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Abstract

While a great deal of work has been done on
NLP approaches to lexical semantic change de-
tection, other aspects of language change have
received less attention from the NLP commu-
nity. In this paper, we address the detection of
sound change through historical spelling. We
propose that a sound change can be captured
by comparing the relative distance through
time between the distributions of the charac-
ters involved before and after the change has
taken place. We model these distributions us-
ing PPMI character embeddings. We verify
this hypothesis in synthetic data and then test
the method’s ability to trace the well-known
historical change of lenition of plosives in Dan-
ish historical sources. We show that the mod-
els are able to identify several of the changes
under consideration and to uncover meaning-
ful contexts in which they appeared. The
methodology has the potential to contribute to
the study of open questions such as the relative
chronology of sound shifts and their geograph-
ical distribution.

1 Introduction

The study of sound change goes back to the be-
ginnings of modern linguistics in early nineteenth
century, when scholars such as Rask and Grimm
started making hypotheses about the way sound
changes over time, which in turn lead to the dis-
covery of regular sound correspondences between
ancient languages and the identification of cognates
in modern ones (Murray, 2015).

Since spoken language from the past is not avail-
able, sound change in ancient languages must be
deduced from written records by considering devel-
opment in spelling through time. In addition, while
we may be able to see from the written records that
a change did occur, less is known on the specific
dynamics of the change. Details of these dynamics
include knowledge of when the change started to
appear, how long it took for it to be complete, what

was the relative chronology of individual sounds in
a larger shift, what was the geographical distribu-
tion of a change and so forth.

Due to the sparsity of linguistic evidence, de-
tailed empirical studies of chronological sound
change are difficult to conduct. This is especially
the case for older stages of languages, where little
written text was produced, and much of what did
exist has been lost in transmission. However, as we
move forward in history to the rise of bureaucracy,
for example in medieval Europe, we see that an ex-
tensive amount of written records were made. Text
from this period of time is interesting in the context
of a study of sound change because it shows great
variability in spelling patterns. With the digitaliza-
tion of such archives', therefore, new opportunities
arise to apply computational methods to the study
of sound change through written text.

Considerable effort has already been devoted
to the development of computational approaches
aimed at discovering lexical semantic change
(LSC) in historical corpora (Tahmasebi et al., 2018).
However, change related to phonology, morphol-
ogy and syntax has remained out of the spotlight in
NLP research. In this study, we seek to bridge this
gap as regards phonology. Inspired by the work on
LSC, we propose a method whereby sound change
is traced via spelling change in historical text and
modeled by training diachronic character embed-
dings over text from different time periods.

We start by reviewing previous approaches to the
automatic detection of semantic shifts and spelling
modification due to sound change. Then we for-
mulate our hypothesis that a sound change can be
traced using diachronic distributional embeddings.
While sound change is not completely analogous to
word meaning change, we argue that similar meth-

' A list of available resources for different languages is pro-
vided in the Guide to Medieval Manuscript Research from the
University of Chicago Library: https://guides.lib.
uchicago.edu/c.php?g=813534&p=5805534.
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ods can be used for both. To verify our hypothe-
sis, we conduct three studies on simulated sound
change. First, we test the methods on the phono-
logical environment of a simple artificial language.
Then, we apply the same methods to a more com-
plex scenario created by simulating sound change
in a corpus of synchronic Danish text. Having es-
tablished the suitability of the methods on these
two datasets, we finally experiment with tracing
a well-known sound change in real historical lan-
guage data, again in Danish.

The implementation and datasets are available
online?.

2 Related Work

The application of NLP methods to automatic LSC
detection is already a rather well-developed sub-
field of NLP research (Tahmasebi et al., 2018; Ku-
tuzov et al., 2018). In particular, the emergence
of word embeddings as a viable way to model
the distributional hypothesis in semantics (Firth,
1957) has paved the way for an application of word
embeddings to LSC modeling (Kim et al., 2014;
Hamilton et al., 2016b; Eger and Mehler, 2016;
Yao et al., 2018). Synchronically, the meaning of a
word is characterized by word embeddings in terms
of the contexts it appears in. LSC is captured by
training word embeddings at different time points
and comparing these distributions typically using
cosine distance. Recently, contextualized word em-
beddings have also been applied to the problem.
While such models have the capability to capture
change in distinct word usages, preliminary results
suggest that traditional word embeddings are su-
perior to the task of semantic change detection
(Schlechtweg et al., 2020; Montariol et al., 2021).

One of the main issues in this comparison is the
temporal alignment of dense embedding spaces.
For example in the case of neural models, em-
beddings are initialized and trained stochastically,
which means that separate runs — on even the same
data — will yield different embedding spaces. Thus,
work has focused on the development of methods
to perform alignments to make dense embedding
spaces comparable across time (see Kutuzov et al.
(2018) for an overview). As an alternative to neu-
ral embeddings, scholars have also used purely
count-based measures, which are naturally aligned
across dimensions. Normalization techniques are

https://github.com/syssel/
letters—from-the-past

also applied, e.g. based on positive pointwise mu-
tual information (PPMI) (Hamilton et al., 2016b;
Yao et al., 2018).

Most studies of LSC do not rely on a control
dataset against which to validate their conclusions.
In Dubossarsky et al. (2017), on the contrary, it
is argued that any claims about putative laws of
semantic change in diachronic corpora must be
evaluated against a relevant control condition. The
authors propose a methodology in which a control
condition is created artificially from the original
diachronic text collection by reshuffling the data.
No systematic LSC is expected in the artificially
developed control dataset.

The distributional hypothesis has also been pro-
posed as an explanatory model within the domain
of phonology suggesting that phonological classes
are acquired through distributional information
(Chomsky and Halle, 1968; Mielke, 2008). Driven
by this hypothesis, recent work has focused on test-
ing how distributional properties can be learned
by phoneme embeddings (see Mayer 2020 for an
overview). Silfverberg et al. (2018) investigated
to what extent learned vector representations of
phonemes align with their respective representa-
tions in a feature space in which dimensions are
articulatory descriptors (e.g., =plosive). Recently,
Mayer (2020) has shown that phonological classes,
such as long and short vowels, can be deduced from
phoneme embeddings normalized using PPMI by
iteratively performing PCA on candidate classes.

Thus, while the distributional hypothesis for
phonology is well-established, one notable issue is
the fact that the empirical evidence to study sound
change is relatively inaccessible since it requires
recorded speech or phonologically transcribed data.
Simulation is therefore used as a tool for study-
ing the underlying mechanisms of sound change
by creating computational models based on lin-
guistic theory (Wedel, 2015). Through simulation,
questions pertaining to e.g., what factors influence
the (in)stability of vowel systems across genera-
tions (de Boer, 2003) can be modeled by control-
ling the assumptions made by the model. Work
on simulation ranges from implementing theoreti-
cal approaches using mathematical models (Pierre-
humbert, 2001; Blythe and Croft, 2012) to iterated
learning and neural networks (Hare and Elman,
1995; Begus, 2021).

While the output of such models can be tested
empirically on what we observe at a synchronic
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level, they are primarily theoretically driven. In this
paper, we wish to take a data-driven approach and
utilize some of the methods reviewed above to track
historical sound change in writing. Rather than
using word embeddings as done to model lexical
change, we will use character embeddings, that are
better suited to the task of sound change modeling.

3 Modeling Sound Change

Within the field of LSC detection, change in word
semantics is traditionally measured by computing
pairwise similarity (Hamilton et al., 2016b) over
a time series, (¢, ..., t + ¢), in which a shift in the
meaning of a word, w;, can be measured by its
relative distance to another word, w;. In this way,
hypotheses about specific shifts may be tested. An-
other measure is semantic displacement, in which
semantic change for a given word is quantified by
measuring its temporal displacement. For both
measures, looking at consecutive time steps pro-
vides a measure to the rate of change of a word —
in relation to another word, or independently.

While LSC is about meaning shifts of unchanged
word forms, sound change is a change of form, i.e.,
a given phoneme changes to another one within cer-
tain contexts. We denote such a change a — b/ c,
where ‘c’ stands for a given context. While changes
of either a or b will be reflected in changes to their
individual distributions (displacement), looking at
them independently of one another will not tell us
whether one of the phonemes is becoming similar
to the other. Therefore, we suggest to look at the
pairwise similarity between a and b. More specif-
ically, given a time series (¢1, ..., t,), in which ¢}
denotes a time before a sound change was in effect
and ¢,, denotes a time where a sound change is com-
pleted, we expect b; to move towards a; as ¢ — n,
in other words to become similar to aq, since it will
begin to appear in the same contexts.

As was noted earlier, sound is not accessible in
historical text, to which we would like to be able to
apply our methodology. In historical text preced-
ing spelling conventions, sound is assumed to be
reflected in spelling. While detailed philological
and linguistics analyses of written language can
help to determine if a distinct spelling corresponds
to a particular phoneme, or whether that spelling is
rather a reflection of synchronic spelling variation
(Minkova, 2015), resources including such analy-
ses are scarce. Thus, we chose to use characters as a
proxy for sound, and model sound change through

changes in the distance between pairs of charac-
ter distributions. In addition, before assuming that
an observed decrease in the distance between two
such distributions reflects a real change, we also
want to see that the same decrease is not visible
in a control corpus in which no such change has
indeed taken place.

4 Experimental Setup

In order to verify the hypothesis that sound change
can be traced using distributional information with
the methodology proposed above, we test whether
we are able to trace simulated change in synthetic
data. As a first synthetic setting, we restrict our-
selves to track change in a synthetic language with
simple phonotactics. In this way, we get a sense
of whether the proposed hypothesis works under
perfect conditions, i.e., one in which characters cor-
respond with phonemes one-to-one. In the second
synthetic setting, we seek to imitate the condition
of tracing change in an orthographic setting by
simulating change in a corpus of synchronic text
in which character distributions interact with the
noise added by spelling and lexicon. In both syn-
thetic settings, we compare the simulated change
to a control setting where no change has occurred.

Finally, we will test the hypothesis on real data.
Our goal is to trace the lenition after vowels of
voiceless plosives, p t k, to their voiced counter-
parts, b d g, in historical Danish. While this change
is believed to have initiated around the beginning of
the 14t century, details about the relative chronol-
ogy of the series and geographical distribution of
the change are difficult to account for (Frederiksen,
2018). Therefore, in an attempt to discover inter-
esting patterns of this change, we train character
embeddings on historical sources from the periods
following the time when the change is believed to
have started. As we did for the synthetic data, and
again following Dubossarsky et al. (2017), we also
introduce a control setting to test the significance
of the observed changes.

4.1 Data

Parupa is an artificial language introduced by
Mayer (2020). It is characterized by a small phono-
logical inventory?, and simple phonotactic rules for
how sounds combine:

* only CV syllables are allowed

3CilptkbdgriVilieuoal
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* /p t k/ occur before high vowels, /i u/

* /b d g/ occur before non-high vowels,
le of

* only /b p/ occur word-initially
¢ /r/ occurs before all vowels

« all consonants can occur before /a/

We created five corpora of Parupa consisting
of 20,000 words each using the Hidden Markov
Model provided by Mayer (2020)*: While the first
corpus, parupasj, preserves the phonotactic rules
listed above, the remaining four include a sound
change, p — b /_u, i >, which happens gradually
(linearly) and is fully completed in parupas.
Additionally, we created five control corpora (one
for each of the target ones and with the same
vocabulary) which do not include any simulated
sound change. Each of the corpora consists of
50, 000 words.

The Danish UD treebank To collect a corpus of
synchronic language, we extracted the training sen-
tences from the Danish UD treebank (Johannsen
et al., 2015). From this collection of sentences,
we extracted five sub-corpora (UD-Danishj-s)
consisting of ~16,000 words each, in which we
simulated a sound change, g — k/V_{V # #)°. As
done in the case of Parupa, the sound change was
simulated gradually, with linear increase in change
probabilities (i.e., 0, 0.25,0.50,0.75, 1). To create
the control condition, we also kept a version of
the sub-corpora where no change was simulated.
The five control versions are thus identical to the
five target corpora in terms of vocabulary and
distributions, except for the simulated change.

Historical spellings of geographical names
Danmarks Stednavne is a on-going lexicographic
book series creating a register of geographical
names in Denmark. The register also serves as
a philological resource by listing attestations of the
names coming from various historical resources.

*nttps://github.com/connormayer/
distributional_learning

5The underscore indicates the position of the changing
element, i.e., p changes into b when preceding u or i. This no-
tation using an underscore to indicate position of the changing
element will be used throughout the rest of the paper.

bie., g between vowels, word-final after vowel, or after
vowel preceding word-final 7. The latter condition was created
in order to capture adverbial forms of adjectives ending in -g.

For example, the entry for Copenhagen includes
over 700 historical attestations listed by date’. In
addition to the printed volumes (Danmarks Sted-
navne, 1922-2013), geographical names and their
connected metadata (e.g., geographical location
and historical attestations) have been digitized, and
can be found in an online edition® which comprizes
over 210, 000 names and 900, 000 historical attes-
tations. To study the lenition of /p ¢ k/, we extracted
historical attestations of names ranging from the
12 to the 18 century. Using the attestation before
the 14" century as a reference to the time before
the change was initiated (¢1), we divided the list of
names into bins of half a century to track the devel-
opment of character embeddings through time. The
choice of bin size is an important methodological
consideration when tracing language change (Kutu-
zov et al., 2018). From a philological perspective,
50 years correspond to two generations of writers
(‘spellers’), which is considered a realistic bin size
to track development of spelling in writing. This
provides us with eleven sub-corpora with 31, 000
(£15,000) name tokens on average.

In order to create a control setting, we gener-
ated a corresponding number of sub-corpora by
stratifying the names with respect to their date of
attestation, corresponding to the ‘shuffle’ approach
suggested by Dubossarsky et al. (2017). In this ap-
proach, no diachronic change is expected to be ob-
served, as attestations are distributed evenly across
bins based on their original date of occurrence.

4.2 Character Embedding Model

To represent characters in a distributional space,
we use PPMI embeddings. Contrary to dense em-
beddings, these are easy to interpret and when com-
pared across different initializations, they are natu-
rally aligned, so we do not introduce noise caused
by the alignment process.

Using the implementation by Mayer (2020), the
sliding window is directional, and thus we distin-
guish contexts preceding and following the target
character. While this directionality is neglected
when creating PPMI word embeddings, the direc-
tion matters when using character embeddings to
test the intuition behind the distributional hypothe-
sis, in which direction in a context is meaningful.

The context window is chosen according to the

"e.g., Kopmanahafn (1247), Kgpmannehafn (1249), Kigp-
nehaffn (1388), Kigbendehaffn (1429).

$https://danmarksstednavne.
navneforskning.ku.dk
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conditioning of the change aimed to be captured:
For Parupa, the simulated change is conditioned
on only one character, and thus for this experi-
ment we applied bigrams. For UDDanish, we ap-
plied trigams as the change is conditioned by two
characters (the preceding and succeeding). For
the tracking of lenition in Danish, the condition
of the change is expected to be similar to the one
we simulated in the synthetic setting of UDDanish.
However, to ensure we capture enough context, in
this case we expand the model to using 4-grams.

4.3 Measuring Change

We measure sound change in terms of a decrease
in the distance between two character distribu-
tions over time. In other words, given two char-
acter distributions A and B corresponding to any
two phonemes /a/ and /b/, we should see that
distance(A), B(™) gets smaller for greater val-
ues of n if there is a change A — B.

While most studies use cosine distance to mea-
sure the difference between distributions (Kutuzov
et al., 2018), we chose to use Euclidean distance as
it directly reflects our hypothesis by taking the sum
of differences in each dimension (context).

For each of the corpora being investigated, we
use the R software (R Core Team, 2021) and the
‘effects’ package (Fox and Weisberg, 2019) to build
linear regression models that predict the distribu-
tional distance between two sounds per temporal
interval in the target and the control versions of the
corpus. The advantage of employing linear regres-
sion in this case is that we can test the effect of
multiple factors as well as their interaction. In our
case, the distance between the two sounds being
investigated is the dependent variable, and we want
to predict the main effects of temporal interval and
corpus as well as the interaction between them. To
argue that there has been a sound change across
time, there must be a significant effect of temporal
interval on distance. In addition, we would like to
see an interaction between this effect and the effect
of the corpus variable in that the change should
be absent, or at least significantly smaller, in the
control corpus.

5 Results

Table 1 shows the results of the linear regression
models we developed to test whether any evidence
of sound change discovered in the target corpora,
where sound change is either simulated or histori-

Interaction of Bin and Corpus on Distance in Parupa
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Figure 1: Interaction of Bin and Corpus on Distance in
Parupa (a) and the Danish UD treebank (b)

cally present, stands the comparison with the con-
trol corpora. The ‘intercept’ estimate corresponds
to the distance predicted between the two sounds
being investigated in the initial temporal interval.
The ‘Bin’ estimate shows by how much the distance
is expected to change for every temporal interval.
A negative effect means that the distance between
the two sounds is becoming smaller. The ‘Con-
trol’ effect shows the predicted change to the initial
Intercept in the control corpus (this corresponds
to the effect of the corpus variable), and finally
‘Bin:Control’ shows the interaction between tem-
poral bin and corpus type.

In the R implementation, each of the models is
expressed in terms of the following equation:

model = Ilm(Distance ~ Bin * Corpus) (1)

In both corpora where change is simulated, there
is a significant effect of temporal interval. This
is expected given the fact that gradual change has
been induced in the data. For both corpora, the
effect of the control corpus on the initial sound
distance is not significant. Importantly, the inter-
action between the effect of the temporal bin and
the control corpus is significant in both cases. The
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Effect Estimate Std. Error  p-value
(Intercept) 4.35 0.12 <.001 ***
Parupa Bin -0.25 0.04 <.001 *%**
Control -0.38 0.17 0.07
Bin:Control 0.25 0.05 <.01 **
(Intercept) 46.81 0.67 <.0071 *#**
UD Danish  Bin -1.80 0.20 <0071 ***
Control -0.96 0.94 0.35
Bin:Control 1.60 0.28 <.01 **
(Intercept) 102.82 0.53 <.00] ***
Geo Names Bin 0.16 0.08 0.054
p—b Control -1.50 0.75 0.06
Bin:Control -0.07 0.12 0.53
(Intercept) 106.77 0.59 <.0071 *#**
Geo Names Bin -0.53 0.09 <.00] ***
k—g Control -6.55 0.84 <.001 ***
Bin:Control 0.55 0.12 <.00]
(Intercept) 110.23 0.99 <007 ***
Geo Names Bin -0.42 0.15 <.01 **
t—d Control -9.13 1.41 <0071 ***
Bin:Control 0.46 0.21 <.05 *

Table 1: Coefficients of linear regression models predicting increase of distance between the investigated sounds

in two simulated corpora.

interaction supports the hypothesis that we see a
pattern of change in the simulated corpora that is
significantly different compared to the control data.
The interactions are shown in the plots in Figure 1.

Turning to the results for the Danish Geographi-
cal Names corpus, while the models show signifi-
cant effects of Bin, Control and interaction between
the two for the £k — g and the + — d changes, no
significant effects are found for the p — b change.
When we look at the corresponding interaction
plots in Figure 2, we see that the distance between
p and b in the corpus decreases in the third bin to
then increase and finally slightly decrease again
in a non-linear way. The changes displayed in the
plots in (b) and (c), on the contrary, follow the ex-
pected trend: The observed consonant is moving
towards its voiced version in the real corpus but not
in the control.

6 Discussion

The results from the two simulation studies sug-
gest that sound change can be traced with our pro-
posed methodology of measuring the distance be-
tween pairs of character distributions over time. We
showed this both in a simplified setting (Parupa),
and in the orthographically noisy environment pro-

vided by synchronic Danish data (UD Danish).

The main assumption in these simulation studies
was that change could be modeled linearly. How-
ever, as discussed by scholars, change is often not
linear, and can follow an s-shaped curve through a
community (Denison, 2003). In a study of seman-
tic lexical change based on synthetic data, Shoe-
mark et al. (2019) experiment with the injection of
changes the probabilities of which vary linearly or
logarithmically, and find that regression in general
provides reasonable results in spite of being sensi-
tive to outliers and of producing a certain amount
of false positive results. It also performs better than
a non-parametric measure like Kendall’s 7. The
results obtained in our study seem to confirm the
usefulness of linear models to detect sound change
even though one of the cases of lenition targeted in
the Danish Geographical Names corpus could not
be modelled.

Focusing on our results on the tracing of leni-
tion, then, we were able to identify a change from
/t k/ — /d g/. However, an important thing to
note in regards to the control setting for these re-
sults is how it diverges from the synthetic settings,
which we initially used as a verification of the pro-
posed hypothesis to trace sound change. There, the
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Figure 2: Interaction of Bin and Corpus on Distance in
the Danish Geographical Names: Looking at p — b (a),
k—g()andt—d(c)

2-gram Slope Pearson’s r
_u -0.20 -0.88
_i -0.19 -0.89
i -0.07 -0.94
a_ -0.06 -0.98
o -0.06 -0.89

Table 2: Analysis of the simulated change from p to
b in Parupa. Five most important dimensions after fil-
tering bigrams with respect to Pearson’s r (<-0.2) and
p-value(<0.05). The table is ordered by slope. ‘#’ indi-
cates word boundaries.

3-gram Slope Pearson’sr
i -0.71 -0.93
i_e -0.64 -0.89
it -0.59 -0.93
di_  -0.58 -0.98
a_e -0.57 -0.96

Table 3: Analysis of the simulated change from g to k
in synchronic Danish. Five most important dimensions
after filtering trigrams with respect to Pearson’s r (<-
0.2) and p-value(<0.05). The table is ordered by slope.
‘# indicates word boundaries.

variation in vocabulary was the same in the simu-
lated and the control settings. In this case, however,
vocabulary variation is lower in our control setting
due to the shuffling of the name attestations. As a
consequence, the control setting does not properly
test the possible confounding effect of vocabulary
within the proposed methodology. Therefore, we
proceeded to evaluate what types of contexts the
model picked up.

To get a sense of this, instead of looking at the
euclidean distance for the full embedding, we ran
linear regression on the target data looking at dif-
ferences between character distributions for each
dimension. We then extracted the patterns corre-
sponding to the dimensions showing significant
differences and considered those with the highest
Pearson’s r coefficient (Tables 2-4).

Starting with the resulting patterns for Parupa
and UD Danish, in both cases we are able to iden-
tify the exact contexts where the change was simu-
lated: In Parupa before i/u and in the UD Danish
corpus, between vowels and in the frequent suffix
-ig(t) (although the end-of-word is not captured due
to n-gram size restrictions). For Parupa, it is worth
noting how the model captures patterns after vowel
as well. This position is only implicitly involved in
the conditioning of the simulated change, and the
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4-gram Slope Pearson’sr
rvi_  -0.49 -0.85
®_er -0.42 -0.78
sii_ -040 -0.71
m#a_  -0.40 -0.81
oli_  -0.39 -0.84
an_h -0.32 -0.80
ara_ -0.31 -0.62
n_ga -0.29 -0.82
vi_# -0.29 -0.70
is_a -0.29 -0.73

Table 4: Analysis of the change from k to g in histori-
cal records of geographical names. Ten most important
dimensions after filtering 4-grams with respect to Pear-
son’s r (<-0.2) and p-value(<0.05). The table is ordered
by slope. ‘#’ indicates word boundaries.

slope correspondingly less steep.

Moving on to the tracing of sound change in
real data, we focus our analysis on k — g, which
showed the greatest change. Considering the pat-
terns, rvi_ and vi_ #, these are connected to the
the word vig ‘inlet’, commonly used as a suffix
in the formation of geographical names in Dan-
ish. Descending from a Proto-Germanic word with
final -k (wikwan ‘to give way; to turn (away)’, com-
pare German weichen ‘id.” and Dutch wijken ‘id.
(Kroonen, 2013)), the suffix is in early sources at-
tested with a -k: For example, out of the six written
sources of the geographical name Rgrvig before the
14 century (corresponding to bin 1-3 in our study),
four were written with a -k, while in later sources
forms with -g became predominant, with the latest
attestation of -k appearing in 1465. Many of the pat-
terns can be attributed to spellings related to similar
changes9’10. However, in the case of n_ga, is_a
and an_h these are not immediately interpretable.
In the case of oli_, this pattern is most likely
related to the word bolig ‘home;dwelling’. This
word, however, does not have a comparable ances-
tor with -k, and the change has to be explained as
reflecting later innovation, namely beginning trend
of using bolig in name formations among younger
attestations.

This latter example is related to an important is-
sue in language evolution: When language changes

Danish sig ‘bog; mire’ from Old Danish sik, compare
Norwegian and Swedish (dialectal) sik (Danmarks Stednavne,
1922-2013)

"Danish ager ‘field’ from Proto-Germanic akra, compare
English acre and Swedish dker (Kroonen, 2013).

through generations, we also observe shifts in cul-
ture. Different types of ‘data drift’ are in fact
discussed by Hamilton et al. (2016a) in the con-
text of LSC. The authors suggest that they may
be modeled independently of each other by means
of different measures of change. The effect of
cultural change has yet to be discussed for sound
change. However, it is an important discussion,
since phonology, when looking at it from a corpus-
based perspective, is not only governed by phono-
tactic constraints, but also a by-product of word
usage, which is in turn dependent on cultural pat-
terns.

In this respect, another important point to note
about the retrieved patterns — both from the sim-
ulation of UD Danish and the tracing of k — g —
is that many of them reflect derivational or inflec-
tional suffixes, and are thus characterized by high
frequency of occurrence across word forms.

While the observation that frequent patterns are
more easily captured may seem trivial, lack of suffi-
cient evidence may nevertheless be the reason why
we cannot model the p — b change. Germanic p de-
scends from Proto-Indo-European (PIE) *b, which,
however, has a special place in the PIE phoneme
inventory and is considered a sort of black sheep
that some scholars do not believe to have existed
due to its few attestations. In fact, the attestations
of Germanic p most often come from loan words
and are not seen in morphemes. Thus the evidence
for p — b is inherently scarcer than for the other
two consonant pairs we have investigated. Further
investigation of this sound change could be carried
out by means of additional simulations, or more
detailed analysis of the obtained character distribu-
tion, and is left for the future.

A final observation on the identified patterns is
that the model fails to generalize across synchronic
variation in spellings. For example, we see that a
spelling with ii is treated alongside spelling with
a single i. While this type of variation could to
some extent be accounted for by treating it as an
independent variable, such a solution would have
consequences for our experiment design in that we
use PPMI weighting on raw n-gram counts. This
method enabled us to interpret the exact inner work-
ings of the model and find the contexts in which
a change has happened. If we had used neural
models for example, in which characters are rep-
resented by dense embeddings, similar characters
would have shared similar representations, thereby
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perhaps allowing the model to generalise e.g., to
sound change occurring after a vowel. In this study,
we wanted to privilege explainability, but dense
representations should be explored in the future.

7 Conclusion and Future Work

In this paper we presented a novel method for the
modeling of sound change through the use of di-
achronic character embeddings. Sound change is
modeled in terms of increasing similarity between
character distributions across time intervals. The
proposed method was tested on synthetic data with
promising results, and then applied to a real world
scenario with the goal of tracing the lenition of
Ip t kl — Ib d g/ in Danish by looking at spelling
in historical sources. The method was able to de-
tect the changes for two of the sound pairs, and
also to point at specific contexts of occurrence that
influenced the changes. However, our evaluation
showed that the proposed models were sensitive
to variation relating to vocabulary. To what extent
such variation is responsible for the occurrence of
false positives has yet to be investigated.

For scholars interested in sound change, there are
a number of important open questions, such as the
relative chronology and geographical distribution
of sound shifts. Although we have not addressed
these questions here, we believe our methodology
can be further developed in ways that would allow
to do so, e.g., by adding geographical location as an
additional factor in the models. Both issues would
constitute interesting avenues for future research.

In this paper we have used purely count-based
methods. While this approach enables us to di-
rectly interpret the results of the models, it also suf-
fers from its inability to generalise across contexts.
This drawback motivates experimenting with neu-
ral methods that make use of dense character rep-
resentations, to test whether they can make similar
generalisations as done by historical linguists, par-
ticularly as regards infrequent patterns that could
be captured across word forms.
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