card with the following model settings:
LR 2.5 · 10−4, increasing in 0.5 steps every 10
epoch, batch size 256, number of negative samples
4 for Wiki4M and 2 for Wikidata5m.

As a comparison, we use the PyTorch-BigGraph
large-scale embedding system (Lerer et al., 2019).
PyTorch-BigGraph modifies several traditional
embedding systems to focus on the effective repre-
sentation of KG in memory. We select ComplEX
and TransE and train graphs for these embedding
models, dividing large datasets into four partitions.
With a batch size of 256, the training process takes
50 epochs.

We also deploy LibKGE (Ruffinelli et al., 2020)
to evaluate TransE and ComplEX approaches. For
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Model MRR Hit@1 Hit@3 Hit@10 Memory, GB Storage, GB

English: Wikidata5m dataset

PTBG (ComplEX) 0.184 0.131 0.210 0.287 45.15 9.25
PTBG (TransE) 0.150 0.091 0.176 0.263 43.64 9.25
LibKGE sparse (TransE) 0.142 0.153 0.211 0.252 33.29 0.00
LibKGE sparse (ComplEX) 0.202 0.160 0.233 0.316 21.42 0.00
MEKER (ours) 0.211 0.149 0.238 0.325 22.27 0.00

Russian: Wiki4M dataset

PTBG (ComplEX) 0.194 0.141 0.212 0.293 42.83 9.25
LibKGE sparse (TransE) 0.183 0.126 0.191 0.275 26.75 0.00
LibKGE sparse (ComplEX) 0.247 0.196 0.275 0.345 20.22 0.00
MEKER (ours) 0.269 0.199 0.303 0.410 21.04 0.00

Table 5: Unfiltered link prediction scores for MEKER and PyTorch-BigGraph approaches for Wiki4M and Wiki-
data5m datasets and memory needed in leveraging every model. Storage means additional memory demanded for
auxiliary structures. Batch size 256. Here “RAM” is GPU RAM or main memory RAM if GPU limit of 24 GB is
reached. Sparse means sparse embeddings. Models without sparse mark employ dense embeddings matrix.

ComplEX model training, we use the best param-
eter configuration from the repository, for TransE,
we obtain a set of training parameters by greed
search. The learning rate for TransE is 0.5, decay-
ing in factor 0.45 every 5 step and train model in
100 epochs. In both cases, we use sparse embed-
ding in the corresponding model setting and batch
size of 256. Models from both wrappers that did
not fit in 24 GB, we train on the CPU.

Embedding sets yielded by we these experi-
ments we then test on the link prediction task.
We provide scoring without filters because the
partition-based setup of PyTorch-Biggraph does
not support filtering evaluation. Tables 5 shows
that MEKER significantly improves the results
of PyTorch-Biggraph models across all proposed
metrics. The ComplEX model with sparse em-
bedding, fine-tuned by LibKGE, gives results al-
most approaching the MEKER and exceeding the
Hit@1 in Wiki4M. The right part of Tables 5
shows that the baseline approaches consume twice
as much memory as MEKER, but sparse Com-
plEX slightly improves memory consumption.
TransE does not give such significant results as
ComplEX.

5.3 Knowledge Base Question
Answering (KBQA)

In this section, to further evaluate the proposed
MEKER embeddings we test them in an extrinsic
way within on a KBQA task on two datasets for
English and Russian.

5.3.1 Experimental Setting
We perform experiment with two datasets: for
English we use the common dataset SimpleQues-

tions (Bordes et al., 2015) aligned with Wiki4M
KG2 (cf. Table 3), and for Russian we use RuBQ
2.0 dataset (Rybin et al., 2021) which comes
with the mentioned above Wiki4M KG (cf. Ta-
ble 3). RuBQ 2.0 is a Russian language QA bench-
mark with multiple types of questions aligned with
Wikidata. For both SimpleQuestions and RuBQ,
for each question, an answer is represented by a
KG triple.

For training we use a training set of Simple-
Questions for verification we use a test set of Sim-
pleQuestions and RuBQ 2.0 dataset for English
and Russian, respectively. These Q&A pairs pro-
vide ground truth answers linked to exact this ver-
sion of KG elements.

More specifically, in these experiments, we test
answers to 1-hop questions which are questions
corresponding to one subject and one relation in
the knowledge graph, and takes their object as an
answer.

We want to leverage the KBQA model, which
can process questions both in English and Rus-
sian. To measure the performance of a KBQA
system, we measure the accuracy of the retrieved
answer/entity. This metric was used in previously
reported results on SimpleQuestions and RuBQ. If
the subject of the answer triple matches the refer-
ence by ID or name, it is considered correct.

5.3.2 KBQA methods
The key idea of the KBQA approaches is map-
ping questions in natural language to the low-
dimensional space and comparing them to graph
elements’ given representation. In KEQA (Huang

2https://github.com/askplatypus/
wikidata-simplequestions
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Figure 5: Text2Graph method used in our experiments: 1-Hop QA pipeline. First, we take original entity and
relation embeddings. The question is embedded using m-BERT. This embedding is then processed by MLP,
yielding candidate representations of an object, relation, and subject. The sum of the subject, relation, and object
cosines is the final score of triple candidates.

et al., 2019) LSTM models detect the entity and
predicates from the question text and project it
further into the entity and predicate embedding
spaces. The closest subject in terms of similarity
to the entity and predicate embeddings is selected
as the answer.

We created a simple approach Text2Graph
which stems from the KEQA and differs from the
original work in improved question encoder, en-
tity extractor, additional subject embedding space
and simplified retrieval pipeline. The Algorithm 3
describes the procedure of projecting the input
question to graph elements. The multilingual-
BERT (Devlin et al., 2019) model encodes the in-
put question, and all word vectors are averaged
into a single deep contextualized representation
eq. This representation then goes through three
MLPs jointly learning candidate embeddings of
an object, relation, and subject. We minimize
MSE between predicted embeddings and the cor-
responding KGE model’s embeddings. The appro-
priateness score of every fact in KG is a sum of co-
sine similarity between MLP outputs and ground
truth model representation for every element in the
triple. The triple with the highest score is consid-
ered to be an answer. The scheme is trained using
an AdamW optimizer with default parameters for
10 epochs.

5.4 Baselines
5.4.1 RuBQ 2.0
We compare our method to several QA approaches
compatible with questions from this benchmark.

Algorithm 3 Text2Graph question projection al-
gorithm
Input: Q, G, E,
text encoder Menc,
projection modules: Ms,Mr,Mo,
Subject Candidates Extractor: NER
Output: answer ⟨oa, ra, sa⟩

eq = Menc(Q)
Initialize answers-candidates list with empty list A=[]
Initialize scores list with empty list S=[]
Initialize entities-candidates list with empty list C=[]
for entity in G do

if entity.name in NER(Q) then
C.append(entity)

for entity in C do
for relation in entity.relations do

s = entity.id
r = relation.id
o = entity[r]
triple = ⟨s, r, o⟩
A.append(triple)
es = E[s]
er = E[r]
eo = E[o]
ys = Ms(eq)
yr = Mr(eq)
yo = Mo(eq)
score = cos(eo,yo)+cos(er,yr)+cos(es,ys)
S.append(score)

ind = argmax(S)
⟨sa, ra, oa⟩ = A[ind]
return ⟨sa, ra, oa⟩
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KBQA Model Embedding Model Accuracy 1-Hop

DeepPavlov - 30.5 ± 0.04
SimBa - 32.3 ± 0.05
QA-En - 32.3 ± 0.08
QA-Ru - 30.8 ± 0.03

Text2Graph PTBG (ComplEX) Wiki4M 48.16 ± 0.05
Text2Graph PTBG (TransE) Wiki4M 48.84 ± 0.06
Text2Graph MEKER Wiki4M 49.06 ± 0.06

Table 6: Comparison of the Text2Graph system with
the various KG embeddings with existing solutions
(QA-Ru, QA-En, SimBa) on RuBQ 2.0 benchmark.

KBQA Model Embedding Model Accuracy 1-Hop

KEQA TransE FB5M 40.48 ± 0.10

Text2Graph PTBG (TransE) Wikidata5m 59.97 ± 0.15
Text2Graph MEKER Wikidata5m 61.81 ± 0.13

Table 7: Comparison of the Text2Graph system with
the various KG embeddings with existing embedding-
based solution on the SimpleQuestions benchmark.

QAnswer3 is a rule-based system addressing
questions in several languages, including Russian.
SimBa is a baseline presented by RuBQ 2.0 au-
thors. It is a SPARQL query generator based on
an entity linker and a rule-based relation extractor.
KBQA module of DeepPavlov Dialogue System
Library (Burtsev et al., 2018) also based on query
processing.

5.4.2 SimpleQuestions
Simple Question is an English language bench-
mark aligned with FB5M KG - the subset of Free-
base KG. Its train and validation parts consist of
100k and 20k questions, respectively. As a base-
line solution we employ KEQA (Huang et al.,
2019). We realign answers from this benchmark to
our system, which is compatible with Wikidata5m.
Not all of the questions from FB5M have answers
among Wiki4M, that is why we test both systems
on a subset of questions whose answers are present
in both knowledge graphs.

5.4.3 Experimental Results
We compare the results of the Text2Graph with
PTBG embeddings versus MEKER embedding
and baseline KBQA models. Results on the RuBQ
2.0 dataset are shown in Table 6. Text2Graph out-
performs baselines. Using MEKER embeddings
instead of the PTBG version of ComplEX and
TransE demonstrates slightly better accuracy.

Table 7 presents results on the SimpleQuestions
dataset. As Huang et al. (2019) model uses FB5M

3https://www.qanswer.eu

KG and Text2Graph uses Wikidata5m KG we test
both models on the subset of questions, which an-
swers are present in both knowledge graphs for a
fair comparison. Our model demonstrates superior
performance and regarding the comparison within
different embeddings in a fixed system, MEKER
provides better accuracy of answers than TransE
embeddings on the SimpleQuestions benchmark.

6 Conclusion

We propose MEKER, a linear knowledge embed-
ding model based on generalized CP decomposi-
tion. This method allows for the calculation of
gradient analytically, simplifying the training pro-
cess under memory restriction. In comparison to
previous KG embedding linear models (Balaze-
vic et al., 2019), our approach achieves high ef-
ficiency while using less memory during training.
On the standard link prediction datasets WN18RR
and FB15k-237, MEKER shows quite competitive
results.

In addition, we created a Text2Graph — KBQA
system based on the learned KB embeddings to
demonstrate the model’s effectiveness in NLP
tasks. We obtained the required representations
using MEKER on the Wikipedia-based dataset
Wiki4M for questions in Russian and on Wiki-
data5m for questions in English. Text2Graph
outperforms baselines for English and Russian,
while using MEKER’s embeddings provides ad-
ditional performance gain compared to PTBG em-
beddings. Furthermore, our model’s link predic-
tion scores on Wiki4M and Wikidata5m outper-
form the baseline results. MEKER can be helpful
in question-answering systems over specific KG,
in other words, in systems that need to embed large
sets of facts with acceptable quality.

All codes to reproduce our experiments are
available online.4
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Abstract

Automatic speech recognition (ASR) has
evolved from a pipeline architecture with pro-
nunciation dictionaries, phonetic features and
language models to the end-to-end systems per-
forming a direct translation from a raw wave-
form into a word sequence. With the increase
in accuracy and the availability of pre-trained
models, the ASR systems are now omnipresent
in our daily applications. On the other hand,
the models’ interpretability and their compu-
tational cost have become more challenging,
particularly when dealing with less-common
languages or identifying regional variations of
speakers. This research proposal will follow
a four-stage process: 1) Proving an overview
of acoustic features and feature extraction al-
gorithms; 2) Exploring current ASR models,
tools, and performance assessment techniques;
3) Aligning features with interpretable phonetic
transcripts; and 4) Designing a prototype AR-
POCA to increase awareness of regional lan-
guage variation and improve models feedback
by developing a semi-automatic acoustic fea-
tures extraction using PRAAT in conjunction
with phonetic transcription.

1 Introduction

Automated speech recognition (ASR) is the pro-
cess of automatically detecting and recognizing the
words that have been said in a sample of speech.
ASR has a wide variety of uses, such as voice assis-
tants, automatic transcription, speech-to-text, and
closed-caption generation. Many recent ASR mod-
els have been created using deep learning, with
other methods including neural networks, hidden
Markov models, and Gaussian mixture models (Pa-
pastratis, 2021).

ASR models are generally trained on a corpus,
which is a collection of audio recordings. Cor-
pora are widely available for more common lan-
guages, such as English. However, they are either
small or nonexistent for less common languages

and dialects. This is due to the resources needed
to construct a corpus and lack of available speak-
ers. Constructing a corpus involves gathering audio
recordings from a variety of speakers and is a time-
consuming and costly process. As a result, less
common languages remain under-resourced in the
ASR field. The performance accuracy will also
vary with regional language variation and among
different groups of users. ASR performs espe-
cially poorly when given the task of recognizing
the speech of nonnative speakers of a language,
leading to model biases in common AI-assisted
speech technologies (DefinedCrowd, 2021).

Furthermore, there is a lot of variation in ASR
systems. In the last decade, the ASR technology
has evolved from probabilistic frameworks with
hand-crafted features and pronunciation dictionar-
ies to deep learning models in which features are
extracted and learned in hidden layers (Georgescu
et al., 2021). Speech signals also consist of vari-
ous components, such as acoustic, phonetic, and
language-dependent, which jointly provide a repre-
sentation of word sequences. While some features
are interpretable by humans (e.g., place of articula-
tion, vowel formants, pitch), others are the results
of transformations and cannot be directly associ-
ated with any specific phonetic sound.

Finally, various evaluation systems are put forth
to measure speech model accuracy (Negri et al.,
2014). Grapheme-based metrics (a written word)
are commonly used to compare results, such as
word error rate (WER). These measurement sys-
tems, however, are not able to diagnose whether
phonetic errors resulted from a variation in pronun-
ciation, speech boundary misalignment, noise, or
the lack of sufficient data.

This research is focused on existing ASR evalu-
ation systems and speech signal features used for
training. We explore solutions for improving mea-
suring performance metrics. Our goal is to 1) de-
velop a semi-automatic phonetic classification be-
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tween vowels and consonants as these classes are
traditionally associated with different salient fea-
tures (e.g., vowel formants, consonant intensity,
aspiration), 2) help ASR developers to identify im-
provement areas by focusing on specific feature
engineering tasks, and 3) design an alternative eval-
uation system to encourage the ASR research for
less-commonly used languages by incorporating
development cost, corpus size, and phonetic tran-
script as compared to a traditional word error rate
evaluation metric.

The paper is organized as follows. Section 2
presents the overview of ASR performance evalua-
tion metrics, current ASR models and corpora. Sec-
tion 3 describes the most common types of speech
features and tools for their generation. In Section
4, we present our proposed evaluation system AR-
POCA (Assessment of ASR using phonemes, orig-
inality, cost, and accent performance). Finally, we
provide our preliminary results in Section 5, fol-
lowed by conclusion and future direction.

2 Literature Review

2.1 Measuring ASR Performance

One common way of measuring the performance
of automatic speech recognition (ASR) models is
word error rate (WER). WER is a way to measure
the accuracy of ASR. The best possible value is
0% error, and higher percentages are considered
worse. WER is counted by letting a model tran-
scribe a section of audio, then comparing it to the
correct transcription. Both transcriptions are nor-
malized before comparing, which standardizes the
transcripts by removing stop words, forming con-
tractions, etc. The words that the model has in-
serted, deleted, or substituted are counted and used
to calculate WER using the formula illustrated in
Eq.1, where S is a word substitution, D is a deletion,
and I is a word insertion:

WER =
(S +D + I)

TotalWords
(1)

WER is a commonly used method to assess the
performance of ASR models, and creating a model
with a low WER is assumed to result in a model
with better language understanding accuracy. How-
ever, a better WER may not actually result in a
model with a better understanding of spoken lan-
guage, meaning that even if a transcript is mostly
accurate, it may not correctly represent the mean-
ing of the spoken language (Wang et al., 2003).

This problem of accuracy is especially perti-
nent for models that are trained with small cor-
pora, since these models often have a poor WER.
The early study comparing different spoken lan-
guage models (Wang et al., 2003) found that, while
the Model developed using Hidden Markov and
Context Free Grammar (HMM/CFG) had a worse
WER than other language models (e.g. a trigram
model) it achieved a better task classification er-
ror rate, which is a way to measure how well the
model understands the spoken language. This re-
sult was even more pronounced for models trained
with small amounts of data: the HMM/CFG model
was able to use less training data and still gener-
ate a model with a better level of understanding
than the trigram model. It is worth noting that the
HMM/CFG model used domain knowledge and
a grammar library, which helped it achieve good
results without a large training dataset (Wang et al.,
2003). So, while WER can be used as a way to
measure performance, other metrics (e.g., task clas-
sification error rate) may be more useful, especially
for models trained with smaller corpora.

In addition, WER does not provide much feed-
back for developers. While it measures the number
of mistakes a model made, it does not help in re-
vealing why the mistakes were made or whether
similar mistakes were made repeatedly. Providing
more feedback could aid developers in diagnosing
problems with their models more quickly and in the
end, creating better models. This project discusses
the possibility of providing more feedback for ASR
models by identifying commonly mistaken sounds
and recognizing different pronunciations for words.

Another metric for the accuracy of ASR is
phoneme error rate (PER), which is calculated sim-
ilarly to WER. However, while WER is at the word
level, PER counts the number of deleted, inserted,
and substituted phonemes. Phonemes are smaller
than words, which could potentially help pinpoint
errors better.

2.2 Methods for ASR

Deep learning is commonly used for ASR. There
are typically four steps in ASR: 1) pre-processing,
2) feature extraction, 3) classification, and 4) lan-
guage modeling. Pre-processing is a process ap-
plied to recordings which reduces noise and filters
the audio. Feature extraction converts the audio to
features, which are then analyzed and converted to
language in the classification step. Mel-frequency
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Cepstral coefficients (MFCC) is commonly used
for the feature extraction step. MFCC converts au-
dio signals into a linear model of human auditory
processing, which is non-linear.

Deep neural networks can be used for ASR, such
as recurrent neural networks (RNN), convolutional
neural networks, and transformer networks. One
limitation of RNNs is that they process speech
using only the previous input. However, speech
depends on both what comes before and what
comes after. This problem can be solved using bi-
directional RNNs, which process speech forward
and backward. Furthermore, Connectionist tem-
poral classification (CTC), can be used to find the
most probable alignment, which is the arrangement
of speech and silence. Silence can be either not
speaking or transitioning between words or sounds.
CTC must be used in combination with a decoding
step, such as the best-path decoding algorithm. The
best-path decoding algorithm aims to find the most
likely word for each sequence of sound. A method
called RNN-transducer uses an RNN with CTC to
analyze input and also a separate RNN to predict
likely words in the sequence based on previous
words (Papastratis, 2021).

Dialect detection uses similar methods as ASR,
so dialect detection could be used to help improve
ASR. There are several motivations for dialect iden-
tification, including determining the regional origin
and ethnicity of a speaker in order to adapt content
(Ismail, 2020). For example, deep neural networks
have been used to distinguish between dialects of
Arabic. A recent study by Lulu and Elnagar (2018)
used an existing dialectal dataset called the AOC
(Arabic Online Commentary), which has about 110
thousand labeled sentences. The motivation for the
study was to improve dialect detection for Arabic as
informal dialects of Arabic are widely used on the
internet, especially for applications such as blogs,
forums, social media, and more. The study showed
that dialect detection is also useful for machine
translation and sentiment analysis. Four different
types of deep neural network were used: long-short
term memory (LSTM), convolutional neural net-
works (CNN), bi-directional LSTM (BLSTM), and
convolutional LSTM (CLSTM). Three different
dialects were examined - Egyptian, Gulf (which
included the similar Iraqi dialect) and Levantine.
Of the neural networks, the LSTM was the most
accurate overall, with approximately 80% accuracy
on average, which is below the human accuracy of

about 90% (Lulu and Elnagar, 2018).

2.3 Data for ASR

There is a large amount of variability in the corpora
used for ASR. Often, corpora are built at the word
or phrase level. However, for some languages, such
as Tibetan, a corpus at the syllable level can work
better due to the lack of accuracy for word and
phrase recognition (Dao et al., 2021). Many cor-
pora use speech samples that have been recorded
with minimal environmental noise and are of good
quality, which results in models that work best in
these ideal conditions. However, real life condi-
tions can result in noisier speech, so models that
have not been trained with noisy speech can strug-
gle under such conditions (Borský, 2016).

Corpus creation can be a difficult and expensive
process, which often results in smaller or nonexis-
tent corpora for less spoken and under-resourced
languages. Even if corpora exist for a language,
they may not be suitable for certain applications,
as was the case for an experiment conducted by
Zissman et al. (1996). They found that while Span-
ish corpora existed, there was no corpus that had
enough speakers of a variety of dialects. This led to
the creation of the Miami corpus, which collected
speech from Spanish speakers from Peru, Cuba,
and other countries (Zissman et al., 1996). There
are a number of steps involved in corpus creation.
First, recordings must be obtained. This means re-
searchers either have to find people to record their
speech or find existing recordings. There are a
variety of sources for existing recordings, such as
audio books or YouTube videos (Ismail, 2020). If
a transcript does not exist for the recording, then
one must be created. Then, the transcript and audio
must be aligned to ensure that the words shown in
the transcript are placed where the same words are
spoken in the recording (Panayotov et al., 2015).
Recordings may also be cleaned of background
noise and normalized. While there have been ef-
forts to automate the corpus creation process, it is
not guaranteed to be accurate. Therefore, much of
this process is done manually.

3 Speech Signal Features

Feature extractions is a pre-processing task which
transforms sound files into feature vectors that can
be processed and analyzed by a computer. This
tasks can be classified into two main groups: seg-
ment and suprasegmental prosodic features versus
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speaker-dependent and speaker independent fea-
tures (Georgescu et al., 2021; Shahnawazuddin
et al., 2020). While most of acoustic phonetics
utilize interpretable features (e.g. vowel formant,
duration, voice onset time) to describe phonemes
(mental representation of sound) and phones (actual
sounds), the ASR field relies on transformed fea-
ture vectors optimized for Machine learning tasks
(e.g. Linear Prediction and Mel-Frequency coeffi-
cients).

3.1 Acoustic Features

Formant is a common interpretable measurement
that correspond to resonance frequencies in a vo-
cal tract. The first formant (F1) is correlated with
high-low dimension and inversely related to vowel
height, where high values represent open vowels
(e.g. /a/) as compared to low values for low vow-
els (e.g. /i/). The second formant (F2) is corre-
lated with front-back dimension, namely the de-
gree of backness for a vowel. For example, front
vowels (e.g., /i/) will have higher F2 values than
back vowels (e.g., /o/). The third formant (F3)
indicates the round shape of a vowel (Ladefoged,
2006; Kent and Vorperian, 2018). These values can
be seen in a spectogram as dark bands. It should
be noted that these values are not uniform across
speakers, speech style, morphological context, and
language variation, as can be seen from Spanish
acoustic data illustrated in Fig.1, where solid line
represents a vowel space obtained in a controlled
laboratory sampling of Peninsular Spanish and dot-
ted lines demonstrate a much smaller vowel space
from a spontaneous speech of Venezuelan Spanish
(Scrivner, 2014).

Figure 1: Comparison of Spanish vowel formants
between controlled (solid line) and spontaneous
speech (dotted line) and between two Spanish dialects
(Venezuelan and Peninsular).

Similarly, consonants have three dimensions but

related to 1) place of articulation (e.g. dental, glot-
tal), 2) manner of articulation (e.g., nasal, fricative),
and 3) voicing (Ladefoged, 2006).

In sum, three classes of distinct sound landmarks
have been proposed: 1) abrupt discontinuity of
consonants, 2) steady periods of vowels, 3) non-
abrupt transition of glides (e.g. /w/) (Park, 2008).

3.2 Feature Vectors Extraction Algorithms

One of the preliminary operations to generate vec-
tor features is framing. Framing breaks the sound
into small frames, typically 25ms long with 10ms
overlap with neighboring frames. The overlap is
important due to the dependence which speech has
on preceding and following sounds. During fram-
ing, windowing is carried out, in which a Hamming
or Han (sometimes referred to as Hanning) filter
is performed. The window function decreases the
amplitude at the beginning and end of the frame,
which again, makes overlapping frames necessary
to prevent anomalies (Georgescu et al., 2021).

Several feature extraction methods can be ap-
plied after framing, namely, Fast Fourier Transform
(FFT), Linear Prediction Coefficients (LPC), Mel-
Frequency Ceptrum Coefficients (MFCC), Mel-
Filterbanks, Discrete Cosine Transform (DCT).
FFT is a common technique used to transform
speech signal from a time domain to a frequency
domain. The FFT separates the air exhaled from
the lungs and the time response of the vocal tract by
converting from the time domain to the frequency
domain, which allows these two features to be sep-
arated. When framing, windowing, and FFT are
applied to an audio sample, a spectrogram can be
created from the results. In contrast, LPC relies on
linear prediction. It uses past samples to predict the
current sample. However, this method has some
drawbacks, such as inability to distinguish similar
vowel sounds and its inaccurate analysis of speech
signals due to the assumption that speech signals
are stationary. Finally, MFCCs can be obtained by
applying DCT to the log power spectrum of mel
frequencies (Gupta et al., 2018).

4 ARPOCA Approach

In response to the problems previously identified
in the field of speech recognition, this proposal
aims to develop a more in-depth evaluation sys-
tem called ARPOCA. ARPOCA is an acronym for
Assessment of ASR using Phonemes, Originality,
Cost, and Accent performance. The main goal is
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to develop a phoneme recognition system using
phoneme classification and transcription, indepen-
dent from a grapheme representation used in WER.

First, we selected open source existing tool
Praat, a software designed for sound processing
(Boersma, 2001; Styler, 2011), to extract inter-
pretable feature representations for each phoneme.
Second, we identified the following salient features
for phoneme classification: frequency formants,
dispersion (also called standard deviation), center
of gravity, and intensity. Standard formant ranges
for F1, F2, F3 are used to identify vowels. Dis-
persion, center of gravity, and intensity are used to
identify consonants. Center of gravity measures at
what frequency a sound is most concentrated, while
dispersion measures how widely the frequencies of
a sound are spread. Intensity measures the loudness
of a sound in decibels. For testing, we obtained a
non-transcribed free sample Spanish audio corpus
(Defined.ai, n.d.).

In our next stage, we will create a manual pho-
netic transcription of utterances from the corpus, in
addition to segmenting and labeling the utterances
for usage in PRAAT. We will collect information
about expected values of acoustic features used
for identifying phonemes and compare our man-
ual phonetic transcription with the output from an
available speech recognizer library in python. In
addition, we will analyze several existing models
to establish a baseline for originality and cost in
these models, and use this to create a rating system.
Furthermore, the phoneme recognition system will
incorporate an accent performance analysis. That
is, the phoneme recognition system will identify
whether a model has a wide pronunciation gap and
identify particular areas where a model struggles,
which will help close the accent gap.

5 Preliminary Results

In the first stage of this proposal, we are exploring
features extracted from spectogram and speech-
wave. Fig. 2 displays an example of Spanish word
‘necesito‘ (I need). The sound waves help distin-
guish between sound and silence, amplitude and
intensity of sounds, while the spectrogram provides
a view of formant frequencies, consonants obstruc-
tion and frication.

While PRAAT includes scripting, using Python
in addition makes running the PRAAT script easier
to automate, especially for large amounts of audio
samples. Python code calls a PRAAT script, then

Figure 2: An example of using Praat to segment speech
and label phonemes. Sound waves are shown at the top,
followed by a spectrogram, then the segmentation. Red
dots in the spectrogram show formants, while the blue
line shows pitch.

performs additional operations on the results of the
PRAAT script, such as matching the formants to the
correct phoneme class. Table 1 demonstrates pre-
liminary results from using PRAAT in conjunction
with Python. The PRAAT script obtained formant
values at the median time of each segment. Then,
the results are matched to the phoneme based on
formant range. For example, the /e/ phoneme typ-
ically has F1 values between 485 and 565 and F2
values between 2170 and 2430. While some of the
vowels fell within the expected ranges of formants
during testing, others did not. This could be for sev-
eral reasons. One such reason is not normalizing
speech prior to attempting to recognize phonemes.
Normalization could help reduce variance between
individual speakers. Dialectal variation may also
be a factor, since vowel frequencies can vary be-
tween different dialects.

Phoneme Duration F1 F2 F3
n 0.0522 - - -
e 0.0726 572 2438 2960
s 0.0713 - - -
e 0.0657 484 2086 2964
s 0.0654 - - -
i 0.0708 489 2575 3439
t 0.1040 - - -
o 0.0932 6034 1274 2862

Table 1: Preliminary results from formant analysis us-
ing Praat and Python to identify formants in the audio
segment ’necesito’ (I neeed). F1, F2, and F3 are values
for formants 1, 2, and 3 respectively.

Since consonants cannot be identified using for-
mants only, we use different measurements, includ-
ing center of gravity, intensity, and standard devia-
tion. Currently, using these measurements is only
precise enough to differentiate between fricative
and non-fricative consonants. More work must be
done to refine the expected ranges for consonants
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to be able to identify individual consonants.
Originality is another aspect of ARPOCA. We

have determined that a scoring rubric would likely
be best to assess originality, since there is little
research on this topic. Thus, research that is an ad-
dition or improvement on an existing model will re-
ceive a lower score than more novel research. Cost
is also an important element of ARPOCA. Prelimi-
nary research suggests that a budget of $500,000
would be attainable for many researchers (NIH,
n.d.). An overall cost, including corpus cost and
compute cost, which does not exceed $500,000
would score the highest, with score decreasing as
total cost increases. The reason for this is twofold.
Firstly, there are many applications that require
smaller, less costly models. For instance, such
models could be used to assist people with hearing
loss by providing real-time transcriptions. Sec-
ondly, many costly models with large corpora al-
ready exist and are prioritized under the prevalent
measurement system of WER. Therefore, in or-
der to encourage innovation in the field of ASR,
smaller, less costly models will be encouraged.

There are several important outcomes from
the preliminary results. In its current state, the
phoneme recognizer is unlikely to work with En-
glish, due to the presence of a large number of
vowels which are not easily distinguishable. The
phoneme identifier has been tested using Spanish,
which is better suited to this purpose due to the
smaller number of vowels, which are relatively easy
to distinguish. An additional flaw in the phoneme
identifier is its difficulty distinguishing between
vowels and voiced consonants. Table 2 shows that
the /n/ phoneme is identified as a vowel, but should
be identified as a voiced consonant. The speech seg-
ments used were relatively noiseless; the phoneme
recognizer is likely to be less accurate in a more
noisy environment.

6 Conclusion and Future Work

The objective of this work is to supplement ASR
models and developers with an additional tool pro-
viding not only a feedback but also more inter-
pretable representation of sound models via pho-
netic transcription. Such feedback could include
highlighting phonemes that have been consistently
misidentified and/or measuring performance of the
model when given audio samples produced by non-
native speakers, which is an area in which ASR
models typically struggle. This feedback could im-

Time Phoneme ID SR
1.935 vowel n
1.987 e e
2.059 voiceless fricative s
2.129 e e
2.184 voiceless fricative s
2.275 e i
2.331 voiceless non-fricative t
2.441 o o

Table 2: A comparison of preliminary results from the
phoneme identifier and a transcript created by the speech
recognizer. Phoneme ID represents the results from the
phoneme identifier, while SR represents the results from
the python speech recognition.

prove the accuracy of ASR models and lessen the
accent gap. Accuracy of models could also be im-
proved by providing developers more feedback on
their models than just using standard performance
metrics. For instance, commonly mistaken sounds
(phonemes) could be used as a form of feedback to
help improve models and augment existing corpora.
Furthermore, a phonetic approach could help create
dictionaries with dialectal variation (regional alter-
native pronunciation) that can be added to training
corpora. Finally, language transfer (using the re-
sources from one language to develop resources
in another similar language or dialect) could help
provide resources for underrepresented spoken lan-
guages.

ARPOCA needs more development in order to
become more accurate. This could include addi-
tional data for improving the cost baseline and grad-
ing in addition to more research into expected val-
ues of formants, center of gravity, intensity, and
dispersion. In its current state of research, AR-
POCA serves as a proof of concept for the de-
velopment of a more robust assessment tool for
ASR models. We envision ARPOCA being used
in settings such as peer reviews and conferences
to promote discussion and improvement of ASR
models. ARPOCA can aid in supporting different
research goals than WER. For instance, a model
with a smaller corpus typically costs less to produce
and would therefore score better in the cost section
of WER. This could encourage the production of
models for under-resourced and less widely spoken
languages, even if such models do not immediately
have a good enough WER score to compete with
models for languages such as English. Another
possible benefit of using ARPOCA is closing the
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accent gap. Although the accent performance anal-
ysis system has not been developed yet, the existing
phoneme identification could help developers de-
termine if there are specific groups of formants that
a model has misidentified. On the other hand, AR-
POCA must be carefully revised to ensure that the
scoring system is fair and accurate. If there are inac-
curacies in ARPOCA or top scores are unattainable,
this could result in a variety of unwanted outcomes,
such as giving models the wrong scores or discour-
aging developers. In addition, while ARPOCA has
been developed with collaboration and discussion
in mind, it has the possibility to fuel competition
as well, due to its role as a tool for assessment.
Therefore, ARPOCA must be used with care and
consideration as to whether its use is appropriate
for a given situation.
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Abstract

In this work we put forward to combine pre-
trained knowledge base graph embeddings
with transformer based language models to
improve performance on the sentential Rela-
tion Extraction task in natural language pro-
cessing. Our proposed model is based on a
simple variation of existing models to incor-
porate off-task pre-trained graph embeddings
with an on-task finetuned BERT encoder. We
perform a detailed statistical evaluation of the
model on standard datasets. We provide ev-
idence that the added graph embeddings im-
prove the performance, making such a simple
approach competitive with the state-of-the-art
models that perform explicit on-task training
of the graph embeddings. Furthermore, we ob-
serve for the underlying BERT model an inter-
esting power-law scaling behavior between the
variance of the F1 score obtained for a relation
class and its support in terms of training exam-
ples.

1 Introduction

Besides large quantities of unstructured textual
data, also structured data has become widely avail-
able to machine learning researchers in recent
years. Knowledge Bases (KBs), such as Wikidata
(Vrandečić, 2012) (formerly Freebase Bollacker
et al., 2007; Pellissier Tanon et al., 2016), Yago
(Suchanek et al., 2007) and UMLS (Bodenreider,
2004), organise various kinds of information in
structured form and constantly grow in size and
richness of included information.

They are represented in terms of relations be-
tween entities, forming a graph structure that makes
retrieval and processing of the included information
easier and finds particular application in various
language related tasks, such as question answering
(QA), search engine development and knowledge
discovery. Distant supervision (Mintz et al., 2009)

is another notable example that employs a KB to
improve Relation Extraction (RE). For each pair of
entities found in a sentence, distantly supervised
models check whether a link between the entities
in the KB graph exists, and, if there is a match,
the sentence is then used as a training example for
supervised learning.

Note that the utility of KBs for RE extends be-
yond being just a useful source of supervision la-
bels. A natural question arises whether one can
develop models which combine unstructured tex-
tual data with structured information to further im-
prove performance, for general natural language
processing tasks.

One particular class of approaches that has been
gaining momentum is based on the idea of dynam-
ically learning representations of KB entities si-
multaneously with word representations (Bastos
et al., 2021; Nadgeri et al., 2021; Vashishth et al.,
2018). The motivation behind this class of methods
is whether such combined representations could
improve performance for a downstream NLP task,
due to a more representative embedding.

However, although in theory this could result in
optimally finetuned word and graph representations
for the downstream task, it might be challenging in
practice. On-task training of the graph embeddings
requires significantly more complex models, and
therefore increases the training cost and is more
prone to overfitting.

Therefore, instead of training both, graph and
word embeddings, we investigate in this work
whether combining static pre-trained graph em-
beddings, such as those provided in Lerer et al.
(2019), with on-task learned word embeddings al-
ready achieves a significant performance boost for
downstream tasks. The underlying question being
whether a neural model is able to transfer the topo-
logical information contained in the pre-trained
graph embeddings in a useful manner to the task at
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hand.

2 Related Work

In the following, we would like to briefly review
three particular works in the literature that make
use of the information contained in a KB to im-
prove classification performance on the RE task,
and explain how our work relates to these previous
works.

In Vashishth et al. (2018) the authors propose to
use KBs as a supplementary source of information
to improve on the multi-instance learning paradigm
for RE. Note that in multi-instance RE one aims
at identifying the relation between two targeted
entities, for a given bag of sentences. In particular,
the authors of Vashishth et al. (2018) match the
relation predicted by the Stanford OpenIE (Angeli
et al., 2015) pipeline with the set of relation aliases
found in the KB. Out of this they obtain a matched
relation embedding, hrel, that is then concatenated
to the sentence representation. Similarly, they build
an entity type embedding, htype, using the entity
type found in the KB, which is concatenated as
well to the sentence encoding.

In Bastos et al. (2021) the authors make use of
the KB information to improve on the sentential RE
task. They propose to construct an Entity Attribute
Context embedding, ho, by processing several en-
tity properties found in the KB with the help of
a BiLSTM (Schuster and Paliwal, 1997) encoder.
Additionally, a triplet context embedding, hr, is
learned for each relation triplet by imposing the
translational property in the embedding space (Bor-
des et al., 2013) to the triplet and its KB neighbours.
Finally, the two different representations obtained
are aggregated with the sentence encodings by a
GP-GNN (Zhu et al., 2019) and fed to a classifier
for relation prediction.

The authors of Nadgeri et al. (2021), however,
suggest that statically adding all the available KB
information might be counterproductive in some
case. They rather propose to dynamically select
the useful information. To do so, for each entity
they extract and encode several KB properties with
a BiLSTM (Schuster and Paliwal, 1997), that are
then combined together with the sentence encod-
ing to form a Heterogenous Information Graph.
The relevant context information is then obtained
by pruning this graph with the help of a combina-
tion of graph convolutional neural network (Kipf
and Welling, 2017), pooling and self-attention lay-
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Figure 1: The RE model we make us of, inspired by
Giorgi et al. (2019). The initial encodings of the sen-
tences are provided by a pre-trained language model.
The encodings corresponding to named entities are ex-
tracted, and averaged in case of multi-token entities.
For the graph embedding augmented model the graph
embeddings are in addition concatenated to the relative
entity encodings. Each entity is then decomposed in
a head-tail representation to form the (h, t) candidate
pairs passed to the Biaffine Attention Layer (Dozat and
Manning, 2017) for relation classification.

ers, and finally aggregated and fed to the relation
classifier, similarly to what is done in Bastos et al.
(2021).

Note that the KB embedding is dynamically
learned in all above cited works. Furthermore, in
these examples, it derives from a wide variety of
entity properties and information retrieved from
the KB, but not directly from the graph structure
itself. The only exception being the triplet-context
embedding hr of Bastos et al. (2021), which comes
closest to the graph embedding (Lerer et al., 2019)
we are going to make use of. However, their em-
bedding is trained only on the downstream task, but
not on the full KB.

Therefore, what is so far missing in the litera-
ture, is the basic baseline of simply adding a pre-
computed topology-based KB embedding in order
to improve the RE task performance. In this work
we aim to fill this gap. We provide a detailed evalu-
ation of such a model, which takes pre-computed
KB embeddings into account. As we will show
below, such a simple model extension is in fact
competitive with the more advanced models men-
tioned above on standard benchmark datasets.

3 Model

To perform RE, we make use of the model intro-
duced in Nguyen and Verspoor (2019); Giorgi et al.
(2019). The only difference being that we do not
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perform Named Entity Recognition (NER), but in-
stead train the model using gold entities, i.e. the
correct span of the entity mentions is fed to the
model as input. Thereby, we are able to evalu-
ate RE performance without contamination with
wrongly predicted entities. We chose this model
for its relative simplicity, while still providing close
to state-of-the-art performance in RE and its high
modularity that allows for easy modifications and
extensions.

The RE classifier we use resembles the one intro-
duced in Nguyen and Verspoor (2019), except that
it is combined with a pre-trained transformer-based
(Devlin et al., 2019; Vaswani et al., 2017) encoder,
as proposed in Giorgi et al. (2019). For illustration,
the complete model is sketched in Figure 1.

The information flows from left to right and the
errors are free to backpropagate through all the
preceding layers. The input of the model is a sen-
tence of N tokens, w1, w2, ..., wN , containing two
or more known entities, ei = wj , wj+1, ..., wj+k.
The output is one or more triplets (h, t, r) repre-
senting the relations found in the input sentence.
h and t represent the head and the tail of the rela-
tion respectively, while r is the type of relationship
between h and t.

A more detailed description of our model
pipeline is given in the remainder of this section.
For reproducibility, we made our model source
codes available on Github 1.

3.1 Pre-trained Language Model

The pre-trained language model provides the initial
encodings for the tokens contained in the sentence.
We opted to use variants of the BERT (Devlin et al.,
2019; Liu et al., 2019) model (specifically, the
implementation of bert-base-cased and roberta-
base by Huggingface (Wolf et al., 2020)), but in
general the encoder can be replaced by any other
encoder capable of providing context-dependent
embeddings of a sentence. We leave the encoder
unfrozen during training such that the gradients can
propagate through it. Thereby its parameters are
fine-tuned to optimize the token representation for
the specific task at hand.

In more detail, we start with the encoder com-
pletely frozen and gradually unfreeze the last four
layers over the first epochs of training, as suggested
for instance in Araci (2019). It has been shown that

1https://github.com/BrunoLiegiBastonLiegi/Pretrained-
KB-Embeddings-for-RE

such training procedure does not necessary yield
a decrease in accuracy, but it does significantly re-
duce the computational burden, c.f., Araci (2019).

3.2 Entity Filter
The purpose of the entity filter is to filter out each
token that does not compose an entity. Two com-
mon choices for multi-token entities are to keep
either the last token or the average of tokens as
identifier of the complete entity. We tested both
cases and did not find any evidence of one being
superior to the other in our application. Therefore,
we opted to take the average encoding among the
tokens composing the entity as identifier.

Note that for the model augmented by a graph-
embedding, we concatenate to the average encod-
ing obtained for each entity, xBERT

i , the relative
graph embedding xgraph

i of Lerer et al. (2019),
such that we obtain for the final input xi of the
RE module

xi = [xBERT
i ,xgraph

i ] . (1)

3.3 RE Module
For details of the RE module we refer to the orig-
inal works (Dozat and Manning, 2017; Nguyen
and Verspoor, 2019; Giorgi et al., 2019). In a nut-
shell, the RE module consists of two steps. Firstly,
the head-tail decompositions of the inputs are con-
structed:

x
h|t
i = Fh|t

(
[xBERT

i ,xgraph
i ]

)
, (2)

where xh
i and xt

i, are the representation of the in-
puts viewed as the head or the tail of a relation
triplet (h, t, r). The projection is performed by two
simple feed forward neural networks, Fhead and
Ftail, composed of two linear layers separated by
ReLU activation and dropout (p = 0.1) for regular-
ization.

Secondly, all pairs {(xhead
j ,xtail

k )}j 6=k are con-
structed by combining all the heads with each pos-
sible tail (Miwa and Bansal, 2016; Nguyen and
Verspoor, 2019; Giorgi et al., 2019), and fed to a
biaffine attention layer (Dozat and Manning, 2017;
Nguyen and Verspoor, 2019; Giorgi et al., 2019)
for relation classification. The biaffine layer B(·, ·)
performs a combination of a bilinear transforma-
tion and a linear projection:

B(x1,x2) := x>1 Ux2 + W(x1‖x2) + b , (3)

xRE
i = B(xhead

j ,xtail
k ) , (4)
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where we indicate with ‖ the column-wise concate-
nation. A final softmax activation layer provides
the scores for each of the relation classes. The RE
loss is taken to be the crossentropy,

LRE =
M∑

i=1

expxRE
i,T∑

j 6=T expxRE
i,j

, (5)

where xRE
i,T represents the score assigned to the

correct class.

Note that if a sentence contains ne entities, the
RE module is going to provide 2

(
ne

2

)
= ne!

(ne−2)!
relation predictions. One for each of the possible
entity combinations

(eheadi , etailj )i 6=j i, j = 1, ..., ne

and, therefore, allowing for multiple relations ex-
tracted from a single sentence.

4 Results

In order to quantify the benefit of adding pre-
trained graph embeddings to a RE model, we have
considered two popular RE datasets: the Wikidata
(Sorokin and Gurevych, 2017) and NYT (Riedel
et al., 2010) corpora.

Since we make use of pre-trained graph embed-
dings, we decided to discard all sentences in the
training set containing entities not present in the
graph embedding (Lerer et al., 2019). Note that in
order to be able to fairly compare the models with
and without graph embeddings, we also exclude
these sentences in training the basic model without
graph embeddings. For the test set, we keep all the
sentences regardless of the available embeddings.
In case no embedding for the entity is available, we
simply substitute the graph embedding with a zero
tensor.

For each dataset we train the model with a differ-
ent random initialization ten times with and with-
out the addition of the pre-trained graph embed-
dings. Hence, in total we train twenty models per
experiment. Note that we always use the AdamW
(Loshchilov and Hutter, 2019) optimizer with learn-
ing rate 2 · 10−5. For the implementation of the
optimizer and of the whole model depicted in Fig-
ure 1 we rely on the Pytorch Library (Paszke et al.,
2019).

For evaluation, we compare the performance of
the two models (with and without graph embed-
dings) using Precision, Recall and F1 score. Both,

for each single relation class, and on average with
micro- and macro-averaging. In detail we rely on
the two following evaluation methods:
At first, for each relation class, we collect the F1
score obtained by the ten different trained models
and we plot the complete distribution of the results
as a violin plot. The mean of the ten F1 values
obtained is also reported as a colored dot inside the
violin. The same is done for the global micro- and
macro-average. We do this for both, the model with
added graph embeddings and the baseline model
without graph embeddings.

Then, we generate the micro Precision-Recall
curve for each of the ten models trained. The ten
curves obtained are interpolated and averaged to
form a single mean PR curve both, for the model
provided with the graph embeddings and the base-
line model. At each value of recall we compute
the standard deviation of the precision over the ten
different curves. The deviation is shown in shaded
color around the mean curve.

4.1 Pre-Trained Graph Embeddings

For all examples, we rely on the Wikidata KB
(Vrandečić, 2012) with pre-trained graph embed-
dings of the entities provided by Lerer et al. (2019).
In detail, the authors of Lerer et al. (2019) propose
a memory efficient and distributed implementation
of several popular graph embedding methods, such
as RESCAL (Nickel et al., 2011), TransE (Bordes
et al., 2013) and DistMult (Yang et al., 2015). This
new implementation was specifically developed for
dealing with very large graphs while being com-
petitive with the original implementation of the
state-of-the-art models aforementioned.

The pre-trained embeddings we use were trained
on the so-called “truthy” Wikidata dump dated
2019-03-06, making use of the TransE (Bordes
et al., 2013) approach with embedding dimension
of size 200.

4.1.1 Wikidata
The Wikidata (Sorokin and Gurevych, 2017)
dataset is a RE corpus built by distant supervision
with entities aligned to the Wikidata Knowledge
Base (Vrandečić, 2012). We rely on the dataset
version provided by Bastos et al. (2021). Some
statistics of the dataset are shown together with our
training configuration in Table 1. Note that in the
evaluation we ignore the results for the NA relation
class (i.e. the “no relation” class), as is usually
done in the literature (Bastos et al., 2021; Nadgeri
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Dataset train trainours test relations KB entities batchsize epochs
Wikidata 372, 059 369, 577 360, 334 353 464, 535 8 1-2

NYT 455, 771 ∼ 453-455, 000 172, 448 58 63, 601 8 3

Table 1: Statistics and training settings for all the datasets considered. trainours indicates the actual number of
training sentences used after discarding part of the data, as described in the main text. Note that for the NYT dataset
the trainours is given as a range, as for each repetition we sampled a different subset of the training and validation
set, as described in Section 4. For the Wikidata dateset, we experimented with training for 1 and 2 epochs.

Micro Macro
P R F1 P R F1

Wikidata

RECON (Bastos et al., 2021) 87.24 87.23 87.23 63.59 33.91 44.23
KG-Pool (Nadgeri et al., 2021) 88.60 88.59 88.60 - - -

Ours
bert-base 85.43 78.37 81.74 51.42 37.24 40.02
roberta-base 85.50 80.30 82.81 49.33 36.77 39.22
roberta-base1e 83.71 83.01 83.35 46.09 34.52 36.38

Oursge
bert-base 88.34 79.19 83.51 55.72 39.62 43.24
roberta-base 87.66 82.07 84.77 54.42 41.64 44.33
roberta-base1e 86.83 83.93 85.36 50.88 38.52 40.57

NYT Ours bert-base 47.13 75.57 57.98 28.35 45.27 33.05
Oursge bert-base 51.13 76.46 61.24 31.66 47.31 36.20

Table 2: Summary of the P, R and F1 scores (averaged over ten runs) obtained in our experiments for the three
datasets considered. We indicate with the subscript ge the results obtained by the model with the graph embeddings
added. For the Wikidata experiment we even specify with the subscript 1e the models that have been trained for
1 single epoch instead of 2. If avaliable, we include the results obtained by others on the same dataset, we leave
blank (-) otherwise. In particular, for the NYT dataset, we are not aware of other works in the literature measuring
the performance under the F1 metric.
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Figure 2: F1 scores on the Wikidata corpus for each re-
lation. The micro- and macro-averages are also shown.
Only the top 20 relations are plotted, ordered by de-
creasing support. The F1 score distribution of the ten
different trained models is illustrated via violin plots.
The baseline model is shown in blue and the model
with added graph embeddings in orange. The means
of the distributions are indicated by bullet points inside
the violin plots.

P@10 P@30
RESIDE (Vashishth et al., 2018) 73.6 59.5
RECON (Bastos et al., 2021) 87.5 74.1
KG-Pool (Nadgeri et al., 2021) 92.3 86.7
Ours 96.6 83.1
Oursge 97.5 86.8

Table 3: Comparison of the P@10 and P@30 for the
NYT dataset. We indicate with the subscript ge the re-
sults obtained by the model with the graph embeddings
added.

et al., 2021).
For this dataset, in addition to the bert-base-

cased (Devlin et al., 2019) model, we also tested
the roberta-base (Liu et al., 2019) language model.
For the latter, we also experimented with training
for just one epoch instead of two, obtaining slightly
better micro F1, at the cost of lower macro F1.

The F1 score violin plots for the top 20 relation
classes in the dataset are shown in Figure 2. The
illustrated results were obtained with the roberta-
base model as sentence encoder, the whole model
was trained for 1 epoch. Although some relations
do not benefit from the inclusion of graph embed-
dings, the majority of them show a consistent im-
provement. On average, we measure a performance
boost, both, in micro- and macro-averaged F1 score,
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of around ∼ 2 - 4% depending on the specific lan-
guage model, c.f. Table 2.

Even so the addition of graph embeddings yields
a significant performance boost to the base model,
as discussed above, the boosted model does not out-
perform the current state-of-the-art (Nadgeri et al.,
2021) in the micro-averaged metrics. In particu-
lar, only the micro precision metric (bert-basege:
88.34± 0.33), is statistically in range of the state
of the art model2. However, for macro-averaged
scores, our model (roberta-basege) surpasses the
current state-of-the-art (Bastos et al., 2021), both,
in recall (R) and F1.

4.2 NY Times
Another popular RE dataset built by distant super-
vision is the NYT corpus (Riedel et al., 2010), ob-
tained by aligning a set of over 1.8 million articles
from the NY Times journal to the Freebase Knowl-
edge Base. We made use of the Wikidata SPARQL
query service 3 to obtain the mapping from the old
Freebase id scheme to the new Wikidata one. We
make use of the dataset version provided by Bastos
et al. (2021). In Table 1 are reported some statistics
of the dataset together with the settings we used in
our experiments.

We train on the validation (114, 317 sentences)
and training sets (455, 771 sentences) by randomly
discarding 20% of the sentences for each one of the
ten runs, such that we obtain a number of train sen-
tences comparable to Bastos et al. (2021); Nadgeri
et al. (2021); Vashishth et al. (2018). Note that
we had to further discard between 1, 000 to 3, 000
train sentences, depending on the run, due to the
missing graph embeddings. We train the model
with the settings listed in Table 1, and evaluate the
performance at P@10 and P@30 (precision at fixed
recall 10% and 30%), as proposed in the literature.
As before, we ignore the score of the NA relation
class in averaging.

Figure 3 illustrates the comparison of the perfor-
mance of the two models trained. We observe that
the model with the added graph embeddings shows
a slower decay of the precision with increasing re-
call and, in particular, an improved precision on
average and through the whole curve. The F1 score
calculation confirms this trend, as both micro- and
macro-F1 exhibit an improvement of about ∼ 3%,
as reported in Table 2.

2For reference, we observed standard deviations in the
range ∼ 0.1 - 1 for the results reported in Table 2.

3https://query.wikidata.org/

The comparison with the results obtained by oth-
ers in the literature, reported in Table 3, demon-
strates the solid performance of our model. In
particular, the model is able to surpass the current
state-of-the-art (Nadgeri et al., 2021), both, under
P@10 and P@30.

4.3 Discussion

To better understand under which circumstances
the additional information contained in the graph
embeddings is beneficial, some of the results given
above are analyzed below. We are going to consider
each relation separately, and we will look at four
different variables characterizing them:

• σ2(F1): Variance of the F1 score obtained
across the ten runs.

• F1: Mean F1 score obtained across the ten
runs.

• S: Support, i.e. the amount of training exam-
ples available.

• ∆F1 := F1ge − F1b: Gap between the av-
erage scores obtained by the model with the
additional graph embeddings and the baseline
model.

Note that the Wikidata corpus provides the
largest number of relation classes and thereby fea-
tures a wider statistical variety. Therefore, we fo-
cus on the results for the Wikidata corpus in the
remainder of this section, in particular the ones
obtained by our roberta-base based model trained
for 1 epoch. For some relations we have always
obtained F1 = 0 with zero variance σ2(F1) = 0,
and, surprisingly, not all of them had close to zero
support S. Those with higher support, however,
were usually semantically similar to relations pro-
vided with much larger support that were constantly
preferred by our model. We exclude all these
F1 = 0, σ2(F1) = 0 relations since their iden-
tically null variance is an artifact and thus they do
not provide a good representation of the σ2(F1)
behaviour.

As shown in Figure 2 we observe a large vari-
ance of results for several relations across the ten
different runs. The relationship between the vari-
ance, σ2(F1), and the support S of each relation
is plotted in Figure 4 (left). Note that we take the
log scale for both axis. Both, the baseline, and
the graph embedding augmented models, show an
approximately linear relationship of σ2(F1) with
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Figure 5: Gap ∆F1 for each relation in the Wikidata
dataset plotted against the average score MF1 (8) ob-
tained across the ten runs. The red and green dashed
lines indicate the average and the median gap, respec-
tively, whereas the gray dashed line a gap of zero. The
size of each dot is given by the squareroot of the sup-
port of its corresponding relation.

increasing support, under the log− log transforma-
tion. We infer the following linear relationships
(with and without graph embeddings):4

y = −0.75x− 2.01 ,

y = −0.73x− 2.21 ,
(6)

with standard errors of 0.05 for the slopes and 0.26,
respectively, 0.30, for the intercepts (note that we
have taken y = log σ2(F1) and x = logS).

This implies a power-law scaling behavior of
σ2(F1):

σ2(F1) ∝ S−0.74 , (7)

where we took as exponent the mean of the two
regression coefficients given above.

In Figure 4 (right) the F1 against the support
is plotted using logarithmic scale, as for σ2(F1).
However, we do not observe a linear relationship
in log− log space as before, but rather some non-
linear dependence. In particular, it appears that
the larger the support of a given relation is, the
better the model is able to learn it, as one would
naively expect. The plot indicates that a support
of at least S ≈ 1000 is a sufficient condition for

4The coefficients are rounded off to the first two decimals.

good classification performance with an expected
low variance of performance.

The gap ∆F1 is plotted against the averaged F1
score,

MF1 =
1

2

(
F1ge − F1b

)
, (8)

for each relation in Figure 5. Note first that we
observe a mean and median gap of ∼ +0.05, re-
spectively ∼ +0.025. The performance boost is
inline with the micro- and macro- average based
observation in the previous section. In the plot also
the size of support is indicated for each relation.
We clearly observe that relations with large sup-
port are clustered at high MF1, in accord with the
discussion above.

It is interesting to notice that, both, for very high
MF1 as well as very low MF1 the augmenta-
tion with graph embeddings only gives mild per-
formance gains with low variance. In contrast, for
MF1 ∼ 0.1 - 0.9 we observe a larger variance
of ∆F1, that leads to gaps in the wider range
∼ −0.3 - 0.5.

5 Conclusion

In both the experiments discussed in Section 4, we
measured on average a noticeable improvement
over the baseline for the model with included pre-
trained graph embeddings. Tables 2 and 3 sum-
marize the numeric outcomes of our experiments,
and also include for comparison results of the state-
of-the-art methods obtained by others on the same
datasets. In particular, our model is able to reach
performance close to the current state-of-the-art
in the Wikidata dataset under the micro-averaged
metrics and sets a new state-of-the-art under the
macro F1 metric. Similarly, for the NYT dataset
our model achieves a new state-of-the-art under the
P@10 and P@30 metric.

In common with related works in the literature,
our model rests on the assumption of having the
correct entity identification at hand (gold entities).
Identifying entities in a sentence, however, is itself
a challenging task, usually referred to as Named
Entity Recognition. This task is further complicated
by the need to map the entities to corresponding
nodes in the KB (Entity Linking). This currently
limits the practical applicability of ours, and mod-
els akin to it in the literature, and warrants further
research.

We also analyzed in detail the performance of
our model for each relation of the Wikidata dataset,
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finding an interesting power-law scaling of the vari-
ance of the F1 score with increasing support of
the relation. In particular, this study provided us
with an estimate of around ∼ 1000 training oc-
curences per relation needed for good prediction
performance with small uncertainty. However, fur-
ther investigation is needed to explore the validity
of this finding in more generality.

Therefore, we like to highlight that we were not
only able to verify that the inclusion of general
pre-trained graph embeddings is helpful for the RE
task, but also that such a simple model extension is
competitive with other state-of-the-art models that
directly perform on-task training of those embed-
dings. This implies that the inclusion of such pre-
trained graph embeddings might be helpful across
a wider spectrum of language related tasks to im-
prove performance at a relatively low additional
cost of complexity and computational burden.

We see this work as giving further support to the
wider adoption of pre-computed graph embeddings
in natural language processing tasks. We envis-
age that their adoption may become comparable
to the popular Glove (Pennington et al., 2014) and
Word2vec (Mikolov et al., 2013) pre-trained word
embeddings.
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Abstract

With the increase of deception and misinforma-
tion especially in social media, it has become
crucial to be able to develop machine learn-
ing methods to automatically identify decep-
tive language. In this proposal, we identify key
challenges underlying deception detection in
cross-domain, cross-lingual and multi-modal
settings. To improve cross-domain deception
classification, we propose to use inter-domain
distance to identify a suitable source domain
for a given target domain. We propose to study
the efficacy of multilingual classification mod-
els vs translation for cross-lingual deception
classification. Finally, we propose to better un-
derstand multi-modal deception detection and
explore methods to weight and combine infor-
mation from multiple modalities to improve
multi-modal deception classification.

1 Introduction

Deception detection is a deliberate choice to mis-
lead to gain some advantage or avoid some penalty
(DePaulo et al., 2003). Deception detection is an
important goal of law enforcement, military and
intelligence agencies, as well as commercial or-
ganizations. In recent years, automatic deception
detection in text has gained popularity in the Nat-
ural Language Processing (NLP) community, and
researchers have studied cues to deception in a
diverse set of domains. These include detecting de-
ception in news (Wang, 2017), online reviews (Ott
et al., 2011), interview dialogues (Levitan et al.,
2018), trial testimonies (Fornaciari and Poesio,
2013), and in games (Soldner et al., 2019). These
studies have been useful for identifying linguistic
characteristics of deception, and for developing
machine learning techniques to automatically de-
tect deceptive language. However, we are still a
long way from applying these state-of-the-art de-
ception detection models in real-world deception
scenarios. We currently lack information about

how deception detection models perform across
domains, languages, and in multiple modalities. In
this proposal we outline current limitations in these
three areas of deception detection: across domains,
across languages and in multiple modalities. We
propose work to address these limitations, with the
goal of developing robust deception detection mod-
els that can generalize from lab-based datasets to
real-world deception.

For each of the three topics of deception detec-
tion, we discuss current limitations, formulate re-
search questions, and state proposed work to ad-
dress the research questions. For some of our re-
search questions, we present completed or ongoing
work to answer the questions. For cross-domain
deception classification, we first establish baseline
performance at within and cross-domain decep-
tion classification using the well-established NLP
model BERT. We identify major performance gaps
between within and cross-domain deception clas-
sification. To understand the cross-domain perfor-
mances, we formulate distance metrics and propose
a cross-domain classification model that does not
require target domain labeled training data and out-
performs several baseline models. We also discuss
ongoing and future research to further our under-
standing of and further imrpove cross-domain de-
ception detection.

For cross-lingual deception classification, we
formulate the task for deception detection in two
non-English languages: Bulgarian and Arabic. We
discuss the effectiveness of using a wide range of
classifiers including multilingual BERT (Devlin
et al., 2019), and propose additional experiments
to further understand and improve cross-lingual
deception detection.

Finally, we present proposed work in deception
detection in a multi-modal setting from text and
image features. Learning to identify deception is
a challenging task, especially when there is one
modality, and we propose to dynamically fuse in-
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formation from multiple modalities. The thorough
experiments in the proposed work will contribute
substantially to our understanding of cross-domain,
cross-lingual, and multi-modal deception detection,
and to the development of robust deception detec-
tion technologies.

2 Current limitations

2.1 Cross-domain deception classification

Although deception detection is a popular task in
the NLP research community, and there is a strong
interest in commercial applications of this work,
there exists a large gap between deception models
trained under laboratory conditions, and the perfor-
mance level that is needed in real-world deception.
Although researchers have in some cases obtained
very strong performance at deception detection,
these studies have focused on single domains, often
using small datasets. We currently lack information
about how small-scale, single-domain models of
deception may or may not generalize to real-world
data and new domains. We directly address this
gap by first benchmarking the within- and cross-
domain deception classification performance using
five popular deceptive text datasets. We then at-
tempt to understand performance gaps by analyzing
the features of the datasets and the learned embed-
dings representations by the models. Finally, we
propose a novel approach to leverage distance be-
tween domains to improve cross-domain deception
classification.

Studying cross-domain deception detection is
critical for understanding and contextualizing the
successes of deception detection models thus far
and gaining insights about the unique challenges of
deception detection. The insights gained will mo-
tivate and inform the development of more robust
models of deception.

2.2 Cross-lingual deception classification

There has been recent work in the NLP community
aimed at identifying general misinformation on so-
cial media (Shu et al., 2017; Mitra et al., 2017) and
particularly COVID-19 misinformation (Hossain
et al., 2020).

However, most of this prior work has focused
on data in English. There is a severe data short-
age of high quality datasets that are labeled for
misinformation in multiple languages. Because of
this, we need to develop models of deception and
misinformation that can utilize smaller datasets in

non-English languages or leverage large amounts
of training data in a source language, such as En-
glish, and generalize to new target languages.

2.3 Multi-modal deception classification

To build classifiers that can detect deception at a
high accuracy, it is necessary to have high quality
training data. Although a lot of prior work has
focused on predicting deception from text (Potthast
et al., 2017; Ott et al., 2011; Fornaciari and Poesio,
2014; Levitan et al., 2018), it is generally harder to
identify deception from just one modality.

Nakamura et al. (2020) propose models to
combine the image and text modalities by sim-
ple concatenation, addition, subtraction or tak-
ing dimension-wise maximum of image and text
feature vectors. However, it still seems unclear
how much importance should be attributed to each
modality. Whether there are better ways to com-
bine modalities is still unknown.

3 Proposed work and preliminary
exploration

To address the limitations discussed above, we for-
mulate concrete research questions that would help
study deception classification across domains, lan-
guages and modalities. We now discuss proposed
work and findings from initial experiments for each
research question.

3.1 Cross-domain deception classification

RQ1. How do current models of deception per-
form within domain and across domain?

To address this research question, we select five
deception datasets from different domains for our
analysis. They were selected because they are
all publicly available, and have been widely used
for training and evaluating within-domain decep-
tion detection performance. This collection of
datasets includes (1) Fake news containing fake
and legitimate news compiled via a combination
of crowdsourcing and webscraping (Pérez-Rosas
et al., 2018), (2) Open-domain deception consisting
of short, open-domain truths and lies obtained via
crowdsourcing (Pérez-Rosas and Mihalcea, 2015),
(3) Cross-cultural deception consisting of a set of
deceptive and truthful essays about three topics:
opinions on abortion, opinions on death penalty,
and feelings about a best friend (Pérez-Rosas and
Mihalcea, 2014), (4) Deceptive opinion spam con-
taining truthful and deceptive hotel reviews of 20
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Domain Deception type Number of tokens Number of samples
Mean Std. 1%ile 99%ile Truthful Deceptive Train Test

FakeNews Self reported 324.50 692.35 78.58 1936.71 490 490 784 196
OpenDomain Self reported 10.59 5.19 5.00 31.00 3584 3584 5734 1434
CrossCultural Self reported 81.47 32.06 24.99 177.04 200 200 320 80
DeceptiveOpinion Self reported 167.79 98.93 40.99 504.00 800 800 1280 320
Liar Obs. reported 20.21 11.46 6.00 46.00 4507 8284 10232 2559

Table 1: Summary statistics for datasets from different domains along with distribution of truthful and deceptive
classes and train/test sizes.

Chicago hotels (Ott et al., 2011), and (5) Liar liar
pants on fire containing a set of short statements,
mostly by politicians, in various contexts spanning
across a decade (Wang, 2017). Since each dataset
was collected under different experimental settings
and have different topics and styles, we consider
each dataset to represent a different domain with-
out loss of generality. The summary statistics of
the datasets in each domain are shown in Table 1.
4 of the 5 datasets have perfectly balanced classes,
while Liar has approximately 35% truthful sam-
ples and 65% deceptive samples. It is important
to note that the method of obtaining deception la-
bels can vary for different datasets. Broadly, each
dataset can be categorized into self reported de-
ception or observed reported deception, based on
whether they were reported by the speakers/writers
or by human labelers respectively. We show the
deception type for various datasets in Table 1. We
perform a stratified splitting of the dataset of each
domain into training and test splits with 80% of
the data used for training and 20% used for test-
ing, sizes of which are shown in Table 1. These
train/test splits are used consistently across all ex-
periments in this work to ensure a fair comparison
of results across experiments.

We applied a state-of-the-art NLP model BERT
(Devlin et al., 2019) to establish a strong baseline
for cross-domain deception detection. We used a
10% random split of the source domain training
data as the development data. For deception clas-
sification, we fine-tuned a BERT-based sequence
classification model.1 For training the BERT-based
model the Adam optimizer (Kingma and Ba, 2014)
was used with a learning rate of 1e-5. The training
was stopped when the development accuracy did
not improve for 5 consecutive epochs.

We observe in Table 2 that for any given tar-
get domain, the in-domain accuracies are generally
higher than the cross-domain accuracies. This find-

1bert-base-uncased model in Transformers library
(Wolf et al., 2020).

ing is consistent with observations made by Glen-
ski et al. (2020). In some cases, the gap between
within and across domain performance is egregious.
For example, BERT classifier fine-tuned on Decep-
tiveOpinion has a within domain accuracy of 0.909,
while the cross-domain performance of a model
trained on DeceptiveOpinion ranges from 0.453-
0.550 for the four other target domains. Further,
the cross-domain performance of models trained
on other domains and tested on DeceptiveOpinion
ranges from 0.456-0.572. Although the Decep-
tiveOpinion model has very strong within domain
performance and is a useful model of deceptive
hotel reviews, it is clearly not a robust model of
deception and cannot generalize to other deception
domains.

RQ2. When there is a performance gap be-
tween within and across domain deception de-
tection, can we explain why that occurs?

Figure 1: Deception sentence embeddings from differ-
ent domains using pre-trained BERT.

To gain a deeper understanding of the classifi-
cation results, we take BERT [CLS] token’s rep-
resentation to extract sentence level embedding
of each sentence. To visualize the deception sen-
tence embeddings, we project the sentence embed-
dings into a 2D space using UMAP (McInnes et al.,
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Target domain → FakeNews OpenDomain CrossCultural DeceptiveOpinion Liar
FakeNews 0.786 0.518 0.5 0.572 0.62
OpenDomain 0.474 0.642 0.4 0.478 0.581
CrossCultural 0.566 0.504 0.613 0.456 0.501
DeceptiveOpinion 0.52 0.5 0.55 0.909 0.453
Liar 0.5 0.504 0.5 0.506 0.674

Table 2: In-domain and cross-domain accuracies of deception detection. For each target domain, the in-domain
accuracy is underlined and the best cross-domain accuracy is bold-faced.

2018). We observe from Figure 1 that there are
well-defined clusters of embeddings for most do-
mains, for example DeceptiveOpinion, in red). In
contrast, the Liar dataset, shown in purple, appears
to have more broad and diverse embeddings, with
several purple data points appearing in each of the
other clusters.

We analyze the sentence embeddings further by
defining a distance metric which can be used to
measure the distance between a pair of domains.
We first formulate the general notion of distance.
Let DS and DT be the source and target domains
respectively. We denote the distance from DS to
DT as distance(DS , DT ). The distance between
DS and DT can be computed using sentence em-
beddings as

distance(DS , DT ) =
1− cos(SDS , SDT )

2
,

(1)
where SDS is the mean of all the sentence em-
beddings in DS and SDT is the mean of all
the sentence embeddings in DT . Upon comput-
ing the Pearson correlation between cross-domain
distances and accuracies, the correlation coeffi-
cient is found out to be -0.519, asserting that
distance(DS , DT ) is negatively correlated with
the cross-domain accuracy as expected.

We propose to understand the cross-domain de-
ception performance by analyzing linguistic fea-
tures of text in different domains. The list of
linguistic features include politeness (Danescu-
Niculescu-Mizil et al., 2013), concreteness (Klein-
berg et al., 2019), complexity (Lu and Ai, 2015),
readability (Dubay, 2004), sentiment and lexical
features such as sentence length. Our analysis will
include finding out the linguistic features correlated
to deception for each domain and comparison of
these features across domains.

RQ3. Can we leverage our understanding
of these performance gaps to improve cross-
domain deception detection?

We aim to develop a classification approach that
leverages the notion of domain distance to improve

cross-domain deception detection. The main idea
is as follows: given a target domain, find the opti-
mal source domain to use for training a deception
detection model. We compute the domain distance
between the target domain and all possible source
domains. Then, we recommend the source domain
which has the smallest distance from the target do-
main.

We compare the performance of this recom-
mender system with 2 baselines: (1) A random
recommendation system which chooses a source
domain uniformly at random for a given target do-
main. To get a reliable cross-domain accuracy, we
consider 100,000 trials of random recommendation
and calculate the average cross-domain accuracy
across all trials. (2) Multi-source leave-one-out
training, which combines all source domains, ex-
cluding the target domain, for classification. The
recommendation results are shown in Table 3. The
table shows the accuracy upon using the recom-
mended source domain for a given target domain.
We observe that the recommendation using sen-
tence embeddings based distance metrics is better
than both random recommendation and leave one
out multisource recommendation. This is an impor-
tant use case of distance metrics, showing that they
can reliably be used for improving cross-domain
performance.

We find in Table 3 that while recommending
a source domain is a relatively easier task for
some target domains, recommendation is difficult
in some other domains. For example, for the target
domains FakeNews and OpenDomain, the recom-
mendation using average sentence embeddings is
right in a majority of cases. However, this is more
challenging for Liar as the target domain, since no
model achieves an accuracy that is substantially
above 50%. To improve recommendation for such
cases, we propose to compute the distance between
a sample and all the potential source domains using
sentence embeddings. By doing the recommen-
dation at a sample level, we hope to improve the
overall prediction on the target domain.
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Recommendation Target domain
FakeNews OpenDomain CrossCultural DeceptiveOpinion Liar

Random recommendation 0.553 0.484 0.507 0.506 0.503
Multisource leave one out 0.541 0.500 0.550 0.447 0.521
Avg. sentence embed. 0.620 0.581 0.501 0.550 0.500
Best possible recommendation 0.620 0.581 0.566 0.550 0.506

Table 3: Cross-domain accuracies upon recommending for various target domains.

Language→ English Bulgarian Arabic
Train 869 3000 2536
Dev 53 350 520
Test 418 357 1000
Total 1340 3707 4056

Table 4: Data sizes of English, Bulgarian and Arabic
datasets for COVID-19 misinformation detection.

Setup Eng. → Bulgarian Eng. → Arabic
Zero shot 0.810 0.672
Few-50 0.819 0.775

Few-100 0.823 0.824
Few-150 0.821 0.791
Full shot 0.834 0.787

Target 0.843 0.738

Table 5: Cross-lingual (source language→ target lan-
guage) F1 scores when tested on the target language.
Few-n setup denotes that only n samples in the target
language are used for training.

3.2 Cross-lingual deception classification

RQ4. How effective are state of the art multi-
lingual NLP models at cross lingual deception
classification?

To answer this question, we use the findings
from Panda and Levitan (2021) who used the tweet
data provided for the Fighting the COVID-19 In-
fodemic shared task (Shaar et al., 2021) for anal-
ysis. The data was created by answering 7 ques-
tions about COVID-19 for each tweet about the
following aspects: verifiable factual claim, false
information, interest to general public, harmful-
ness, need of verification, harmful to society, and
require attention. Each question has a Yes/No (bi-
nary) annotation. The data includes tweets in three
languages: English, Bulgarian and Arabic. The
data falls in the observed reported deception cate-
gory (see the data discussion in Section 3.1). The
training, development and test data sizes for each
of the three languages are shown in Table 4. An
example of an English tweet from the dataset is
Anyone else notice that COVID-19 seemed to pop
up almost immediately after impeachment failed?
The 7 corresponding labels are Q1 Yes, Q2 Yes, Q3
Yes, Q4 Yes, Q5 No, Q6 Yes, Q7 No.

When the features from multilingual BERT (De-
vlin et al., 2019) are used for training on the source
language and then testing is done on the target
language, the scores as reported in Panda and Levi-
tan (2021) are shown in Table 5. This is the Zero
shot setup. The source language is set to English
and the target languages are Bulgarian and Arabic.
The scores for training using the target language
(Target setup) are also shown for comparison. We
observe that the cross-lingual F1 scores in the Zero
shot setup are lower than the scores in the Target
setup. Without the target language training data,
the model as expected finds it harder to predict
accurately when tested on the target language.

RQ5. What is the impact of amount of target
language training data on prediction quality?

To answer this question, all the source language
training data combined with n training samples
from the target language is used for training. n is
to 50, 100 and 150. This is called the Few shot
setup. A special case of this setup is the Full shot
setup, where n is set to the total size of the target
language training data. We observe in Table 5 that
as we increase the target language training samples
in the few shot setup, the performance increases in
general, as one would expect. Notably, even with
just 50 samples from the target language training
data, there is a noticeable increase in the cross-
lingual performance in comparison to the Zero shot
setup.

RQ6. How effective is using machine transla-
tion for cross lingual deception classification?

We propose to study the effectiveness of transla-
tion with multilingual COVID-19 misinformation
classification models. In most cases, training data
is available in English. The main idea is to trans-
late either the training or the test non-English data
to English using a pre-trained machine translation
system. We plan to use the state-of-the-art machine
translation systems by Tiedemann and Thottingal
(2020) to

1. Translate the non-English test set to English
and use an English model for prediction.
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2-way classification
Category Train Dev Test

True 215490 22585 22798
Fake 337449 35567 35309

— Total — 552939 58152 58107
3-way classification

Category Train Dev Test
Completely True 215490 22585 22798

Fake with False text 323721 34217 33835
Fake with True text 13728 1350 1474

— Total — 552939 58152 58107
6-way classification

Category Train Dev Test
True 215490 22585 22798

Misleading content 104136 10970 10959
False connection 167471 17766 17429

Manipulated content 21437 2161 2286
Satire/parody 32718 3438 3419

Imposter content 11687 1232 1216
— Total — 552939 58152 58107

Table 6: Data sizes for different categories for multi-
modal deception classification.

2. Translate English training data to a target lan-
guage and train the m-BERT classification
model using this translated data.

Results from the above experiments will help quan-
tify the effectiveness of using translation for decep-
tion detection.

3.3 Multi-modal deception classification
RQ7. Are there better ways to fuse text and
image features in comparison to static fusion?

Recent work such as Nakamura et al. (2020)
have created multimodal deception datasets and
also provided baselines of fusing multiple modal-
ities. The dataset by Nakamura et al. (2020),
called Fakeddit, is the largest publicly available
multi-modal deception dataset. It contains two
modalities: text and image. There are three la-
bels for each data sample, varying on granularity.
The fine-grained labels are true content, mislead-
ing content, false connection, manipulated content,
satire/parody and imposter content. These labels
come from subreddits in from which the content is
taken from (see details in Nakamura et al. (2020)).
This dataset can be used to train a classifier to pre-
dict deception on a desired fine-grained level, the
choices of which are 2-way, 3-way and 6-way. The
Fakeddit dataset falls under the self reported decep-
tion category (see the data discussion in Section
3.1). The sizes of the Fakeddit dataset are shown
in Table 6.

We propose to use an attention module (Luong
et al., 2015) that dynamically fuses the text and

Attention
module

α, β

α  x + β  x

Text features Image features

Figure 2: Fusion of text and image features using an
attention module.

image feature vectors as shown in Figure 2. The
text feature vector comes from the [CLS] token’s
representation of BERT. The image feature vec-
tor comes from ResNet. The attention module de-
cides how much weight to assign for each modal-
ity. Specifically it uses the input features for each
modality and computes as many attention scores as
the number of modalities. These attention scores
are positive and sum to 1 when added together. The
feature vector from each modality is scaled using
the corresponding attention score. Then the scaled
feature vectors are added together to obtain a sin-
gle vector, which can be passed through a final
linear layer to produce logits. We plan to answer
the following questions by analyzing the results of
attention-based fusion.

1. For each category of samples, what is the av-
erage attention on each modality?

2. Are there samples for which the attention to
one modality is negligible? Are there patterns
among these samples?

3. Does dynamic fusion of the text and image
feature vectors lead to better overall prediction
than static fusion?

4 Ethical considerations

Although automatic deception detection has the po-
tential to benefit society, there are several ethical
concerns within this line of research. Automatic
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deception detection has varying degrees of severity
depending on the application area. The impact of a
false positive is substantially lower when detecting
deceit in informal activities such as gaming. How-
ever, when detecting dishonesty in a criminal in-
vestigation, a false positive can have serious impli-
cations. In general, automatic deception detection
should be employed with caution, especially when
there is no manual human verification involved.

For the case of cross-domain deception detec-
tion applications, it is important to test the model
on the target domain before deploying it, as men-
tioned in Section 1. To understand the differences
between deception domains, a linguistic feature
analysis should be performed, as we mention in
Section 3.1. Finally, to increase transparency in
multi-modal deception detection, it is critical to
compute importance scores for each modality as
mentioned in Section 3.3. As automatic deception
detection across domains, languages and modali-
ties becomes a more widely studied subject, it is
important to be aware of the ethical considerations
and also take the necessary precautions to avoid
harm to society.

5 Conclusion

We identify key challenges in deception detection
in cross-domain, cross-lingual and multi-modal sce-
narios. For cross-domain deception classification,
we quantified the gap between in-domain and cross-
domain accuracies. Our proposed recommender
based on distance measures improves cross-domain
performance over two baselines. We plan to extend
the completed work by improving the recommenda-
tion process by recommending at the sample level
instead of the domain level. We also plan to analyze
the cross-domain results using linguistic features.
For cross-lingual deception classification, we dis-
cuss the challenges in predicting deception in a
target language with no or little training data. We
propose to study the effectiveness of using transla-
tion text for training and testing. For multi-modal
deception classification, we discuss the merits and
limitations of the current state-of-the-art models.
We propose to dynamically fuse the text and image
feature vectors using an attention module to better
understand the importance of each modality.
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Abstract

In a fill-in-the-blank exercise, a student is pre-
sented with a carrier sentence with one word
hidden, and a multiple-choice list that includes
the correct answer and several inappropriate
options, called distractors. We propose to au-
tomatically generate distractors using round-
trip neural machine translation: the carrier sen-
tence is translated from English into another
(pivot) language and back, and distractors are
produced by aligning the original sentence and
its round-trip translation. We show that using
hundreds of translations for a given sentence
allows us to generate a rich set of challenging
distractors. Further, using multiple pivot lan-
guages produces a diverse set of candidates.
The distractors are evaluated against a real cor-
pus of cloze exercises and checked manually
for validity. We demonstrate that the proposed
method significantly outperforms two strong
baselines.1

1 Introduction

A cloze (fill-in-the-blank) exercise is a common
method of teaching vocabulary, as well as assess-
ing non-native speaker performance in a foreign
language: a passage (sentence) is presented to the
learner with one word (target) being removed. The
target word is presented along with a list of distrac-
tors (usually 3), and the task is to correctly identify
the target word from that list. Table 1 shows a sam-
ple cloze item with the target word “vital”. The
carrier sentence along with a multiple-choice list
is referred to as cloze item. A cloze item is valid if
and only if one word on the list (the target) fits the
context. We also show valid and invalid distractors.

1The code is available at https://github.com/
subhadarship/round-trip-distractors

Carrier sentence
Are these old plates of ______
importance or can I put them into storage?
Target word: vital
Valid distractors: main, urgent, lively
Invalid distractors: great, utmost

Table 1: A sentence for a fill-in-the-blank exercise with
the target word “vital” removed. Multiple-choice list
will include the target and 3 distractors. Examples of
valid and invalid distractors are shown.

A valid distractor is a word that does not fit the
context. For example, “great” and “utmost” are
invalid distractors, since they both fit the context.

Given a carrier sentence and the target word, the
problem is to generate challenging distractors. In
typical high-stakes tests, such as Test of English as
a Foreign Language (TOEFL), distractors are gen-
erated manually by educational testing experts, a
time-consuming procedure. An automated method
to generate distractors would be extremely valu-
able. The problem becomes more challenging once
the exercises are aimed at high-proficiency learn-
ers, since distractors that are not semantically close
to the target word or grammatically unfit will be
too easy for advanced speakers (Zesch and Mela-
mud, 2014). To address this, previous work used
context-sensitive inference rules (Zesch and Mela-
mud, 2014), common collocation errors from large-
scale learner corpora (Sakaguchi et al., 2013), co-
occurrence likelihoods (Hill and Simha, 2016), and
word embeddings (Jiang and Lee, 2017).

In this work, we propose to generate distractors
using round-trip neural machine translation (MT).
Word choice errors are commonly affected by the
speaker’s first language, and even advanced learn-
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ers struggle with word usage nuances and may in-
appropriately use semantically related words (Lea-
cock et al., 2010). Our assumption is that lexical
challenges common with non-native speakers will
also manifest themselves in the round-trip machine
translation as back-translated words that are seman-
tically close to the target. Such words should there-
fore serve as challenging distractors for advanced
learners. Unlike previous work, this method also
opens up a possibility of customizing the cloze task
for speakers of different languages.

We focus on exercises aimed at advanced En-
glish as a Second Language (ESL) learners. A car-
rier sentence is translated from English into another
pivot language, where top n translation hypotheses
are generated. For each hypothesis, top m back-
translations into English are generated. The back-
translated words aligned to the target are treated
as potential distractors. We use five round-trip MT
systems and show that using multiple pivot lan-
guages encourages diversity in the distractor gen-
eration, as the distractors produced with different
pivot language systems are often unique.

Using a corpus of cloze exercises for advanced
ESL learners, we demonstrate that the proposed
method retrieves over 31% of the gold distractors
used in the exercises and over 70% percent of cloze
items have at least one gold distractor retrieved
with our approach. Evaluation shows that the pro-
posed method outperforms two strong baselines –
the word embeddings approach (Word2vec) and
BERT. Manual evaluation of the distractor validity
indicates that over 72.3% of all distractors are valid
with our approach compared to 56.1% and 38.0%
using Word2Vec and BERT, respectively.

Our contributions are as follows: (1) we propose
to use round-trip machine translation to generate
challenging distractors for cloze exercises and tests.
We use hundreds of round-trip translations and mul-
tiple pivot languages, and generate challenging di-
verse distractors; (2) we validate our approach us-
ing a dataset of real cloze exercises for advanced
ESL learners and show that it significantly outper-
forms the Word2vec and BERT baselines both in
automatic and manual evaluation; (3) unlike pre-
vious work, we find that different pivot languages
provide rather unique distractors for the same item,
thereby allowing for customizing the exercises on
the basis of the native language of the student.

The next section presents related work. Sec-
tion 3 describes the dataset of cloze exercises. Sec-

tion 4 describes the baseline methods, and Sec-
tion 5 presents our approach. Section 6 presents
the results of the automatic and manual evaluation
of the generated distractors. Section 7 further dis-
cusses the results, while Section 8 concludes.

2 Related work

The general approach to automatic distractor gener-
ation can be broken down into candidate generation
(identification), and candidate ranking.

Candidate generation Most of the work on au-
tomatic distractors focuses on generating distractor
candidates. These include word frequency, pho-
netic and morphological similarity, and grammat-
ical fit (Hoshino and Nakagawa, 2005; Pino and
Eskénazi, 2009; Goto et al., 2010).

For advanced speakers, distractors should be
picked more carefully, so that they are reasonably
hard to distinguish from the target. Consider, for
example, the target word “error” in the carrier sen-
tence: “It is often only through long experiments
of trial and error that scientific progress is made.”
The word “mistake” is semantically close to it but
is not appropriate in the sentence context, and thus
could serve as a valid distractor. However, note
that “mistake” can be substituted for “error” in the
context of “He made a lot of mistakes in his test.”
and would therefore not be a valid distractor. Thus,
on the one hand, challenging distractors should be
semantically close to the target word, yet, on the
other hand, a valid distractor should not produce
an acceptable sentence.

Most of the approaches to generating challeng-
ing distractors rely on methods of semantic related-
ness, such as n-grams and collocations (Liu et al.,
2005; Hill and Simha, 2016), thesauri (Sumita
et al., 2005), or WordNet (Brown et al., 2005).
(Zesch and Melamud, 2014) use semantic context-
sensitive inference rules. Sakaguchi et al. (2013)
propose generating distractors using errors mined
from a learner corpus. The approach, however, as-
sumes an annotated learner corpus, and is quite
limited, as both the choice of the target word and of
the distractors are constrained by the errors in the
corpus. Several recent studies showed that word
embeddings are effective in distractor generation:
Jiang and Lee (2017) and Susanti et al. (2018) gen-
erated distractors using semantically similar words
obtained from Word2vec (Mikolov et al., 2013).

We propose to use round-trip neural machine
translation to generate distractors. The only previ-
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ous mention of using MT is that of Dahlmeier and
Ng (2011) who aim at correcting ESL collocation
errors using a statistical machine translation tech-
nique. To the best of our knowledge, ours is the
first dedicated study that uses state-of-the-art NMT
systems with 5 pivot languages and large sets of
back-translations for generating distractors.

Several studies, while they do not generate dis-
tractors, address the complexity of the cloze task
for language learners. Felice and Buttery (2019)
focus on the contextual complexity of the gener-
ated gap itself. Marrese-Taylor et al. (2018) use
LSTM models for gap generation. Gao et al. (2020)
show that BERT is helpful in measuring the fit of
the distractor in the context, and thus can be used
for estimating distractor difficulty. Finally, we also
note that there is a significant body of work on
a task of generating reading comprehension (RC)
items, that test a different set of examinee abili-
ties, such as inference. That work (Chung et al.,
2020) deals with generating phrases and complete
sentences for distractors. RC item generation is a
distinct problem from vocabulary item generation
that is addressed in this work.

Candidate ranking can be used as an additional
step to (re-)rank the candidates produced during
candidate generation. One reason for this is that
context is typically not taken into account when
generating candidates. Yeung et al. (2019) used
BERT (Devlin et al., 2018) to re-rank the candidate
distractors generated with Word2vec for Chinese.
We show that BERT is not effective at generating
or re-ranking candidate distractors.

3 Data

It is important to note that there is no benchmark
dataset for the task. Previous studies evaluate either
on artificially created items with random words as
targets or proprietary data. In contrast, we obtain
cloze exercises from a reputable test preparation
website, ESL Lounge.2 The website contains study
materials and preparatory exercises for ESL tests,
such as FCE First Certificate, TOEFL, and Interna-
tional English Language Testing System (IELTS).
There was significant effort put into the develop-
ment of the exercises, which were manually cu-
rated for ESL students, and the exercises are of
high quality. This is the first dataset that can be

2https://www.esl-lounge.com

used by researchers working on the task.3

Since we wish to generate distractors for ad-
vanced learners, we use the C1 advanced level
multiple choice cloze exercises.4 C1 level is part
of CEFR scale.5 It is used to prove high-level
achievement in English and is designed for learners
preparing for university or professional life.

We extract a total of 142 cloze items.6 Each item
consists of a carrier sentence with the target word
removed and is accompanied by four word choices
that include the target word and three distractors.
We show two sample items in Table 2. 44.4% of the
target words are verbs, 38.7% are nouns, 14.1% are
adjectives, and 2.8% are some other part of speech.

4 The Baselines

We compare the round-trip MT method against
Word2vec and BERT. Both Word2vec embeddings
and BERT can be used to generate candidates, and
to rank candidates generated with MT. Here, we de-
scribe how we generate candidates with Word2vec
and BERT. In Section 5.3, we describe how we
use the two methods for candidate ranking. Using
Word2vec, we generate words that have the high-
est similarity to the target word and use these as
potential distractors. We use the 300-dimensional
Word2vec embeddings trained on Google News.
For a given target word, we find k nearest neigh-
boring words using cosine similarity in the word
embedding space. With BERT, we produce a set
of candidates by passing the carrier sentence with
the target word replaced by a masked token. BERT
returns a list of words that best fit the context of the
carrier sentence at the position of the masked to-
ken. Each word is associated with probability; we
select the top k candidates with the highest scores.
The candidates are filtered out using the same fil-
tering algorithm applied in round-trip MT (see Sec-
tion 5.2). In addition, we filter out misspellings by
using a wordlist of about 130,000 English word-
forms.

3A csv copy of the dataset for research purposes can be
obtained from the authors on paper acceptance.

4https://www.esl-lounge.com/student/
advanced-multiple-choice-cloze.php

5https://www.coe.int/en/web/
common-european-framework-reference-/
/languages/level-descriptions

6Our data collection is in conformity with the web-
site’s terms as described at https://www.esl-lounge.
com/student/copyright.php.
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Sentence: Much of the neighbourhood was demolished in the 1940s when living ______ had deteriorated.
Choices: situations, conditions*, circumstances, states
Sentence: Scientists are yet to understand the full nutritional ______ of the humble olive.
Choices: favours, helps, goods, benefits*

Table 2: Examples of multiple choice cloze exercises from the ESL Lounge website. Each item has exactly one
correct choice, marked with a star (*).

5 Generating Distractors with Neural MT

Formally, given a sentence X = {x1, x2, . . . , xn}
and a position k ∈ [1, n] of the target word, the
task is to generate a set of candidate distractors
D such that d ∈ D can be used as a challeng-
ing semantically-confusing distractor for the tar-
get word occupying position k in X . Since chal-
lenging distractors should be more similar to the
target word (Zesch and Melamud, 2014), and be-
cause many word sense nuances are challenging for
non-native speakers due to the differences between
word usage in their native language and in English,
we expect that candidates generated with round-
trip MT that uses the target word together with the
surrounding context will make good distractors for
advanced ESL learners.

5.1 Candidate generation

Round-trip machine translation Given a car-
rier sentence X with the target word, a forward
machine translation system from English to a pivot
language trg and backward MT system from trg
to English, we can generate a round-trip translation
for X . Importantly, we generate multiple hypothe-
ses in each direction.

We first translate the sentence X in English using
a forward MT system Sen−trg to obtain a set of top
Nf translation hypotheses Y = {Y1, Y2, . . . , YNf

}
in the target language trg. We then translate
the sentences in Y using a backward MT sys-
tem Strg−en and obtain a set of top Nb transla-
tion hypotheses for Yi ∈ Y . Finally, we ob-
tain the set of round-trip translations XRT =
{XRT1 , XRT2 , . . . , XRTNf×Nb

}.
We use state-of-the-art NMT systems with Ger-

man, Russian, Italian, French, and Czech as piv-
ots. For German and Russian, we use the systems
of Ng et al. (2019), and for the other languages
we use the systems of Tiedemann and Thottin-
gal (2020). We use Nf = 1, Nb = 1, 500 for
German, Nf = 1, Nb = 1, 000 for Russian, and
Nf = Nb = 16 for the other languages, and
generate 1, 500 round-trip translations for German,
1, 000 for Russian, and 256 for Italian, French, and

Czech. The number of hypotheses varies due to
system specifications as well as the memory con-
straints in the machines we used. We do not attempt
at comparing the machine translation models with
various pivot languages and leave it for future work.

Alignment computation Given a round-trip
translation XRTi for carrier sentence X , we need to
compute the alignment between the two sentences.
Then the word in XRTi that is aligned to the target
word in X is considered to be the back-translation
of the target.We use Simalign7 (Sabet et al., 2020)
that employs contextual word embeddings (Devlin
et al., 2018) to produce an alignment model for a
pair of sentences in the same or different language,
without parallel training data.

Given the original sentence and the round-trip
translation, first the similarity between each source
token is computed with each target token using
contextual embeddings from multilingual BERT.
This results in a matrix that stores similarity scores
between all the source and target tokens. The align-
ment computation is framed as an alignment prob-
lem where we search for a maximum-weight max-
imal matching in the bipartite weighted graph in-
duced by the similarity matrix (see details in Sabet
et al. (2020)).

5.2 Candidate filtering

Not all the words obtained by alignment can serve
as distractors because (a) the candidate might fit
the context, which would make the item invalid, or
(b) a word may make the sentence grammatically
incorrect and thus too easy for advanced students.
We use two filtering mechanisms.

Filtering distractors that are synonymous with
the target We use the synonyms provided in
WordNet (Fellbaum, 1998) to determine the can-
didate words that are synonymous with the target
word. We note that this approach will not weed
out distractors that are synonymous in specific con-
texts. For example, in the sentence Though we
always turn right here, I often ______ what’s down

7https://github.com/cisnlp/simalign
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the other road. with the target “wonder”, the algo-
rithm generates “think” as a candidate distractor.
Although “think” and “wonder” are not synonyms,
they are equivalent in the context of the sentence.

Filtering distractors based on POS tag An ob-
vious approach to filter out grammatically inap-
propriate distractors is to ensure that the candidate
word is of the same part-of-speech as the target
word in the carrier sentence. We use NLTK (Bird
et al., 2009) to compute the POS tag for the can-
didate words and only keep those which have the
same part-of-speech as the target word. Both for
the target word and the distractor candidates, the
POS tag is obtained by applying the tagger to the
entire carrier sentence with the target position filled
by the appropriate word.

5.3 Candidate ranking with BERT and
word2Vec

Typically, fewer than 5 distractors are used in a
cloze exercise, however, as we show below, the
MT method typically generates more than 5 candi-
dates. One approach to selecting distractors from
the available pool is uniformly at random. However,
previous studies typically rank candidates based on
their difficulty, assumed to be related to the de-
gree of semantic similarity to the target. We thus
wish to determine whether we can use Word2vec
and BERT to rank the distractors instead of simply
selecting candidates uniformly at random.

Using Word2vec, we define the difficulty of a
candidate distractor d for sentence X with target t
as the cosine similarity of their word embeddings
as in Equation 1:

difficulty(d, t) =
Emb(d) · Emb(t)
|Emb(d)||Emb(t)| (1)

The Emb(w) is a pre-trained embedding for word
w. We use the 300 dimensional Word2vec em-
beddings trained on Google news (Mikolov et al.,
2013). We pick candidates with the highest similar-
ity values. Similarly, we rank the candidates using
the scores obtained with BERT.

6 Evaluation

We evaluate the generated distractors using both
automatic and manual evaluation.

6.1 Automatic evaluation
Number of distractors generated We first show
the average number of unique candidate distrac-
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Figure 1: Average number of automatic distractors gen-
erated per cloze item using different pivots before and
after filtering. The average is computed over 142 cloze
items.
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Figure 2: The number and percentage of gold distractors
retrieved as a function of round-trip translations used,
before and after filtering.

tors retrieved with each pivot language system and
with the union of all the pivot systems, with and
without filtering (Figure 1). The number of unique
distractors is smaller than the total number of back-
translated sentences since many of the hypotheses
result in the same round-trip translation of the tar-
get word. The smallest average number of distrac-
tors is 18.1 for Italian, and the largest average num-
ber is 51.8 for German, when no filtering is used.
Notably, the union produces an average of 104.6
distractors per target word, suggesting that round-
trip translations from different pivot languages con-
tribute unique distractor candidates. Filtering re-
moves a significant number of generated candidates
by reducing the average number of candidates from
104.6 to 51.1 for the union.

Gold distractor retrieval While there may be
many valid challenging distractors for a given ex-
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Figure 3: Average number of automatic distractors per
item as a function of the number of round-trip transla-
tions used. The average is computed over 142 cloze
items.
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Figure 4: Number of gold distractors retrieved as a
function of round-trip translations used.

ercise item, we nevertheless wish to evaluate the
distractors generated automatically against the set
of gold distractors (distractors used in the cloze
items in the dataset). Given a cloze item with its
set of 3 gold distractors Dgold, and an automatic dis-
tractor d generated for this cloze item, we compute
the distractor retrieval score following Equation 2.

r(d,Dgold) =

{
1 if d ∈ Dgold

0 otherwise
(2)

We compute cumulative retrieval score8
∑

r(d,Dgold) across all the generated distractors
and across all cloze items (the total number of gold
distractors is 426, since we have 142 cloze items,
each containing 3 gold distractors). Figure 2 shows
the cumulative retrieval score (and percentage of
gold distractors retrieved) by pivot language and
for the union of all pivot languages before and
after filtering is applied: 36.2% of gold distractors
are retrieved with the automatic approach (without

8We do not evaluate precision here, as the set of potential
valid distractors is not unique, and candidates that are not in
the gold set can also serve as valid distractors, so precision
cannot be computed in automatic evaluation.

filtering). Filtering reduces this number to 31.9%,
however, as we showed above, filtering removes
about 50% of the generated candidates. We also
note that by-pivot performance is surprisingly
consistent: for German and Russian, we retrieve
21.1% and 19.0% of gold distractors, and for
the other pivots – between 14.1% and 15.5%.
We attribute the differences between the first
and second group to the number of round-trip
translations we generate (1, 000 and 1, 500 for
Russian and German, respectively, and 256 for
the other pivots). Importantly, the union of the
pivot languages is able to retrieve almost twice as
many gold distractors as the individual languages,
indicating that multiple pivots produce diverse
candidate distractors.

We stress that, while the distractors are not
uniquely defined, it is encouraging that over 30%
of gold distractors are retrieved with our approach.

Gold distractor retrieval as a function of the
number of round-trip translations Next, we
evaluate how increasing the size of the round-trip
translations affects the number of distractors gen-
erated, and whether it improves gold distractor re-
trieval. We use 2 pivot languages, German and
Russian, since we generate a large number of trans-
lations with these pivots. We limit the number of
round-trip translations to 1, 000 since this is the
maximum number of translations we can generate
with the Russian pivot. These NMT models also
have similar implementations, which would allow
for a fair cross-pivot comparison. We use Nf = 1
in all cases, and vary Nb between 100 and 1,000.

Figure 3 shows that the average number of dis-
tractors generated per item increases with the num-
ber of round-trip translations. With 100 hypotheses,
fewer than 5 candidates are generated with each
pivot, but this number increases to around 50 when
1, 000 are used. Interestingly, the number of can-
didates for each pivot is almost the same, but the
union of the pivots generates almost twice as many
candidates indicating that the pivots generate non-
overlapping candidates.

While the number of candidates increases with
the number of round-trip translations used, it is not
obvious if the lower-ranked hypotheses are useful
or they simply generate noise. Figure 4 shows the
gold retrieval scores as a function of the number
of translations. Both systems behave similarly in
terms of the number of gold distractors retrieved,
and the retrieval score continues to increase as the
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Gold distractors retrieved
Word2vec BERT MT

Before filt. 66 (15.5%) 144 (33.8%) 154 (36.2%)
After filt. 39 (9.2%) 97 (22.8%) 136 (31.9%)

Table 3: Word2vec vs. BERT vs. round-trip MT:
Number of gold distractors retrieved.

Method % of valid distractors Gold distr.
R1 R2 R3 Avg. retrieved

MT-no-ranking 67.9 73.5 75.4 72.3 16 (3.8%)
Word2vec 57.2 48.7 62.4 56.1 23 (5.4%)
BERT 22.7 46.3 45.1 38.0 24 (5.6%)
MT (word2Vec rank.) 50.4 47.1 52.1 49.9 47 (11.0%)
MT (BERT rank.) 27.7 41.8 55.4 41.6 36 (8.5%)

Table 4: Percentage of valid distractors in the top-5
list by rater and distractor generation method. The last
column shows the number and percentage of the gold
distractors in the top-5 list.

number of translations goes up. For example, with
200 round-trip translations, each language gener-
ates around 15 gold distractors among its candi-
dates, and this number increases linearly, to almost
80 when 1, 000 translations are used. This suggests
that lower-ranked hypotheses are still very useful.
Furthermore, the information produced by each
pivot system is complementary: the union of the
pivots retrieves almost twice as many gold distrac-
tors as the individual languages. This motivates
the use of multiple round-trip translation systems.

Finally, Figure 5 shows the percentage of cloze
items for which at least x ∈ {1, 2, 3} gold distrac-
tors were retrieved for the German and Russian
round-trip translations. For both pivots, when us-
ing 1, 000 translations, less than 5% of cloze items
have all 3 distractors retrieved. However, at least
1 gold distractor is retrieved in around 40 % of
the cloze items. With the union of the two piv-
ots, we retrieve at least 1 gold distractor for about
55% of the items, which, again, demonstrates that
using multiple pivots introduces diversity and pro-
vides complementary information. We also find
that some of the distractors might be more difficult
to retrieve using the MT approach, as discussed
further in Section 7.
Comparing generated distractors with BERT
and Word2vec Using Word2vec and BERT, we
generate a list of n nearest neighbors for each target
word. Since the round-trip MT method produces a
different number of candidate distractors per target,
whereas Word2vec and BERT generate a long list
of candidates, we use the average number of candi-

Method Annotators Avg.
1,2 1,3 2,3

MT-no-ranking 0.573 0.619 0.590 0.594
Word2vec 0.379 0.389 0.624 0.463
BERT 0.294 0.705 0.364 0.454
MT (Word2vec rank.) 0.496 0.476 0.696 0.556
MT (BERT rank.) 0.439 0.495 0.413 0.449

Table 5: Pairwise agreement for the 3 annotators.

dates produced with round-trip MT with the union
of 5 pivot languages, and generate 104 neighbors
without filtering and 51 neighbors with filtering
applied. Table 3 shows the results. Round-trip
MT retrieves significantly more gold distractors
compared to Word2vec and BERT.

6.2 Manual evaluation of item validity

Evaluation of the item validity needs to ensure that
the distractors cannot be used in the carrier sen-
tence (see Table 1). Many invalid examples involve
contextual synonyms that have not been filtered out
with WordNet, as well as other, non-synonymous
candidates that simply fit the context.

For each carrier sentence, we compare 5 sets
of automatically-generated distractors:9 (1) round-
trip MT (without ranking);10 (2) round-trip MT
with Word2vec ranking; (3) round-trip MT with
BERT ranking; (4) using Word2vec for generation;
(5) using BERT for generation.

The manual evaluation is performed by three
annotators who are college students and native En-
glish speakers. The annotators were presented with
a carrier sentence, the target, and manually evalu-
ated 5 sets of distractors by marking each distractor
as valid or invalid.

We obtain the “precision” of each method, i.e.
the percentage of the distractors judged as valid (Ta-
ble 4). MT without ranking produces the highest
percentage of valid candidates with all three annota-
tors. On average , 72.3% of candidates are valid for
MT without ranking, vs. 56.1% with Word2vec and
38.0% with BERT. Using BERT and word2Vec for
ranking reduces the percentage of valid candidates
in the top-5 list. The last column shows the re-
trieval scores for the top-5 list. Interestingly, BERT
and word2Vec retrieve more gold candidates than
the MT method, however, the proportion of invalid
candidates is much higher for these methods, pos-

9The number of candidates is set to 5 because in a typical
setting one would need to use 3 distractors for creating the
exercises, and some of the automatic distractors would turn
out to be invalid.

105 distractors are selected uniformly at random.
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Figure 5: Percentage of cloze items with at least 1, 2, and 3 (all) gold distractors retrieved as a function of the
number of round-trip translations used.

Sentence: When choosing for this role, don’t ______ the talents of Brian, one of the best actors in the academy.
Choices: overlook*, overvalue, oversee, overrate
Sentence: You simply must invite Carol to the party. She’s always the life and ______ of any evening.
Choices: light, soul*, blood, flesh

Table 6: Examples of multiple choice cloze exercises where none of the gold distractors were identified with the
round-trip NMT approach. Each item has exactly one correct choice, marked with a star (*).

sibly, due to the higher proportion of synonyms of
unrelated words that fit the sentence context.

Overall, manual evaluation demonstrates the su-
periority of the MT approach over Word2vec and
BERT. We also find that neither Word2vec nor
BERT are effective at ranking the candidates. With
Word2vec, we conjecture this is due to the nature
of the word embedding models that tend to prefer
words that are not simply semantically similar but
also synonymous with the target. Similarly, BERT
is good at producing words that are most likely in
the context of the carrier sentence.
Inter-annotator agreement We compute pairwise
agreement using Cohen kappa’s (Cohen, 1960) and
present the results in Table 5. Our average pairwise
agreement values are shown in the last column.
These values are better than those obtained by Ye-
ung et al. (2019), although their annotation task
included 3 classes. Cohen’s kappa results indicate
moderate agreement in all cases.

7 Analysis and Discussion

We further analyze the distractors generated with
round-trip MT. First, we examine the gold distrac-
tors that have not been identified with the MT ap-
proach. We find that some gold distractors are not
semantically close to the target. Table 6 shows
two such examples. In the first sentence, the gold
distractors are based on morphology/phonology
(common prefix), while in the second sentence, the

distractors (“light”, “blood”, and “flesh”), arguably,
are not semantically close to the target “soul”.

Next, we focus on the differences between the
distractors generated with Word2vec, BERT, and
MT, and show an example that demonstrates the
ability of round-trip MT to model sentential context.
First example in Table 7 illustrates that Word2vec
distractors are independent of the context of the sen-
tence: the distractors are all latched on the “music”
sense of the target word “band”. However, round-
trip MT models the context of the complete sen-
tence and generates more appropriate distractors.
The second example compares BERT-generated
and MT-generated distractors: while not all of
the MT distractors are valid, BERT is more likely
to generate candidates that are synonymous with
the target, and thus are invalid as distractors. In
fact, Zhou et al. (2019) successfully use BERT for
the task of lexical substitution, while Qiang et al.
(2020) use BERT for lexical simplification. The
idea of using BERT in such tasks is to provide good
substitutes that are close synonyms in the given
context. This is precisely the opposite of our goal:
difficult distractors for a gap-filling task should not
be substitutes of the target word.

Finally, the example below demonstrates that
MT systems are capable of generating unique pivot-
dependent distractors. Consider the carrier sen-
tence “Despite being such a frequent visitor to
Paris, Sam never bored of exploring it.” with the
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Sentence: The ______ of thieves had been captured.
Target word: band; gold distractors: bunch, crew, range
Top-5 word2vec distractors: keyboardist, vocalist, drummer, quintet, guitarist
Round-trip MT distractors: crew, group, orchestra, gang, squad
Sentence: The ______ of the report have yet to be analysed by the government so they can formulate new policies.
Target word: findings; gold distractors: invenstions, discoveries, rulings
Top-5 BERT distractors: recommendations, assertions, observations, results, conclusions
Round-trip MT distractors: outcomes, familiarities, shows, results, achievements

Table 7: Word2vec and BERT distractors vs. round-trip MT distractors.

target word “frequent” the French system generates
“usual” as a distractor, while the Russian system
does not. We believe this might be related to the
fact that one of the translations of “frequent” into
French is “habituel”, which also has a meaning
of “usual”, and thus “usual” can be produced as a
round-trip translation with the French pivot. This
is not the case for Russian.

8 Conclusion

We present a novel approach to generating challeng-
ing distractors for cloze exercises using round-trip
neural machine translation. We show that using
multiple pivot systems and a large set of round-trip
translations produces diverse candidates, and each
pivot language contributes unique distractors. This
opens up a possibility of customizing the cloze
generation task for speakers of different languages
(groups), an interesting promise that BERT-based
and other models cannot do. We conducted a thor-
ough evaluation of the distractors, using a set of real
cloze exercises for advanced ESL learners. Com-
parison with Word2vec and BERT showed that the
round-trip MT retrieves substantially more gold
distractors given the same size of the candidate set.

For future work, we will focus on customizing
distractors based on the learner’s native language,
by prioritizing that language as pivot for MT. We
will also conduct a study with language learners
to determine whether the automatic distractors pro-
duced with our approach result in cloze items of the
same difficulty as those that use gold distractors.

For the current work for English, we used high-
quality machine translation systems. However, for
many language pairs that do not include English as
one of the languages, high-quality MT systems are
not available. Further, high-quality MT systems
are also rarely available for low-resource languages
paired with English. The future work will also fo-
cus in determining whether and how translation
quality might affect the quality of generated dis-
tractors. We hypothesize that the proposed method

might require special approaches when used to de-
velop exercises for languages other than English
and when generating English distractors using low-
resource pivots. This is another exciting direction
for future work.
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Abstract

Transformers have achieved state-of-the-art re-
sults across multiple NLP tasks. However,
the self-attention mechanism complexity scales
quadratically with the sequence length, creating
an obstacle for tasks involving long sequences,
like in the speech domain. In this paper, we dis-
cuss the usefulness of self-attention for Direct
Speech Translation. First, we analyze the layer-
wise token contributions in the self-attention
of the encoder, unveiling local diagonal pat-
terns. To prove that some attention weights are
avoidable, we propose to substitute the stan-
dard self-attention with a local efficient one,
setting the amount of context used based on the
results of the analysis. With this approach, our
model matches the baseline performance, and
improves the efficiency by skipping the compu-
tation of those weights that standard attention
discards.

1 Introduction

Recently, Transformer-based models have gained
popularity and have revolutionized Natural Lan-
guage Processing (NLP) (Vaswani et al., 2017; De-
vlin et al., 2019; Brown et al., 2020). In the speech-
to-text setting, the Transformer works with audio
features like the mel-spectrogram (Dong et al.,
2018; Di Gangi et al., 2019). These features pro-
vide longer input sequences compared to their raw
text counterparts. This can be a problem when
regarding complexity, since the Transformer’s at-
tention matrix computational cost is O(n2), where
n is the sequence length. In speech, a common ap-
proach used to overcome this issue and reduce the
input sequence length is to employ convolutional
layers with stride before the Transformer encoder.
However, even with the addition of convolutional
layers, time and memory complexity is still an is-
sue.

∗ Equal contribution.

Figure 1: Spectrogram and contributions matrix1in
Layer 11, after training for En-De ST. Tokens attend lo-
cally, creating a diagonal pattern. Highlighted is shown
our proposed adaptive local attention window.

An active area of research has investigated ways
to make the Transformer more efficient in tasks in-
volving long documents, that exhibit the same prob-
lem as speech tasks (Tay et al., 2020). These mod-
els explore different techniques on how to avoid
the computation of some attention weights, hence
reducing the complexity of the self-attention layer.
Some of these models, such as the Reformer (Ki-
taev et al., 2020) or the Routing Transformer (Roy
et al., 2021), only compute attention weights on
those queries and keys that are more related accord-
ing to different clustering techniques. The authors
of the Linformer (Wang et al., 2020b) state that
the attention matrix is low-rank, so they project
keys and values to reduce the size of the atten-
tion matrix. The Synthesizer (Tay et al., 2021)
directly avoids computing token-to-token interac-

1The main diagonal, which accounts for 65% of the total
contributions, is hidden for visualization purposes.
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tions by learning synthetic attention weights. The
Longformer (Beltagy et al., 2020) and the Big Bird
(Zaheer et al., 2020) modify the attention matrix
with patterns such as local or random attentions.
In this paper, we focus on local attention by using
a sliding window centered on the diagonal of the
attention matrix.

We build upon recent advances in the explain-
ability of the Transformer to analyze the amount of
context used by self-attention when dealing with
speech features. Recent interpretability works have
moved beyond raw attention weights as a mea-
sure of layer-wise input attributions and have inte-
grated other modules in the self-attention, such as
the norm of the vectors multiplying the attention
weights (Kobayashi et al., 2020), the layer normal-
ization, and the residual connection (Kobayashi
et al., 2021). In the Automatic Speech Recognition
(ASR) domain, the usefulness of the self-attention
has been argued (Zhang et al., 2021; Shim et al.,
2022), showing that its exposure to the full context
might not be necessary, especially in the top layers.
We carry out this analysis for Direct Speech Trans-
lation (ST) systems, which are capable of translat-
ing between languages from speech to text with a
single model. The encoder of these systems needs
to jointly perform acoustic and semantic modeling,
while in ASR the latter is not that relevant (Liu
et al., 2020). To the best of our knowledge, this
is the first work that uses interpretability methods
to understand how the Transformer‘s self-attention
behaves in the Direct ST task.

In this work, we use the layer-wise contributions
proposed by Kobayashi et al. (2021) to analyze the
patterns of self-attention in Direct ST in En-De,
En-Es and En-It tasks, unveiling their strong local
nature. Consequently, using self-attention might
not be entirely useful, but it is computationally
costly. To verify this hypothesis, based on our anal-
ysis, we propose a new architecture designed to
maximize the efficiency of the model while mini-
mizing the information loss, and demonstrate no
hinder in the model’s performance in any of the
three directions. We achieve this by substituting
regular self-attention with local attention in those
layers where the contributions are placed around
the diagonal. Finally, we analyze the performance
of the proposed model.

2 Speech-to-text Transformer

Recent works have attempted to adapt the Trans-
former to speech tasks (Di Gangi et al., 2019; Gu-
lati et al., 2020). In the Direct ST domain, a usual
approach is adding two convolutional layers with a
stride of 2 before the Transformer (Wang et al.,
2020a). By doing this, the sequence length is
reduced to a fourth of the initial one. After the
two convolutional layers, the speech-to-text Trans-
former (S2T Transformer) consists of a regular
Transformer model, composed of 12 encoder layers
and 6 decoder layers.

The main component of the Transformer is the
multi-head attention mechanism, in particular, the
self-attention is in charge of mixing contextual
information. Given a sequence of token repre-
sentations {x1, · · · ,xN}, each of the H heads
projects these vectors to queries Qh ∈ RN×dh ,
keys Kh ∈ RN×dh and values Vh ∈ RN×dh , with
head dimension dh = d/H , where d is the model
embedding dimensionality. The self-attention at-
tention (SA) computes:

SA(Qh,Kh,Vh) =
H∑

h

AhVhWh
O + bO (1)

Where Wh
O ∈ Rdh×d and bO ∈ Rd are learnable

parameters, and

Ah = softmax
(
Qh(Kh)T√

dh

)
(2)

Training details. We reproduce the S2T Trans-
former training with FAIRSEQ (Ott et al., 2019;
Wang et al., 2020a). The training procedure con-
sists of two phases. First, we pre-train the model in
the ASR setting (Bérard et al., 2018). Then, we sub-
stitute the decoder with a randomly initialized one,
and both are finally trained in the ST task (see Ap-
pendix C for more details on the hyperparameters).
For the trainings, we use the MUST-C English-
German, English-Spanish and English-Italian sub-
sets (Cattoni et al., 2021).

3 Model Analysis

In this section, we present the analysis of the en-
coder self-attention in the S2T Transformer.

Interpretability method. Kobayashi et al.
(2021) propose an interpretability method that
measures the impact of each layer input, i.e token
representations (xj), to the output of the layer,
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Figure 2: Contribution diagonality D(w, l) after ST
training, for a single En-De example. The greater the
area under the curve (CCD), the higher the diagonality.

considering also the layer normalization and the
residual connection. They provide the formulation
for the attention block of the original Transformer
architecture, which has layer normalization on
top of the self-attention module. In this work,
we give an adaptation to the group of models
that normalize before the multi-head attention
(Pre-LN), such as the S2T Transformer. The
complete chain of computations in the Pre-LN
attention block can be reformulated as a simple
expression of the layer inputs:

x̂i =

N∑

j

H∑

h

Ah
i,jLN(xj)W

h
V W

h
O+bO+xi (3)

We can now express the attention block output as a
sum of transformed input vectors (Fi(xj)):

x̂i =
N∑

j

Fi(xj) + bO (4)

Where Fi(xj) is defined as:

Fi(xj) =

{∑H
h Ah

i,jLN(xj)W
h
V W

h
O if j ̸= i∑H

h Ah
i,jLN(xj)W

h
V W

h
O + xi if j = i

Kobayashi et al. (2021) measure the contribution
Ci,j of each input vector xj to the layer output x̂i

with the Euclidean norm of the transformed vector:

Ci,j = ∥Fi(xj)∥ (5)

Figure 3: Average cumulative contribution diagonality
(CCD) score across layers, over 100 samples. Results
shown for models trained in ASR (dashed line) and ST
(solid line).

Layer-wise analysis. We analyze the contribu-
tion scores obtained with Eq. 5 from the encoder
layers in both ASR (pre-training) and ST tasks.
From the results shown in Figure 4 (see also Ap-
pendix E) we observe that most layers’ contribu-
tions are dense around the diagonal. To measure the
degree of diagonality in the contribution matrices
at each layer l, we build upon the attention diago-
nality proposed by Shim et al. (2022), originally
defined with attention weights and proportions of
the sequence length. We reformulate it with the
obtained contributions, and token ranges w (see
Appendix A for more details on the differences):

D(w, l) =
1

N

∑

i

∑

j

C l
i,j (6)

where j ∈ [max(1, i − ⌊12w⌋),min(N, i + ⌊12w⌋],
i ∈ [1, N ]. D(w, l) computes the average of the
contributions restricted by the diagonal window
range w. In order to measure how fast the contri-
bution density increases over the window length,
we calculate the cumulative contribution diagonal-
ity (CCD), that corresponds to the area under the
curve of the accumulated D(w, l) within the range2

w ∈ [1, 2N ]. That is, we approximate the integral
of D(l, d) along the distance d, but for the discrete
variable w (Figure 2).

In Figure 3 we show the CCD results for ASR
and ST across layers, where we can observe a
strong diagonal pattern. We can see that, surpris-
ingly, CCD is very similar in both tasks. This con-
tradicts the belief that, because of the need for
deeper semantic processing when translating, ST

2Note that a window of size w contains ⌊ 1
2
w⌋ tokens on

each side of the main diagonal, so w = 1 represents the main
diagonal and w = 2N every possible diagonal.
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Figure 4: Contribution matrices3of encoder layers on a sample after training for En-De ST. Windows used in the
efficient architecture highlighted.

needs more context than ASR. Furthermore, we see
different behaviors along the encoder, and a trend
towards uniformly distributed contributions in the
first layers.

Moreover, in Figure 4, we can see differences
between those layers that show local patterns. Lay-
ers 4, 5 and 6 attend to close context. Instead,
those layers at the end of the encoder, as 11 or 12,
need larger context, and we can see how the con-
tributions create patterns corresponding to words
in the spectrogram, enabling us to see interactions
between them (Figure 1). Additionally, we see that
contribution matrices reveal silences in the speech
sequence. However, we believe that further re-
search is needed to fully understand the meaning
of these patterns.

4 Efficient Speech-to-text Transformer

From the previous analysis, we hypothesize that
suitable local attention patterns may potentially
avoid the computation of unused attention scores.
Note that if a token does not contribute to the output
of a layer, its attention score can be canceled. Our
objective is to maximize the efficiency of the model
while minimizing the performance drop.

Window size selection. CCD could serve as a
starting point to obtain optimal window lengths.
However, it requires predefining the amount of to-
tal contribution required inside the window, which
makes it fragile to properly detect local patterns.
On one hand, it can be too sensitive to a strong
main diagonal. On the other, it may overestimate
random distant contributions. We propose an al-

3The main diagonal, which accounts for around 65% of
the total contributions in each layer, is hidden for visualization
purposes.

Algorithm 1: Window size selection

Input:
Cl: contribution matrix, N : number of tokens,
t: min diagonal contribution threshold
Output:
wl: optimal window size

counter ← 0

wl ← 0
while counter < (N/10) do

for i← 0, N do
if mean(Cl

diag[i]) > t or mean(Cl
diag[−i]) > t

then
wl ← 2i+ 1
counter ← 0

else
counter ← counter + 1

ternative based on the average contribution of ev-
ery sub/superdiagonal (Alg. 1). Starting from the
main diagonal Cdiag[0], it keeps adding tokens to
the window length until it finds N · 10% consec-
utive sub/superdiagonals below the t threshold4.
We repeat this procedure with a random set of 400
sentences, and we compute each layer’s window
length mean (µl) and standard deviation (σl). To
ensure that most significant contributions are con-
sidered, we define as the optimal window size (wl)
the result of the operation5 wl = ⌈µl + σl⌉. The
results obtained are similar in every language pair
(Table 1 and Appendix D). In Figure 4, we can see
how w contains most of the relevant contributions
for En-De ST (see more examples in Appendix E).

4Hyperparameter that defines the minimum average value
of the sub/superdiagonals to be considered. We choose 0.01
after empirical study.

5If wl is even, we set wl = wl + 1 so that it is odd and
hence the window can be centered around the diagonal.
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Layer µ± σ w CL

1 * 3.41± 13.15 17 0.35 ± 0.07
2 * 1.18± 3.45 5 0.32 ± 0.04
3 * 0.51± 1.56 3 0.30 ± 0.04
4 2.25± 1.30 5 0.23± 0.04
5 4.03± 0.28 5 0.17± 0.03
6 7.03± 1.03 9 0.23± 0.04
7 11.37± 1.13 13 0.18± 0.04
8 7.94± 1.16 11 0.18± 0.04
9 12.56± 1.85 15 0.19± 0.05
10 16.47± 2.40 19 0.13± 0.05
11 13.28± 1.90 17 0.13± 0.04
12 16.28± 3.86 21 0.16± 0.05

Table 1: Optimal window size study in En-De ST. (*)
For the first three layers, we use standard self-attention.

En-De En-Es En-It

Baseline 22.53± 0.15 27.49± 0.22 22.98± 0.15
Ours 22.49± 0.11 27.46± 0.12 22.97± 0.27

Table 2: BLEU obtained on the Speech Translation task
(mean ± std after training with 5 different seeds).

Contribution loss. We can now calculate the
percentage of the total contributions that are left
outside the window. This allows us to discover
the amount of contribution that is lost because
of the use of local attention. To do so, we em-
ploy Eq. 6, but since we are interested in the
contributions outside each window wl, we define
CL(l, wl) = 1−D(l, wl).

Proposed architecture. From the previous re-
sults, we see that the first three layers are the ones
with the weakest local pattern (See Figure 4). In
these layers, CL(l, wl) is large, and CCD (Figure
2) shows smaller areas. For these reasons, we be-
lieve that using the entire self-attention in the first
three layers is necessary. In the following layers,
we use local attention with window size wl. Our
proposed architecture is an efficient adaptation of
the S2T Transformer, and therefore it is exactly
equal with exception of the self-attention layers
(detailed architectures in Section 2 and Appendix
B).

Experiments. Finally, we train our model under
the same specifications and dataset as the baseline
(see Section 2 for details on the dataset, and Ap-
pendix C for the training hyperparameters).

As we see in Table 2, our model matches the per-
formance of the S2T Transformer in every analyzed
language pair. However, we achieve it while reduc-
ing the complexity in most layers from O(n2) to
O(n ·wl). This difference can be highly significant,

considering the usual length of speech sequences
and the size of the windows used. In particular,
wl goes from 5 to 25 tokens between the differ-
ent languages. However, the average length of an
input sequence in studied splits of the MUST-C
dataset after the two convolutional layers used in
the S2T Transformer, is 166 tokens, even reaching
a maximum of 1052.

5 Conclusions

Transformer-based models are the current state-
of-the-art in many different fields. However, the
quadratic complexity of the self-attention mod-
ule usually hinders the usefulness of the model in
real-life applications. This problem worsens when
working with long sequences, as is the case with
speech. In this paper, we have questioned the need
of computing all attention weights in ST. We have
analyzed the contribution matrices, and we have
seen that, in many layers, the relevant scores are
placed in a diagonal pattern. Therefore, we have hy-
pothesized that these weights do not need to be cal-
culated. To verify our hypothesis, we have trained
a model that substitutes regular self-attention with
local attention, with a suitable window size for
each layer. We have seen that as we expected, the
results are almost equal to the ones obtained with
the baseline model, but the complexity has been
lowered significantly.

Regarding interpretability, we have found how
the Transformer establishes connections between
words in speech sequences. Furthermore, we have
seen that, in contrast to what was expected, diago-
nality scores are similar in both ST and ASR tasks,
meaning that they use the same amount of context.
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7 Ethical Considerations

This work analyzes the inner workings of a par-
ticular architecture in Direct Speech Translation.
Based on the analysis, we propose a more efficient
model, that maintains the baseline performance.
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Our proposed solution can help reduce the ecologi-
cal footprint of Speech Translation systems based
on the Transformer architecture. We believe this
work has no direct negative social influences. How-
ever, we should underline that the dataset used in
this paper consists of high-resource languages such
as English, German, Spanish, and Italian. Although
the interpretability method does not depend on spe-
cific languages, there may be differences in the
degree of efficiency that can be achieved when ex-
perimenting with other languages.
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A Cumulative Attention Diagonality
(CAD)

Shim et al. (2022) propose the cumulative atten-
tion diagonality (CAD) as the integral of the atten-
tion diagonality D(r, l) along the variable r, which
defines the window length as a proportion of the
sequence length:

CADl =

∫ r=1

r=0
D(r, l) dr

where D(r, l) is defined over the attention weight
matrix Al:

D(r, l) =
1

N

N∑

i=1

min(N,
i+r(N−1))∑

j=max(1,
i−r(N−1)

Al
i,j

To approximate the result of the integral, Shim
et al. (2022) use the Trapezoidal Rule with the
discretized variable r̂ ≈ r.

∫ r=1

r=0
D(r, l) dr ≈

r̂=1∑

r̂=0

D(r̂, l) +D(r̂ + 1, l)

2

For each step in the summation, the window range
around the diagonal increases 2r(N − 1), which
may lead to different increments based on the sen-
tence length. For instance, for a sentence with
N = 11, in a 0.1 increase of r̂, the window size
range increases by 2. However, with N = 101
we get an increment of 20. For this reason, we
redefine the diagonality measures with token-wise
increments.

B Architecture Details

Both our efficient model and the S2T Transformer
(Wang et al., 2020a) share the same architecture,
with the exception of the self-attention modules.
The models consist 12 encoder layers and 6 decoder
layers with sinusoidal positional encodings. In the
encoder and decoder we use 4 attention heads, an
embedding dimension of 256, and of 2048 in the
FFN layers. We use a dropout probability of 0.1
in both the attention weights and FFN activations.
We use ReLU as the activation function.

Regarding the convolutional layer applied to re-
duce sequence length, it consists of a 1D convolu-
tional layer, with a kernel of size 5, a stride of 2,
and with the same number of output channels than
input channels.
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C Training Hyperparameters

To ensure a reliable comparison, we performed all
ASR and ST experiments under the same condi-
tions and hyperparameters. In ASR training we
fixed a maximum of 40000 tokens per batch. We
used Adam optimizer and a learning rate of 1 ·10−3

with an inverse square root scheduler. We applied
a warm-up for the first 10000 updates. We clipped
the gradient to 10 to avoid exploding gradients. We
used label smoothed cross-entropy as a loss func-
tion, with a smoothing factor of 0.1. We used an
update frequency of 8 on a single GPU. We set a
maximum of 50000 updates for every training. In
ST training, we use the same hyperparameters as
for ASR, but we use a learning rate of 2 · 10−3. We
conducted the training of all our experiments using
NVIDIA GeForce RTX 2080 Ti GPU.

D Optimal window analysis in En-Es and
En-It ST

Layer µ± σ w CL

1 * 4.68± 14.77 21 0.39 ± 0.08
2 * 3.21± 6.17 11 0.29 ± 0.04
3 * 0.99± 3.6 5 0.28 ± 0.04
4 2.58± 1.96 5 0.2± 0.02
5 4.52± 2.38 7 0.24± 0.04
6 15.88± 2.92 19 0.21± 0.06
7 11.32± 1.91 15 0.16± 0.03
8 9.52± 2.5 13 0.22± 0.05
9 14.96± 1.78 17 0.07± 0.05
10 15.94± 3.0 19 0.19± 0.05
11 13.83± 3.66 19 0.21± 0.05
12 20.38± 3.42 25 0.1± 0.05

Table 3: Optimal window size study in En-Es ST. (*)
For the first three layers, we use standard self-attention.

Layer µ± σ w CL

1 * 6.16± 17.57 25 0.34 ± 0.09
2 * 2.56± 7.47 11 0.29 ± 0.05
3 * 2.44± 2.84 7 0.27 ± 0.05
4 4.08± 0.65 5 0.19± 0.03
5 14.05± 2.08 17 0.15± 0.03
6 10.82± 1.31 13 0.18± 0.04
7 7.37± 4.54 13 0.23± 0.05
8 8.62± 2.18 11 0.22± 0.04
9 12.49± 1.65 15 0.09± 0.03
10 16.06± 3.80 21 0.17± 0.04
11 18.15± 3.20 23 0.11± 0.05
12 17.34± 4.83 23 0.15± 0.05

Table 4: Optimal window size study in En-It ST. (*) For
the first three layers, we use standard self-attention.

E Contribution Matrices

Below, we show more examples of contribution
matrices for the different languages that have been
studied. Note that, although in some cases a di-
agonal a pattern appears in the first three layers,
the diagonality score is still low. Local diagonal
patterns are not strictly related to high diagonality,
since contributions outside the pattern might be uni-
formly distributed, and thus difficult to observe in
the heatmap. For this reason, contribution matrices
can be misleading, and we focus on the use of CL
scores to determine which layers should use full
attention.
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Figure 5: Contribution matrices for a sample after En-De ST training.

Figure 6: Contribution matrices for a sample after En-De ST training.
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Figure 7: Contribution matrices for a sample after En-It ST training.

Figure 8: Contribution matrices for a sample after En-It ST training.
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Figure 9: Contribution matrices for a sample after En-Es ST training.

Figure 10: Contribution matrices for a sample after En-Es ST training.
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Abstract

Clinical knowledge graphs lack meaning-
ful diagnostic relations (e.g. comorbidities,
sign/symptoms), limiting their ability to rep-
resent real-world diagnostic processes. Pre-
vious methods in biomedical relation extrac-
tion have focused on concept relations, such
as gene-disease and disease-drug, and largely
ignored clinical processes. In this thesis, we
leverage a clinical reasoning ontology and pro-
pose methods to extract such relations from a
physician-facing point-of-care reference wiki
and consumer health resource texts. Given the
lack of data labeled with diagnostic relations,
we also propose new methods of evaluating the
correctness of extracted triples in the zero-shot
setting. We describe a process for the intrinsic
evaluation of new facts by triple confidence fil-
tering and clinician manual review, as well as
extrinsic evaluation in the form of a differential
diagnosis prediction task.

1 Introduction

Knowledge graphs (KGs) are increasingly utilized
in key knowledge-intensive applications, such as
recommendation and question answering. How-
ever, their utility in these systems can be limited
due to missing facts (triples) among entities (Bal-
azevic et al., 2019). The missing knowledge in KGs
largely comes from three main sources: missing
unknown entities, missing unknown relations, and
missing existing relations between known entities.
Significant advances have been made in the general
and biomedical domains in recent years to tackle
each of these problems, using techniques from the
NLP and graph communities such as entity linking
(EL) (Thibault Févry, 2020), relation extraction
(RE) (Trisedya et al., 2019), and link prediction
(Kazemi and Poole, 2018).

In the clinical domain, SNOMED-CT1 is the
most comprehensive and broadly used knowl-

1https://www.nlm.nih.gov/healthit/snomedct

Relation Name # of Rel. (%)
isa 567356 (19.0)
mapped_to 140394 (4.7)
finding_site_of 95138 (3.2)
same_as 90158 (3.0)
possibly_equivalent_to 80502 (2.7)
associated_morphology_of 70230 (2.4)
method_of 64902 (2.2)
interprets 37094 (1.2)
direct_procedure_site_of 35592 (1.2)
pathological_process_of 21719 (0.7)

Table 1: Names and occurrences of top 10 relations in
SNOMED-CT.

edge base, containing over 350,000 medical con-
cepts and 1 million relations organized into a
poly-hierarchy. When mapping documentation
to SNOMED-CT, Travers and Haas (2006) found
high coverage of clinical concepts. However, its
taxonomic structure leads to a lack of clinically
meaningful relations between concept hierarchies.
Therefore, in this work we focus on the problem of
missing unknown relations.

As shown in Table 1, SNOMED-CT largely con-
tains hierarchical is-a/has-a relations and lacks im-
portant diagnostic relations between clinical con-
cept hierarchies. For instance, since SNOMED-
CT lacks a is_contraindicated_by relation, associa-
tions between medications and clinical findings are
largely missing. Those existing inter-hierarchy re-
lations are often trivial and would not meaningfully
contribute to downstream knowledge representa-
tion (e.g. litigation of aneurysm of popliteal artery
→ direct_morphology_of→ aneurysm). Explicit
relations (e.g. comorbidities, sign/symptoms, risk
factors) that draw meaningful connections between
entities in different hierarchies have the potential to
better model clinical reasoning and understand text
describing diagnostic processes, such as progress
notes and discharge summaries.
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In this work, we define a set of missing clini-
cally meaningful diagnostic relations based on an
existing clinical reasoning ontology (CRO). We
then propose two methods of adding such relations
to the SNOMED-CT knowledge graph (KG) us-
ing distinct and complementary data sources. We
describe a relation extraction task using a semi-
structured emergency department (ED)-focused
wiki and a zero-shot relation classification (RC)
task using a newly gathered corpus of consumer
health information derived from MedlinePlus2 and
Merck Manuals (Bullers, 2016), described in de-
tail in section 3.2. Throughout this work, we will
address the following research questions:

RQ1. Can we leverage the semi-structured form
of a wiki to extract reasoning relations?

RQ2. Do consumer health resources provide
distinct missing relations from those found in RQ1?

RQ3. How do we evaluate the accuracy of new
relations in a clinical KG?

In RQ1 and RQ2, we limit ourselves to a prede-
termined set of relations to minimize hand curation
by domain experts, such as would be required with
free text relations extracted using an open informa-
tion extraction system (Juric et al., 2020). However,
we still need to determine the accuracy of our new
facts to evaluate the model. This leads us to RQ3,
in which we determine how to evaluate the accu-
racy of new relations in a clinical KG, given that
such relations don’t currently exist. We propose
intrinsic and extrinsic methods of evaluation in this
zero-shot setting.

The rest of this proposal will be structured as
follows. In section 2, we will describe the existing
biomedical and clinical relation extraction datasets
and methods, as well as the CRO we define our
relation label set on. In section 3, we describe
our methodology for RQ1 and RQ2. Finally, in
section 4, we discuss two strategies to address RQ3:
manual evaluation by clinician review after pruning
low confidence triples and prediction on a proxy
clinical diagnostic reasoning task.

2 Related Work

2.1 Biomedical Relation Extraction
Considerable progress has been made in biomedi-
cal relation extraction, with large language models
achieving state of the art results on a variety of
tasks (Lee et al., 2020). Biomedical relation ex-
traction datasets largely concentrate on relations

2https://medlineplus.gov

between a few entity types such as chemicals and
diseases (Li et al., 2016) or chemicals and proteins
(Krallinger et al., 2017). A number of these tasks
have been consolidated as part of a large biomedi-
cal language understanding benchmark known as
BLURB (Tinn et al., 2021). The authors also pre-
trained a BERT model, PubMedBERT, on PubMed
abstracts, achieving over 80% micro F1, averaged
over three RE tasks. In the autoregressive setting,
SciFive (Phan et al., 2021) further improved on
these results, achieving an average of 84% micro
F1, averaged over two RE datasets.

However, biomedical RE tasks do not capture
clinical relationships. Due to the cost of anonymiza-
tion, clinical RE datasets tend to be smaller and
more limited. Many are focused on particular tasks
such as adverse event and medication treatment
relations. For instance, the 2010 i2b2/VA chal-
lenge (Uzuner et al., 2011) requires assigning rela-
tion types between conditions, tests, and treatments.
Similarly, Henry et al. (2020) propose a RE task in
which adverse events and signatures are related to
medications. Outside of the pharmaceutical rela-
tion space, we only found one task with available
data, involving temporal relation extraction (Sun
et al., 2013).

Despite considerable progress, most clinical
datasets don’t effectively model real world settings
in which the class of relations can be large, in-
clude both existing and missing relation types, and
few training examples for a particular relation may
exist. Our task of identifying and extracting new
diagnostic relations falls within this category. The
models developed in this project may help us better
understand the real world challenges of extracting
new meaningful relation types for KG construction.

2.2 Clinical Reasoning Ontologies

Clinical decision tools often need to model diagnos-
tic axioms employed by clinicians to derive deci-
sion rules and provide users with relevant alerts and
recommendations. Many of these tools use existing
ontologies (Mohammed and Benlamri, 2014) or do-
main experts (Abidi et al., 2007) to develop a con-
trolled set of reasoning terms. In order to standard-
ize the vocabulary used to model the clinical rea-
soning process, Dissanayake et al. (2020) identified
a set of preexisting ontologies through literature
review. They then propose a consolidated ontology,
normalizing reasoning concepts and relations. In
this work, we model our reasoning relation extrac-
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tion task as a classification task among a relevant
subset of relationships Dissanayake et al. (2020)
propose, including important inter-hierarchical rela-
tions such as complication_of and comorbidity_of.
We describe a subset of relevant relations, along
with the SNOMED-CT hierarchies they involve, in
Table 2.

The full list of relations that define our label set
can be found in Appendix B.

3 Research Plan

3.1 Wiki-Based Relation Extraction

In order to extract relations relevant to diagnos-
tic reasoning, we select WikEM (Donaldson et al.,
2016), a domain-specific point-of-care reference
wiki under active development by ED residents at
Harbor-UCLA Medical Center for clinical use dur-
ing diagnostic processes. It has over 7000 pages
and is based on Mediawiki3, the same wiki en-
gine underlying Wikipedia. Unlike Wikipedia’s
Wikidata project (Vrandečić and Krötzsch, 2014),
smaller domain-specific wikis rarely have an ac-
companying structured knowledge base. There-
fore, in the first part of this work we plan to auto-
matically extract an open KG based on the exist-
ing structure within WikEM. Then, we will link
these entities and relations to SNOMED-CT and
the CRO, leveraging recent advances in medical
EL methods. An overview of the system is shown
in Figure 1.

Utilities

Titles

Section Headings

Wikilinks

Free Text

cTAKES/
MetaMap

Entity Linking

Manual Mapping 
to CRO

Clinical Reasoning 
Ontology (CRO) 

Rels

SNOMED-CT Concepts

Head Entities Tail Entities

WikEM 
Knowledge 

Graph

Figure 1: System overview for extraction of knowledge
triples from WikEM

We first employ a wikicode parser to extract open
text entities that serve as nodes. The link label will
act as the head entity and the title of the link desti-
nation will become the tail entity. We also extract

3https://www.mediawiki.org/wiki/MediaWiki

section titles (e.g. Differential Diagnosis, Evalua-
tion, Management) that serve as open text edges.
In order to use this open KG in downstream tasks
and integrate new triples back into SNOMED-CT,
we need to link all three components of the knowl-
edge triple. To determine the range of relations
in WikEM, we visualized meaningful extracted
section titles, shown in Figure 2. The relations
found in WikEM encompass a subset of our full
relation set which we can manually map to the pre-
determined CRO labels. Exploratory testing has
also shown that existing named entity recognition
and linking methods like cTAKES (Savova et al.,
2010) are effective in mapping named entity lists,
like those that appear in WikEM sections (exam-
ple in Appendix A). However, we will also test
BERT-based models such as SapBERT (Liu et al.,
2021). These two approaches allow us to map the
head, relation, and tail entities of new reasoning
fact triples.

Figure 2: Most common relations extracted from
WikEM section titles (relations highlighted in purple
correspond to relations in our CRO label set)

3.2 Zero-Shot Relation Classification from
Consumer Education Resources

While we can take advantage of the wiki structure
to identify high quality triples in WikEM, relation
types that aren’t captured by section titles may be
missed. Therefore, we also perform RC using con-
sumer education resources. By employing these
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SNOMED-CT Head CRO Relation SNOMED-CT Tail
clinical finding cause_by clinical finding, procedure
clinical finding is_symptom_of clinical finding
clinical finding hasSyndrome clinical finding
clinical finding has_treatment procedure, substance

substance Can_be_combined_with substance
substance has _effect_on_disease clinical finding
substance may_prevent clinical finding

Table 2: Sample of relation label set for RQ1 and RQ2, including domain of SNOMED-CT top level hierarchy
concepts for head and tail entities

two data sources, we may also gain some insight
into different relation frequencies common to either
physician- or patient-facing resources.

Similar to (Juric et al., 2020), we plan to use
MedlinePlus, a curated consumer health resource
developed by the National Library of Medicine.
We combine this with the consumer edition of the
Merck Manuals, medical references published by
Merck geared towards patient education. These
two sources constitute a new consumer health cor-
pus from which we extract new clinical reasoning
triples. We develop this corpus, as opposed to us-
ing a preexisting resource such as PubMed because
these texts describe primary care and contain rel-
evant reasoning relations, like side effects and co-
morbidities, unlike the research articles in PubMed.
Unlike in RQ1, we must extract and link both enti-
ties and relations from free text in this setting.

Similar to Riedel et al. (2010)’s distantly super-
vised NYT corpus, we first detect and link named
entities in our corpus using an end-to-end entity
linker. Namely, we will fine-tune SciFive, a new
T5 model (Raffel et al.) pretrained on PubMed
articles, on the newly proposed autoregressive en-
tity retrieval task (De Cao et al., 2021). Having
identified a set of entities, we can take advantage
of recent zero-shot relation classification methods.
Many of these models use auxiliary information,
like relation descriptions (Chen and Li, 2021), to
reason about unseen relations. However, they don’t
take advantage of semantic types. For instance, the
relation contradict_with can only have a pharma-
ceutical product as its head entity and a disease as
its tail entity. We propose training a BERT model
to embed relations and descriptions, while restrict-
ing the search space to relevant semantic types,
hopefully improving zero-shot RC results.

4 Evaluation

From RQ1 and RQ2, we have a set of new clinical
reasoning triples, grounded in SNOMED-CT en-
tities and the CRO relation set. However, without
existing labeled reasoning relations, we have no
way to use conventional confusion matrix-based
evaluation measures. Therefore, to tackle RQ3, we
propose two evaluation approaches.

Filtering and Evaluation By Clinicians As a first
step, we plan to evaluate our zero-shot RE system
on BioRel (Xing et al., 2020), a large distantly-
supervised RE dataset for the biomedical domain,
carefully selecting train/test splits to model the
zero-shot setting. While this provides a compari-
son to baselines, the noisy nature of distant supervi-
sion and lack of external validation of the training
data by the authors may obscure the accuracy of
the model. Furthermore, this evaluation scheme
doesn’t measure our final goal of contributing new
facts to SNOMED-CT.

To that end, we will first calibrate our extrac-
tion model and filter out any low confidence triples.
This reduces potentially noisy triples and allocates
clinical resources to the most promising triples.
Then, we randomly sample triples from the model
and have several clinicians determine the propor-
tion of accurate predicted relations, measuring
inter-rater reliability.

Evaluation Using Proxy Discharge Diagnoses
Prediction Task To investigate whether extracted
diagnostic reasoning relations improve downstream
clinical prediction tasks, we choose a relevant aux-
iliary task: differential diagnosis prediction of ED
patients presenting with abdominal pain. Given a
patient’s ED triage information and their past med-
ical history, the goal is to rank the list of relevant
differential diagnoses that a physician may assign
the patient upon discharge in order of likelihood.
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To accomplish this task, we augment patient rep-
resentations with a clinical KG that includes rela-
tions derived in RQ1 and RQ2. Bisk et al. (2020)
discuss the importance of augmenting language
with other modalities in representation learning,
and so we include other clinical variables (e.g. de-
mographics, lab measurements, vitals) in our pa-
tient representations. To combine a drug-drug in-
teraction network with an external knowledge base,
Yu et al. (2021) extracted KG subgraphs and at-
tended on relevant relations. Similarly, we com-
pute a patient similarity graph and extract subsets
of our 3 versions of SNOMED-CT with the goal
of comparing predictive performance on a set of
differential diagnoses for each ED patient. Using
the attention maps, we also plan to investigate the
importance of clinical reasoning relations in pre-
diction, as compared to pre-existing relations in
SNOMED-CT.

5 Societal Impact

Extraction of triples using the relation set described
in this proposal and their alignment with an exist-
ing clinical KG has the potential to significantly
improve automated diagnostic reasoning. For in-
stance, a KG-augmented system may be able to
remind the physician to order labs based on proba-
ble diagnoses or extract disease-specific, relevant
past medical history from patient records in real-
time. We can also expect improvement in conven-
tional NLP tasks such as reading comprehension
of progress notes and reports (e.g. radiology sum-
maries) and clinical knowledge question answer-
ing (QA) involving multi-hop reasoning. Bench-
marks to evaluate such tasks exist, like MMLU-
Professional Medicine (Hendrycks et al., 2021) and
MedQA (Jin et al., 2021), both of which draw QA
pairs from medical licensure exams.

However, such benchmarks are abstractions that
do not fully align with complex real-world use
cases. To better model the challenges of clinical
reasoning, we suggested the particular task of dif-
ferential diagnosis prediction, which involves incor-
porating additional clinical data modalities. How-
ever, additional considerations may be necessary
for evaluating KG use in real-world applications,
such as modeling temporality. A task involving pre-
diction of changing disease states over time may
focus on the longitudinal nature of diagnostic rea-
soning. A portion of this work will involve contin-
uing to define tasks that consider the challenges of

real-world clinical reasoning use cases.

6 Summary

In this thesis proposal, we suggest methods to ad-
dress the problem of missing reasoning relations
in clinical knowledge graphs. We select a subset
of relations from a clinical reasoning ontology and
extract relations from two data sources: a point-
of-care reference for ED physicians and a newly
created consumer health resource corpus. We plan
to train a T5-based EL model to link entities and
develop a zero-shot RE method to extract relations.
Finally, we discuss methods of evaluation in the
real world context of zero-shot relation extraction
using filtered expert review and a proxy diagnostic
reasoning prediction task. Our work should provide
a case study for the complex task of introducing
new types of knowledge into an existing structured
knowledge base.
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A WikEM Sample Page with Entities

In Figure 3, we show the head, relation, and tail
entities as they appear in an example WikEM page.
In this case, if another wikilink linked to Peritoni-
tis, it would act as the tail entity, and the section
headings (i.e. Background, Clinical Features, Dif-
ferential Diagnosis) act as relations. Finally, the
link texts act as open text head entities.

Tail Entity

Relations

Head Entities

Figure 3: Example of a WikEM page with Links. Each
entry in the table of contents can act as a relation.

B Full Clinical Reasoning Relation Set

In Table 3, we show the full set of labels we se-
lected from the clinical reasoning ontology devel-
oped by (Dissanayake et al., 2020), along with
the domain and semantic types that the relation
accepts.
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Domain Relation Name Range
Diagnostic process observationMethod observation method

Assessment_Reason reason
has_device medical device

has_Assessment assessment
has_Recommendation recommendation

Signs & Symptoms Is_assessed_by assessment name
is_not_caused_by factors

cause_by causing factor
is_symptom_of disease

Diagnosis & Disease hasSyndrome syndrome name
has_severity severity level

has_treatment treatment
has_Contraindication contraindication
has_causing_factors causing factor

hasRisk risk factor
affected_Body_Site body part

hasLabTest lab test name
has_Sign_and_Symptom sign and symptoms

is_transmitted_by vector
has_complication complication list

occurs_with disease, symptom, risk factor
hasExperimentalData experimental data related to disease

Treatment has_ part order list
part_of treatment plan

has_intervention_goal intervention goal
has_pharmacological_plan medication list

hasSurgicalProcedure surgery type
is_recommended_for_illness recommendation

Medication Can_be_combined_with medication
Contradict_with drug ingredient

has_treatment_target treatment target
has_active_ingredient active ingredient

has_administrationProcess medication administration process
has_cost medication cost
has_dose dose

dosage_Measurement_Unit measurement unit
has_cumulative_dose accumulative dose

has_drug_Form dosage form
has_maximum_dose medication dosage

has_treatment_duration time
has_frequency drug Frequency

has _effect_on_disease medication effect on disease
has_application_route medication application route

has_explanation explanation
has_toxicity toxicity

component_interact_with drug, ingredient
may_prevent disease

Table 3: Full set of clinical reasoning labels selected from the CRO
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Abstract

We tackle the tasks of image and text retrieval
using a dual-encoder model in which images
and text are encoded independently. This
model has attracted attention as an approach
that enables efficient offline inferences by con-
necting both vision and language in the same
semantic space. However, whether an image
encoder as part of a dual-encoder model can
interpret scene-text, i.e., the textual information
in images, is unclear. We propose pre-training
methods that encourage a joint understanding
of the scene-text and surrounding visual infor-
mation. The experimental results demonstrate
that our methods improve the retrieval perfor-
mances of the dual-encoder models.

1 Introduction

When pre-trained on a large-scale corpus of im-
age and text pairs, vision and language models can
obtain effective multi-modal representations that
bridge the semantic gap between visual and textual
information. In general, two approaches are used:
1) the cross-encoder approach, in which textual
and visual information are jointly fed into a single
Transformer-based model (Vaswani et al., 2017),
and 2) the dual-encoder approach, in which the
textual and visual information are independently
fed into two modality-specific encoders. Cross-
encoder models use cross-modal attention, which
facilitates the interpretation of the different modal-
ities. However, such models are not suitable for
image retrieval and other tasks requiring fast and
large-scale inferences (Miech et al., 2021; Luan
et al., 2021). In contrast, dual-encoder models can
make quick inferences, but their interpretation of
concomitant modalities is insufficient; in particu-
lar, such models have difficulty jointly interpreting
scene-text and the surrounding visual information.

Given the above background, this paper investi-
gates the effectiveness of incorporating scene-text
into a dual-encoder. The contributions of this study
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Figure 1: Overview of the proposed architecture. We
propose pre-training methods to enable the image en-
coder to jointly interpret the scene-text and surrounding
visual information.

are as follows. 1) We introduce pre-training meth-
ods for a dual-encoder to facilitate a joint interpre-
tation of the textual information in the images and
surrounding visual information (Figure 1). The per-
formance of the model is then evaluated for image
and text retrieval tasks. 2) We experimentally show
that, similar to cross-encoder approaches, the joint
scene-text and semantic representations improve
the retrieval performance of the dual-encoder.

2 Related Work

To make sense of visual and textual semantics, re-
cent studies concerning vision and language pre-
training, such as image captioning and text-aware
VQA (Singh et al., 2019; Biten et al., 2019; Mishra
et al., 2019; Mathew et al., 2021), incorporate con-
comitant textual information, such as scene-text
and object tags, in terms of regions-of-interest to
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enable cross-modal interactions using self-attention
in a Transformer-based model (cross-encoder) (Hu
et al., 2020; Li et al., 2020; Yang et al., 2021;
Tanaka et al., 2021; Biten et al., 2021). However,
cross-encoders are not suitable for image retrieval
or other tasks requiring fast and large-scale infer-
ences. Although cross-encoder models typically
allow expressive token-wise interactions for an in-
put pair of a query and retrieval target, the simi-
larity score cannot be decomposed and is not in-
dexable (Miech et al., 2021; Luan et al., 2021).
Therefore, such models are impractical for appli-
cation in tasks with many queries requiring quick
responses, such as retrieval tasks.

In contrast, dual-encoder approaches (Sun et al.,
2021; Alec et al., 2021; Jia et al., 2021; Yao
et al., 2021) can successfully perform downstream
tasks, enabling efficient offline inferences of all pre-
encoded image and text embeddings. However, the
effectiveness of incorporating concomitant modali-
ties, such as scene-text, in dual-encoder models has
not been thoroughly investigated or demonstrated
in the community.

3 Scene-Text Aware Dual-Encoder

This paper proposes the incorporation of textual
information in images into the dual-encoder archi-
tecture. We build our method based on the Light-
ningDOT (Sun et al., 2021) framework, a cutting-
edge dual-encoder that encodes both object-wise
and token-wise representations. We first briefly
introduce LightningDOT in its current use. We
then describe the proposed method, including the
learning objectives, to incorporate the textual infor-
mation in the images into the image encoder.

3.1 LightningDOT

LightningDOT outputs a visual feature V and a tex-
tual feature W 1. To obtain a visual feature, Light-
ningDOT first extracts multiple objects from an in-
put image using a pre-trained object detector based
on Faster R-CNN (Anderson et al., 2018). The ob-
tained visual feature V is a list of vectors, namely,
V = (vCLS,v1, . . . ,vI), where I is the number
of extracted objects and vCLS is the vector for a
special object “CLS.” Similarly, the textual fea-
ture is a list of vectors W = (wCLS,w1, . . . ,wJ),
where J is the number of tokens in a given caption
and wCLS is the vector for a special token “CLS.”

1Appendix A provides additional details of LightningDOT.

LightningDOT attempts three pre-training objec-
tives: (1) visual-embedding fused masked language
modeling (VMLM), (2) semantic-embedding fused
masked region modeling (SMRM), and (3) cross-
modal retrieval (CMR). Both VMLM and SMRM
predict masked tokens from their surrounding con-
text. LetM represent a set of mask indices. W\M
denotes W after substituting all m-th vectors of
m ∈ M in W with the special vector assigned
to the [MASK] token. Similarly, V\M is V after
substituting the m-th indices of all m ∈ M with
the [MASK] vector2. The training objectives of
VMLM and SMRM are formulated as follows:

L(∗)θ (M) =
1

|M|
∑

m∈M
L(∗)θ (m,M). (1)

Here, the mask index for the caption featureMw

lies in the range of 2, . . . , I + 1 because an index
of 1 corresponds to wCLS, which is not masked.
The VMLM objective L(VMLM)θ (Mw) can then be
written by substituting L(∗)θ (m,M) into Eq. 1 with

L(VMLM)θ (m,Mw) = ℓθ(wm|W\Mw
,vCLS), (2)

where ℓθ(·) = − log(Pθ(·)). Similarly, the SMRM
objective L(VMLM)θ (Mv) can be obtained with

L(SMRM)θ (m,Mv) = Dθ(vm|V\Mv
,wCLS) (3)

whereMv = {2, . . . , J + 1} and Dθ is any differ-
entiable distance function3.

The CMR task leverages the paired semantics
between the visual and textual representations.
Specifically, the similarity (obtained by calculating
the inner product sim(wCLS,vCLS) = wCLS · vCLS
is optimized to promote pair matching with in-
batch negative sampling. The details of CMR are
omitted here because this objective is not related to
the presented extensions of the proposed method.4

3.2 LightningDOT with scene-text
To obtain scene-text features from images, we ap-
ply an optical character recognition (OCR) sys-
tem to each input image. Each token in the scene-
text obtained by OCR is then converted to a dv-
dimensional token embedding (“Text Emb” in Fig-
ure 1). Let sk be the embeddings corresponding to

2The [MASK] for the visual feature is the zero vector.
3The goal of the model prediction is to reconstruct the

masked features themselves (masked region feature regres-
sion) or their object class (masked region classification with
the Kullback–Leibler divergence)

4See Appendix A.2 for additional details concerning CMR.
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the k-th token in the scene-text, and let K denote
the number of tokens in the scene-text. We then
modify and redefine the visual feature V as the con-
catenation of the visual features explained in Sec-
tion 3.1 and the textual features sk in the images,
that is, V = (vCLS,v1, . . . ,vI ,vSEP, s1, . . . , sK),
where vSEP is a vector of separators.

3.3 Masked scene-text modeling (MSM)

This section proposes masked scene-text modeling
(MSM) for training the scene-text features. We
extended VMLM such that the mask prediction
is applied directly to the scene-text. By masking
only the textual information in the scene-text, the
model can read the scene-text from the surround-
ing visual information. LetMs = {I + 2, . . . , I +
K + 2}.Ms is the mask for the scene-text.5 Sim-
ilar to the SMRM objective, the MSM objective
L(MSM)θ (Ms) can be obtained via Eq. 1 by substitut-
ing L(∗)θ (m,M) with

L(MSM)θ (m,Ms) = ℓθ(sm|V\Ms
,wCLS). (4)

3.4 Cross-modal VMLM (co-mask)

Inspired by Alexis and Guillaume (2019); Zhou
et al. (2021), we also propose a cross-modal co-
masking strategy (co-mask) that leverages the
cross-modal correspondence. Following the same
strategy as VMLM, we randomly replace a token
from a caption and then simultaneously replace the
duplicated token from the scene-text in [MASK] to
promote cross-modal relationships. When at least
one paired token exists between a caption and a
scene-text and is outside the targets for masking,
we randomly select one masked token and switch
the masking target to the paired token. While both
VMLM and MSM promote multi-modal relation-
ships between the textual information in the im-
ages and a caption describing the scene image, the
“co-mask” promotes textual semantic alignment to
leverage cross-modal relationships.

4 Experiments

We designed experiments to investigate the effec-
tiveness of incorporating the scene-text as an addi-
tional feature for visual features in image and text
retrieval tasks.

5The index for the scene-text starts at I + 2 because we
redefine V = (vCLS,v1, . . . ,vI ,vSEP, s1, . . . , sK).

4.1 Experimental setup

Dataset As the training and evaluation dataset,
we selected TextCaps (Sidorov et al., 2020) be-
cause it provides “caption,” “image,” and “scene-
text”6 triples. TextCaps includes 22, 953 images
and 109, 764 captions on training set, and 3, 166
images and 15, 830 captions on development set.
Each image is described by five human-annotated
captions. Textual information in an image context
can be correctly extracted from the TextCaps data
because 96.9% of the images and 81.3% of the
captions contain scene-text.

Base model Following Sun et al. (2021), we used
BERT (Devlin et al., 2019) as the text encoder and
UNITER (Yen-Chun et al., 2020) as the image en-
coder. Note that we used UNITER as the image
encoder only, not as the cross-encoder, although
it can also simultaneously model text. This is be-
cause the inference speed of UNITER, as reported
by Sun et al. (2021), is too slow for practical use
in retrieval tasks7. In our setting, we employed
the dual-encoder to model captions and images.
However, the scene-text was concatenated with the
visual features and input to the image encoder be-
cause this text is part of the visual information.
The scene-text vocabulary of the image encoder
was initialized with that of the text encoder.

Pre-training setting To pre-train LightningDOT
with four tasks, MSM, CMR, VMLM (with co-
mask), and SMRM, we randomly sampled one task
for each mini-batch with 1 : 2 : 1 : 1 weightings8

for 300, 000 optimization steps.9

Conventional models To reveal the effective-
ness of the proposed method, we compared its re-
trieval performance with those of the SCAN (Lee
et al., 2018), VSRN (Li et al., 2019), and STAR-
Net (Mafla et al., 2021) models, which were tested
by Mafla et al. (2021). All models were trained on
TextCaps and evaluated on its development set. We
compared STARNet as a baseline for modeling the
interaction among scene text, visual objects, and
captions. The difference from the proposed method

6To obtaining the scene-text using OCR, Sidorov et al.
(2020) employed Rosetta-en (Borisyuk et al., 2018).

7In an identical setting, the inference speed of Light-
ningDOT is 639× faster than that of UNITER on the
Flickr30K (Plummer et al., 2015) test set, in which the re-
trieval target includes 1K images

8SMRM was divided into MRFR and MRC-kl tasks. These
weights were allocated with a ratio of 1 : 1.

9Appendix A.3 describes the implementation details.
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IR@k TR@k
k=1 k=5 k=10 k=1 k=5 k=10

VSRN 9.5 26.2 37.2 14.3 34.9 46.2
SCAN 14.1 37.6 52.1 23.2 50.5 63.5
STARNet 19.8 40.1 51.6 28.7 53.7 65.1

LightningDOT 16.6 36.0 46.2 21.3 43.6 54.5
w/ ST 38.7 60.4 68.4 50.6 73.7 81.3
w/ ST+co-mask 39.4 61.6 70.2 52.3 74.8 82.2
w/ ST+MSM 40.5 63.0 71.1 52.9 76.4 83.2

Table 1: Results of the image (IR) and text retrieval
(TR) performances with recall@k on the TextCaps
development set. We extended LightningDOT to input
scene-text (w/ ST). In addition, we evaluated our pro-
posed method with the co-mask and MSM.

is that STARNet is trained by using the triplet rank-
ing loss. Moreover, the final visual representations
are obtained via a dot product following a graph
convolutional network (Kipf and Welling, 2017)10

on scene-text and visual objects.

Inference The visual and textual embeddings
(vCLS,wCLS) from the development set were in-
dependently indexed using FAISS (Johnson et al.,
2021). We then conducted an exact maximum inner
product search (IndexFlatIP) for each query embed-
ding, that is, for each wCLS in the image retrieval
(IR) and each vCLS in the text retrieval (TR). The
image retrieval (IR@k) and text retrieval (TR@k)
tasks were evaluated in terms of the recall at k.

4.2 Retrieval results
Table 1 shows the retrieval performances of the
tested methods on the TextCaps development set.
In our experimental setting, the baseline Lighting-
DOT model consistently delivered an inferior per-
formance compared with that of STARNet. After
considering scene-text (w/ ST), the performances
in both the IR and TR settings were significantly
improved and surpassed that of STARNet. Our pro-
posal, which incorporates the co-mask (w/ ST+co-
mask) and the MSM objective (w/ ST+MSM), fur-
ther improved the retrieval performance. These
observations indicate that modeling the scene-text
directly is effective for modeling visual information
that enhances semantic affinities with captions.

4.3 Ablation study on visual modalities
To investigate whether the image encoder can inter-
pret the joint visual information in scene-text and

10The output of the scene-text and visual objects are fed
into the average pooling layer and gated recurrent unit (Cho
et al., 2014), respectively.

modality model IR@k TR@k
k=1 k=5 k=10 k=1 k=5 k=10

w/ ST 38.7 60.4 68.4 50.6 73.7 81.3
IMG+ST +co-mask 39.4 61.6 70.2 52.3 74.8 82.2

+MSM 40.5 63.0 71.1 52.9 76.4 83.2

IMG
w/ ST 11.6 28.2 37.9 14.1 31.3 41.6
+co-mask 13.3 31.5 42.1 16.0 34.1 45.3
+MSM 11.7 29.1 39.3 13.8 32.0 41.6

ST
w/ ST 0.0 0.1 0.3 5.0 15.4 24.7
+co-mask 0.0 0.2 0.4 12.9 28.8 37.9
+MSM 16.7 31.4 37.8 16.1 33.3 42.0

Table 2: Ablation study on selecting visual modali-
ties. The “modality” indicates the input for the image
encoder, which is used as the retrieval target in image
retrieval (IR) and as the query in text retrieval (TR).

object regions, we evaluated the retrieval perfor-
mance by excluding one of the modalities. When
the object regions or the scene-text alone was in-
put into the image encoder, the retrieval perfor-
mance was significantly reduced in the TR and IR
settings (see Table 2). The cross-modal masking
strategy (w/ ST+co-mask) improved the modeling
compared with that of the scene-text strategy (w/
ST) on both modalities but was especially effec-
tive in the object regions. MSM (w/ ST+MSM)
for multi-modal optimization improved the model-
ing of the scene-text but had a small effect on the
images. These results suggest the necessity of mod-
eling not only joint representations of visual and
textual semantics in images but also fine-grained
cross-modal relationships in future work.

4.4 Benefit of duplicated tokens

Here, we define the term duplicated token as a
token that appears both in the caption and in the
scene-text. To investigate whether the retrieval
model leverages cross-modal relationships, we fo-
cus on the duplicated tokens because we will obtain
a higher performance if such tokens share an ade-
quate amount of information. For example, given
a query that includes “Coca-Cola,” the model was
able to leverage the modality of the scene-text when
retrieving an image of a can or a bottle that was
labeled not as “Pepsi” but as “Coca-Cola.” We eval-
uated the retrieval performance via accuracy@k on
the development set in TextCaps (Sidorov et al.,
2020) versus the number of duplicated tokens. We
used spaCy11 to narrow down the content tokens 12

11https://spacy.io/
12Their part of speech tags are in “ADJ,” “ADV,” “NOUN,”

“PROPN,” and “VERB”.
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task (retrieval targets) IR (image and scene-text) TR (caption)

# of duplicated tokens 0 1 2 3 0 1 2 3
total # of tokens for retrieval targets 2,302 512 212 94 11,785 2,484 1,004 342

w/ ST
acc@1 51.13 47.85 50.94 52.13 36.25 41.14 51.10 55.56
acc@5 74.28 71.48 73.58 68.09 57.92 62.80 71.31 82.46

acc@10 81.75 80.08 82.08 76.60 66.26 70.57 78.39 86.55

w/ ST+co-mask
acc@1 52.48 52.54 51.89 50.00 37.07 41.14 50.10 61.70
acc@5 75.33 74.61 70.75 70.21 59.30 62.76 72.11 84.80

acc@10 82.41 81.64 79.72 85.11 68.25 71.30 78.69 89.47

w/ ST+MSM
acc@1 53.52 52.54 50.47 50.00 38.22 41.67 52.09 62.28
acc@5 77.15 75.20 72.64 74.47 60.76 63.93 75.50 80.12

acc@10 84.06 81.64 79.72 78.72 69.29 71.70 81.18 86.55

Table 3: Retrieval accuracy versus the number of duplicated tokens between the caption and the scene-text.

IR@k TR@k
k=1 k=5 k=10 k=1 k=5 k=10

LightningDOT 17.2 37.7 48.9 22.6 45.4 55.5
(mul - en) +0.6 +1.7 +2.6 +1.3 +1.8 +1.0

w/ ST+MSM 0.0 44.5 57.8 35.0 61.3 71.2
(mul - en) −40.5 −18.5 −13.3 −17.9 −15.1 −12.0

Table 4: Retrieval performance on the development
set in a multilingual setting. We employed multilin-
gual BERT and show differences obtained by subtract-
ing the recall@k of the monolingual BERT (en) from
that of the multilingual BERT (mul).

because the scene-text detected by an OCR system
contains a large number of false positive tokens.

From Table 3, we can see that the retrieval per-
formance in TR is proportional to the number of
duplicated tokens. This indicates that duplicated
tokens are one of the factors that enhance the se-
mantic affinity between a caption and the scene-
text13. In the IR setting, conversely, the retrieval
performance does not depend on the number of
duplicated tokens when the objectives are “w/ ST”
and “w/ ST+co-mask.” However, when using the
MSM objective, the retrieval performance in IR is
degraded depending on the number of duplicated
tokens. According to these results, the performance
gap is the result of differences in the modality of
the retrieval target (textual or visual semantics) and
in the inclusion of informative tokens between the
scene-text and caption.

4.5 Effectiveness of multilingual text encoder

Modeling scene-text is not so easy; we have to
essentially deal with various languages since they
depend on where the picture was taken and where

13Note that it may be possible to make the prediction easier
because captions and images in TextCaps contain scene-text.

the product was made in scene-text (Chen et al.,
2021). Recently, Biten et al. (2021) pre-trained
a model on a large text corpus and reported the
robustness of their model with respect to the OCR
errors. We also investigated the model performance
with multilingual (mul) BERT (Devlin et al., 2019)
as the text encoder in the baseline LightningDOT
and LightningDOT with MSM settings. Note that
the vocabulary size (119, 547) of the multilingual
BERT is approximately four times as large as that
of its monolingual counterpart (28, 996).

Compared with the monolingual encoder, the
multilingual encoder increased the retrieval perfor-
mance in the baseline method (LightningDOT) but
degraded the performance when using the scene-
text (w/ ST+MSM). In the multilingual setting, the
LightningDOT baseline could model the joint rep-
resentations well because the pre-training corpus
size and token fertility between the multilingual
and monolingual BERT were nearly the same (Rust
et al., 2021). In contrast, the degradation resulting
from using scene-text in the multilingual setting
indicates that scene-text may still be underrepre-
sented or that false positive tokens due to OCR
errors may harm the model. A better usage of mul-
tilingual BERT in scene-text needs to be explored
in future work.

5 Conclusion

We proposed a framework that incorporates the tex-
tual information in images into the dual-encoder
architecture. An evaluation on the TextCaps
dataset confirmed that modeling the scene-text-
aware cross-modal relationships benefited the dual-
encoder architecture. In future research, we will
attempt a more robust exploration of scene-text
modeling (Singh et al., 2021; Wang et al., 2021b,a).
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A Detailed Explanation of LightningDOT

A.1 Input tokens for the image encoder

As mentioned in Section 3.1, LightningDOT (Sun
et al., 2021) first extracts multiple object regions
from an input image using a pre-trained object de-
tector based on Faster R-CNN (Anderson et al.,
2018). Let I represent the number of extracted ob-
jects. In fact, the object detector provides two fea-
tures: object regions and their locational features14.
From these features, “Image Emb” (Figure 1) re-
generates the input features to the image encoder.
Specifically, an object feature and its locational
feature are projected into the same dv-dimensional
space using an independent fully connected layer
and then their embeddings are summed and finally
fed into the normalization layer. By this means,
input features O for object regions can be obtained,
that is, O = (o1, . . . ,oI).

The proposed method described in Section 3.2
also extracts multiple tokens of scene-text from
an input image using an OCR system (Rosetta-
en (Borisyuk et al., 2018)). Let K represent the
number of tokenized tokens for the scene-text. In
addition, we apply positional indices to each to-
ken instead of the locational features. Similar to
“Image Emb,” the input feature of the scene-text
is obtained by “Text Emb” (Figure 1). Specifi-
cally, a scene-text token and its positional index
are looked up in their dv-dimensional embeddings
and then their embeddings are summed and finally
fed into the normalization layer. By this means, the
input features T for the scene-text tokens can be
obtained, that is, T = (t1, . . . , tK).

We denote an image encoder as fθv . In
the baseline setting, the image encoder encodes
V = fθv(ṽCLS,o1, . . . ,oI), where ṽCLS is a spe-
cial object “CLS.” In our setting of a scene-text
aware framework, the image encoder encodes
V = fθv(ṽCLS,o1, . . . ,oI , ṽSEP, t1, . . . , tK),
where ṽSEP is a special object “SEP.”

A.2 Cross modal retrieval

Cross modal retrieval (CMR) is a task leveraging
the paired semantics between the visual and tex-
tual representations. Specifically, the similarity
according to the inner product sim(wCLS,vCLS) =
wCLS ·vCLS is optimized to promote a matched pair

14Each locational feature consists of seven-dimensional
vectors: normalized top, left, bottom, and right coordinates,
width, height, and area.

and vice versa with in-batch negative sampling15:

L(CMR)(B) =
1

2B

B∑

b=1

L(TR)(b) + L(IR)(b) (5)

L(TR)(b) = − log

(
esim(vb

CLS,w
b
CLS)

∑B
j=1 e

sim(vb
CLS,w

j
CLS)

)
(6)

L(IR)(b) = − log

(
esim(wb

CLS,v
b
CLS)

∑B
i=1 e

sim(wb
CLS,v

i
CLS)

)
, (7)

where B is the number of instances in a single
(mini-)batch during the training process.

A.3 Implementation details

The model dimensions of both encoders are set
to 12 Transformer layers, 768 hidden dimensions,
and 12 attention heads. In our masking strategy,
following Devlin et al. (2019), we decomposed
15% of the total input tokens into 80% [MASK],
10% random tokens, and 10% unchanged. We used
AdamW (Loshchilov and Hutter, 2019) as the opti-
mizer for pre-training with β1 = 0.9andβ2 = 0.98
and set the learning rate to 5e − 5. We adopted a
learning rate warmup strategy, where the learning
rate was linearly increased during the first 10, 000
training steps, followed by a linear decay to 0. We
set the L2 weight decay to 0.01. We set the batch
size to 4096 per GPU with six accumulation steps.

A.4 Qualitative examples

In this section, we show several qualitative results
of the top-5 image retrievals using the TextCaps
development set (Sidorov et al., 2020). We com-
pare two models, “LightningDOT” and “Lightning-
DOT w/ST+MSM,” which showed the best scores
in Table 1. Figure 2 and 3 show true positive exam-
ples when employing the MSM objective with the
scene-text. The results indicate that both models
can retrieve similar images given the entity level
information and that the model using the MSM
objective retrieved appropriate images, including
the scene-text of “Voll-Damm” (Figure 2b) and

“Sibelius Symphonies from Minnesota Orchestra”
(Figure 3b). Figure 4 shows true negative examples.
In the case when it is necessary to achieve read-
ing comprehension, our proposed method does not
work well. For a more robust and fine-grained com-
prehension, we need to consider the geometrical
relationships between multiple scene-texts (Wang

15Other images and captions in the mini-batch are selected
as negative instances
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et al., 2021b), as well as a pre-training framework
with a large-scale text corpus (Biten et al., 2021),
in future work.
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(a) LightningDOT (out of top-100 range)

(b) LightningDOT w/ ST+MSM (1)

Figure 2: Top-5 retrieval images from the query “A glass bottle and glass of Voll-Damm beer.” The ground truth is
indicated by the green rectangle. The number in parentheses indicates the ranking index of the retrieval result for
the positive image.

(a) LightningDOT (33)

(b) LightningDOT w/ ST+MSM (1)

Figure 3: Top-5 retrieval images from the query “The music book cover with Sibelius Symphonies from Minnesota
Orchestra.” The ground truth is indicated by the green rectangle. The number in parentheses indicates the ranking
index of the retrieval result for the positive image.
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(a) LightningDOT (86)

(b) LightningDOT w/ ST+MSM (20)

Figure 4: Top-5 retrieval images from the query “Open book on a page that says the young man dried up his tears.”
The number in parentheses indicates the ranking index of the retrieval result for the positive image.
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Abstract

With climate change becoming a cause of con-
cern worldwide, it becomes essential to gauge
people’s reactions. This can help educate and
spread awareness about it and help leaders im-
prove decision-making. This work explores
the fine-grained classification and Stance detec-
tion of climate change-related social media text.
Firstly, we create two datasets, ClimateStance
and ClimateEng, consisting of 3777 tweets
each, posted during the 2019 United Nations
Framework Convention on Climate Change
and comprehensively outline the dataset col-
lection, annotation methodology, and dataset
composition. Secondly, we propose the task
of Climate Change prevention stance detection
based on our proposed ClimateStance dataset.
Thirdly, we propose a fine-grained classifica-
tion based on the ClimateEng dataset, classify-
ing social media text into five categories: Dis-
aster, Ocean/Water, Agriculture/Forestry, Pol-
itics, and General. We benchmark both the
datasets for climate change prevention stance
detection and fine-grained classification using
state-of-the-art methods in text classification.
We also create a Reddit-based dataset for both
the tasks, ClimateReddit, consisting of 6262
pseudo-labeled comments along with 329 man-
ually annotated comments for the label. We
then perform semi-supervised experiments for
both the tasks and benchmark their results us-
ing the best-performing model for the super-
vised experiments. Lastly, we provide insights
into the ClimateStance and ClimateReddit us-
ing part-of-speech tagging and named-entity
recognition.

1 Introduction

The effects of climate change are becoming in-
creasingly apparent, with various natural disasters,
including floods, droughts, storms, and fires, in-
creasing in intensity and frequency. The biosphere
is changing, endangering the natural resources and
agriculture that are essential for our survival. Ac-

cording to the Fifth Assessment Report of the Inter-
governmental Panel on Climate Change (IPCC) 1,
continued climate change will have severe and irre-
versible impacts on people and ecosystems world-
wide. According to the report, climate change
is predicted, with high confidence, to lead to in-
creased intensity and frequency of daily tempera-
ture extremes, sea-level rise, ocean acidification,
and reduced crop yields. Climate change and its
effects have become major causes of concern glob-
ally, leading to increased participation in public
discourse. They have been the subject of various
newspaper articles, scientific papers, blogs, and
social media threads.

Although many steps can help control the in-
tensity and effects of climate change, integrating
these steps with public policy depends on the vox
populi of climate change. There are multiple ways
to study and quantify public opinion on climate
change. However, traditional methods, including
polling, do not take advantage of the growing preva-
lence and the abundance of public discourse in so-
cial media. Twitter is one of the most popular social
media and serves as a vital data source for deter-
mining public opinion and perception of climate
change. Globally, it has more than 200 million
daily active users, with an average annual growth
of around 20% in the number of active users. Lin-
den (2017) discusses the impact social networks
have on developing climate change risk perception,
which suggests the importance of understanding
discourses in social media for this domain.

One of the primary concerns around climate
change is polarization, with social media being
one of the key influencers of the same. As has
been observed in previous works, climate change
skepticism has achieved a higher level of visibil-
ity in media than scientific literature (Boykoff and
Boykoff, 2004). Nevertheless, it may help mit-

1https://www.ipcc.ch/
assessment-report/ar5/
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igate differences and spread awareness of infor-
mation related to climate change. Social media
also creates an open space for organizations, cli-
mate activists, and scientists to reach more people
worldwide. UKCOP26 and Greenpeace are a few
examples that use social media platforms to share
knowledge about current climate conditions and
collaborate with artists, activists, politicians, and
academic institutions. Hence, the importance of
social media outreach in climate change awareness
campaigns is immense for effectively reaching a
large global audience.

This work proposes climate change prevention
stance detection and fine-grained classification of
climate-change-related social media text. We re-
lease two Twitter-based English datasets 2, Climat-
eStance and ClimateEng, consisting of 3777 tweets,
manually annotated for both the tasks. Thirdly, we
benchmark state-of-the-art text classification mod-
els including BERT, RoBERTa and DistilBERT on
both the tasks. Fourthly, we create a Reddit-based
pseudo-labeled dataset ClimateReddit from the best
performing model for ClimateStance and Clima-
teEng and benchmark its performance based on a
smaller manually annotated test dataset. Finally,
we perform a linguistic feature-based analysis for
both the datasets based on part-of-speech tagging
and named entity recognition.

2 Related Works

Early work in analyzing climate-change-related
text in the social media setting is primarily focused
on statistical analysis (Kirilenko and Stepchenkova,
2014; Pearce et al., 2013; Kirilenko et al., 2014;
Cody et al., 2015). Kirilenko et al. (2014) collected
tweets on climate change and global warming in
five languages and studied the effect of geography,
time, major news events that inspired central topics
of discussion over climate change. Pearce et al.
(2013) presented the tweet authors and topics asso-
ciated with the publication of the IPCC’s AR5 on
the physical science basis for climate change based
on the Tweet’s hashtags. Moreover, Kirilenko et al.
(2014) performed the analysis on tweets during
2012-2013 to conclude that users are establishing
a relationship between temperature anomalies and
climate change. On the other hand, Cody et al.
(2015) used Hedonometer to determine how collec-
tive sentiment differs in response to climate change-

2https://github.com/serendipity5497/
finegrained-climate-change-social-media

related events, news, natural disasters, oil drillings.
They conclude that natural disasters and other phe-
nomena related to climate change contributed to a
decrease in overall happiness. Although the works
mentioned above are immensely helpful in under-
standing climate change-related discourses in so-
cial media, recent advances in natural language pro-
cessing enable the fine-grained detection of climate-
change-related social media text. The advent of
contextualized word representation for improving
natural language representation for various down-
stream tasks, including text classification, has been
particularly significant.

Recent work in the area employs the techniques
of topic modeling (Dahal et al., 2019), and lexicon-
based sentiment analysis (Loureiro and Alló, 2020).
Dahal et al. (2019) provided an overview of high-
impact areas where machine learning and AI can as-
sist the fight against climate change and highlighted
climate mitigation and adaptation, as well as meta-
level tools that enable other strategies. Loureiro
and Alló (2020) analyzed Twitter conversations
related to climate change in UK and Spain and
employed NLP tools to access the sentiment as-
sociated and various emotions evoked by these
tweets. They used the lexicon developed by the
National Research Center Canada (NRC), denoted
as EmoLex (Mohammad and Turney, 2013). Luo
et al. (2020) released the Global Warming Stance
Detection Dataset, specifically focused on identi-
fying stance on global-warming-related sentences
from news articles. Sobhani et al. (2016) released
a Twitter dataset for stance detection and further
concluded that sentiment features assist in stance
classification but are not sufficient on their own.
Moreover, Maynard and Bontcheva (2015) release
an open-source toolkit for enabling researchers to
use Twitter to analyze and understand the engage-
ment of the society regarding climate change.

3 Dataset

This section outlines the dataset creation pro-
cess for both fine-grained classification of climate-
change-related tweets and climate change preven-
tion stance detection. First, we detail the data col-
lection process, which entails scraping, filtering,
and preparing the text for annotation. Secondly,
we outline the data annotation schema for the fine-
grained climate-change-related tweet classification
task, along with examples of each of the five cate-
gories. We then detail the data annotation schema
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Stance Example

Favor

"It’s time for the American electorate to make #climate change
a political do-or-die, up and down the ticket." #ClimateCrisis

It’s not TOO late, but it’s late to start reversing climate change.

Against

UN not satisfied with hysteria over "Global Warming", "Climate Change".
They are seeking language to scare us line "Climate Calamity" to push
their fake narrative. #ClimateHoax

You want to solve climate change, become an electrician.

Ambiguous

It’s going to be an interesting week in the UK, with elections
looming - from a climate change perspective, this is what
the major parties are saying

BBC News - General election 2019: Your questions on
climate change and the environment

Table 1: Examples of Climate Change Prevention Stance Detection Task

for the climate change prevention stance detection
task. Finally, we calculate the inter-annotator agree-
ment to evaluate the efficacy of the annotation pro-
cess.

3.1 Data Collection

3.1.1 Twitter Data Collection

Using the Twitter Application Programming In-
terface (API) 3, we collected a sample of tweets
between 1st December 2019 and 14th December
2019 as the UN Climate Change Conference COP
25 was held from 2 – 13 December 2019. To ac-
commodate different time zones, we start collecting
data one day before the conference and collect it
until one day after the conference. In total, we col-
lected 378772 tweets along with their metadata. In
order to extract climate-change-related tweets from
this dataset, we constructed a list of keywords rele-
vant to the concerns regarding climate change - Cli-
mate Change, Global Warming, Warming Planet.
Apart from these keywords, we also collect tweets
containing the following hashtags #climatechange,
#climateaction, #globalwarming,#fossilfree, #cli-
matehoax, #climatetaxfraud. After removing non-
English tweets, we were left with 263041 tweets.
We used Twitter ID deduplication to remove over-
lapping redundant tweets from multiple hashtags
or keywords. Further, we deduplicate tweets based
on tweet text to remove duplicates leaving us with
243781 tweets. Lastly, for performing the human
annotation process, we sampled 3777 tweets.

3https://developer.twitter.com/en/
docs/twitter-api

3.1.2 Reddit Data Collection
We use Pushshift (Baumgartner et al., 2020) for
extracting Reddit comments related to climate
change. For this purpose, we use four subreddits
that engage in climate change discourse, namely:
r/climate, r/Climateskeptics, r/ClimateActionPlan,
r/climatechange. Through this method, we ex-
tracted 6591 comments in total. We then prepro-
cess these comments to remove hyperlinks and
markdown symbols representing stylized text (i.e.,
bold and italic). Finally, we split the dataset into
two parts: 6262 comments for creating the pseudo-
labeled dataset and 329 comments for manual
annotation for benchmarking the pseudo-labeled
dataset.

3.2 ClimateStance: Climate Change
Prevention Stance Detection

We use the term stance as a broad concept covering
sentiment, evaluation, appraisal, or attitude and
its associated information that is stance target and
further use this to evaluate the stance. Similar to
Sobhani et al. (2016) we use favor, against and
ambiguous labels. We categorize each tweet into
one of the three categories in terms of its stance
towards climate change prevention:

• Favor: Expressions of opinion, action, con-
cern against the climate change phenomenon.

• Against: Expressions of distance, ignorance
towards signs of climate change, extreme cli-
mates, and the opposition of climate change
policies or actions taken by the governing bod-
ies.
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Class Examples

Disaster

Take a swim in the charcoal, kids - Sydney beach today (Malabar)
#NSWfires #ClimateChange #AustraliaFires

Too late to act on fires after they start - need to stop them by acting
on climate change #qana

Ocean/Water

IUCN report: Oceans losing oxygen at rapid rate due to #CLIMATE
change, #POLLUTION

Good news, when climate change melts all of Greenland’s ice and
deflects the gulf stream away from Europe, you’ll get all the snow
you could ever ask for!

Agriculture/Forestry

Our most important mountains are under threat—thanks to climate
change

Extensive livestock farming in rainfed pastures and grazing land
could mitigate climate change while being more humane and just.

Politics

It’s astonishing that battling climate change is politicized, mainly
because it hurts republicans right in their pockets.

Vote and vote for someone sees the importance of mitigating
climate change by any necessary means

General

Everything is due to climate change? This sounds like a propaganda

Am committed and will expect all of the below and more - including
tackling homelessness and climate change issues with determination

Table 2: Examples of Fine-grained Classification Task

• Ambiguous: Do not express any clear stance
towards climate change. Tweets with sarcastic
tones were also marked as ambiguous.

3.3 ClimateEng: Fine-grained Classification

The collected data was then manually annotated on
the following categories: Disaster, Ocean/Water,
Agriculture/forestry, Politics, General.

3.3.1 Disaster
This category contains tweets related to various
climate-change-influenced natural disasters, includ-
ing wildfires, floods, hurricanes, and droughts.
These references entail:

• References containing opinions about specific
instances of natural disasters.

• Information regarding specific instances of
natural disasters.

3.3.2 Ocean/Water
This category contains tweets that are:

• References to the effects of climate change on
biodiversity on ocean, seas, and other water
bodies.

• References to water-based activities that ac-
celerate climate change.

• References to how biodiversity on land adapts
to the effects of climate change.

3.3.3 Agriculture/forestry
This category contains tweets that are:

• References to the effects of climate change on
biodiversity on land, crop yields.

• References to activities including deforesta-
tion and fossil fuel burning accelerating cli-
mate change.

• References to how biodiversity on land is
adapting itself to the effects of climate change.

3.3.4 Politics
This category contains tweets that are related to:

• Quotes of different world leaders on the topic
of climate change.

• References about actions taken by institutions
like UN to spread awareness about the increas-
ing concerns about climate change.

• References to policies being put in place like
Newgreendeal, COP25.
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3.3.5 General
This category contains tweets that are:

• References of people discussing and spread-
ing awareness about climate change without a
specific focus like ocean, water.

• References of climate change affecting subur-
ban lives.

3.4 Semi-supervised Experiments

We also create ClimateReddit dataset to perform
experiments with semi-supervised learning for the
task of stance detection and Fine-grained Classifi-
cation for a Reddit-based dataset. Semi-supervised
learning is often used for utilizing a large amount
of unlabeled data to improve the predictive perfor-
mance of models across various machine learning
tasks (Blum and Mitchell, 2000; Chapelle et al.,
2006). For our semi-supervised experiments, we
use the method of pseudo-labeling. In this method,
we first train a “teacher” model based on our
Twitter-based annotated datasets, namely, Clima-
teEng and ClimateStance. We then use this model
to predict the labels for the un-annotated Reddit
dataset and create a pseudo-labeled dataset from the
predictions. We denote this pseudo-labeled dataset
of Reddit comments along with its predicted stance
and fine-grained climate-based classification labels
as ClimateReddit.

3.5 Inter-annotator Agreement

Two human annotators with a linguistic back-
ground and proficiency in English conducted the an-
notation of the dataset to classify the tweets accord-
ing to the schemas mentioned above. We selected a
sample annotation set consisting of 100 tweets per
class from all across the dataset. Throughout the
annotation process, these sample annotation sets
served as the reference baseline of each category.

We also analyze the disagreements between the
two annotators on both the fine-grained classifica-
tion task and the stance detection task. The use of
sarcasm in the tweets led to disagreements in many
such cases, particularly in the case of stance de-
tection. To accurately capture the stance for those
cases, we marked them to be ambiguous. More-
over, the implicit bias of the annotators towards
specific entities also led to disagreements between
the annotators. We tried our best to select the more
objective answer from those labels for creating our
corpus.

We calculated the Inter-Annotator Agreement
(IAA) to validate the annotation quality. For both
annotation tasks, we compute the IAA between
the two annotation sets of 3777 tweets using Co-
hen’s Kappa coefficient (Fleiss and Cohen, 1973).
We obtained the Cohen Kappa scores of 0.817 and
0.739 for the ClimateStance and the ClimateEng re-
spectively. Moreover, we also calculate the Cohen
Kappa score to be 0.850 for the fine-grained classi-
fication task and 0.864 for the stance detection task
between the two annotation sets for the manually
annotated test split of the ClimateReddit dataset.
These denote that the quality of the annotations and
the presented datasets are significantly productive.

4 Methodology

This section briefly describes the various state-of-
the-art models that we used for our benchmarking
experiments.

4.1 FastText

FastText (Joulin et al., 2017) is an open-source li-
brary for efficient learning of word representations
and sentence classification. It allows training both
supervised and unsupervised word and sentence
representations, also supporting training using both
continuous bag-of-words and skip-gram techniques.
Since FastText uses character n-grams while gen-
erating embeddings, it can create representations
for words that do not appear in the training cor-
pus. Moreover, FastText is capable of achieving
good predictive performance efficiently without a
pre-trained corpus.

4.2 BERT

BERT released by Devlin et al. (2019) is a bidirec-
tionally trained language model. It exploits a novel
technique called Masked LM (MLM) Masking pro-
cessing text in both directions and using the full
context of the sentence, i.e., words to both left and
right of the masked word, to predict the masked
word. It relies on the Transformer model, which
works by performing a small, constant number of
steps applied to understand relationships between
all words in a sentence, regardless of their respec-
tive position, using an attention mechanism. In
terms of the type of training data used, it can be
classified into cased and uncased variants, based
on the letter casing of the training data. We use
the Base cased and Large cased variants for our
benchmarking experiments.
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4.3 RoBERTa
RoBERTa (Liu et al., 2019) is BERT-based contex-
tualized word embedding that uses modified key
hyperparameters, simpler pre-training objectives,
and a different size of training data. Unlike BERT,
RoBERTa does not use the next sentence prediction
training objective while using dynamic masking for
changing the masked token during training epochs.
It uses a larger batch-training size and ten times
the training data when compared to BERT. These
improvements enable RoBERTa to obtain signifi-
cant gains in the predictive performance in various
downstream tasks, including GLUE (Wang et al.,
2018) for text classification. Similar to BERT, it
also comes in two variants in terms of transformer
architecture: Base and Large. Unlike BERT, it only
comes in the cased variant in terms of the type of
training data used. We benchmark both Base and
large variants of RoBERTa.

4.4 DistilBERT
DistilBERT (Sanh et al., 2019) is a distilled version
of BERT that uses 40% fewer parameters and is
60% faster while retaining the majority of its pre-
dictive performance. It does not use token-type
embeddings while removing the pooler in its archi-
tecture, reducing the number of layers compared
to BERT by half. DistilBERT uses a composite
loss combining distillation, cosine-distance, and
language modeling losses to leverage the inductive
biases learned by undistilled models during pre-
training. In terms of the type of training data used,
it can be classified into two variants:- cased and
uncased. We use the cased version of DistilBERT
for our benchmarking experiments.

5 Experiments

5.1 Experimental Settings
5.1.1 Supervised Experimental Setting
We evaluate our models on a held-out test dataset
for all experiments that consist of 10% of the to-
tal dataset. For validation purposes, we split the
training dataset was further divided in 8 : 1 train-
ing:validation split. We use F1, Precision, Recall,
and Accuracy for evaluating the models. We use
the macro variant of the F1, Precision, and Re-
call which treats all classes equally by taking an
unweighted arithmetic mean of all per-class scores.

We use FastText’s recently open-sourced auto-
matic hyperparameter optimization functionality
and run 100 trials of optimization. For BERT,

RoBERTa and DistilBERT, we fine-tune with a
learning rate of 1 ∗ 10 − 5, batch size of 12, and
a maximum sequence length of 128 tokens. We
validate the models for up to five epochs using the
validation dataset and report the best-performing
model in our results.

5.1.2 Semi-Supervised Experimental Setting
For generating pseudo-labels and performing the
benchmarking experiments, we use the best-
performing model in terms of F1 score for both
tasks of stance detection and fine-grained classifi-
cation. We use the same methodology for training
the models as explained in Subsection 5.1.1.

We use all splits of the Twitter-based datasets,
namely ClimateStance and ClimateEng, for their
respective tasks, for training the generating the
pseudo-labels from the Reddit dataset. For vali-
dation, we re-split the dataset into a 9 : 1 split.
Now, upon pseudo-labeling, we use the aggregated
dataset consisting of both Twitter and Reddit text
and re-split the dataset again into a 9 : 1 split for
validation. For all our evaluation experiments, we
use the same manually annotated dataset split of
ClimateReddit as the test dataset.

5.2 Experimental Results

5.2.1 Supervised Experiments
From Table 3 which illustrates the results of the
climate change prevention stance detection exper-
iment, we observe RoBERTa-Base outperform all
models in F1 with a score of 0.510. In contrast,
RoBERTa-Large outperforms all models in Accu-
racy and Recall with Accuracy 82.54% and 0.507
recall score. BERT-LARGE achieved the best pre-
cision score of 0.530.

Model / Metric F1 Accuracy Precision Recall
FastText 0.343 79.63% 0.503 0.354
BERT-Base 0.464 77.51% 0.507 0.446
BERT-Large 0.489 77.78% 0.530 0.470
RoBERTa-Base 0.510 81.22% 0.528 0.502
RoBERTa-Large 0.489 82.54% 0.473 0.507
DistilBERT 0.448 79.37% 0.497 0.430

Table 3: Results for the Stance Detection using Climat-
eStance dataset

Table 4 illustrates the results of the fine-grained-
classification experiment. For this task, we observe
RoBERTa-Large to outperform all models in F1,
Accuracy, and Precision, obtaining an F1 score of
0.735, accuracy of 83.07%, and Precision of 0.738
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in the experiments. At the same time, RoBERTa-
Base was able to achieve a better Recall score of
0.756.

Model / Metric F1 Accuracy Precision Recall
FastText 0.638 73.55% 0.730 0.594
BERT-Base 0.696 78.84% 0.697 0.701
BERT-Large 0.695 78.31% 0.730 0.689
RoBERTa-Base 0.734 80.16% 0.725 0.756
RoBERTa-Large 0.735 83.07% 0.738 0.742
DistilBERT 0.694 77.51% 0.695 0.713

Table 4: Results for the Fine-grained Classification us-
ing ClimateEng dataset

Apart from these, DistilBERT and FastText also
perform competitively while being trained signif-
icantly faster than the others. DistilBERT obtains
an F1 score of 0.448 in the Climate Change Pre-
vention Stance Detection task and an F1 of 0.694
in the fine-grained classification task. In contrast,
FastText obtains an F1 score of 0.343 in the Cli-
mate Change Prevention Stance Detection and an
F1 of 0.638 in the fine-grained classification task.

5.2.2 Semi-Supervised Experiments

For this experiment, we use the best performing
models in terms of F1 score for the Climate Change
Prevention Stance Detection task using ClimateS-
tance (RoBERTa-Base) and Fine-grained Classifi-
cation task using ClimateEng dataset (RoBERTa-
Large).

Training Data F1 Accuracy Precision Recall
ClimateEng 0.775 88.15% 0.800 0.769
ClimateEng +
Pseudo-labelled
Reddit Data

0.834 90.27% 0.850 0.823

Table 5: Results for the Semi-Supervised Fine-grained
Classification Task

From Table 5, for the task of fine-grained clas-
sification, we find that RoBERTa-Large trained
with all splits of ClimateEng performs signifi-
cantly well in the fine-grained classification task
for ClimateReddit dataset, obtaining an F1 of 0.775
and an accuracy of 88.15%. Moreover, using the
pseudo-labeled Reddit dataset for training along
with ClimateEng, we find an even higher F1 of
0.834 and an accuracy of 90.27%.

Training Data F1 Accuracy Precision Recall
ClimateStance 0.343 60.79% 0.403 0.387
ClimateStance +
Pseudo-labelled
Reddit Data

0.311 60.49% 0.396 0.369

Table 6: Results for the Semi-Supervised Stance Detec-
tion Task

In contrast, as illustrated in Table 6, the pre-
dictive performance of RoBERTa-Base reduces
sharply for the task of Stance detection in the semi-
supervised setting. It obtains an F1 score of 0.343
and an accuracy of 60.7% when only trained with
the ClimateStance dataset. Upon adding the ad-
ditional Reddit-based pseudo-labeled corpus for
the Stance detection, we find the model’s perfor-
mance to dip even further, reaching an F1 score of
0.311 and an accuracy of 60.49%. This drop can
be attributed to the significant imbalance in class
distribution as highlighted in Subsection 6.1.

6 Discussion

6.1 Dataset Composition

In the annotated ClimateStance dataset, we observe
the primary stance to be in favor with a count of
2990 (79.16%), i.e., in conclusion, most discus-
sions showed concern and proposed actions to mit-
igate climate change. Further, we observed the
ambiguous stance state with no clear stance on cli-
mate change 414 (10.96%) times. In contrast, the
tweets against and with confusion towards climate
change, i.e., those having a against stance state,
occurred 373 (9.87%) times.

In the annotated ClimateEng dataset, we found
the popularity of General tweets with a count of
2159 (57.16%) followed by Politics class with a
count of 1045 (27.67%), which sheds light on how
different governing bodies are acting against cli-
mate change and citizens’ expectations from the
governing parties for climate change mitigation.
We observed Ocean/Water class has a count of 204
(5.40%) as we see the signs of climate change, in-
cluding rising shorelines and melting glaciers. The
Agriculture/Forestry class consisted of 197 (5.21%)
tweets due to the rising effects of climate change
on agricultural practices and biodiversity. We also
observed that disastrous events around the globe
did follow an increase in discussions regarding cli-
mate change and global warming; in the dataset,
we were able to capture 172 (4.55%) tweets that
could be classified as Disaster.
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Class Part-of-Speech Named Entities
PROPN VERB NOUN ADJ PRON ADV PERSON GPE MONEY ORG DATE

Favor 4.22 3.69 7.76 2.00 1.39 1.15 0.29 0.29 0.39 0.99 0.26
Against 3.22 3.71 7.18 2.26 1.76 1.41 0.30 0.17 0.20 0.71 0.24

Ambiguous 3.55 3.01 6.47 1.81 1.47 1.16 0.31 0.20 0.35 0.82 0.24

Table 7: Mean Value of Part-of-Speech tags and Named Entities in the ClimateStance dataset per Class.

Class Part-of-Speech Named Entities
PROPN VERB NOUN ADJ PRON ADV PERSON GPE MONEY ORG DATE

General 3.58 3.33 7.08 1.92 1.47 1.13 0.28 0.16 0.35 0.85 0.23
Politics 4.75 4.26 8.14 2.21 1.68 1.34 0.38 0.41 0.39 1.12 0.28
Ocean/
Water 4.94 3.17 7.96 1.78 0.82 0.86 0.22 0.40 0.37 0.97 0.32

Agriculture/
Forestry 4.10 3.51 8.73 1.92 0.72 0.95 0.16 0.22 0.47 0.95 0.19

Disaster 4.46 3.81 8.24 2.23 1.09 1.34 0.27 0.61 0.42 0.95 0.35

Table 8: Mean Value of Part-of-Speech tags and Named Entities in the ClimateEng dataset per Class.

In the ClimateReddit dataset consisting of 6591
Reddit comments, we observe the primary stance to
be in favor with a count of 6269 (95.11%). Further,
we observed the against stance 251 (3.80%) times
and those having a ambiguous stance, occurred 71
(1.08%) times. Moreover, upon observing in terms
of the fine-grained labels, we found 4699 (71.29%)
comments to lie in the General category. The next
most frequent category was Politics, having 1197
(18.16%) comments. The next three categories of
comments had a fairly equivalent number of oc-
currences having 243 (3.69%), 227 (3.44%), and
225 (3.41%) comments for Ocean/Water, Agricul-
ture/Forestry, and Disaster respectively.

6.2 Linguistic Feature Analysis

We compare our annotated features with various
linguistics features including part-of-speech (POS)
and named entities (NE) on ClimateStance and
ClimateEng datasets. To perform this analysis,
we exploit SpaCy 4, an open-source library for
advanced natural language processing. We use
the en_core_web_sm for extracting the part-of-the-
speech tagging and performing named-entity recog-
nition from all 3777 tweets.

Table 7 illustrates the results for the part-of-
speech tagging and named entity recognition for
the ClimateStance dataset. We observe that tweets
in favor stance use proper nouns and nouns the
most when compared to other classes. In contrast,
tweets with stance against displayed a higher use
of adjectives, pronouns, and adverbs. While ob-

4https://spacy.io/

serving NEs, we found the highest occurrence of
GPE, MONEY, and ORG tagged NEs in tweets
with in favor stance. The arguments to support
this observation could be stated as in favor stance
towards climate change would lead to concern and
demand action against climate change. Organiza-
tions (ORG) and geopolitical entities (GPE) would
be required to make significant changes to bring
a systematic change that could slow down climate
change. Moreover, the economy needs to adapt to
the changing climate, which might be the reason
for using entities with the MONEY tag in tweets
having stance in favor of climate change.

Table 8 illustrates the results for the part-of-
speech tagging and named entity recognition for the
ClimateEng dataset. Tweets classified as Disaster
had the majority of GPE NEs as well as DATE NEs.
We believe this could be due to the localization of
disastrous events and tweets holding the political
body of the geography for action for mitigation and
relief work. Tweets classified as General observed
the least mention of MONEY NEs. In contrast, we
see a higher count of the MONEY NEs in Agricul-
ture and Disaster classes, which might be due to
the cost associated with agricultural industries and
disaster mitigation and relief organizations to adapt
to the climate change effects witnessed during a
disaster. We also observe the most leading mention
of ORG NEs in Politics class. This observation
could be due to references of actions needed to be
adopted or are adopted by different organizations
to mitigate climate change.

This analysis of linguistic features can be fur-
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ther extended to entail a study on the correlation
of these features alongside fine-grained labels and
stance labels created in ClimateStance and Clima-
teEng dataset. The study may lead to interesting
sociolinguistic findings while helping out in gen-
eral understanding of how we use language in a
social setting while writing climate-related short-
form text. Moreover, this study may also help with
information retrieval (Li et al., 2022) based on the
named entities alongside our created labels.

7 Conclusion

In this work, we proposed the task of predicting
Stance in social media texts related to climate
change. We further proposed the task of catego-
rizing these texts into five categories. We bench-
marked the datasets using state-of-the-art contextu-
alized word embeddings and provided baselines
for both the proposed tasks. We observed that
RoBERTa-Large outperforms all other models in
three of the four evaluation metrics for the fine-
grained classification task, obtaining an F1 of
0.735. Moreover, we also observed that RoBERTa-
Base obtained the best F1 score in the Stance detec-
tion task with a 0.510 F1 score. We further extend
this work to the semi-supervised setting and use
pseudo-labeling to predict for the Stance detection
and fine-grained classification tasks in a Reddit-
based dataset. This work can be further expanded
to analyze people’s reactions to climate change
in multi-modal and multilingual settings to get a
broader understanding.

Ethical Considerations

This paper uses data obtained from the Twitter De-
veloper API 5 and freely available social media data
from the Reddit platform using the Pushshift API
(Baumgartner et al., 2020). Moreover, we only pro-
vide the Tweet ID in the annotated datasets along
with a data preparation script in accordance with
the Twitter Terms of Service. We also compensated
the human annotators with a stipend more than the
minimum wage in India.
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Abstract

Effective methods for multiword expressions
detection are important for many technologies
related to Natural Language Processing. Most
contemporary methods are based on the se-
quence labeling scheme applied to an annotated
corpus, while traditional methods use statistical
measures. In our approach, we want to inte-
grate the concepts of those two approaches. We
present a novel weakly supervised multiword
expressions extraction method which focuses
on their behaviour in various contexts. Our
method uses a lexicon of English multiword lex-
ical units acquired from The Oxford Dictionary
of English as a reference knowledge base and
leverages neural language modelling with deep
learning architectures. In our approach, we do
not need a corpus annotated specifically for the
task. The only required components are: a lex-
icon of multiword units, a large corpus, and
a general contextual embeddings model. We
propose a method for building a silver dataset
by spotting multiword expression occurrences
and acquiring statistical collocations as nega-
tive samples. Sample representation has been
inspired by representations used in Natural Lan-
guage Inference and relation recognition. Very
good results (F1=0.8) were obtained with CNN
network applied to individual occurrences fol-
lowed by weighted voting used to combine re-
sults from the whole corpus. The proposed
method can be quite easily applied to other lan-
guages.

1 Introduction

Multiword expressions (henceforth MWEs) have
been studied for decades, defined in different ways
in literature with different denotations of this term,
e.g. see the overview in (Ramisch, 2015). Probably,
the most genuine, but the least operational, defini-
tion is multiword lexemes stored as single lexical
units in the mental lexicon ready to be retrieved. In
the spirit of this fundamental property, we consider
MWEs from the lexicographic point of view as

lexical units that “has to be listed in a lexicon” (Ev-
ert, 2004) and we seek for methods of automated
extraction of MWEs from text corpora to expand
a large semantic lexicon with multi-word lexical
units. Summarising a longer definition given in
(Ramisch, 2015), MWEs are “lexical items decom-
posable into multiple lexemes”, “present idiomatic
behaviour at some level of linguistic analysis” and
“must be treated as a unit” and, thus, should be
described in a semantic lexicon, e.g. from (Steven-
son, 2010) air corridor (an agreement between
two countries), slow food (“traditional food and
ways of producing, cooking and eating it”), fast
food, fire door, first lady etc. A similar defini-
tion was adopted in the PARSEME Shared Task
resource (Ramisch et al., 2018, 2020a). As we tar-
get the construction of a general lexicon expressing
good coverage for lexical units occurring frequently
enough in a very large corpus, we need also to take
into account multiword terms, i.e. (Ramisch, 2015)
“specialised lexical units composed of two or more
lexemes, and whose properties cannot be directly
inferred by a non-expert from its parts because they
depend on the specialised domain”.

Several MWE characteristics or identifying
properties have been postulated, e.g.: arbitrari-
ness, institutionalisation, limited semantic vari-
ability (especially non-compositionality and non-
substitutability), domain specificity, and limited
syntactic variability (Ramisch, 2015). Among
them, semantic non-compositionality seems to be
one of the strongest identifying factors. However,
the challenge is to trace them using some corpus-
based evidence and guide the extraction process.
In addition, MWEs should be some how corre-
lated with higher or more prominent frequency in
language use in order to be worth inclusion in a
lexicon.

Extraction of MWEs and their description in a
semantic lexicon (e.g. as a reference resource) is
important for many NLP applications like semantic
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indexing, knowledge graph extraction, vector mod-
els, topic modelling etc. Due to the specific prop-
erties of MWEs as whole units, their automated
description by the distributional semantics method,
e.g. embeddings, is not guaranteed, especially in
the case of MWEs of lower frequency.

Traditionally, MWEs extraction is preceded by
finding collocations (frequent word combinations)
by statistical or heuristic association measures and
filtering them by syntactic patterns. However, in
this way mainly the frequency-related aspect is
covered. The peculiar behaviour of MWEs as a lan-
guage unit may be observed in linguistic contexts,
and methods based on the well-known sequence la-
belling scheme try to do that. They explore MWE
specific behaviour of as a language expressions
across text contexts, where the contexts are repre-
sented by contextual embeddings (neural language
models). However, such approaches require a lot of
hard manual work on text annotation. In addition,
due to the corpus size limitation, most potential
MWEs are observed only in a few, if not singu-
lar uses, while a lexicon element by a definition
is a ready-to-use unit to be included in different
contexts and, as such, should be studied.

Thus, we want to fully explore the expected
MWE characteristic aspects, including frequency,
and to reduce the amount of manual work required.
MWE annotated corpora are very rare and small,
e.g. PARSEME (Ramisch et al., 2020b), but MWEs
are listed in dictionaries and lexical resources. We
propose a weakly supervised approach in which a
lexicon of MWEs is used to build a kind of silver
data on the basis of general text corpus. Concern-
ing negative examples, i.e. language expressions
rejected to be MWEs, that are hardly listed in any
lexical resources, we use association measures (fre-
quency aspect) to find collocations very likely not
being MWEs. Next we feed a system combining
contextual embeddings, deep neural learning and
weighted voting scheme across individual MWE
occurrences with the silver data. As a result, the
system can be next used to filter potential MWEs
extracted from a corpus with association measures
(the frequency aspect in a positive role). In con-
trast to many methods from literature, we neither
need a corpus laboriously annotated with MWE
occurrences, nor language models specially trained
for this task. In addition we aim at jointly encom-
pass most of the MWE characteristic aspects with
the majority of them recognised in a kind of over-

lap of MWE contextual embeddings across their
different occurrences. The proposed approach is
illustrated with good results achieved on English
MWEs coming from several dictionaries and the
British National Corpus. However, our method can
be quite easily adapted to any language, the only re-
quired elements are: a corpus and an initial lexicon
of MWEs, and a general contextual embeddings
model.

2 Related Work

Initially statistical association measures calculated
on the basis of word co-occurrence statistics in
corpora were used for discovering and ranking col-
locations as potential MWEs (Evert, 2004). Single
measures can be also combined into complex ones,
e.g. by a neural network (Pečina, 2010). Syntac-
tic information from parsing (Seretan, 2011) or
from lexico-syntactic constraints based on morpho-
syntactic tagging (Broda et al., 2008) were used in
counting statistics and post-filtering collocations.
Several systems for MWE extraction were pro-
posed, combining different techniques, e.g. mwe-
toolkit by Ramisch (Ramisch, 2015) combines sta-
tistical extraction and morpho-syntactic filtering,
but also describes collocations with feature vectors
to train Machine Learning (ML) classifiers. Lexico-
syntactic patterns, measures, length and frequency
are used as features in ML-based MWE extraction
(Spasić et al., 2019). Linguistic patterns were used
to extract MWEs and post-filter the outcome of as-
sociation measures (Agrawal et al., 2018). MWEs
were also detected by tree substitution grammars
(Green et al., 2013) or finite state transducers (Han-
dler et al., 2016).

Recently, attention was shifted to MWE extrac-
tion perceived as a sequence labelling problem,
e.g. (Chakraborty et al., 2020), where corpora are
annotated on the level of words, typically, BIO an-
notation format (Ramshaw and Marcus, 1995): B –
a word begins an MWE, I is inside, O – outside. Se-
quence labelling approaches can also be combined
with heuristic rules (Scholivet and Ramisch, 2017)
or supersenses of nouns or verbs (Hosseini et al.,
2016). Such heuristics are applied to extract lin-
guistic features from texts for training a Bayesian
network model (Buljan and Šnajder, 2017). Con-
volutional graph networks and self-attention mech-
anisms can be used to extract additional features
(Rohanian et al., 2019). There are many challenges
related to the nature of the MWEs, e.g.: disconti-
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nuity – another token occurs between the MWE
components or overlapping – another MWE oc-
curs between the components of the given MWEs.
To counteract this, a model based on LSTM, the
long short-term memory networks and CRF is pro-
posed (Berk et al., 2018). The model from (Taslim-
ipoor et al., 2020) combines two learning tasks:
MWE recognition and dependency parsing in par-
allel. The approach in (Kurfalı, 2020) leverages
feature-independent models with standard BERT
embeddings. mBERT was also tested, but with
lower results. An LSTM-CRF architecture com-
bined with a rich set of features: word embedding,
its POS tag, dependency relation, and its head word
is proposed in (Yirmibeşoğlu and Güngör, 2020).

MWEs can be also represented as subgraphs en-
riched with morphological features (Boros and Bur-
tica, 2018). Graphs can be next combined with the
word2vec (Mikolov et al., 2013) embeddings to rep-
resent word relations in the vector space and then
used to predict MWEs on the basis of linguistic
functions (Anke et al., 2019). Morphological and
syntactic information can be also delivered to a re-
current neural network (Klyueva et al., 2017). Two
approaches to MWE recognition within a transition
system were compared in (Saied et al., 2019): one
based on a multilayer perceptron and the second
on a linear SVM. Both utilise only lemmas and
morphosyntactic annotations from the corpus and
were trained and tested on PARSEME Shared Task
1.1 data (Ramisch et al., 2018).

However, such sequence labeling approaches fo-
cus on word positions and orders in sentences, and
seem to pay less attention to the semantic incom-
patibility of MWEs or semantic relations between
their components. Furthermore, sequence labeling
methods do not emphasize the semantic diversity
of MWE occurrence contexts. Thus, they over-
look one of the most characteristic MWE factors:
components of a potential MWE co-occur together
regardless of the context. It allows us to distinguish
a lexicalised MWE from a mere collocation or even
a term strictly related to one domain. To the best of
our knowledge, the concept of using deep neural
contextual embeddings to describe the semantics of
the MWEs components and the semantic relations
between them in a detection task has not been suf-
ficiently studied, yet. Moreover, due to the sparsity
of the MWEs occurrences in the corpus, the corpus
annotation process is very time consuming and can
lead to many errors and low inter-annotator agree-

ment. For this reason, we propose a lexicon-based
corpus annotation method. We assume that the vast
majority of MWEs are monosemous, automatically
extract the sentences containing the MWE occur-
rences, and treat all sentences including a given
MWE (as a word sequence) as representing the
same multiword lexical unit.

3 Datasets

The conducted analysis of the existing resources
has shown that it is difficult to find a large anno-
tated dataset for the multiword expressions detec-
tion task. PARSEME shared task and multilingual
corpus (Ramisch et al., 2020b) is a very valuable
initiative, but focused mainly on verbal MWEs and
quite small, especially its English part. Moreover,
dictionaries containing MWEs follow different def-
initions and lexicographic practices, which makes
it difficult to unambiguously determine whether a
given multiword entity is a valid MWE. Therefore,
in order to obtain a large dataset, we followed our
idea of silver dataset and selected The Oxford Dic-
tionary of English (ODE) (Stevenson, 2010) as a
reference point to obtain the list of correct MWEs.
The proposed method is in some way parameterised
by a selected reference dictionary.

Concerning language expressions that are not
MWEs, i.e. negative samples from the ML perspec-
tive, they are not listed or mentioned in the dictio-
naries. Having a corpus annotated with MWE oc-
currences we could extract expressions that are not
as negative samples. However genuine MWEs are
more frequent or statistically specific. Thus, ‘nor-
mal’ language expressions would be too obviously
different. Instead, we noticed that statistical associ-
ation measures produce very long ranking lists of
collocations. Further down the ranking, MWE oc-
currences are quickly dwindling away. In addition,
we are interested only in specific structural types of
collocations that match structural types of MWEs
acquired from a dictionary.

To generate the list of incorrect MWEs, we se-
lected three popular association measures1: (1) the
Pointwise Mutual Information (PMI) (Church and
Hanks, 1990), (2) the Sørensen–Dice coefficient
(Dice) (Dice, 1945), and (3) Pearson’s chi-square
(Chi2) (Manning and Schutze, 1999) and used them

1A combined association measure could produced a better
ranking, but only moderately better and would require opti-
misation on the given dictionary and corpus. Moreover, our
dictionary seems to be too small, with too small coverage for
the optimisation.
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to extract collocation ranking list from the British
National Corpus (BNC) (Burnard, 1995). In order
to find relevant examples of multiword units, we
decided to select those collocations that were in the
third quartile of the list sorted in descending order
based on the value of the selected measure. We
quickly skimmed the list in order to ensure that it is
hard to spot anything looking as a MWE (but we do
not exclude the possibility that some MWEs may
occur, perfect precision does not seem to be neces-
sary). We combined the list of the correct MWEs
(from the dictionary) separately with the lists of
collocations obtained via each of the three selected
measures. In all experiments we concentrated on
two word MWEs and collocations, as the statisti-
cal association measures we applied are naturally
defined for two word combinations. However, as
it will be presented later, some of the MWE rep-
resentation we propose can be easily expanded to
k-word cases. Moreover, two word MWEs form
the vast majority of all in the dictionaries. Colloca-
tions extracted from the corpus were restricted only
to those that represent structural types of MWEs
from the dictionary.

We then used the three resulting lists to search
for sentences including collocation or MWE occur-
rences in the BNC corpus. The searched expres-
sions were simply recognised by comparing lemma
sequences. Some recognition error may appear, but
the potential error ration seems to be very small
(single percents). If multiple MWE/collocation
lemma sequences were detected among the sen-
tence lemmas, then their occurrences were consid-
ered as separate training samples (positive or nega-
tive), see Alg. 1. In order to evaluate our method
of detecting sentences containing MWEs, we ex-
tracted 4 randomly selected samples containing
100 found sentences each. A linguist conducted
the analysis and found that 99% of the sentences
contained correct MWE occurrences. The analysis
was performed only on sentences corresponding
to positive samples – MWEs from the dictionary,
but similar results can be expected for collocations
from the lists. Our work resulted in the creation of
three datasets of MWE and collocation occurrences,
named on the basis of the sources of knowledge:

• ODE–PMI dataset – dataset containing oc-
currences of correct MWEs from the ODE
dictionary and the incorrect ones obtained via
the PMI measure,

• ODE–Dice dataset – dataset containing oc-

currences of correct MWEs from the ODE
dictionary and the incorrect ones obtained via
the Dice measure,

• ODE–Chi2 dataset – dataset containing oc-
currences of correct MWEs from the ODE
dictionary and the incorrect ones obtained via
the Chi2 measure.

Algorithm 1 Procedure of obtaining sentences (s)
containing MWEs from the corpus (C) by compar-
ing sentence word lemmas (li ∈ [l0, l1, . . . , ln])
to the list (M ) of lemmatised MWEs (mj ∈
[m0,m1, . . . ,mk])

1: sentence_list← [ ]
2: for s ∈ C do
3: for li ∈ s do
4: for mj ∈M do
5: if li ∈ mj then
6: sentence_list.insert(s)
7: end if
8: end for
9: end for

10: end for
11: return sentence_list

4 Deep Neural Representations for MWE
Detection

4.1 Baseline

As our baseline, we decided to use a concatenation
of vectors consisting of:

1. a component embedding (−−→csent),

2. an MWE embedding (−−−→msent) in the context of
the sentence (sent),

3. the absolute difference between the MWE
embedding and the component embedding
(|−−−→msent −−−→csent|),

4. and the Hadamard product between the MWE
embedding and the component embedding
(−−−→msent ⊙−−→csent).

The proposed representation has been inspired by
the ones often used in the Natural Language In-
ference domain and also in the task of semantic
relations extraction (Fu et al., 2014; Levy et al.,
2015). Our idea is to represent syntactic and se-
mantic relations between the whole MWE and its
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components. We want to analyse the relation be-
tween the picture of the whole MWE used in a
context and one of its components used in the same
context, but separately, i.e. we exchange the whole
MWE with one of its components and vice versa to
see their contextual picture and interactions alone.
The obvious target is the potential compositionality
of an expressions: MWE or non-lexicalised collo-
cation. In the case of compositional expressions
we expect to see some kind of inclusion relation.
However, we assumed that contextual embeddings
allow us to go beyond focusing only on semantic
compositionality, e.g. some syntactic idiosyncrasy
should be also visible in relation between contex-
tual embeddings of the whole expression and its
component. Moreover, in order to minimise the
effect of accidental properties of some specific con-
text we try to collect representations of the same
expressions (MWEs and collocations) across as
many contexts as possible.

The obtaining of contextual MWE embeddings
is described in Eq. 1. An MWE embedding (−−−→msent)
in the sentence context (sent) is an average of the
WordPiece subtoken (s ∈ Smsent) vectors (−→vs) re-
lated to the MWE components.

−−−→msent =

∑
s∈Smsent

−→νs
|Smsent |

(1)

In the next step, the MWE occurrence was re-
placed subsequently with each of its components in
order to obtain their contextual embeddings (−−→csent)
by averaging the corresponding subtoken vectors
representations (−→νs) related to the substituted com-
ponents (Scsent), see Eq. 2.

−−→csent =

∑
s∈Scsent

−→νs
|Scsent |

(2)

The final baseline embedding (
−→
B ) of a train-

ing sample related to a sentence (sent) containing
MWE (m) and one of its components (c) is de-
scribed in Eq. 3.

−−−−−→
Bc,m,sent =

−−→csent ⊕−−−→msent ⊕ (−−−→msent −−−→csent)

⊕ (−−−→msent ⊙−−→csent)
(3)

4.2 Difference vector based representation
Diff-Emb

Our element-wise difference vector based represen-
tation Diff-Emb (

−→
D), described in Eq. 5 leverages

the absolute difference between non-contextual

component embeddings (−→w1 − −→w2) obtained via
the skipgram model from the fastText library (Bo-
janowski et al., 2017) and the averaged element-
wise difference between the component embed-
dings and MWE embedding (avg_diffm,sent) in
the context of the sentence (sent). Eq. 4 de-
scribes the averaged difference vector for the MWE
(m) containing components (c ∈ m). The non-
contextual, static word embeddings were intro-
duced into the representation in order to take into
account semantic characteristics of expression com-
ponents collected from a large corpus. In this way
we want to take a yet another perspective on rela-
tion between the components.

−−−−−−−−−−→
avg_diffm,sent =

∑
c∈m(−−−→msent −−−→csent)

|m| (4)

−−−−−→
Dm,sent = |−→w1 −−→w2| ⊕

−−−−−−−−−−→
avg_diffm,sent (5)

4.3 Product based representation
We also decided to consider the relevance of
Hadamard product vectors, which we included in
our Prod-Emb representation (

−→
P ), explained in

Eq. 7. It consists of the Hadamard product of
non-contextual fastText component embeddings
(−→w1 ⊙ −→w2) and the averaged vector of Hadamard
products between the component (c ∈ m) embed-
dings and MWE (m) embedding (avg_prodm,sent)
in the context of the sentence (sent) described in
Eq. 6

−−−−−−−−−−→
avg_prodm,sent =

∑
c∈m(−−−→msent ⊙−−→csent)

|m| (6)

−−−−→
Pm,sent = (−→w1 ⊙−→w2)⊕

−−−−−−−−−−→
avg_prodm,sent (7)

4.4 Combined representation: differences and
products

In order to combine the difference-based and
product-based approaches we developed the Mean-
Emb representation (

−→
M ), explained in Eq. 8.

It consists of the averaged difference vector
(
−−−−−−−−−−→
avg_diffm,sent) and the averaged Hadamard

product vector (
−−−−−−−−−−→
avg_prodm,sent) described in

Eq. 4 and 6 respectively.

−−−−−→
Mm,sent =

−−−−−−−−−−→
avg_diffm,sent ⊕

−−−−−−−−−−→
avg_prodm,sent (8)

448



5 Experimental Setup

For all conducted experiments we selected a single-
task binary classification, where the classifier aims
to predict the correct label out of 2 possible ones
(lexicalised vs non-lexicalised) for the expression
represented by one of the vector representations:
baseline, Diff-Emb, Prod-Emb or Mean-Emb. In
the process of generating the contextual embed-
dings we used the XLM-RoBERTa (Conneau et al.,
2020) language model as it is considered as one
of the best transformer models for English. We
decided to use the convolutional neural network
(CNN) architecture as the classifier to better extract
the knowledge from our vector representations. We
used the TensorFlow library (Abadi et al., 2015)
to implement the CNN model. Our convolutional
neural network contains three convolutional lay-
ers, each followed by the pooling layer and the
dropout layer and is shown in Fig. 1. We used the
F1-macro metric to measure the performance of
the classifier on each of the representations. To
prevent data leakage, we applied the lexical split to
avoid the risk of testing on the same multiword unit,
which was used in the training procedure (even if
the sentence samples are obviously not overlap-
ping). We leveraged the 10-fold cross-validation
and used statistical tests to measure the significance
of the difference between different experiment con-
figurations. We checked the assumptions and then
applied the independent samples t-test with the
Bonferroni correction if they were met. Otherwise
we used the Mann-Whitney U-test.

6 Results

Tab. 1 shows the evaluation results for each repre-
sentation on the ODE–PMI dataset. Each value is
averaged over ten folds. The Mean-Emb represen-
tation combining both the knowledge based on the
difference vector and the Hadamard product vector
achieved the best results.

The performance of the CNN model trained on
all representations and evaluated on the ODE–Dice
dataset is shown in Tab. 2. The best performance
can be observed for the Mean-Emb model. Each
of the developed representations achieved better
results than the baseline vector representation.

The evaluation results for the classifier trained
on each representation and evaluated on the ODE–
Chi2 dataset are shown in Tab. 3. The Mean-Emb
model achieved the best results among other repre-
sentations. The worst performance can be observed

Representation Cor F1 Inc F1 F1
baseline 0.77 0.77 0.77
Diff-Emb 0.77 0.78 0.78
Prod-Emb 0.78 0.78 0.78
Mean-Emb 0.79 0.79 0.79

Table 1: The results of the CNN model trained on vari-
ous representations on the ODE–PMI dataset. Measures:
Cor F1 – F1 score for lexicalised MWEs; Inc F1 – F1
score for non-lexicalised MWEs; F1 – macro average of
the F1 scores for lexicalised and non-lexicalised MWEs.
Values in bold are significantly better than others.

Representation Cor F1 Inc F1 F1
baseline 0.75 0.75 0.75
Diff-Emb 0.76 0.76 0.76
Prod-Emb 0.76 0.76 0.76
Mean-Emb 0.77 0.77 0.77

Table 2: Evaluation results on the ODE–Dice dataset.
Measures: Cor F1 – F1 score for lexicalised MWEs; Inc
F1 – F1 score for non-lexicalised MWEs; F1 – macro av-
erage of the F1 scores for lexicalised and non-lexicalised
MWEs. Values in bold are significantly better than oth-
ers.

for the baseline vector representation.

Representation Cor F1 Inc F1 F1
baseline 0.77 0.77 0.77
Diff-Emb 0.77 0.78 0.78
Prod-Emb 0.77 0.78 0.78
Mean-Emb 0.79 0.80 0.80

Table 3: Evaluation results on the ODE–Chi2 dataset.
Measures: Cor F1 – F1 score for lexicalised MWEs; Inc
F1 – F1 score for non-lexicalised MWEs; F1 – macro av-
erage of the F1 scores for lexicalised and non-lexicalised
MWEs. Values in bold are significantly better than oth-
ers.

7 Discussion

The idea of silver dataset enables transformation of
any corpus into a dataset for MWE extraction, only
if a limited lexicon of MWE examples is provided
as a starting point – a kind of seed lexicon to be ex-
panded. We can leverage a MWE annotated corpus,
too, in the same way as a lexicon to extract the ini-
tial list of MWEs, but a large non-annotated corpus
stays the basis. Several linguistic resources can be
also merged, any MWE annotated text, as well as
lexicons. Time-consuming and expensive corpus
annotation is avoided. Moreover, it seems to be
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Figure 1: Convolutional neural network classifier structure.

easier to maintain high quality lexicon than corpus
annotation, e.g. due to potential errors and discrep-
ancies between single annotations. A lexicon can
be edited by several linguists, and metrics such as
inter-annotator agreement can be easily calculated.

What is more, such a transformation of lexicon-
based knowledge into a dataset enables the use
of deep neural network models that require large
number of training samples. This is one of the
reasons why our CNN method, pre-trained on con-
textual embeddings with weighted voting, applied
to MWE recognition achieved several times better
results than methods based on contextual embed-
dings and recurrent neural in the PARSEME shared
task in general (Ramisch et al., 2020a), not men-
tioning the English part alone that is very small.

Our approach may be applied to texts in differ-
ent languages, both to obtain multilingual collec-
tions and to apply transfer learning to facilitate the
knowledge about MWEs in one language to MWE
recognition in another language. This may be par-
ticularly relevant for low-resource languages, and
it definitely a direction for further research.

Another advantage of the proposed method is
faster training and prediction in comparison to se-
quence labeling methods. In our case, the model
gets the full sample representation only once before
prediction. This shortens the inference time.

Our vector representations support MWEs
longer than two words. In the case of multiword
units containing three and more words, the differ-
ence and product vectors calculated between two
MWE components can be replaced with the vector
obtained via the same operation, but averaged over
all MWE component pairs.

The obtained results show that non-lexicalised
representations, i.e. those that do not include vec-
tors for components and the whole expression2 per-
form better independently of the kind of a measure
used to extract collocations. All representations
except the baseline are built from differences and

2A contextual vector of the whole expression somehow
includes a picture of the particular expression and its lexemes.

products of vectors, not the vectors itself. Thus
they are more focused on representing relations be-
tween a potential MWE and its components. It is
worth to be emphasised that lexical split was also
implemented in order to prevent the models to re-
member concrete words instead of learning patterns
for behaviour of proper MWEs. There are no large
differences between results for different measure,
but, with some caution, we can observe that results
obtained with PMI are slightly better, while in the
case of PMI the measure is naturally is filtered by 0
threshold and produces potentially more interesting
collocations, thus harder to be distinguished from
the proper MWEs.

8 Conclusions and Future Work

Our three representations allowed classifier to
achieve significantly better results in comparison
to the baseline approach focused on the component
and MWE embedding.

The context provided additional information
on the MWE semantics, which improved the
model performance. This is related to the non-
compositional nature of the MWEs, which meaning
cannot be inferred from their component meanings.

Our approach based on difference and product
vectors forced the models significantly reduced the
training time. It may be more important in prac-
tice, when the training time and inference time are
more important than the quality of prediction. On
the other hand, the method based on contextual
embeddings allows transforming any set of texts
with the use of dictionary knowledge into an anno-
tated corpus containing occurrences of the MWEs
and their components. The model, by examining
the semantic differences between the component
and the entire expression, takes into account the
variability of the context, which should allow for
the extraction of the MWE meaning following the
assumption of its monosemous character.

In future work, we want to use our methods to
generate corpora in other languages, which will be
later used to train models in the multilingual MWEs
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detection task and to explore the transfer learning
mechanism in a language-independent MWE de-
tection.
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Abstract

We address the problem of identifying misog-
yny in tweets in mono and multilingual settings
in three languages: English, Italian and Spanish.
We explore model variations considering single
and multiple languages both in the pre-training
of the transformer and in the training of the
downstream task to explore the feasibility of
detecting misogyny through a transfer learning
approach across multiple languages. That is,
we train monolingual transformers with mono-
lingual data and multilingual transformers with
both monolingual and multilingual data. Our
models reach state-of-the-art performance on
all three languages. The single-language BERT
models perform the best, closely followed by
different configurations of multilingual BERT
models. The performance drops in zero-shot
classification across languages. Our error anal-
ysis shows that multilingual and monolingual
models tend to make the same mistakes.

Disclaimer: Due to the nature of the topic, this
paper contains offensive words.

1 Introduction

Misogynous contents express hate towards women
in the form of insulting, sexual harassment, male
privilege, patriarchy, gender discrimination, belit-
tling, violence, body shaming and sexual objec-
tification (Srivastava et al., 2017). According to
a study by Vox–Osservatorio Italiano sui diritti
on hate speech against minorities (women, homo-
sexuals, migrants, people with disabilities, Jews
and Muslims) in Italian tweets,1 women are the
most targeted group. They observed a significant
increase in the number of misogynous tweets from
2019 to 2021: shifting from 26% to 44% of all
hateful posts. Blake et al. (2021) observed a corre-
lation between misogyny on Twitter and domestic

1http://www.voxdiritti.it/la-nuova-mappa-
dellintolleranza-6/

violence in specific areas has, stressing the impor-
tance of flagging such contents to try to dim their
impact online.

We target the problem of identifying misogyny
in multiple languages. This work represents a first
step towards investigating the specificity of misog-
yny with respect to language and culture. To ad-
dress this novel research question, we test two hy-
potheses:

H1 More data boosts the model performance, even
if it is in a different language; therefore, con-
sidering training material in diverse languages
benefits in the prediction of misogyny in such
languages.

H2 misogyny is language-specific and therefore a
monolingual model performs better, even if it
is trained on smaller data.

We rely on: (a) data in each of the languages in
isolation; or (b) data in various languages in con-
junction, through the training of a single multilin-
gual model.2 We exploit monolingual transformers
(BERT (Devlin et al., 2019)) for three languages
— English, Italian, and Spanish — and one mul-
tilingual transformer (Multilingual BERT (Devlin
et al., 2019)). We perform a thorough exploration
combining different settings, which include train-
ing monolingual transformers with monolingual
data, multilingual transformers with monolingual
data, and multilingual transformers with multilin-
gual data.

Section 2 summarizes the related work on misog-
yny identification, both in mono- and multilingual
settings. Section 3 describes the datasets. Section 4
describes the methodology, whereas Section 5 dis-
cusses the obtained results. Section 6 shows our

2Our settings avoid resorting to machine translation be-
cause the jargon used to convey hateful messages tends to
produce faulty target texts, causing the classifiers to strug-
gle (Casula and Tonelli, 2020; Pamungkas and Patti, 2019).
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error analysis. Section 7 and 8 provide a conclu-
sion and an overview on the societal impact and
limitations of our work.

2 Related Work

Monolingual Approaches The increasing number
of hateful posts against women has attracted the
interest of the scientific community, but it remains
an underexplored field compared to other types of
hate speech (Tontodimamma et al., 2021). Work on
automatic misogyny identification has been carried
out in a limited number of languages. For instance,
the Automatic Misogyny Identification (AMI) se-
ries of shared tasks launched in EVALITA (Fersini
et al., 2018, 2020) and IberEval (Anzovino et al.,
2018) has produced evaluation frameworks to iden-
tify misogynous tweets in English, Italian and Span-
ish. HatEval at SemEval 2019 (Basile et al., 2019)
focused on the detection of hate speech towards
women and immigrants in English and Spanish.

Participants in those shared tasks mostly used
TF–IDF representations (e.g., Frenda et al. (2018)),
word embeddings (e.g., Fabrizi (2020)), and sen-
tence embeddings (e.g., Ahluwalia et al. (2018)).
When extracting lexical features from social media,
it is common to represent hashtags, emoticons and
mentions as well. For instance, Pamungkas and
Patti (2019) considered both a bag of hashtags and
a bag of emojis. They also encoded information
about the occurrence of swear words.

Among the most commonly-used classifiers
there are recurrent neural networks (Goenaga et al.,
2018; Buscaldi, 2018), convolutional neural net-
works (da Silva and Roman, 2020), shallow mod-
els (Pamungkas et al., 2018) and transformer-based
models (Lees et al., 2020; Muti and Barrón-Cedeño,
2020), which perform the best.

Multilingual Approaches Few works are fo-
cused on the multilingual identification of misog-
yny. Basile and Rubagotti (2018) adopted a bleach-
ing approach, i.e. transforming lexical strings into
more abstract features (van der Goot et al., 2018),
and tested their model on Italian and English. They
use an SVM with n-gram features. This is a close
work to ours: they train on L1 and test on L1, train
on L2 and test on L2, and they also train and test
on both languages in combination.

Pamungkas and Patti (2019) created bilingual
misogynist data in English, Italian and Spanish
with machine translation to train in a source lan-
guage and predict in a target language with an

training testing
Dataset not mis mis not mis mis
en EVALITA 2018 2,215 1,785 540 460
es IberEval 2018 1,658 1,649 416 415
it EVALITA 2018 2,171 1,828 509 491

Table 1: Class distribution for the three corpora in En-
glish (en), Spanish (es) and Italian (it).

LSTM. We neglect the use of machine translation
at all stages.

Pamungkas et al. (2020) adopted an approach
similar to ours, using multilingual transformers to
identify English, Spanish and Italian misogynist
tweets. The difference is that they only train a
model on one language and test it on a different one,
without considering all language combinations.

Differently from the previous works, we do not
focus on model performance or engineering, but we
head toward investigating a novel research question:
is misogyny language-specific?

3 The multi-AMI Evaluation Framework

We consider misogyny datasets in three languages,
released under two editions of the AMI shared task:
AMI at IberEval 2018 (Anzovino et al., 2018) and
AMI at EVALITA 2018 (Fersini et al., 2018). AMI
at IberEval 2018 focused on identifying misogyny
on English and Spanish tweets, and in classifying
misogynistic instances in different categories. AMI
at EVALITA 2018 focused on two tasks in Italian.
Task A addressed misogyny identification, whereas
Task B aimed at recognizing whether a misogynous
tweet is person-specific or generally addressed to-
wards a group of women. We address the binary
problem alone: whether a tweet is misogynist or
not. Table 1 shows statistics for the three corpora.

We stick to the evaluation metric of AMI: the
F1 measure. For direct comparison with our mod-
els we consider the best-performing approaches
in both shared tasks. For Italian, Bakarov (2018)
used TF-IDF weighting combined with singular
value decomposition and an ensemble of classifiers.
For English, Saha et al. (2018) concatenated sen-
tence and average word embeddings with TF–IDF
weights coupled with a logistic regression model.
For Spanish, Pamungkas et al. (2018) applied an
SVM with a series of lexical features, including lex-
icons of abusive words. The bottom row of Table 2
shows the performance of the three models.
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4 Model Description

Our models to identify misogynous tweets are built
on different variations of BERT (Devlin et al.,
2019). In the monolingual settings, we use bert-
base-uncased for English (Devlin et al., 2019), bert-
base-spanish-wwm-uncased for Spanish (Cañete
et al., 2020) and AlBERTo for Italian (Polignano
et al., 2019). For the multilingual settings, we use
multilingual BERT (mBERT) (Devlin et al., 2019).
mBERT has the same architecture as BERT, but
it is trained on Wikipedia articles in multiple lan-
guages (Liu et al., 2020). We also apply mBERT
in monolingual settings, to observe its behaviour in
zero-shot classification across languages.

Our output layer is a soft-max with two units.
We use the categorical cross-entropy loss function
and the AdamW optimizer with a learning rate of
1-8 (Loshchilov and Hutter, 2017), batch size of 16
and 4 training epochs.

5 Experiments and Results

Our objective is to assess whether and to what ex-
tent considering training material in diverse lan-
guages benefits in the prediction of misogyny in
multiple languages. We carried out a number of
experiments to test hypotheses H1 and H2 (cf. Sec-
tion 1).

We head toward investigating the way in which
misogyny is expressed in different languages. Even
if the impact of shared vocabulary in multilingual
settings remains unclear (Liu et al., 2020), we ex-
plore the feasibility of using multilingual embed-
dings to produce zero-shot classifications across
languages —training on L1 to predict on L2— and
as a data augmentation technique —training on
L1+L2 to predict on L1.

We trained ten models considering all combina-
tions of data in English (en), Spanish (es) and Ital-
ian (it): (i) one BERT model per language, (ii) one
mBERT model per language, (iii) one mBERT
model per each language pair, and (iv) one mBERT
model with all three languages. Table 2 shows the
results when predicting on data in each language
and all together. The scores under columns en, es
and it are comparable, whereas those under all are
not, because the testing sets are different.

The monolingual BERT models consistently per-
form the best, improving over the best AMI ap-
proaches (cf. Section 3). There is a performance
drop when monolingual models are trained on
top of mBERT, with the model trained on En-

train en es it all
BERT en 0.71 – – –
BERT es – 0.85 – –
BERT it – – 0.87 –
mBERT en 0.65 0.14 0.17 –
mBERT es 0.62 0.81 0.50 –
mBERT it 0.47 0.63 0.87 –
mBERT en-es 0.67 0.83 – 0.75
mBERT en–it 0.66 – 0.86 0.77
mBERT es–it – 0.80 0.86 0.84
mBERT en–es–it 0.68 0.82 0.86 0.78
best-AMI 0.70 0.81 0.84 –

Table 2: F1 performance for the different language com-
binations. Best AMI shared task models shown at the
bottom for comparison (cf. Section 3).

glish achieving the poorest performance: as low as
F1=0.14 and 0.17 when tested on Spanish and Ital-
ian and six points lower on English than the mono-
lingual BERT alternative. The results suggest that
this transfer learning approach is not suitable for
languages which are relatively far from each other,
e.g., a Romance and a Germanic one. Consider-
ing a second language during training improves the
predictions of the mBERT models (i) on English in
all three cases, (ii) on Spanish with pair en–es, but
(iii) not on Italian. Indeed, combining English and
Spanish produces better results for both languages
than when combining either with Italian. Consider-
ing all three languages results in mixed effects. It
has the best mBERT performance on English, but
runs short by one point with respect to the pairwise
combinations on the other two languages. The best
performance on all three languages together is ob-
tained when neglecting the training data in English:
F1=0.84.

These results confirm H1 only partially. On the
one hand, monolingual models built on top of a
monolingual BERT performs the best. On the other
hand, considering multilingual training data with
a multilingual BERT improves over considering
monolingual data alone.

We performed an additional experiment to verify
that the performance shifts are not caused by the
increase in the volume of training data, rather than
the inclusion of another language. We trained a
bilingual English–Italian model considering only
2,000 instances per language (conforming to the
volume of the monolingual datasets). The perfor-
mance on the English test set drops from F1=0.65
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it FN FP en FN FP es FN FP
bel 1 17 hysterical 27 20 puta 16 25
tette 0 8 woman 16 33 polla 3 13
culo 0 12 women 12 35 cállate 0 6
culona 3 12 fuck 9 27 acoso 7 5
porca 6 0 pussy 5 23 callate 2 4
figa 0 8 rape 3 27 madre 3 3
cazzo 3 4 bitch 4 22 mujer 6 5

Table 3: The most common words (sorted by inverse
frequency) with the number of false positives and nega-
tives in which they occur in the monolingual settings.

to 0.54; on Italian it does from 0.87 to 0.85.
These results play in favour of H2: with the same

amount of training data, the models do not benefit
from data in other languages. Although this hints
that H2 is true, these experiments are not enough
to prove that misogyny is language-specific. The
results obtained with the mBERT models when
trained on single languages — no difference when
compared against BERT models on Italian, but a
drop of six and four points on English and Spanish—
give more confidence that H2 might be true.

6 Error Analysis

We conducted an error analysis to assess how and
which kind of errors are transferred from the mono-
to the multilingual setting. We want to answer
two questions. Question Q1 allows observing the
behavior of the multilingual model with respect
to the monolingual ones. Question Q2 helps to
identify the words that are most likely responsible
for the misclassification in the three languages.
Q1 Which instances are classified differently by
the monolingual and the multilingual model?

The number of false positives and false nega-
tives behave similarly in all languages. We discuss
instances in English for the sake of clarity. We
analyse the instances that the monolingual model
(BERT en) classified correctly and the multilingual
one (mBERT en-es-it) got wrong. We find 122 in-
stances, with 51 false negative (FN) and 71 false
positive (FP). Among the FN, the five most com-
mon lexical words are hysterical, woman, skank,
women and ass. Among the FP, the words rape and
women are very present, followed by fucking, fuck
and shut. We notice that FN instances are more
lexically diverse.

We also observe the intersection of misogynist
tweets between the two models. The mono and

it FN FP en FN FP es FN FP
culo 2 16 hysterical 28 20 puta 24 25
bel 2 20 woman 19 34 polla 2 25
figa 2 11 women 28 31 cállate 6 5
cazzo 0 7 fuck 3 37 callate 1 8
troia 7 3 rape 4 39 madre 4 3
tette 3 3 fucking 4 29 acoso 5 9
culona 1 12 bitch 3 26 escoria 1 7

Table 4: The most common words (sorted by inverse
frequency) with the number of false positives and nega-
tives in which they occur in the multilingual settings.

es en it en
acoso harassment bel beautiful
callate shut up cazzo dick
cállate shut up culo ass
escoria scum culona big ass
madre mother figa pussy
mujer woman porca* slut
polla dick tette boobs
puta whore troia whore
*in most of the cases it refers to the
expression porca puttana ≈ holy shit.

Table 5: Translation of the most common words in both
Spanish and Italian into English.

multilingual model judged 543 and 541 tweets as
misogynist. The intersection is of 438 instances,
with 307 being correctly identified. Therefore, the
majority of misogynist instances are detected by
both models. This hints that there is no big differ-
ence between the models.

Q2 Which words are most present in instances
misclassified by both mono and multilingual mod-
els?

We first observe instances misclassified by both
models. We find 70 FNs and 131 FPs. Table 3
shows the most frequent words in misclassified
tweets in the mono- and Table 4 in the multilingual
settings. Table 5 shows the translations of the Span-
ish and Italian words. No significant differences
are observed across datasets of the same language,
but there are big differences in how misogyny is
expressed. In Italian, most words are related to the
physical appearance of a woman, linked to sexual
objectification. Italian language shows more lin-
guistic creativity. Whereas English contains more
insults, Spanish is more aggressive.

For English, the most frequent words are the
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1 La ragazza che lavora nel negozio dove vado
a fare sempre shopping mi ha detto che ho un
bel culo :3333
The girl working at the place where I always
do shopping told me I have a nice ass.

2 He said she said di Ashley Tisdale fa uscire il
puttanone che è in me
He said she said by Ashley Tisdale brings out
the bitch in me.

3 ciao kikka buon pm quanto 6 figa e sexy [. . . ]
hi kikka good evening you are so hot and sexy

4 figa stai zitta che sono a casa da sola
oh don’t tell me I’m home alone

Table 6: Instances of tweets misclassified by both the
monolingual and multilingual models (original Italian
tweets followed by English translations).

same in both settings: hysterical, woman, women,
fuck and rape. The fact that woman and women lie
in the second and third positions might indicate an
unintended identity-term bias (Fersini et al., 2020),
for which the model learnt that woman occurs in
misogynistic contexts. In both cases, the words
hysterical, rape and kitchen (linked to women’s
stereotyped role) have a strong co-occurrence with
the terms women, woman, therefore we can assume
that these words trigger an error. The word rape
is common in highly offensive contexts, making
it a decisive feature for misogyny; it is frequently
present in false positives.

For Spanish, words puta, polla and cállate are
common for both settings. We focus the rest of
the analysis on Italian, since it shows the biggest
discrepancies. Table 6 shows examples. In both
cases, bel always co-occur with culo. In FPs, it is
commonly used by women to comment on them-
selves in a positive way, as in example 1. The same
happens with the word tette, where in FP instances
women usually complain about their breast size.
These words tend to occur in offensive contexts
and therefore are inclined to be classified as misog-
ynist. Another interesting phenomenon that trig-
gers FPs is the presence of slur reappropriation, i.e.
women reclaiming certain negative terms (Felmlee
et al., 2020), as in example 2 of Table 6. Another
word that triggers FPs is figa, as it is typically used
in hypersexualised contexts (example 3) but also
in neutral way as a filler word in northern Italy
(example 4).

7 Final Remarks

We explored the contribution of adding multilin-
gual training material in the automatic identifica-
tion of misogynist tweets in three languages: En-
glish, Spanish and Italian. Our models trained
on monolingual data achieve state-of-the-art per-
formance. The inclusion of data in one or two
other languages impacts the performance nega-
tively when compared to BERT models, but posi-
tively when compared to mBERT models. Multi-
lingual models can be used as data augmentation
technique — train on L1+L2 to predict on L1, but
they are not suitable for zero-shot classification
across languages — train on L1 to predict on L2,
hinting that misogyny might be language-specific,
but further experiments are required.

8 Societal Impact and Limitations

This work represents a starting point toward in-
vestigating whether misogyny is language-specific.
Analysing the differences of misogyny across lan-
guages and cultures is important, since it can help
policymakers to develop country-specific policies
to mitigate its impact. On Twitter, as well as on
other platforms, interactions can be carried out in
different languages. We head toward a real-world
application, which considers the multilingualism
of the platform. Users would benefit from a sys-
tem able to flag misogynous tweets in multiple
languages. Such system would raise awareness and
ultimately make a more enjoyable online environ-
ment for women.

Among the limitations of this work, we currently
focus on three languages only, neglecting geograph-
ical information. As a result, not enough attention
is paid to culture. Moreover, currently our models
are not interpretable, and that would be an impor-
tant aspect to raise awareness in the general public.
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Abstract
In this work, we explore the novel idea of em-
ploying dependency parsing information in the
context of few-shot learning, the task of learn-
ing the meaning of a rare word based on a lim-
ited amount of context sentences. Firstly, we
use dependency-based word embedding mod-
els as background spaces for few-shot learning.
Secondly, we introduce two few-shot learning
methods which enhance the additive baseline
model by using dependencies.

1 Introduction

Distributional semantics models create word em-
beddings based on the assumption that the meaning
of a word is defined by the contexts it is used in
(for an overview, see: Sahlgren, 2008; Lenci, 2018;
Boleda, 2020; Emerson, 2020). A fundamental
challenge for these approaches is the difficulty of
producing high-quality embeddings for rare words,
since the models often require vast amounts of train-
ing examples (Adams et al., 2017; Van Hautte et al.,
2019). To address this problem, various few-shot
learning methods have been previously introduced.
The goal of a few-shot learning technique is to
learn an embedding that captures the meaning of
a word, given only a few context sentences. The
rare word’s vector has to be placed in an existing
background space of embeddings.

Few-shot learning in distributional semantics is a
relatively underexplored area, with important prac-
tical applications. Having good representations of
rare words is highly desirable in applications aim-
ing to understand dialects or regionalisms, as well
as specific technical language.

In this work, we explore the idea of incorpo-
rating information from the dependency parse of
sentences in the context of few shot-learning. An
intuition why this might be useful is provided in
Figure 1. In the given sentence, the most relevant
word for inferring the meaning of the target rare
word “conflagration" is “destroyed". Even if this

word is located far from the target, it is directly con-
nected to it through a nominal subject dependency.
Moreover, the fact that the target word is used in a
certain dependency structure might reveal impor-
tant characteristics related to its meaning. Since
in the case of few-shot learning the data is limited,
using dependency parsing information is a resource
with great potential to boost existing models.

As a first effort in this direction, this work pro-
vides three contributons. Firstly, we explore the ef-
fect of using dependency-based word embeddings
as background spaces. Secondly, we introduce new
few-shot learning methods leveraging the depen-
dency parsing information. Lastly, we update a
previous dependency-based background model to
make it more suitable for few-shot learning.

2 Background: dependency-based word
embeddings

The widely-used Skip-Gram model introduced by
Mikolov et al. (2013) takes the contexts of a word
to be those words surrounding it in a pre-defined
window size. The model learns the embeddings in
an unsupervised manner, using a feed-forward neu-
ral network trained on large amounts of sentences.

Levy and Goldberg (2014) proposed a different
way to construct the contexts of a target word in the
training process of the Skip-Gram model. Instead
of taking the words from a pre-defined window,
one takes the words that are connected to the target
word by a syntactic dependency. The contexts were
defined as the concatenation of the connected word
and the label of the dependency. This allowed the
model to differentiate between same words used in
different syntactic roles.

The dependency-based word embeddings were
found to be better at capturing similarity, while
the window-based models capture relatedness. For
example, a dependency-based model would pro-
duce close embeddings for “Rome” and “Florence”,
which are syntactically similar since they can be
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The severe conflagration which affected Troy on 10 May 1862 destroyed 507 buildings.

amod

det

relcl

nsubj

Figure 1: A dependency parse, illustrating that context words connected by a dependency can be important for
inferring meaning in a few-shot setting, such as “destroyed” for the rare word “conflagration”.

used in the same grammatical contexts, while a
window-based model is likely to place closely the
embedding of highly related terms such as “Rome"
and “ancient", even if they cannot be used inter-
changeably since they are different parts of speech.

Levy and Goldberg’s model successfully cap-
tured syntactic similarity, but failed to express how
different dependency types affect relations between
words. Moreover, it introduced sparsity issues.
Czarnowska et al. (2019) developed the Depen-
dency Matrix model to address these shortcomings.
Instead of incorporating the dependency labels in
the context vocabulary, each dependency type d is
associated with a matrix Td, which acts as a mean-
ing representation of the link between the target
and the context words. The matrices Td, as well as
the vectors holding the target vectors e and context
vectors o, are learned during training. Let D be the
set of training examples given by tuples of target
word t, context word c and dependency type d. For
each tuple, we generate a set D′ of negative sam-
ples (t, c′, d) by drawing context words c′ from a
noise distribution and maintaining the same target
word t and dependency type d. The learning goal
is to maximise the function in (1), where σ is the
sigmoid function and et and oc are the vectors of
the target and context word.
∑

(t,c,d)∈D

(
log σ(ut,c,d) +

∑

(t,c′,d)∈D′
log σ(−ut,c′,d)

)
(1)

ut,c,d = et · Td · oc (2)

3 Background: few-shot learning

As a straight-forward yet successful baseline, the
vector of the rare word is estimated by the sum of
the vectors of the words in contexts, as proposed
by Lazaridou et al. (2017) and Herbelot and Baroni
(2017). The latter noticed that not including the
stop-words greatly improves the performance on
the evaluation tasks. To optimise the performance
of the additive model, Van Hautte et al. (2019)
proposed weighting the context words according
to distance and frequency, as well as subtracting
a “negative sampling” vector. These modifications

take hyperparameters that are important for Skip-
Gram’s strong performance, such as number of
negative samples k and window size n (Levy et al.,
2015), and apply them to the few-shot setting. For
each word w in the vocabulary V , with frequency
f(w) and distance m from the target rare word t,
and for a frequency threshold τ , we calculate the
subsampling weight s(w), the window weight r(w)
and negative sampling coefficient n(w).

s(w) = min

(
1,

√
τ

f(w)

)
(3)

r(w) = max
(
0,
n−m+ 1

n

)
(4)

n(w) =
f(w)0.75∑

w∈V f(w)
0.75

(5)

Assume C is the collection of non-stop context
words for the given target rare word t and vc is the
vector in the background space for each c ∈ C. The
vector of the target rare word t will is:

vt =
∑

c∈C
vadd
c where (6)

vadd
c = s(c)r(c)

(
vc − k

∑

w∈V
n(w)vw

)
(7)

More involved models have been proposed for
the task of few-shot learning. Khodak et al. (2018)
introduced A La Carte, which applies a linear trans-
formation to the sum of the context words obtained
by the additive model. The weights of the lin-
ear transformation are optimised based on the co-
occurrence matrix of the corpus. Van Hautte et al.
(2019) takes this approach further in the Neural A
La Carte model, by using a neural network with a
hidden layer to produce a non-linear transformation
matrix, which adds flexibility.

The meaning of a rare word can often be de-
duced from the word form itself. This information
has been leveraged in few-shot learning models.
For example, the Form-Context Model (Schick and
Schütze, 2019) is a hybrid method which retrieves
the weighted sum between the surface form em-
bedding of the rare word, obtained using FastText
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(Bojanowski et al., 2017) and the context-based
embedding, produced using the A La Carte model.

In this paper, we focus on additive methods,
which do not require additional training on few-
shot learning examples. This keeps the inference
fast and in line with the true few-shot learning set-
ting proposed by Perez et al. (2021).

4 Dependency-based FSL methods

Dependency relations proved to be an informative
tool in the context of creating distributional seman-
tics models. Based on this success, we introduce
two dependency-based few-shot learning methods
which build on top of the Additive model. In this
section, we assume we have already trained a back-
ground space of embeddings vi for each word i. In
our setup, we chose to consider only the target em-
beddings learnt by the aforementioned background
models, i.e. vi = ei. Alternatively, one could use
the concatenation of the target and context embed-
dings.

Dependency Additive Model The starting point
of our methods is the assumption that the closer a
word is to the target word in the dependency graph,
the more relevant it is for inferring the target’s
meaning, as seen in Figure 1.

Our method assigns weights for each word in
the sentence by considering the distances from the
rare word in the dependency parse. For each con-
text word c, let dc be the number of dependency
links from the target rare word t to c in the parse.
Note that we consider links in both directions. The
inferred vector vt of the rare word is the weighted
sum of the vectors of context words, where the
weight wc of each context word c is given in (8).
The weight is chosen so that it is inversely propor-
tional to the distance from the target, and we add 1
in order to avoid discarding context words which
are far from the target in the dependency tree.

vt =
∑

c∈C
wcv

add
c where wc = 1 +

1

dc
(8)

Initially, we experimented with simply apply-
ing the coefficients wc on the vectors of the con-
text words vc. However, a better performance was
achieved when we incorporated the the weighting
steps in (7), so we used vadd

c instead of vc.

Dependency Matrix Additive Model The De-
pendency Additive model above does not take into

account the type of dependency on each edge in
the graph, which, as we have seen, plays an impor-
tant role in capturing the meaning of the words in
relation to each other. We thus devised a strategy
to make use of this information.

Czarnowska et al. proposed the idea of using
the learnt dependency matrices of the Dependency
Matrix model for the task of semantic composition,
by multiplying word embdeddings with matrices
over chains of dependencies. We apply the same
idea in the context of few-shot learning. More pre-
cisely, instead of giving a weight for each vector of
a context word, we multiply it with corresponding
dependency matrices on the chain of dependencies
from the target to the context. To be able to do this
based on the original Dependency Matrix model,
we would have to take into account that when we
advance in the dependency parse, we have to switch
between using the context vector (retrieved from o)
and target vector (retrieved from e).

To simplify this process, we modified the Depen-
dency Matrix model to use only one embedding
per word, instead of separate context and target
embeddings.1 This also reduces the training time
of the model. More precisely, we have the same
training loss as in (1), but (2) is replaced by:

ut,c,d = vt · Td · vc (9)

Having trained this model, we then make use
of the matrices Td, optimised for each dependency
type d. For the target rare word t and each non-
stop context word c, Let D(t, c) be the path of
dependency types from t to c. The vector of the
target rare word is calculated as:

vt =
∑

c∈C
v′c where v′c =


 ∏

d∈D(t,c)

Td


 vadd

c

(10)

5 Experiments

In our setup, we considered three background mod-
els: window-based Skip-Gram, dependency-based
Skip-Gram and the modified Dependency Matrix
model which only uses one embedding for each

1This cannot be applied to Skip-Gram without causing
every word to predict itself as a context. To allow Skip-Gram
to use only one vector per word, Zobnin and Elistratova (2019)
propose using an indefinite inner product, which corresponds
to T in (9) being a diagonal matrix of 1s and−1s. In a similar
vein, Bertolini et al. (2021) propose a more radical simplifi-
cation of the Dependency Matrix model, which uses matrices
that are non-zero only on the diagonal and off-diagonal.
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Backgr. Model FSL Model DN Chimera CRW
MRR MR L2 L3 L6 1 2 4 8 16

Skip-Gram
Additive 0.010 5312 0.12 0.19 0.20 0.11 0.12 0.13 0.15 0.15
Dep. Additive 0.021 4007 0.13 0.20 0.21 0.12 0.13 0.14 0.15 0.16

Dependency
Skip-Gram

Additive 0.023 4671 0.14 0.21 0.21 0.11 0.14 0.15 0.16 0.17
Dep. Additive 0.027 3785 0.16 0.21 0.23 0.12 0.15 0.16 0.17 0.18

Dependency
Matrix

Additive 0.017 3367 0.13 0.23 0.25 0.15 0.17 0.20 0.22 0.22
Dep. Additive 0.034 3140 0.14 0.26 0.29 0.18 0.20 0.22 0.24 0.25
DM Additive 0.019 3163 0.15 0.24 0.31 0.16 0.20 0.20 0.21 0.22

Table 1: Results for different combinations of background and few-shot learning model, on three evaluation
datasets. The best result for each column is marked in bold. Higher is better for all columns except MR.

word. To allow a direct comparison, we trained
them all on the WikiWoods (Flickinger et al., 2010)
snapshot of English Wikipedia. The same hyper-
parameters were used: a dimensionality of 100, 15
negative samples, a batch size of 5, and an Ada-
grad optimiser with an initial learning rate of 0.025.
For the dependency models, we used the universal
dependency parser provided by spaCy (Honnibal
et al., 2020). We applied the two few-shot methods
we devised, as well as the Additive model with
window weighting, subsampling and negative sam-
pling described in §3. The hyperparameters were
t = 10−6, k = 15 and n = 5.

5.1 Few-shot learning tasks

Definitional Nonce (DN) This task (Herbelot
and Baroni, 2017) provides a single definition sen-
tence for each test word. The test words are fre-
quent words, which have gold vectors of high qual-
ity in the background space. At evaluation time, a
new vector is computed for each test word, based
on the few-shot learning model. The rank of the
gold vector relatively to the inferred vector is then
calculated, i.e.the number of words from the vocab-
ulary which are closer to the inferred vector than
the gold vector is. The distance metric is cosine
similarity - the bigger the similarity, the smaller
the distance. The metrics retrieved are the Mean
Reciprocal Rank (MRR) and median rank.

Chimera The Chimera task (Lazaridou et al.,
2017) provides non-existing words (chimeras) with
6 context sentences, as well as similarity scores
between the chimera and other existing words. The
way in which the dataset was built simulates few-
shot learning for humans, since the participants of
the experiment needed to infer the meaning of a
word they never saw before and rate its similarity
with other concepts, based only on the 6 context

sentences. Trials with 2, 4 and 6 context sentences
are conducted. After each trial, the similarity scores
between the inferred vector and the vectors of the
words provided is compared against the human
similarity scores by retrieving the Spearman’s rank
correlation coefficient.

Contextual Rare Words (CRW) Like Chimera,
the CRW task (Khodak et al., 2018) is based on hu-
man ratings between pairs of words. This time the
pairs contain a rare word and a frequent one, with
an assumed reliable embedding in the background
model. For each rare word, 255 context sentences
are provided. The vector is generated using the
few-shot model for 1, 2, 4, 8, 16 context sentences,
selected at random. For each such experiment, the
similarity scores between the few-shot vector and
the background embedding of the non-rare word
are calculated and compared against the human
scores using the Spearman’s rank correlation co-
efficient. The scores are averaged out across 10
random selections of context sentences.

5.2 Results and Discussion

The results in Table 1 show that the dependency-
based background models performed better than
window-based Skip-Gram on all three evaluation
tasks. For all background models, applying the
Dependency Additive technique consistently im-
proved the results of the Additive model. For the
DN task and DM background model, there were
three cases where the Additive model gave a rank
of over 30,000, while the Dependency Additive
model gave a rank of 1 or 2, showing the method’s
potential for sentences of specific structures. The
DM additive model showed a promising result for
the Chimera task, but was still outperformed by
the Dependency Additive model, and its scores had
the biggest variance across all combinations. This
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suggests that more careful weighting might be re-
quired.

6 Conclusion

We investigated the use of dependency information
for few-shot learning in distributional semantics.
We found that dependency-based contexts are more
useful than window-based contexts, with better per-
formance across three evaluation datasets. We pro-
posed a simplified version of the Dependency Ma-
trix model, using only one vector per word, which
makes it easier to apply in a few-shot setting.

An important next step would be to investigate
the use of the proposed methods for other lan-
guages, since our work was limited to English data
and it is possible that the dependency structure is
more relevant for few-shot learning in the case of
specific languages. In order to do such an analy-
sis, one would additionally need to create test data
for the few shot-learning tasks, which would re-
quire the participation of speakers of the selected
languages.

In future work, performance might be further im-
proved by training an A La Carte model (discussed
in §3), where the use of dependencies would make
it possible to use a graph-convolutional network
(Marcheggiani and Titov, 2017).
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Abstract
Targeted Sentiment Analysis aims to extract
sentiment towards a particular target from a
given text. It is a field that is attracting at-
tention due to the increasing accessibility of
the Internet, which leads people to generate an
enormous amount of data. Sentiment analysis,
which in general requires annotated data for
training, is a well-researched area for widely
studied languages such as English. For low-
resource languages such as Turkish, there is
a lack of such annotated data. We present an
annotated Turkish dataset suitable for targeted
sentiment analysis. We also propose BERT-
based models with different architectures to
accomplish the task of targeted sentiment anal-
ysis. The results demonstrate that the proposed
models outperform the traditional sentiment
analysis models for the targeted sentiment anal-
ysis task.

1 Introduction

The increasing availability of the Internet and the
growing number of online platforms allowed peo-
ple to easily create online content. Because of the
value of mining the people’s opinions, the senti-
mental information contained in this online data
makes sentiment analysis (SA) an interesting topic.
It is an area that is attracting the attention not only
of academic researchers, but also of businesses and
governments (Birjali et al., 2021) and has become
a rapidly growing field, as evidenced by the num-
ber of recent SA papers published (Mäntylä et al.,
2018).

The problem with traditional sentiment analy-
sis is that it cannot capture the different attitudes
toward multiple aspects in a given text. For exam-
ple, if the given text is “Phones from this brand are
great, but I don’t really like their laptops”, the senti-
ment towards the two targets “phone” and “laptop”
are positive and negative, respectively. Traditional
sentiment analysis methods would not be able to
detect this opposing sentiment for “phone” and

“laptop”, but would assign an overall sentiment for
the text. Targeted Sentiment Analysis (TSA) aims
to overcome this challenge and extracts sentiment
from a given text with respect to a specific target.
One of the challenges of TSA is the lack of avail-
able datasets. Both TSA and SA require labeled
datasets. Collecting data from various sources and
labeling them, which is mostly done manually, is
an expensive process. Although the number of
datasets suitable for SA has recently increased due
to new studies in the SA area, not all SA datasets
are usable for TSA (Pei et al., 2019). TSA requires
more refined datasets. The labels should reflect
the sentiment toward targets rather than the overall
sentiment of the sentences.

English is the most studied language for senti-
ment analysis (Dashtipour et al., 2016). SA models
that perform satisfactorily for English do not seem
to always work with similar performance for Turk-
ish (Kaya et al., 2012). In this work, we create a
manually annotated dataset from Twitter specifi-
cally labeled for both traditional and targeted sen-
timent analysis in Turkish. Then, we experiment
with different model architectures for the Turkish
TSA task. Experimental results demonstrate that
our techniques outperform traditional sentiment
analysis models.

1.1 Problem Definition

Let E denotes all entities in a given document D
such that:

D = {w1, . . . , wk} each w is a word; k ∈ Z+

E = {e1, . . . , el} each e is an entity; l ∈ Z+

T = {t1, . . . , tm} ti is a target; ti ∈ E; m, i ∈ Z+

The objective of targeted sentiment analysis is
to find all sentiment (si, ti) pairs in document D
where ti is a target from T and si is the sentiment
toward ti.
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Tweet Sentence
Sentiment

Targeted
Sentiment

coca cola daha iyi lezzet olarak
(coca cola’s taste is better)

positive positive

whatsapp çöktü de biraz rahatladım bildirimlerden kurtuldum
(whatsapp is crashed so I’m little relieved, got rid of notifications)

positive negative

Table 1: Sample tweets from the dataset. Targets are shown in italics. Sentences are annotated with respect to overall
sentence sentiment and targeted sentiment which represent the sentiment towards the target. English translations are
provided in parenthesis.

2 Related Work

One of the challenges of targeted sentiment anal-
ysis is identifying contexts associated with target
words in the sentiment classification. Early meth-
ods for understanding the relationship between the
target and the rest of the sentence rely on hand-
crafted feature extractions and rule-based tech-
niques (Ding et al., 2008; Jiang et al., 2011). Re-
current neural networks (RNN) have been imple-
mented for sentiment analysis in the recent years.
It achieved improved results compared to earlier
methods (Dong et al., 2014; Nguyen and Shirai,
2015; Baktha and Tripathy, 2017). Two RNNs are
used to obtain the context from both left and right
and combine the context knowledge in (Tang et al.,
2016). Attention mechanisms are recently added
into RNN-based methods to model the connection
between each word and the target (Wang et al.,
2016; Ma et al., 2017; Zhang et al., 2020).

Vaswani et al. (2017) introduced the transformer
architecture consisting of encoder and decoder
blocks based on self-attention layers. Bidirec-
tional Encoder Representations from Transformers
(BERT) has been introduced and shown to achieve
the state-of-the-art in various NLP tasks in (Devlin
et al., 2019). BERT has recently become a widely
used approach for sentiment analysis in many lan-
guages (Sun et al., 2019; Li et al., 2019). Kök-
sal and Özgür (2021) provide a Twitter dataset in
Turkish for sentiment analysis called BounTi. It
consists of Twitter data which are about predefined
universities and manually annotated by considering
sentimental polarities towards these universities.
They propose a BERT model fine-tuned using the
BounTi dataset to identify sentiment in Turkish
tweets.

3 Dataset

Twitter is a commonly used source of sentiment
classification dataset in the literature (Jiang et al.,

2011; Severyn and Moschitti, 2015; Kruspe et al.,
2020). In this study, we also create a Twitter dataset
with 3952 tweets whose timestamps span a six-
month period between January 2020 and June 2020.
The tweets are collected via the official Twitter API
by separately searching our 6 targets selected from
famous companies and brands.

This dataset is manually annotated with three
labels, positive, negative, and neutral. Two factors
are considered in the annotation process, namely
sentence sentiment and targeted sentiment. Each
tweet has the following two labels. The sentence
sentiment label expresses the overall sentiment of
the sentence, regardless of the target word, as in
traditional sentiment analysis techniques. On the
other hand, the targeted sentiment label reflects the
sentiment for the target in that sentence. The col-
lected tweets are annotated separately by two anno-
tators (one of the authors and a volunteer annotator)
who are native Turkish speakers. Cohen’s κ (Co-
hen, 1960) is used to demonstrate inter-annotator
agreement and is calculated as 0.855. In case of
conflict between annotators, they re-evaluated the
conflicting tweets. After re-evaluation, tweets on
which the annotators agree are retained and con-
flicting tweets are removed from the dataset.

Table 1 shows example sentences from the
dataset. The first tweet is a positive comment about
the target and the sentence is also positive over-
all. The second tweet indicates a negative opinion
about the target, since it has stated as crashed, al-
though the sentence expresses a positive situation
overall. Both sentence and targeted sentiment are
the same for most of the tweets as in the first exam-
ple. Only in 21% of the tweets, targeted sentiment
differs from the overall sentence sentiment. This
means that the rest of the dataset is similar to a
standard sentiment analysis dataset. The number of
negative tweets in the dataset is significantly higher
than the number of positive and neutral tweets for
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(a) [CLS] output (b) Max-pooling outputs of target to-
kens

(c) The output of the first target marker

Figure 1: An overview of architectures to get and handle outputs from BERT

each target. The strikingly high number of negative
tweets may be caused by the tendency of customers
to write a review when they have had a bad expe-
rience. The total percentages of positive, negative
and neutral classes are 19%, 58% and 23%, respec-
tively. The dataset is randomly divided into train,
test, and validation sets by 65%, 20% and 15%,
respectively. The distribution of labels for each
subset is kept similar to the distribution of labels
for the entire dataset.

The dataset contains ungrammatical text, slang,
acronyms, as well as special Twitter characters.
During pre-processing URLs and mentions (@) are
deleted. Hashtag signs (#) are removed, but hash-
tags are kept for two reasons: hashtags have been
shown to express sentiment (Alfina et al., 2017;
Celebi and Özgür, 2018) and some tweets contain
the targets as hashtags.

4 Methodology

Baldini Soares et al. (2019) has introduced a novel
method with transformer structure in the field of
relation extraction. The key idea behind this work
is to tag the entities with additional tokens before
feeding the BERT model with the input. Different
combinations of input and output types are eval-
uated. The best results are obtained when entity
markers are added to the input and when the out-
put of the starting entity markers are taken as the
output from BERT. Motivated by the results of
Baldini Soares et al.’s work, this paper evaluates
several BERT architectures with different input and
output techniques for the targeted sentiment analy-
sis task.

Two input representation techniques are inves-
tigated. In the standard input representation, the
inputs are simply entered into the model without
modification. In the second input representation
approach, the targets are highlighted by adding
additional special target tokens [TAR] at the be-

Tweets with [TAR] tokens
[TAR]whatsapp[TAR] çöktü de biraz rahatladım
bildirimlerden kurtuldum
([TAR]whatsapp[TAR] is crashed so I’m little
relieved, got rid of notifications)
[TAR]coca cola[TAR] daha iyi lezzet olarak
([TAR]coca cola[TAR]’s taste is better)

Table 2: Example tweets with target marker representa-
tion

ginnings and ends of targets, as shown in Table 2.
These target tokens are expected to collect infor-
mation about the target, just as the [CLS] token
collects knowledge about the entire sentence. The
three approaches for outputs explored in this study
are shown in Figure 1. The [CLS] output approach
uses only the output of the first token from the last
hidden state of BERT, as proposed for classifica-
tion in the original paper (Devlin et al., 2019). In
the second approach, the outputs of the tokens orig-
inating from the target, including the outputs of
the [TAR] tokens, are max-pooled. The first target
marker approach considers only the output of the
first [TAR] token in the input instead of the out-
put of the standard [CLS]. All output approaches
utilize a softmax layer at the end for classification.

4.1 Model Descriptions

First, two baseline models are defined in order to
show the drawbacks of the traditional SA models.
One baseline is the BERT-based BounTi model
(Köksal and Özgür, 2021). The second baseline
is also a BERT-based traditional SA model, but
fine-tuned with our new dataset using sentence sen-
timent. Both have similar architectures and use the
[CLS] output for sentiment classification.

Four other variants of BERT-based models are
proposed for targeted sentiment analysis. T-BERT
is a model with a similar architecture to our base-
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Model F1-Score
Baseline Model 0.591
BounTi Model 0.498
T-BERT 0.610
T-BERTmarked 0.659
T-BERTmarked-TS 0.653
T-BERTmarked-MP 0.669

Table 3: Performance of all models for TSA with test
dataset against targeted sentiment labels

line models. It makes no changes to the input and
takes its output from the [CLS] token. The main dif-
ference is that targeted sentiment labels are used in
the training phase. Therefore, the model is trained
to learn targeted sentiment, whereas the baseline
models are not aware of the target. T-BERTmarked
employs only the target marker representation on
top of T-BERT and adds [TAR] tokens into the in-
put. [TAR] token is introduced to BERT’s tokenizer
and the vocabulary is resized. Hence, the tokenizer
accepts [TAR] as one of its special tokens such as
[SEP]. T-BERTmarked-MP is another model with
target marker representation, additionally it max-
pools all outputs of target tokens. T-BERTmarked-
TS also utilizes target markers. However, it takes
its output only from the first target token [TAR]
unlike T-BERTmarked-MP.

In the training phase of all models, BERTurk
(Schweter, 2020) is chosen as the base BERT
model. Class weights are set inversely proportional
to the class distribution to reduce the effects of an
unbalanced data set. The batch size is chosen as 24.
Hyperparameters like weight decay, learning rate,
and warm-up steps are selected as 0.1, 1e− 5, and
300 respectively. As optimizer, AdamW is used.

5 Results

All proposed BERT variants and baselines are eval-
uated for targeted sentiment analysis over our in-
troduced dataset. Macro averaged F1-Score is used
as the evaluation metric in these experiments. The
results are presented in Table 3. All targeted BERT
variants outperform both baseline models for TSA.
T-BERTmarked-MP achieves the best results with
67% F1-score, while T-BERT is relatively the worst
performing targeted model with 61% F1-score. T-
BERTmarked-TS and T-BERTmarked obtain perfor-
mance quite close to each other, the difference be-
tween those models is insignificant. They both
have approximately 65% F1-scores.

Model F1-Score
Baseline Model 0.256
BounTi Model 0.233
T-BERT 0.401
T-BERTmarked 0.428
T-BERTmarked-TS 0.459
T-BERTmarked-MP 0.444

Table 4: Performance of all models for TSA with data
whose targeted and sentence sentiment are different.

Only 21% of the dataset has different sentence
and targeted sentiment. These portion of data can
demonstrate the distinction between targeted and
sentence sentiment classification better. If both la-
bels are the same, then traditional SA models may
seem to accurately predict targeted sentiment. How-
ever, such sentences do not show how accurate the
predictions from neither TSA nor SA models are.
For this reason, a subset of our dataset such that
all sentences have different targeted and sentence
sentiment is used for another round of experiments.
Table 4 shows the results for the TSA task with this
subset. Baseline models’ F1-score decreases dra-
matically to 25%, and it’s 23% for BounTi model.
Targeted BERT model with the lowest score (40%
F1-score) outperforms both models. T-BERTmarked-
TS achieves better targeted sentiment predictions
with 46% F1-score. T-BERTmarked-TS improves
the baseline performance by 79% on F1-score.

6 Discussion

Our results suggest that target oriented models can
significantly improve the performance for targeted
sentiment analysis. BERT architectures that per-
form successfully in the relation extraction field are
shown to be successful for the targeted sentiment
analysis task. Target markers make BERT models
understand target related context better compared
to the [CLS] token. All three models with tar-
get markers outperform the baselines and T-BERT.
Hence, adding target markers is an effective ap-
proach for improving TSA performance.

T-BERTmarked-TS and T-BERTmarked-MP are
shown to perform slightly better than the other tar-
get oriented models. The common aspect of these
models, apart from the target tokens, is that they
both focus on the outputs of the target-related to-
kens rather than the [CLS] tokens. Therefore, it
can be concluded that target outputs improves the
performance for the TSA task.
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We only considered one target in each sentence
and annotated according to that target. Other tar-
gets in the sentence, if any, are ignored. Multiple
targets with conflicting targeted sentiment in the
same sentence can be a problem to consider. There
are cases where a sentence has more than one target,
and each target has a different targeted sentiment.
For example, in a comparison, the sentiment toward
one target may actually depend on the sentiment of
another target in the same sentence. In this work,
the scope is limited to only one target in each sen-
tence. Target markers are also used only for this
one target in the sentence and other possible targets
are ignored. The lack of proper treatment of such
cases in this work may affect the performance of
all models.

Sentence and targeted sentiment are identical
for 79% of the dataset. Thus, if a traditional SA
model, which is designed to predict the overall
sentence sentiment, is used for the TSA task, its
success for this task would be overestimated. The
results demonstrate that targeted sentiment analysis
models perform significantly better than traditional
sentiment analysis models on the TSA task. How-
ever, the performance of the TSA models increases
when they are tested on the entire test dataset, rather
than on a subset containing only tweets with dif-
ferent sentence and targeted sentiment labels. This
highlights that they may still be biased in favor of
sentence sentiment to some extent.

7 Ethical Considerations and Limitations

The dataset contains public tweets in Turkish that
are provided by the official Twitter API for research.
Only tweet ID’s and labels of the tweets are shared
publicly to follow Twitter’s terms and conditions.
The annotators have no affiliation with any of the
companies that are used as targets in the dataset, so
there is no potential bias due to conflict of interest.

The models developed in this work are not yet
satisfactory to use their results without human mon-
itoring. It is recommended to manually check the
predictions of these models before using them.

8 Conclusion and Future Work

We presented a manually annotated Turkish Twitter
dataset specifically created for targeted sentiment
analysis and is also suitable for the traditional sen-
timent analysis task. This allowed us to develop
and evaluate novel models for targeted sentiment

analysis in a low-resource language such as Turk-
ish.

We adapted and investigated BERT-based mod-
els with different architectures for targeted senti-
ment analysis. Experiments show significant im-
provement on baseline performance.

As future work, we plan to expand our dataset
so that it contains more sentences with different
sentence and targeted sentiment. Moreover, novel
methods for sentences with multiple targets will be
investigated.
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