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Abstract

Negation and uncertainty modeling are long-
standing tasks in natural language processing.
Linguistic theory postulates that expressions of
negation and uncertainty are semantically inde-
pendent from each other and the content they
modify. However, previous works on represen-
tation learning do not explicitly model this in-
dependence. We therefore attempt to disentan-
gle the representations of negation, uncertainty,
and content using a Variational Autoencoder1.
We find that simply supervising the latent rep-
resentations results in good disentanglement,
but auxiliary objectives based on adversarial
learning and mutual information minimization
can provide additional disentanglement gains.

1 Introduction

In formal semantics, negation and uncertainty
are operators whose semantic functions are inde-
pendent of the propositional content they modify
(Cann, 1993a,b)2. That is, it is possible to form flu-
ent statements by varying only one of these aspects
while leaving the others the same. Negation, un-
certainty, and content can thus be viewed as disen-
tangled generative factors of knowledge and belief
statements (see Figure 1).

Disentangled representation learning (DRL) of
factors of variation can improve the robustness of
representations and their applicability across tasks
(Bengio et al., 2013). Specifically, negation and un-
certainty are important for downstream NLP tasks
such as sentiment analysis (Benamara et al., 2012;
Wiegand et al., 2010), question answering (Yatskar,
2019; Yang et al., 2016), and information extrac-
tion (Stenetorp et al., 2012). Disentangling nega-

1We make our implementation and data avail-
able at https://github.com/jvasilakes/
disentanglement-vae

2Specifically, the propositional content can be represented
by a variable, such as ¬p.

Trees might not have leaves.

Figure 1: Example indicating the distinction between
uncertainty, negation and content. The content “Trees
have leaves” is modified by the negation (bold) and
uncertainty (underlined) factors.

tion and uncertainty can therefore provide robust
representations for these tasks, and disentangling
them from content can assist tasks that rely on core
content preservation such as controlled generation
(Logeswaran et al., 2018) and abstractive summa-
rization (Maynez et al., 2020).

Still, no previous work has tested whether nega-
tion, uncertainty, and content can be disentangled,
as linguistic theory suggests, although previous
works have disentangled attributes such as syntax,
semantics, and style (Balasubramanian et al., 2021;
John et al., 2019; Cheng et al., 2020b; Bao et al.,
2019; Hu et al., 2017; Colombo et al., 2021).
To fill this gap, we aim to answer the following
research questions:

RQ1: Is it possible to estimate a model of
statements that upholds the proposed statistical
independence between negation, uncertainty, and
content?

RQ2: A number of existing disentanglement
objectives have been explored for text, all giving
promising results. How do these objectives
compare for enforcing disentanglement on this
task?

1.1 Contributions

In addressing these research questions, we make
the following contributions:
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1. Generative Model: We propose a generative
model of statements in which negation, uncer-
tainty, and content are independent latent vari-
ables. Following previous works, we estimate
this model using a Variational Autoencoder
(VAE) (Kingma and Welling, 2014; Bowman
et al., 2016) and compare existing auxiliary
objectives for enforcing disentanglement via
a suite of evaluation metrics.

2. Simple Latent Representations: We note that
negation and uncertainty have a binary func-
tion (positive or negative, certain or uncer-
tain). We therefore attempt to learn corre-
sponding 1-dimensional latent representations
for these variables, with a clear separation be-
tween each value.

3. Data Augmentation: Datasets containing
negation and uncertainty annotations are rela-
tively small (Farkas et al., 2010; Vincze et al.,
2008; Jiménez-Zafra et al., 2018), resulting
in poor sentence reconstructions according to
our preliminary experiments. To address this,
we generate weak labels for a large number
of Amazon3 and Yelp4 reviews using a sim-
ple naïve Bayes classifier with bag-of-words
features trained on a smaller dataset of En-
glish reviews annotated for negation and un-
certainty (Konstantinova et al., 2012) and use
this to estimate our model. Details are given
in Section 4.1.1.

We note that, in contrast to other works on nega-
tion and uncertainty modeling, which focus on
token-level tasks of negation and uncertainty cue
and scope detection, this work aims to learn state-
ment-level representations of our target factors, in
line with previous work on text DRL.

2 Background

We here provide relevant background on negation
and uncertainty processing, disentangled represen-
tation learning in NLP, as well as discussion of how
this study fits in with previous work.

2.1 Negation and Uncertainty in NLP
Negation and uncertainty help determine the as-
serted veracity of statements and events in text

3https://github.com/fuzhenxin/text_
style_transfer

4https://github.com/shentianxiao/
language-style-transfer4

(Saurí and Pustejovsky, 2009; Thompson et al.,
2017; Kilicoglu et al., 2017), which is crucial
for downstream NLP tasks that deal with knowl-
edge and belief. For example, negation detection
has been shown to provide strong cues for senti-
ment analysis (Barnes et al., 2021; Ribeiro et al.,
2020) and uncertainty detection assists with fake
news detection (Choy and Chong, 2018). Previous
works on negation and uncertainty processing fo-
cus on the classification tasks of cue identification
and scope detection (Farkas et al., 2010) using se-
quence models such as conditional random fields
(CRFs) (Jiménez-Zafra et al., 2020; Li and Lu,
2018), convolutional and recurrent neural networks
(CNNs and RNNs) (Qian et al., 2016; Adel and
Schütze, 2017; Ren et al., 2018), LSTMs (Fancellu
et al., 2016; Lazib et al., 2019), and, most recently,
transformer architectures (Khandelwal and Sawant,
2020; Lin et al., 2020; Zhao and Bethard, 2020).
While these works focus mostly on learning local
representations of negation and uncertainty within
a sentence, we attempt to learn global representa-
tions that encode high-level information regarding
the negation and uncertainty status of statements.

2.2 Disentangled Representation Learning

There is currently no agreed-upon definition of dis-
entanglement. Early works on DRL attempt to
learn a single vector space in which each dimen-
sion is independent of the others and represents
one ground-truth generative factor of the object be-
ing modeled (Higgins et al., 2016). Higgins et al.
(2018) give a group-theoretic definition, according
to which generative factors are mapped to inde-
pendent vector spaces. This definition relaxes the
earlier assumption that representations ought to be
single-dimensional and formalizes the notion of
disentanglement according to the notion of invari-
ance. Shu et al. (2019) decompose the invariance
requirement into consistency and restrictiveness,
which describe specific ideal properties of the in-
variances between representations and generative
factors. In addition to independence and invari-
ance, interpretability is an important criterion for
disentanglement. Higgins et al. (2016) point out
that while methods such as PCA are able to learn
independent latent representations, because these
are not representative of interpretable factors of
variation, they are not disentangled. We therefore
want our learned representations to be predictive
of meaningful factors of variation. We adopt the
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Figure 2: Graph of the generative model. c is content, n
is negation status, and u is uncertainty.

term informativeness from Eastwood and Williams
(2018) to signify this desideratum.

Previous works on DRL for text all use some
form of supervision to enforce informativeness of
the latent representations. Hu et al. (2017), John
et al. (2019), Cheng et al. (2020b), and Bao et al.
(2019) all use gold-standard labels of the genera-
tive factors, while other works employ similarity
metrics (Chen and Batmanghelich, 2020; Balasub-
ramanian et al., 2021). In contrast, our approach
uses weak labels for negation and uncertainty gen-
erated using a classifier trained on a small set of
gold-standard data.

These previous works on text DRL all use a sim-
ilar architecture: a sequence VAE (Kingma and
Welling, 2014; Bowman et al., 2016) maps inputs
to L distinct vector spaces, each of which are con-
strained to represent a different target generative
factor via a supervision signal. We also employ this
overall architecture for model estimation and use it
as a basis for experimenting with existing disentan-
glement objectives based on adversarial learning
(John et al., 2019; Bao et al., 2019) and mutual
information minimization (Cheng et al., 2020b),
described in Section 3.4. However, unlike these
previous works, which learn high-dimensional rep-
resentations of all the latent factors, we aim to learn
1-dimensional representations of the negation and
uncertainty variables in accordance with their bi-
nary function.

3 Proposed Approach

We describe our overall model in Section 3.1. Sec-
tion 3.2 enumerates three specific desiderata for
disentangled representations, and sections 3.3 and
3.4 describe how we aim to satisfy these desiderata.

3.1 Generative Model

We propose a generative model of statements ac-
cording to which negation, uncertainty, and content
are independent latent variables. A diagram of our

Figure 3: The proposed architecture corresponding to
the LELBO + LINF objective (see Section 3.4). A
BiLSTM encoder parameterized by ϕ maps each input
example x to three distinct distributions from which the
latent representations z(ℓ) are sampled. The negation
z(n) and uncertainty z(u) latent spaces are then passed to
linear classifiers, parameterized by ψ(ℓ), which attempt
to predict the ground truth factor. Finally, the latent
values initialize an LSTM decoder, parameterized by θ,
which attempts to reconstruct the input.

proposed model is given in Figure 2. Model details
are given in Appendix A.

We use a sequence VAE to estimate this model
(Kingma and Welling, 2014; Bowman et al., 2016).
Unlike a standard autoencoder, the VAE imposes a
prior distribution on the latent representation space
Z (usually a standard Gaussian) and replaces the
deterministic encoder with a learned approximation
of the posterior qϕ(z|x) parameterized by a neural
network. In addition to minimizing the loss be-
tween the input and reconstruction, as in a standard
AE, the VAE uses an additional KL divergence
term to keep the approximate posterior close to the
prior distribution.

In our implementation, three linear layers map
the final hidden state of a BiLSTM encoder to
three sets of Gaussian distribution parameters (µ,
σ), which parameterize the negation, uncertainty,
and content latent distributions ℓ ∈ {n, u, c}, re-
spectively. Because we map each input to three
distinct latent spaces, we include three KL diver-
gence terms in the Evidence Lower BOund (ELBO)
training objective, given in Equation (1).

LELBO(ϕ, θ) = −Eqϕ(z|x)

[
log pθ(x|z)

]
+

∑
ℓ∈{n,u,c}

βℓ KL
[
q
(ℓ)
ϕ (z(ℓ)|x) || p(z(ℓ))

]
(1)

where ϕ denotes the encoder’s parameters, θ the
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decoder’s parameters, p(z(ℓ)) is a standard Gaus-
sian prior, and the βℓ hyper-parameters weight the
KL divergence term for each latent space ℓ ∈ L.
The latent representations zℓ are sampled from nor-
mal distributions defined by these parameters using
the reparameterization trick (Kingma and Welling,
2014), i.e., z(ℓ) = µ(ℓ) ⊙ σ(ℓ) + ϵ ∼ N (0, I).
The latent representations are then concatenated
z = [z(n); z(u); z(c)] and used to initialize an
LSTM decoder, which aims to reconstruct the in-
put. A visualization of our architecture is given in
Figure 3 and implementation details are given in
Appendix E.

We use 1-dimensional negation and uncertainty
spaces and a 62-dimensional content space for a
total latent size of 64. Notably, we do not super-
vise the content space, unlike previous works (John
et al., 2019; Cheng et al., 2020b), which super-
vise it by predicting the bag of words of the in-
put. Such a supervision technique would hinder
disentanglement by encouraging the content space
to be predictive of the negation and uncertainty
cues. Therefore, in our model we define three la-
tent spaces ℓ ∈ {n, u, c} but use signals from only
2 target generative factors k ∈ {n, u}.

3.2 Desiderata for Disentanglement
We aim to satisfy the following desiderata of dis-
entangled representations put forth by previous
works.

1. Informativeness: the representations should
be predictive of the ground-truth generative
factors (Higgins et al., 2016; Eastwood and
Williams, 2018);

2. Independence: the representations for each
generative factor in question should lie in inde-
pendent vector spaces (Higgins et al., 2018);

3. Invariance: the mapping from the data to the
representations should be invariant to changes
in other generative factors (Higgins et al.,
2018; Shu et al., 2019);

The following sections detail how our model en-
forces these desiderata.

3.3 Informativeness
Following Eastwood and Williams (2018), we mea-
sure the informativeness of a representation by its
ability to predict the corresponding generative fac-
tor. Similar to previous works on DRL for text

(John et al., 2019; Cheng et al., 2020b), we train
supervised linear classifiers5 on each latent space
and back-propagate the prediction error. Thus, in
addition to the ELBO objective in Equation (1), we
define informativeness objectives for negation and
uncertainty.

LINF(ψ
(k)) = BCE

(
ŷ(k), y(k)

)
, k ∈ {n, u}

(2)
where y(k) is the true label for factor k, ŷ(k) is the
classifier’s prediction, ψ(k) are the parameters of
this classifier, and BCE is the binary cross-entropy
loss.

3.4 Independence and Invariance

We compare 3 objectives for enforcing these
desiderata:

1. Informativeness (INF): This is based on the
hypothesis that if negation, uncertainty, and
content are independent generative factors, the
informativeness objective described in Sec-
tion 3.3 will be sufficient to drive indepen-
dence and invariance. This approach was
found to yield good results on disentangling
style from content by Balasubramanian et al.
(2021).

2. Adversarial (ADV): The latent representations
should be predictive of their target generative
factor only. Therefore, inspired by John et al.
(2019), we train additional adversarial classi-
fiers on each latent space that try to predict
the values of the non-target generative fac-
tors, while the model attempts to structure the
latent spaces such that the predictive distribu-
tion of these classifiers is a non-predictive as
possible.

3. Mutual-information minimization (MIN): A
natural measure of independence between two
variables is mutual information (MI). There-
fore, this objective minimizes an upper-bound
estimate of the MI between each pair of la-
tent spaces, following (Cheng et al., 2020a,b;
Colombo et al., 2021).

Details on the ADV and MIN objectives are
given below.

5Implemented as single-layer feed-forward neural net-
works with sigmoid activation.
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Adversarial Objective. The adversarial objec-
tive (ADV) consists of two parts: 1) adversarial
classifiers which attempt to predict the value of all
non-target factors from each latent space; 2) a loss
that aims to maximize the entropy of the predicted
distribution of the adversarial classifiers.

For a given latent space ℓ, a set of linear clas-
sifiers predict the value of each non-target factor
k ̸= ℓ, respectively, and we compute the binary
cross-entropy loss for each.

LCLS(ξ
(ℓ,k)) = BCE

(
ŷ(ℓ,k), y(k)

)
(3)

Where ξ(ℓ,k) are the parameters of the adversarial
classifier predicting factor k from latent space ℓ,
and ŷ(ℓ,k) is the corresponding prediction.

For example, we introduce two such classifiers
for the content space ℓ = c, one to predict negation
and one to predict uncertainty, k ∈ {n, u}. Impor-
tantly, the prediction errors of these classifiers are
not back-propagated to the rest of the VAE. We
impose an additional objective for each adversarial
classifier, which aims to make it’s predicted dis-
tribution as close to uniform as possible. We do
this by maximizing the entropy of the predicted
distribution (Equation (4)) and back-propagating
the error, following John et al. (2019) and Fu et al.
(2018).

LENT(ξ
(ℓ,k)) = H[ŷ(ℓ,k)] (4)

As the objective is to maximize this quantity, the
total adversarial objective is

LADV =
∑
ℓ

∑
k

LCLS(ξ
(ℓ,k))− LENT(ξ

(ℓ,k))

(5)
The ADV objective aims to make the latent rep-

resentations as uninformative as possible for non-
target factors. Together with the informativeness
objective, it pushes the representations to specialize
in their target generative factors.

MI Minimization Objective. The MI minimiza-
tion (MIN) objective focuses on making the distri-
butions of each latent space as dissimilar as pos-
sible. We minimize the MI between each pair of
latent spaces according to Equation (6).

LMIN = ÎCLUB(ℓi; ℓj), i ̸= j (6)

where ÎCLUB(ℓi; ℓj) is the Contrastive Learning
Upper-Bound (CLUB) estimate of the MI (Cheng

et al., 2020a). Specifically, we introduce a sepa-
rate neural network to approximate the conditional
variational distribution pσ(ℓi|ℓj), which is used to
estimate an upper bound on the MI using samples
from the latent spaces.

The full model objective along with relevant hy-
perparameters weights λ is given in Equation (7).
Our hyperparameter settings and further implemen-
tation details are given in Appendix E.

L =LELBO + λINFLINF+

λADVLADV + λMINLMIN (7)

In the sections that follow, we experiment with
different subsets of the terms in the full objective
and their effects on disentanglement. We train a
model using only the ELBO objective as our disen-
tanglement baseline.

4 Experiments

We describe our datasets, preprocessing, and data
augmentation methods in Section 4.1. Section 4.2
describes our evaluation metrics and how these
target the desiderata for disentanglement given in
Section 3.2.

4.1 Datasets

We use the SFU Review Corpus (Konstantinova
et al., 2012) as our primary dataset. This corpus
contains 17,000 sentences from reviews of vari-
ous products in English, originally intended for
sentiment analysis, annotated with negation and un-
certainty cues and their scopes. Many of the SFU
sentences are quite long (> 30 tokens), and pre-
liminary experiments revealed that this results in
poor reconstructions. We therefore took advantage
of SFU’s annotated statement conjunction tokens
to split the multi-statement sentences into single-
statement ones in order to reduce the complexity
and increase the number of examples. Also to re-
duce complexity, we remove sentences> 15 tokens
following previous work (Hu et al., 2017), resulting
in 14,000 sentences.

We convert all cue-scope annotations to
statement-level annotations. Multi-level uncer-
tainty annotations have been shown to be rather in-
consistent and noisy, achieving low inter-annotator
agreement compared to binary ones (Rubin, 2007).
We therefore binarize the certainty labels following
(Zerva, 2019).
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4.1.1 Data Augmentation
Despite the efforts above, we found the SFU corpus
alone was insufficient for obtaining fluent recon-
structions. We therefore generated weak negation
and uncertainty labels for a large amount of ad-
ditional Amazon and Yelp review data using two
naïve Bayes classifiers with bag-of-words (BOW)
features6. These classifiers were trained on the SFU
training split to predict sentence level negation and
uncertainty, respectively. The Amazon and Yelp
datasets fit the SFU data distribution well, being
also comprised of user reviews, and have been used
in previous works on text DRL with good results
(John et al., 2019; Cheng et al., 2020b)7. Statis-
tics for the combined SFU+Amazon dataset are
summarized in Appendix C. In Appendix D, we
provide a complementary evaluation on a combined
SFU+Yelp dataset.

4.2 Evaluation

Evaluating disentanglement of the learned repre-
sentations requires complementary metrics of the
desiderata given in Section 3.2: informativeness,
independence, and invariance.

For measuring informativeness, we report the
precision, recall, and F1 score of a logistic regres-
sion model trained to predict each of the ground-
truth labels from each latent space, following East-
wood and Williams (2018). We also report the MI
between each latent distribution and factor, as this
gives additional insight into informativeness.

For measuring independence, we use the Mutual
Information Gap (MIG) (Chen et al., 2018). The
MIG lies in [0, 1], with higher values indicating a
greater degree of disentanglement. Details of the
MIG computation are give in Appendix E.1.

We evaluate invariance by computing the Pear-
son’s correlation coefficient between each pair of
latent variables using samples from the predicted
latent distributions.

It also important to evaluate the ability of the
models to reconstruct the input. Specifically, we
target reconstruction faithfulness (i.e., how well
the input and reconstruction match) and fluency.
We evaluate faithfulness in terms of the ability of

6Implementation details and evaluation of these classifiers
is given in Appendix B

7Due to computational constraints, we randomly sample
100,000 weakly annotated Amazon examples for the final
dataset. Preliminary experiments with larger numbers of Ama-
zon examples suggested that 100k is sufficient for our pur-
poses.
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Figure 4: Histogram and t-SNE (Van der Maaten and
Hinton, 2008) visualizations of the modality, negation,
and content spaces learned by the INF+ADV+MIN
model.

the model to preserve the negation, uncertainty,
and content of the input. Negation and uncer-
tainty preservation are measured by re-encoding
the reconstructions, predicting the negation and
uncertainty statuses from the re-encoded latent val-
ues, and computing precision, recall, and F1 score
against the ground-truth labels8. Following previ-
ous work, we approximate a measure of content
preservation in the absence of any explicit content
annotations by computing the BLEU score between
the input and the reconstruction (self-BLEU) (Bao
et al., 2019; Cheng et al., 2020b; Balasubramanian
et al., 2021). We evaluate fluency of the reconstruc-
tion by computing the perplexities (PPL) under
GPT-2, a strong, general-domain language model
(Radford et al., 2019).

Finally, we evaluate the models’ ability to flip the
negation or uncertainty status of the input. For each
test example, we override the value of the latent
factor we want to change to represent the opposite
of its ground-truth label. The ability of the model
to control negation and uncertainty is measured by
re-encoding the reconstructions obtained from the
overridden latents, predicting from the re-encoded
latent values, and computing accuracy against the
opposite of the ground-truth labels.

8This corresponds to the measure of consistency proposed
by Shu et al. (2019)
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LELBO +LINF +LINF+LADV+LMIN

Latent Factor MI P R F1 MI P R F1 MI P R F1

n
n 0.018 0.561 0.615 0.530 0.434 0.951 0.972 0.961 0.444 0.959 0.975 0.967
u 0.016 0.558 0.590 0.533 0.013 0.551 0.584 0.544 0.007 0.543 0.569 0.537

u
n 0.011 0.559 0.606 0.540 0.013 0.555 0.579 0.550 0.007 0.548 0.560 0.548
u 0.022 0.570 0.604 0.562 0.375 0.936 0.972 0.952 0.391 0.970 0.981 0.975

c
n 0.297 0.683 0.760 0.695 0.222 0.675 0.753 0.684 0.147 0.576 0.617 0.557
u 0.207 0.653 0.756 0.665 0.198 0.643 0.746 0.649 0.136 0.574 0.637 0.551

Table 1: Mutual Information estimate between each latent and factor. Precision, recall, and F1 of the latent space
classifiers for each factor. n: negation. u: uncertainty. c: content. Shown are the mean values computed from 30
resamples of the latent distributions for each example on the SFU+Amazon test set. Because their results are similar
to LELBO+LINF+LADV+LMIN, the LELBO+{LADV,LMIN} are not included to save space. We provide a more
extensive set of results covering all models in Table 10.

Figure 5: Box plots of the Mutual Information Gap (MIG) for each disentanglement objective for the negation and
uncertainty factors computed on the test set. The MIG values for the baseline LELBO objective were too small to
include in this figure, at ≈ 0.014 for both negation and uncertainty.

5 Results

In the following, Section 5.1 reports the disentan-
glement results and Section 5.2 reports the faithful-
ness and fluency results. Section 5.3 discusses how
these results address the two research questions
proposed in Section 1.

5.1 Disentanglement

The informativeness of each latent space with re-
spect to each target factor is shown in Table 1 given
as predictive performance and MI.

The baseline ELBO objective alone fails to dis-
entangle. It puts almost all representation power
in the content space, which is nevertheless still
uninformative of the negation and uncertainty fac-
tors, with low MIs and F1s. The model using the
INF auxiliary objective does, however, manage to
achieve good disentanglement: the negation and
uncertainty spaces are highly informative of their
target factors and uninformative of the non-target
factors9. However, the content space is still slightly
predictive of negation and uncertainty, with F1s of
0.684 and 0.649, respectively. This improves with

9Experiments using LELBO+LADV or LELBO+LMIN did
not improve over LELBO alone.

the ADV and MIN objectives, where the content
space shows near-random prediction performance
of negation and uncertainty, with slightly improved
prediction performance of the negation and uncer-
tainty spaces for their target factors. These results
are corroborated by the visualizations in Figure 4,
which show clear separation by classes in the nega-
tion and uncertainty latent distributions but no dis-
tinction between classes in the content space. Addi-
tionally, we note the good predictive performance
of the negation and uncertainty latents, despite their
simple, 1-dimensional encoding.

+LINF+LADV

LELBO +LINF +LMIN

u c u c u c

n 0.706 0.008 0.200 0.002 0.159 0.001
(±0.053) (±0.098) (±0.043)

u - 0.001 - 0.001 - 0.005
(±0.058) (±0.097) (±0.037)

Table 2: Pearson’s correlation coefficients between each
pair of latent representations across models. As the
content space is 62-dimensional, we compute the corre-
lation coefficient between each dimension and report the
mean with the standard deviation in parentheses below.

Box plots of the MIG values for the negation and
uncertainty factors are given in Figure 5. Again we
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+LINF

+LINF +LINF +LADV

LELBO +LINF +LADV +LMIN +LMIN

B
L

E
U Train 0.590 0.576 0.574 0.528 0.522

Dev 0.150 0.189 0.186 0.146 0.141
Test 0.153 0.072 0.073 0.148 0.144

PP
L

Train 123.3 174.3 173.1 124.9 127.2
Dev 136.4 186.1 189.1 140.1 141.3
Test 136.8 185.9 187.3 139.3 142.1

Table 3: Reconstruction self-BLEU and reconstruction
perplexity (PPL) for each model on each data split. Per-
plexity is computed using GPT-2 (Radford et al., 2019).

see that the INF objective alone results in decent
disentanglement, with median MIG values ≈ 0.4.
The ADV and MI objectives give similar increases
in MIG, up to ≈ 0.55 for both negation and un-
certainty, and their combination, ADV+MIN, im-
proves MIG further, up to ≈ 0.6, suggesting that
these objectives are complementary.

We demonstrate the invariance of our models’
negation and uncertainty representations in Table 2.
While the ELBO objective alone results in highly
covariant negation and uncertainty latent distribu-
tions (0.706), this drops significantly under INF
(0.200) with additional reduction contributed by
the ADV and MIN objectives (0.159).

5.2 Evaluation of Reconstructions

5.2.1 Faithfulness and Fluency
Table 3 reports the self-BLEU and perplexity for
each disentanglement objective. Example recon-
structions are given in Table 9. These results show
that the models are quite consistent regarding con-
tent reconstruction on the train set, but this con-
sistency drops on dev and test. While the ADV
and MIN objectives provide disentanglement gains
over INF, the BLEU scores betray a possible trade
off of slightly poorer content preservation, despite
better perplexities.

While self-BLEU indicates the consistency of
the reconstructions with respect to content, it does
not necessarily indicate consistency of the recon-
structions with respect to negation and uncertainty,
which often differ from their opposite value coun-
terparts by a single token. The consistency of the
INF and INF+ADV+MIN models with respect to
these factors is reported in Table 4. The INF ob-
jective alone is only somewhat consistent, with re-
encoded F1s of 0.830 and 0.789 for negation and
uncertainty respectively. The auxiliary objectives
improve these considerably, to 0.914 and 0.893,

+LINF+LADV

+LINF +LMIN

Factor Pass P R F1 P R F1

n
1 0.969 0.965 0.967 0.959 0.975 0.967
2 0.816 0.848 0.830 0.920 0.908 0.914

u
1 0.959 0.961 0.960 0.970 0.981 0.975
2 0.767 0.820 0.789 0.930 0.864 0.893

Table 4: Consistency of the decoder with the ground-
truth values of negation and uncertainty evaluated on
the test set. Pass 1 refers to the predictions from the
original inputs. Pass 2 refers to the predictions from the
re-encoded reconstructions. Pass 1 can be considered
an upper bound on the performance of pass 2.

suggesting that the disentanglement gains seen in
Table 1 and Figure 5 have a positive effect on the
consistency of the reconstructions.

5.2.2 Controlled Generation
Table 5 shows the accuracies of each model on the
controlled generation task, split by transfer direc-
tion. We found that for both negation and uncer-
tainty modifying the status of the input works well
in only one direction: from negated to positive,
uncertain to certain.

Changing a sentence from negated to positive or
from uncertain to certain generally requires the re-
moval of cue tokens (e.g., not, never, might), while
the opposite directions require their addition. Via
linear regressions between the content representa-
tions and number of tokens, we found that the con-
tent space is highly informative of sentence length,
which effectively bars the decoder from adding the
required negation or uncertainty tokens10. A man-
ual review of correctly and incorrectly modified
sentences suggested that the decoder attempts to
represent the negation/uncertainty status by mod-
ifying tokens in the input, rather than adding or
removing them, in order to satisfy the length con-
straint. When removal is required, the cue token
is often simply replaced by new tokens consistent
with the representation. The inclusion of nega-
tion/uncertainty cue tokens, however, only seems
to occur when it is possible to change an existing
token to a cue token. Details of the linear regres-
sions as well as example successful/failed transfers
are given in Appendix C.3.

5.3 Research Questions
RQ1: Is it possible to learn disentangled represen-
tations of negation, uncertainty, and content?

10The tendency of VAEs to focus their representation on sen-
tence length was also observed by Bosc and Vincent (2020).
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+LINF

+LINF +LINF +LADV

Transfer direction +LINF +LADV +LMIN +LMIN

pos → neg 0.30 0.50 0.35 0.38
neg → pos 0.80 0.92 0.79 0.87
cer → unc 0.34 0.40 0.32 0.36
unc → cer 0.85 0.88 0.80 0.86

Table 5: Controlled generation accuracies by factor and
direction of transfer.

The results suggest that it is indeed possible to
estimate a statistical model in which negation,
uncertainty, and content are disentangled latent
variables according to our three desiderata outlined
in Section 3.2. Specifically, Table 1 shows high
informativeness of the negation and uncertainty
spaces across objectives, and the poor predictive
ability of each latent space for non-target factors
suggests independence. Figure 5 further suggests
independence across models, with median MIG
scores in the 0.4-0.6 range. Finally, the low
covariances in Table 2 demonstrates the invariance
of the latent representations to each other.

RQ2: How do existing disentanglement objectives
compare for this task?
Notably, the INF objective alone results in good
disentanglement according to our three desiderata,
suggesting that supervision alone is sufficient for
disentanglement. Still, the addition of the ADV
and MIN objectives resulted in slightly more infor-
mative (Table 1) and independent (Table 2) repre-
sentations. While the self-BLEU scores reported
in Table 3 suggest that content preservation is gen-
erally maintained across auxiliary objectives, small
dips are seen in those using the MIN objective.
This trend also holds for perplexity, suggesting that
while the MIN objective can contribute to disentan-
glement gains, it may result in poorer reconstruc-
tions.

6 Conclusion

Motivated by linguistic theory, we proposed a gen-
erative model of statements in which negation, un-
certainty, and content are disentangled latent vari-
ables. We estimated this model using a VAE, com-
paring the performance of existing disentanglement
objectives. Via a suite of evaluations, we showed
that it is indeed possible to disentangle these factors.
While objectives based on adversarial learning and
MI minimization resulted in disentanglement and

consistency gains, we found that a decent balance
between variable disentanglement and reconstruc-
tion ability was obtained by a simple supervision
of the latent representations (i.e., the INF objec-
tive). Also, our 1-dimensional negation and un-
certainty representations achieved high predictive
performance, despite their simplicity. Future work
will explore alternative latent distributions, such
as discrete distributions (Jang et al., 2017; Dupont,
2018), which may better represent these operators.

This work has some limitations. First, our model
does not handle negation and uncertainty scope, but
rather assumes that operators scope over the entire
statement. Our model was estimated on relatively
short, single-statement sentences to satisfy this as-
sumption, but future work will investigate how op-
erator disentanglement can be unified with models
of operator scope in order to apply it to longer ex-
amples with multiple clauses. Second, while our
models achieved high disentanglement, they fell
short on the controlled generation task. We found
that this was likely due to the models memorizing
sentence length, constraining the reconstructions
in way that is incompatible with the addition of
negation and uncertainty cue tokens. (Bosc and
Vincent, 2020) also noticed this tendency for sen-
tence length memorization in VAEs and future will
will explore their suggested remedies, such as en-
coder pretraining.
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A Model Details

We here define our generative model and derive
the corresponding ELBO objective for our pro-
posed VAE with three latent variables. Let x =
[x1, ..., xT ] be a sentence with T tokens. N , U ,
and C are the latent variables representing nega-
tion, uncertainty, and content respectively. The
joint probability of specific values of these vari-
ables (N = n, U = u, C = c) is defined as

p(x, n, u, c) = pθ(x|n, u, c)p(n)p(u)p(c) (8)

Furthermore, x is defined auto-regressively as

p(x|n, u, c) =
∏
t

p(xt|x<t, n, u, c) (9)

Our model assumes that the latent factors are
independent, so the posterior is

p(n, u, c|x) = p(n|x)p(u|x)p(c|x) (10)

=
∏

ℓ∈{n,u,c}

p(x|ℓ)p(ℓ)
p(x)

(11)
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We approximate the posterior p(n, u, c|x) with
qϕ(n, u, c|x). Because the posterior factors, we
approximate the individual posteriors p(·|x) with
qϕ(·|x) and derive the following ELBO objective.

ELBO = Eqϕ(n,u,c|x)

[
log

p(x, n, u, c)

qϕ(n, u, c|x)

]
(12)

= Eqϕ

[
log

p(x|n, u, c)p(n)p(u)p(c)
qϕ(n|x)qϕ(u|x)qϕ(c|x)

]
(13)

= Eqϕ [log p(x|n, u, c)] (14)

−
∑
ℓ

KL [qϕ(ℓ|x)||p(ℓ)]

B Bag-of-Words Classifiers

We here provide the implementation details and
evaluation of our bag-of-words (BOW) classifiers
used to generate weak labels for the Amazon and
Yelp data.

B.1 Implementation Details

Both classifiers are implemented as Bernoulli naïve
Bayes classifiers with BOW features. We used the
BernoulliNB implementation from scikit-learn
with the default parameters in version 0.24.1(Pe-
dregosa et al., 2011).

B.1.1 Feature Selection
We performed feature selection by computing the
K tokens from the SFU training data that had the
highest ANOVA F-value against the target labels,
implemented using f_classif in scikit-learn
(Pedregosa et al., 2011). We tuned K according to
the downstream classification performance on the
SFU dev set. We evaluated K in the range 3-30
and found K = 20 performed best for both mod-
els. The 20 tokens ultimately used as features by
the negation and uncertainty classifiers are given in
Table 6.

Negation
any, but, ca, cannot, did, do, does, dont,
either, even, have, i, it, n’t, need, never,

no, not, without, wo

Uncertainty

be, can, could, either, i, if, may, maybe,
might, must, or, perhaps, probably,
seem, seemed, seems, should, think,

would, you

Table 6: The tokens used as features for the negation
and uncertainty classifiers. Contractions are split in our
tokenization scheme.

B.2 Evaluation
We report the precision, recall, and F1 score of both
classifiers on the SFU dev and test sets in Table 7.

P R F1

Negation dev 0.942 0.877 0.901
test 0.946 0.880 0.909

Uncertainty dev 0.959 0.953 0.956
test 0.948 0.961 0.954

Table 7: Precision, recall, and F1 score of the negation
and uncertainty classifiers on the SFU dev and test sets.

C Additional Results on SFU+Amazon

C.1 Dataset Statistics

Split N Median % Negated % UncertainLength
Train 109,889 12 22.7% 17.9%
Dev 6,631 12 19.6% 15.2%
Test 6,579 12 20.4% 15.2%

Table 8: Statistics for the combined SFU and weakly
labeled Amazon dataset.

C.2 Example Reconstructions

Input going home early.
going home later.

Recon going home movies.
going home first.

Input this is a second outlet there is one on
the dash.

this is a second blender there is one on
the floor.

Recon this is a second computer there is one
on the seatbelt.

this is a second grease there is one on
the cat.

Input sometime it’s just not enough volume.
guess it’s just not enough power.

Recon believe it works just not pleasant
enough.

obviously it s just not enough control.
Input I would never stay there again.

i would never stay them again.
Recon i would never rate that again.

i would not suggest that again.

Table 9: Example reconstructions decoded by the
INF+ADV+MI model from the SFU+Amazon test set.
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+LINF +LINF+LADV +LINF+LMIN +LINF+LADV+LMIN

Latent Factor MI P R F1 MI P R F1 MI P R F1 MI P R F1

n
n 0.434 0.951 0.972 0.961 0.431 0.952 0.970 0.961 0.443 0.962 0.977 0.969 0.444 0.959 0.975 0.967
u 0.013 0.551 0.584 0.544 0.012 0.551 0.581 0.547 0.007 0.537 0.560 0.527 0.007 0.543 0.569 0.537

u
n 0.013 0.555 0.579 0.550 0.008 0.553 0.573 0.550 0.008 0.543 0.561 0.535 0.007 0.548 0.560 0.548
u 0.375 0.936 0.972 0.952 0.374 0.941 0.972 0.956 0.389 0.960 0.980 0.970 0.391 0.970 0.981 0.975

c
n 0.222 0.675 0.753 0.684 0.166 0.576 0.619 0.550 0.182 0.640 0.710 0.638 0.147 0.576 0.617 0.557
u 0.198 0.643 0.746 0.649 0.144 0.567 0.626 0.538 0.169 0.638 0.740 0.641 0.136 0.574 0.637 0.551

Table 10: Mutual Information estimate between each latent and factor. Precision, recall, and F1 of the latent space
classifiers for each factor. Shown are the mean values computed from 30 resamples of the latents for each example
on the SFU+Amazon test set.

+LINF +LINF +LINF+LADV

LELBO +LINF +LADV +LMIN +LMIN

u c u c u c u c u c

n 0.706 0.008 0.200 0.002 0.193 0.007 0.129 0.008 0.159 0.001
(±0.053) (±0.098) (±0.076) (±0.058) (±0.043)

u - 0.001 - 0.001 - 0.010 - 0.001 - 0.005
(±0.058) (±0.097) (±0.070) (±0.060) (±0.037)

Table 11: Pearson’s correlation coefficients between each pair of latent representations across models on
SFU+Amazon for each disentanglement objective. As the content space is 62-dimensional, we compute the
correlation coefficient between each dimension and report the mean and standard deviation below in parentheses.

C.3 Controlled Generation
As discussed in Section 5.2.2, modifying the nega-
tion or certainty status of the input works well only
in one direction (negated to positive, uncertain to
certain). While the content space is uninformative
of negation and uncertainty, we found that it is
highly informative of sentence length, which hin-
ders the decoder from adding or removing tokens
to satisfy the negation/uncertainty representations.
Examples of successful and failed transfers illus-
trating this phenomenon are given in tables 13 and
14. Table 12 reports the R2 of linear regressions of
the number of tokens in the input on samples from
the negation, uncertainty, and content distributions,
respectively.

Note that the transferred results have the same
number of tokens as the inputs, and the decoder
even repeats tokens where necessary to meet the
length requirement (e.g., fit fit in the last negation
example in Table 13). In general, the decoder
seems to satisfy the value of the transferred fac-
tor by changing tokens in the input. This is clear in
the last uncertainty example in Table 13, where the
certain input is correctly changed to uncertain, but
the uncertainty cue replaces the negation cue.

Latent train dev test
Negation 0.048 0.057 0.063
Uncertainty 0.051 0.034 0.041
Content 0.901 0.903 0.900

Table 12: R2 of the sentence length regression models
on z’s sampled from INF+ADV+MIN model. R2 = 1
represents perfect predictive ability.

Neg

i received my lodge grill griddle and it
is extremely well made.

i got my kitchen steel corkscrew but it is
not well made.

if you do n’t have one get it now.
if you must have need one used it now.

but it does not fit the tmo galaxy s.
but it does fit fit the net galaxy s.

Unc

it is light in weight and easy to clean.
it is slid in sponges and seems to clean.
it snaps onto the phone in two pieces.
it should affect the phone in two ways.
but we did n’t use it on the other one.
but we would have use it on the other

one.

Table 13: Successful inversions of negation and uncer-
tainty. Inputs are in standard font and reconstructions
are in italics. bold tokens indicate negation/uncertainty
cues.

8393



Neg

it is light in weight and easy to clean.
it is tight in light and easy to clean.

the x s were fine until i washed them.
the iphone s worked fine and i return

them.
used for months and it is still going

strong.
used for now and it is still going strong.

Unc

i received my lodge grill griddle and it
is extremely well made.

i received this roasting s cooking and it
is still well made .

glad i found these at a reasonable price.
do i have these at a good price.

it broke immediately when i put it on.
it was immediately when i put it on.

Table 14: Failed inversions of negation and uncertainty.
Inputs are in standard font and reconstructions are in
italics. bold tokens indicate negation/uncertainty cues.

Split N
Median

% Negated % Uncertain
Length

Train 390,409 9 14.5% 8.8%
Dev 5,971 9 15.5% 9.1%
Test 3,118 9 12.9% 10.4%

Table 15: Statistics for the combined SFU and weakly
labeled Yelp dataset.

D Results on SFU+Yelp

We here provide a complete evaluation of our mod-
els on a combination SFU+Yelp dataset, analogous
to that performed on SFU+Amazon in the main
text. Due to the shorter average length in tokens of
the Yelp examples and the consequent reduction in
compute power required, we were able to construct
a combined dataset using the entire Yelp dataset
with weak negation and uncertainty labels assigned
according to the method described in § 4.1.1 of
the main text. Statistics of this dataset are given in
Table 15.

First, visualizations of the latent distributions
in Figure 6 show 1) that the negation and uncer-
tainty spaces are bimodal and discriminative of
their corresponding factors while the content space
is discriminative of neither; 2) the latent spaces are
smooth and approximately normally distributed,
despite two outliers.

D.1 Disentanglement
The mean predictive performance of each latent
space for each objective is given in Table 16, com-
puted from 30 resamples of the latents for each

10 8 6 4 2 0 2 4

Negation
positive
negative

2 0 2 4 6 8 10 12

Uncertainty
uncertain
certain

Content - Negation Content - Uncertainty

Figure 6: Histogram and t-SNE plots of the nega-
tion, uncertainty, and content spaces learned by the
LELBO+LINF+LADV+LMIN model on SFU+Yelp test
set.

test example. We also report the mean MI be-
tween each latent space and each factor over 30
resamples, as this provides additional insight into
the informativeness of each space. Like the re-
sults on SFU+Amazon, these results show that
the negation and uncertainty space are highly in-
formative of their target factors and uninforma-
tive of the non-target factors. Additionally, the
content space is informative of neither, show-
ing near-random prediction performance. How-
ever, unlike the SFU+Amazon results, all objec-
tives perform approximately equally, although the
full LELBO+LINF+LADV+LMIN objective does
reduce the informativeness of the content space
slightly compared to the other objectives.

Box plots of the MIG and corresponding MI val-
ues for each disentanglement objective are given
in Figure 7. In general, there is less disentangle-
ment on SFU+Yelp than on SFU+Amazon (MIG
≈ 0.4 vs MIG ≈ 0.6 on SFU+Amazon). A com-
parison of the MI values reported in Table 16 to
those in Table 1 of the main text shows the cause:
the negation and uncertainty latents in SFU+Yelp
are less predictive of their respective target factors
(MIs ≈ 0.3 vs ≈ 0.4 on SFU+Amazon) while the
content space is more predictive of these factors
(e.g., content-uncertainty MI = 0.196 on SFU+Yelp
vs 0.136 on SFU+Amazon). This may be due to a
data mismatch between SFU and Yelp, since SFU
is a dataset of product reviews, while Yelp contains
mostly restaurant and store reviews.

8394



LELBO +LINF +LINF+LADV +LINF+LMIN +LINF+LADV+LMIN

Latent Factor MI P R F1 MI P R F1 MI P R F1 MI P R F1 MI P R F1

n
n 0.020 0.560 0.628 0.555 0.308 0.916 0.954 0.934 0.307 0.913 0.954 0.932 0.308 0.911 0.953 0.931 0.307 0.920 0.954 0.936
u 0.007 0.530 0.558 0.512 0.012 0.543 0.596 0.527 0.012 0.560 0.628 0.556 0.010 0.550 0.612 0.538 0.012 0.557 0.623 0.548

u
n 0.017 0.549 0.627 0.505 0.013 0.540 0.577 0.525 0.017 0.543 0.584 0.527 0.012 0.542 0.582 0.525 0.016 0.543 0.582 0.530
u 0.036 0.583 0.674 0.560 0.281 0.926 0.963 0.943 0.282 0.920 0.962 0.940 0.282 0.922 0.963 0.941 0.284 0.921 0.962 0.940

c
n 0.236 0.654 0.783 0.671 0.183 0.601 0.705 0.591 0.173 0.575 0.658 0.553 0.174 0.575 0.656 0.551 0.162 0.561 0.630 0.531
u 0.234 0.617 0.761 0.624 0.197 0.591 0.716 0.579 0.211 0.584 0.702 0.569 0.180 0.577 0.689 0.557 0.196 0.577 0.684 0.559

Table 16: Mutual Information estimate between each latent and factor. Precision, recall, and F1 of the latent space
classifiers for each factor. Shown are the mean values computed from 30 resamples of the latents for each example
on the SFU+Yelp test set.

Figure 7: Box plots of the Mutual Information Gap (MIG) for each disentanglement objective for the negation and
uncertainty factors computed on the Yelp test set.

+LINF+LADV

+LINF +LMIN

Factor Pass P R F1 P R F1

Neg 1 0.962 0.939 0.950 0.960 0.942 0.951
2 0.932 0.887 0.908 0.944 0.907 0.924

Unc 1 0.975 0.955 0.965 0.982 0.950 0.965
2 0.898 0.900 0.899 0.933 0.894 0.912

Table 17: Consistency of the decoder with the ground-truth values of negation and uncertainty evaluated on the
SFU+Yelp test set. Pass 1 refers to the predictions from the original inputs. Pass 2 refers to the predictions from the
re-encoded reconstructions. Pass 1 can be considered an upper bound on the performance of pass 2.

+LINF +LINF +LINF+LADV

LELBO +LINF +LADV +LMIN +LMIN

u c u c u c u c u c

n 0.090 0.003 0.135 0.001 0.164 0.012 0.110 0.006 0.123 0.002
(±0.013) (±0.047) (±0.038) (±0.034) (±0.028)

u - 0.001 - 0.003 - 0.003 - 0.004 - 0.010
(±0.023) (±0.042) (±0.047) (±0.040) (±0.036)

Table 18: Pearson’s correlation coefficients between each pair of latent representations across models on SFU+Yelp.
As the content space is 62-dimensional, we compute the correlation coefficient between each dimension and report
the mean and standard deviation.

+LINF

+LINF +LINF +LADV

LELBO +LINF +LADV +LMIN +LMIN

BLEU
Train 0.805 0.786 0.793 0.786 0.796
Dev 0.492 0.382 0.394 0.383 0.398
Test 0.400 0.298 0.309 0.300 0.315

PPL
Train 52.7 54.8 53.3 54.1 53.7
Dev 75.9 76.9 76.2 77.4 76.5
Test 106.2 105.9 106.0 106.7 105.5

Table 19: Reconstruction self-BLEU and reconstruction perplexity (PPL) on each SFU+Yelp data split. Perplexity
is computed using GPT-2.
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D.2 Example Reconstructions

Input my jack and coke was seriously lacking.
top brie and lobster was seriously

lacking.

Recon my pastrami and swiss was totally
lacking.

the camarones and coke was totally
lacking.

Input plus the dude didn’t even know how to
work the computer.

unfortunately the managers didn’t do
too enough to compliment the computer.

Recon unfortunately the women didn’t even
know how to honor the experience.

plus the baristas didn’t even know how
to control the language.

Input the service was great and would gladly
go back.

the service was great and would easily
go back.

Recon the service was exceptional and would
probably go back.

the service was great and would
certainly go back.

Input she could not and would not explain
herself.

she could not and would not explain
herself.

Recon she could not and would not respond
herself.

she could apologize and would not
introduce herself.

Table 20: Example reconstructions decoded by the
INF+ADV+MI model from the SFU+Yelp test set.

D.3 Controlled Generation

Table 21 reports the accuracies of attribute trans-
fer on the SFU+Yelp test set. As reported for
SFU+Amazon above, attribute transfer works well
only when it is not necessary for the model to in-
troduce additional tokens.

Transfer direction Accuracy
pos → neg 0.38
neg → pos 0.87
cer → unc 0.36
unc → cer 0.86

Table 21: Attribute inversion accuracies by factor and di-
rection of transfer using the LINF+LADV+LMIN model
on the SFU+Yelp test set.

Neg

i totally agree but the way he said it was
very arrogant.

i even complained but the way but said
it was not helpful.

i will definitely come back for that and
the singapore noodles.

i absolutely never come back for that i
ordered singapore noodles.

overall i was not impressed and regret
going.

overall i was very impressed and
recommended going.

Unc

we couldn’t wait till he was gone.
we don’t wait till he was gone.

room was very adequate quiet and
clean.

room would seemed quiet quiet and
sanitary.

the ending is as it should be.
the ending is as it must be.

Table 22: Successful inversions of negation and uncer-
tainty on the SFU+Yelp test set. Inputs are in standard
font and reconstructions are in italics. bold tokens indi-
cate negation/uncertainty cues.

E Implementation Details

We implement our model in PyTorch (Paszke et al.,
2017). The encoder is a BiLSTM with 2 hidden
layers and hidden size 256. The decoder is a 2 layer
LSTM with hidden size 256. Embeddings for both
the encoder and decoder are of size 256 and are ran-
domly initialized and learned during training. The
encoder and decoder use both word dropout and
hidden layer dropout between LSTM layers, with
a dropout probability of 0.5. We also use teacher
forcing when training the decoder, with a probabil-
ity of using the true previous token set to 0.5. We
trained each model for 20 epochs with a batch size
of 128 and the ADAM optimizer (Kingma and Ba,
2015) with a learning rate of 3 · 10−4. Training
took around 6.5 hours for each model on one Tesla
v100 with 16GB of VRAM.

The latent space classifiers for the INF objective
and the adversarial classifiers for the ADV objec-
tive both used a single linear layer with sigmoid
activation. The adversarial classifiers were trained
with a separate ADAM optimizer with learning rate
of 3 · 10−4. For MI estimation as part of the MIN
objective we used the code released alongside the
CLUB paper (Cheng et al., 2020a) 11. For train-
ing the approximation network, we again use an

11https://github.com/Linear95/CLUB
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ADAM optimizer with learning rate 5 · 10−4.
All hyperparameter weights were tuned by hand.

We weight the KL divergence term of each latent
space separately as follows: βc = 0.01, βn =
βu = 0.005. We experimented with both higher KL
weights and KL annealing schedules, but found that
they did not improve disentanglement and higher
weights tended to negatively impact reconstruc-
tion ability. For the individual objectives, we set
the following weights: λINF = 1.0, λADV =
1.0, λMIN = 0.01. While we found the model
relatively robust to different values of λINF and
λADV , the MIN objective was found to be quite
sensitive to even small changes of both λMIN and
the learning rate of the MI approximation network.

E.1 Mutual Information Gap
The Mutual Information Gap (MIG) is the differ-
ence in MI between the top-2 latent variables ℓ{i,j}
with respect to a given generative factor k, normal-
ized to lie in [0, 1], with higher values indicating a
greater degree of disentanglement.

MIGk =
1

H[k]

(
I(z(ℓi); k)−max

j ̸=i
I(z(ℓj); k)

)
(15)

where ℓi = argmaxi′ I(z
(ℓi′ ); k) is the latent space

with the highest MI with the generative factor. We
estimate the MI between latent representations and
labels using the method proposed by Ross (2014),
implemeted using mutual_info_classif in
scikit-learn (Pedregosa et al., 2011) using 30 re-
samples from the predicted latent distributions for
each example.

F Ethical Considerations

This work is foundational NLP research on seman-
tics, and as such we do not foresee any immediate
risks, ethical or otherwise. However, representation
learning may be used as part of many downstream
NLP tasks such as information extraction, classi-
fication, and natural language generation, which
might be used for harmful surveillance, discrimina-
tion, and misinformation.

The SFU, Amazon, and Yelp datasets used in this
work do not attach unique identifiers such as user
IDs or names to data instances such that the original
authors might be identifiable. A manual review of a
small random subset of the data did not reveal any
overtly identifiable or harmful information within
the text.
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