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Abstract

Most works on financial forecasting use infor-
mation directly associated with individual com-
panies (e.g., stock prices, news on the com-
pany) to predict stock returns for trading. We
refer to such company-specific information as
local information. Stock returns may also be
influenced by global information (e.g., news
on the economy in general), and inter-company
relationships. Capturing such diverse informa-
tion is challenging due to the low signal-to-
noise ratios, different time-scales, sparsity and
distributions of global and local information
from different modalities. In this paper, we pro-
pose a model that captures both global and lo-
cal multimodal information for investment and
risk management-related forecasting tasks. Our
proposed Guided Attention Multimodal Multi-
task Network (GAME) model addresses these
challenges by using novel attention modules
to guide learning with global and local infor-
mation from different modalities and dynamic
inter-company relationship networks. Our ex-
tensive experiments show that GAME outper-
forms other state-of-the-art models in several
forecasting tasks and important real-world ap-
plication case studies.

1 Introduction

Forecasting stock prices or returns is an important
task in trading. Such forecasts can also be used
in investment and risk management applications
such as portfolio allocation and risk forecasting.
Stock returns in financial markets are influenced by
large volumes of textual information from diverse
sources, e.g., news, blogs, social media. Such tex-
tual information can be directly associated with a
specific company (local), e.g, a company’s CEO
stepping down; or relevant to multiple companies
(global), e.g., disruptions in supply chains due
to export curbs in key countries, airline industry
bankruptcies. In this paper, articles with company
tags are treated as local information. All articles are

treated as global information as any article could
be potentially relevant to a company.

Direct and indirect relationships between com-
panies also serve as channels through which the
effects of information from both global and local
textual and numerical information propagate and in-
fluence stock returns, e.g., a disruption in company
A could affect all its suppliers; a scandal involv-
ing company A’s CEO may affect company B if
the CEO is a member of company B’s board. We
illustrate such diverse information and effects in
Figure 1.

Apart from low signal-to-noise ratios in finan-
cial time-series due to market forces, there are other
challenges in modeling such diverse information.
Time scales of information from different modal-
ities are of different granularity, e.g., numerical
financial information may be available daily, while
publication of financial text happens at irregular
times. Companies’ local financial news are typi-
cally sparse and long-tailed, e.g., a company may
not be in the news for an extended period of time,
but suddenly becomes the focus of many news re-
ports in a short period due to a scandal. Local
textual information may also be noisy with regards
to its relevance to the company’s stock returns, e.g.,
a news article on a company’s HR practices may
have little effect on its stock returns, whereas a
news article on a sector’s outlook can have a sig-
nificant effect on the company’s stock returns even
without any mention of the company.

More research on financial forecasting is re-
quired to address such challenges. Most exist-
ing works model financial information of a single
modality (Ding et al., 2015; Ziniu et al., 2018; Du
and Tanaka-Ishii, 2020; Sawhney et al., 2021b),
and do not model the effects of inter-company re-
lationships. Some works (Feng et al., 2019; Xu
et al., 2021; Sawhney et al., 2021a) model both uni-
modal financial information and the effects of inter-
company relationships. There are however few
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Figure 1: (i) reaction of stock prices to news; (ii) news articles 1 and 2 as local text information associated with
specific companies; all news articles 1 to 3 as global text information potentially relevant to any company; (iii)
textual news effects propagate through different types of inter-company relationships.

works capturing multimodal financial information
and inter-company relationships (Ang and Ee-Peng,
2021; Sawhney et al., 2020b,a). Ang and Ee-Peng
(2021) utilizes both numerical and global textual
information, as well as inter-company relationships
but does not address challenges related to captur-
ing global and local multimodal information. Most
works also focus on a single task - forecasting stock
returns for trading. Another equally important set
of forecasting tasks which has many investment
and risk management applications involves similar
challenges. It involves a multivariate multitask set-
ting, where there is a need to manage the returns
and risks of financial portfolios that comprise many
stocks (multivariate), and make investment and risk
decisions based on multiple forecasts (multitask):
forecast stock i) mean returns and ii) risks (volatili-
ties) over a future horizon to balance potential re-
turns and risks when making investment decisions,
as well as forecast iii) correlations between stocks
in portfolios over a future horizon.

To address financial data challenges in multi-
task settings, we propose the Guided Attention
Multimodal Multitask Network (GAME) model.
Our key idea is to use attention to guide learning
between information from different sources and
modalities. GAME incorporates several important
components: i) guided latent cross-attention learn-
ing between modalities of different time-scales and
sparsity; ii) graph-guided representation learning
based on inter-company relationships with dynamic
weights learnt from multimodal information; and
iii) guided cross-attention learning between global
and local information. GAME is trained on multi-
ple tasks - forecasting means, volatilities and cor-
relations over a future horizon, which could be

used for portfolio allocation and risk management.
While existing works for financial forecasting cap-
ture either local or global information, or network
information with either global or local informa-
tion, GAME jointly captures global, local and net-
work information. Compared to existing works
that utilize transformers for time-series forecast-
ing (Zerveas et al., 2021), GAME proposes novel
cross-attention mechanisms that enable i) more ef-
fective modelling of local information of different
lengths and granularity from different modalities
by first encoding such information to a common la-
tent representation; and ii) the extraction of global
information by leveraging such local information.
Hence, our key contributions are as follows:

• To our knowledge, this is the first work to
propose a model for capturing global and lo-
cal information from multiple modalities for
multivariate multitask financial forecasting;

• We propose an attention-based module that
encodes multimodal information of different
sequence lengths and time granularity to a la-
tent representation space for efficient mutually
guided cross-attention learning;

• We design a graph encoding module that
uses inter-company relationships to propa-
gate multimodal information across compa-
nies; and dynamically updates relationship
weights with learnt importances;

• We design an attention-based module that uses
cross-attention between local and global infor-
mation to guide learning of relevant global
information;
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• We train the model on multiple forecasting
tasks to lower the risk of over-fitting, and
demonstrate the effectiveness of GAME on
forecasting tasks and real-world applications
against state-of-the-art baselines on real-world
datasets.

2 Related Work

As this work involves time-series forecasting and
network learning, we review key related works in
these areas.

Time Series Forecasting. Classical methods
(Box and Jenkins, 1990; Bollerslev, 1986) are com-
monly applied to time-series forecasting. How-
ever, they are designed for numerical data but not
unstructured financial text. Deep learning mod-
els have been increasingly applied to time-series
forecasting. They include feed-forward networks
(Yoojeong et al., 2019; Ding et al., 2015; Oreshkin
et al., 2020), convolutional neural networks (Pan-
tiskas et al., 2020; Borovykh et al., 2017; Wan
et al., 2019), recurrent neural networks (Flunkert
et al., 2020; Qin et al., 2017; Liu et al., 2020), and
transformers (Wu et al., 2020; Zerveas et al., 2021).
A detailed review of these works can be found in
Lim and Zohren (2021); Jiang (2021); Torres et al.
(2021).

Time-series Transformer (TST) (Zerveas et al.,
2021) is a recent model based on the transformer
encoder architecture designed for numerical inputs.
StockEmbed (SE) (Du and Tanaka-Ishii, 2020) is
designed for global textual features, while Finan-
cial News and Tweet Based Time Aware Network
(FAST) (Sawhney et al., 2021b) is designed for
local textual features. To encode sequences of tex-
tual features, SE utilizes bidirectional GRUs, while
FAST utilizes Time-aware LSTMs (Baytas et al.,
2017). These works are designed for information
from a single modality, do not model the effects
of company-to-company relationships, and do not
address the challenges of capturing global and local
multimodal information.

Network Learning. Graph neural networks
(GNN) compose messages based on network fea-
tures, and propagate them to update the embed-
dings of nodes and/or edges over multiple neural
network layers (Gilmer et al., 2017). In particular,
Graph Convolutional Network (GCN) (Kipf and
Welling, 2017) aggregates features of neighboring
nodes and normalizes aggregated representations
by node degrees. Graph Attention Network (GAT)

(Veličković et al., 2018) assigns neighboring nodes
with different importance weights during aggrega-
tion. Such GNNs are designed for static networks
with static node attributes and cannot be directly
applied to networks where attributes are evolving
time series.

A few recent works extend GNNs to predic-
tion tasks on financial time-series data (Ang and
Ee-Peng, 2021; Feng et al., 2019; Sawhney et al.,
2020b,a, 2021a). Relational Stock Ranking (RSR)
(Feng et al., 2019) uses LSTM to generate out-
put embeddings for numerical time-series data
of companies before feeding the latter to learn
company embeddings in a network using a GCN-
based model, but does not consider textual informa-
tion. Knowledge Enriched Company Embedding
(KECE) (Ang and Ee-Peng, 2021) captures nu-
merical and global textual information and uses a
GAT-based model to capture inter-company rela-
tionships but does not address the challenges of
capturing global and local multimodal information.
RSR and KECE also do not learn the dynamic im-
portance of inter-company relationships.

3 Guided Attention Multimodal
Multitask Network Model

GAME represents companies in a network G =
(V,E,X), where V represents a set of company
nodes, E represents relationships between com-
panies, X represents sequences of multimodal at-
tributes. Given a time step t, we define numerical
features Xnum

j (t) = [xnumj (t−K), ..., xnumj (t−
1)] to be the sequence of numerical price-related
data associated with company vj over a window
of K time steps up to t − 1. Textual news fea-
tures include local and global textual features, i.e.
Xtxt = {Xtxt,loc, Xtxt,glo}. The pre-encoded lo-
cal news textual features directly associated with a
company vj within the same window are denoted
as Xtxt,loc

j (t) = [xtxt,locj,1 (t−K), · · · , xtxt,locj,M (t−
K), xtxt,locj,M+1(t−K +1), · · · , xtxt,locj,S (t− 1)]. S =
M × K and assumes M news articles are cap-
tured for each company at each time-step. Where
there are less than M articles for any company
at any given time-step, we add PAD values of
zero to the sequence (Devlin et al., 2019). We
denote pre-encoded global news features over the
window period K as Xtxt,glo(t) = [xtxt,glo(t −
K), ..., xtxt,glo(t − 1)], with varying number of
news articles binned into each time step.

As shown in Figure 2, GAME first encodes
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Figure 2: Architecture of GAME

both Xnum(t) ∈ R|V |×K×dnum
and Xtxt,loc(t) ∈

R|V |×S×dtxt , where dnum, dtxt are embedding di-
mension sizes, to a common latent sequence length
L and dimension d by using latent attention-based
encoders inspired by Jaegle et al. (2021a), where
L ≪ K as part of the Guided Latent Cross-
Attention Learning step. We introduce guided
cross-attention to enable information from one
modality to guide the attention learning of an-
other. In the next Dynamic Graph-Guided Atten-
tion Learning step, representations of both modal-
ities are used to discover and update importance
weights of inter-company relationships before ap-
plying dynamic graph convolutions. A latent de-
coder inspired by Jaegle et al. (2021b) then de-
codes the numerical and local textual representa-
tions to the original sequence lengths K and S.
In the Guided Global-Local Attention Learning
step, we use the decoded local representations to
guide the attention extraction of the sequence of
global textual features relevant to each company
vj . The resultant representations are then com-
bined and sequentially encoded with a transformer,
followed by attention-based temporal and multi-
modal fusion. Finally, GAME generates forecasts
of means, volatilities and correlations of financial
returns over a selected future horizon of K ′ time-
steps, i.e. the means, volatilities and correlations
of Y returns(t) = [yreturns(t), ..., yreturns(t +
K ′)], where yreturns(t) = (price(t) − price(t −
1))/price(t− 1) and price(t) denote the percent-

age return and stock price at time step t respectively.
We further elaborate on GAME modules below.

Guided Latent Cross-Attention Learning.
This step addresses the challenge of learning
information from modalities of different se-
quence lengths, degrees of sparsity and distribu-
tions, specifically Xnum(t) ∈ R|V |×K×dnum

and
Xtxt,loc(t) ∈ R|V |×S×dtxt . For Xnum(t), we first
project the inputs to common dimension d and
add a learnt time vector (Kazemi et al., 2019;
Godfrey and Gashler, 2018). The time vector is
learned from the time-stamps T (t) corresponding
to the inputs. In this paper, we use day of week,
week and month of year for Tnum(t), and further
include seconds of day for T txt,loc(t) as these are
most relevant to the respective inputs. The time
vector Pnum(t) ∈ R|V |×K×d is learned by com-
bining functional forms and learnable weights and
could be viewed as a time-sensitive version of posi-
tional encodings used in transformers (Vaswani
et al., 2017). For GAME, the empirically cho-
sen components used to generate the time vectors
are Φnum

1 = sigmoid(Linear(Tnum(t))) and
Φnum
2 = cos(Linear(Tnum(t))), which enable

the model to extract non-linear and seasonality-
based temporal patterns. We then concatenate
these components and project them: Pnum(t) =
Linear([Φnum

1 ||Φnum
2 ]). The output of the pro-

jection and addition of time vectors step is:
Hnum(t) ∈ R|V |×K×d. For the latent encoding
step, we introduce latent units L ∈ RL×d. We re-
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peat L by |V | times to get R|V |×L×d, and apply
linear layers to generate queries from L, and keys
and values from Hnum(t). That is, Qnum(t) =
LinearQ(L), Knum(t) = LinearK(Hnum(t)),
V num(t) = LinearV (H

num(t)). We then ap-
ply scaled dot-product attention H̃num(t) =
softmax(Qnum(t)·Knum(t)T )V num(t)/

√
d. To

elaborate, the dot-product between Qnum(t) ∈
R|V |×L×d and Knum(t) ∈ R|V |×K×d gives us at-
tention weights of dimensions |V | × L ×K. We
use these attention weights to map V num(t) ∈
R|V |×K×d to H̃num(t) ∈ R|V |×L×d. The same
set of steps is repeated for Xtxt,loc(t) to ob-
tain H̃txt,loc(t). Hence, after the latent encod-
ing step, both H̃num(t) and H̃txt,loc(t) have the
same sequence length L and dimension d, i.e.
H̃num(t), H̃txt,loc(t) ∈ R|V |×L×d, and share a
common latent space due to the common L.

In the next guided cross-attention step, infor-
mation from each of the modalities guide attention
learning of the other. Sharing a common latent
space facilitates mutually guided learning between
the modalities and is more efficient as L ≪ K ≪
S. For this step, we generate queries, keys, and
values from the numerical and local text represen-
tations: Q̃num(t) = LinearQ(H̃

num(t)),
K̃num(t) = LinearK(H̃num(t)),
Ṽ num(t) = LinearV (H̃

num(t)),
Q̃txt,loc(t) = LinearQ(H̃

txt,loc(t)),
K̃txt,loc(t) = LinearK(H̃txt,loc(t)),
Ṽ txt,loc(t) = LinearV (H̃

txt,loc(t)).
Queries of one modality are used to guide the learn-
ing of the other modality as follows:

H̃num-txt (t) = softmax(
Q̃txt,loc(t) · K̃num(t)T√

d
)Ṽ num(t)

(1)

H̃txt-num (t) = softmax(
Q̃num(t) · K̃txt,loc(t)T√

d
)Ṽ txt,loc(t)

(2)

Dynamic Graph-Guided Attention Learn-
ing. We then utilize inter-company relation-
ships E to guide learning. While these rela-
tionships do not frequently change (e.g., com-
mon sector relationships), their importances vary
across time. Hence, we discover dynamic re-
lationship weights with the dynamic attention-
based edge weights discovery (DW) module.
We concatenate and project H̃num-txt(t) and
H̃txt-num(t) with a linear layer to obtain: H̃(t) =
Linear[H̃num-txt(t)||H̃txt-num(t)]. We then gener-
ate: QDW (t) = LinearQ-DW (H̃(t)); KDW (t) =

LinearK-DW (H̃(t)). To learn the importance of
inter-company relationships in a dynamic manner,
we compute attention weights:

Watt(t) = tanh(QDW (t) ·WDW ·KDW (t)T /
√
d) (3)

where WDW ∈ RL×d×d. As we carry out
this operation in the latent space with dimen-
sion L, Watt(t) ∈ R|V |×|V |×L. We then repeat
the adjacency matrix corresponding to the inter-
company relationships E by L times to get A(t) ∈
R|V |×|V |×L and compute the Hadamard product be-
tween A(t) and Watt(t): Ã(t) = A(t) ⊙Watt(t).
This results in the weighted adjacency tensor
Ã(t) ∈ R|V |×|V |×L with Ãij(t) ∈ RL representing
the weighted relational edges between asset i and
j across latent dimension L. Next, in the dynamic
network convolution step, we utilize the encoded
company representations H̃(t) and the weighted
adjacency tensor Ã(t) as inputs to a weighted dy-
namic graph convolution step to encode network
representations of companies. For company vi, we
compute its network representations Zi(t) ∈ RL×d

across L dimension by aggregating representations
from its neighbors N(i, t) based on Ãi,j(t), j ∈ V :

Zi(t) =
∑

j∈N(i,t)

exp(Ãij(t))∑
j′∈N(i,t) exp(Ãij′(t))

· H̃j(t) (4)

Across all assets, we obtain Z(t) ∈ R|V |×L×d. We
adopt this approach instead of other GNNs for com-
putational efficiency as it allows us to apply graph
convolution across multiple dimensions in parallel.

Guided Global-Local Attention Learning. We
then apply latent decoding to decode the represen-
tation Z(t) from the latent dimension L to the origi-
nal sequence length K and S for the numerical and
local text modalities respectively. To decode the nu-
merical information, the numerical representations
after the projection and addition of time vectors
Hnum(t) are used as queries to decode the keys
and values of the representation Z(t). We generate:
Qnum

dec (t) = LinearQ(H
num(t)), Knum

dec (t) =
LinearK(Z(t)), V num

dec (t) = LinearV (Z(t)),
and apply scaled dot-product attention:

Znum(t) = softmax(
Qnum

dec (t) ·Knum
dec (t)T√

d
)V num

dec (t)

(5)

To elaborate, the dot-product between
Qnum

dec (t) ∈ R|V |×K×d and Knum
dec (t) ∈ R|V |×L×d

gives us attention weights of dimensions
|V | × K × L. We then use these attention
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weights to map V num
dec (t) ∈ R|V |×L×d to

Znum(t) ∈ R|V |×K×d. Similarly, to decode
the local textual representation, the queries
of the local textual representations after
the projection and addition of time vectors
Htxt,loc(t) are used to decode the keys and
values of Z(t). We generate: Qtxt,loc

dec (t) =

LinearQ(H
txt,loc(t)), Ktxt,loc

dec (t) =

LinearK(Z(t)), V txt,loc
dec (t) = LinearV (Z(t)),

and again apply scaled dot-product attention:

Ztxt,loc(t) = softmax(
Qtxt,loc

dec (t) ·Ktxt,loc
dec (t)T√

d
)V txt,loc

dec (t)

(6)

resulting in Ztxt,loc(t) ∈ R|V |×S×d. The global-
local guided cross-attention step uses the decoded
Znum(t) to guide the learning of global textual fea-
tures relevant to each company vj from Xtxt,glo(t).
We utilize Znum(t) instead of Ztxt,loc(t) as we
extract global textual features for each time-step
t − k in window K rather than S. Znum(t) also
contains information relating to Ztxt,loc(t) due
to the prior guided latent cross-attention learning
step. For each time step t − k in window K, we
generate Qtxt,glo(t − k) = LinearQ(Z

num(t −
k)), Ktxt,glo(t − k) = LinearK(Xtxt,glo(t −
k)), V txt,glo(t − k) = LinearV (X

txt,glo(t −
k)). We apply scaled dot-product attention:
Ztxt,glo(t − k) = softmax(Ktxt,glo(t − k) ·
W txt,glo ·Qtxt,glo(t− k)T /

√
d)T · V txt,glo(t− k)

where W txt,glo ∈ Rd×d is an inner weight shared
across all time steps t− k to improve attention ex-
traction of global textual information. Across the
window period, we get Ztxt,glo(t) ∈ R|V |×K×d.

Sequential Encoding and Fusion. Transformer
encoders (Vaswani et al., 2017) are then used
to encode the resultant sequence of representa-
tions: Znum′(t) = TransformerEnc(Znum(t)),
Ztxt,loc′(t) = TransformerEnc(Ztxt,loc(t)), and
Ztxt,glo′(t) = TransformerEnc(Ztxt,glo(t)). The
transformer encoded sequence of representations
are combined with temporal attention fusion, which
weights contributions of each time step t − k
based on its importance. A non-linear transfor-
mation is applied to the respective representa-
tions, say Znum′(t− k), to obtain scalar α(t− k)
for each time step t − k in the window of t:
α(t − k) = W

(1)
τ tanh(W

(0)
τ Znum′(t − k) + bτ ),

where W
(0)
τ and W

(1)
τ are learnable weight ma-

trices and bτ is the bias vector. We normalize
each α(t − k) to obtain the weights: β(t − k) =

exp(α(t−k))∑K
k=1 exp(α(t−k))

. We then fuse the sequence

Table 1: Overview of datasets

IN-NY IN-NA BE-NY BE-NA
No. articles 221,513 1,377,098
No. companies 374 402 2,240 2,514
No. relationships 3,255 1,511 6,436 4,986

of representations: Znum′′(t) =
∑K

k=1 β(t −
k)Znum′(t− k), where Znum′′(t) ∈ R|V |×d. This
temporal attention fusion step is repeated across K
time-steps for Ztxt,glo′(t) to obtain Ztxt,glo′′(t) ∈
R|V |×d and across S time-steps for Ztxt,loc′(t) to
obtain Ztxt,loc′′(t) ∈ R|V |×d. The representations
from the three modalities are then fused with mul-
timodal attention fusion. We denote each of the
modalities as r, for a total of R = 3 modalities
for the numerical, local textual and global tex-
tual modalities respectively. A non-linear trans-
formation is applied to the representations to ob-
tain scalars s(r) = W

(1)
ω tanh(W

(0)
ω Z̄r′′(t) + bω),

where W
(0)
ω and W

(1)
ω are learnable weight ma-

trices and bω is the bias vector. Parameters are
shared across modalities. We normalize the scalars
with a softmax function to obtain the weights:
βr = exp(s(r))∑R

r=1 exp(s(r))
, which are used to fuse rep-

resentations across the three modalities: Z ′′′(t) =∑R
r=1 βrZ

r′′(t), where Z ′′′(t) ∈ R|V |×d.
Forecasting and Loss Functions. We

use fully connected layers to generate fore-
casts of means and volatilities of stock returns
over the selected horizon period [t, t + K ′]:
Ŷ returns
mean (t) = FCM (Z ′′′(t)); and Ŷ returns

vol (t) =
FCV (Z

′′′(t)). To forecast correlations of as-
set returns over the horizon period [t, t + K ′],
we use weights from linear layers in DW:
Qcorr(t) = LinearQ-DW (Z ′′′(t)); Kcorr(t) =
LinearK-DW (Z ′′′(t)). This allows what was learnt
in the DW step to be utilized here: Ŷ returns

corr (t) =

FCC(tanh(
Qcorr(t)·Kcorr(t)T√

d′
)). We then compute

losses between the forecasts above and respective
ground-truths, i.e. actual means, volatilities and
correlations over the horizon [t, t + K ′] (see Ap-
pendix A.2 for ground-truth definitions) with root
mean squared loss (RMSE), and use total losses as
the training objective:

Ltotal = Lmean(Y
returns
mean (t), Ŷ returns

mean (t))

+ Lvol(Y
returns
vol (t), Ŷ returns

vol (t))

+ Lcorr(Y
returns
corr (t), Ŷ returns

corr (t))

(7)

We do not weight the losses differently as we want
the model to perform equally well on all three tasks.
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Table 2: Forecast Results. Lower better for all metrics. Best model(s) in bold; second-best model(s) underlined.

IN-NY IN-NA BE-NY BE-NA
RMSE MAE SMAPE RMSE MAE SMAPE RMSE MAE SMAPE RMSE MAE SMAPE

Means
TST 0.0689 0.0133 1.4860 0.0323 0.0148 1.3349 0.0662 0.0142 1.5216 0.1521 0.0288 1.5511
SE 0.0689 0.0134 1.4646 0.0323 0.0144 1.3919 0.0676 0.0158 1.5952 0.1666 0.0339 1.5445
FAST 0.0689 0.0134 1.4442 0.0329 0.0162 1.2921 0.0663 0.0144 1.5285 0.1496 0.0276 1.5599
RSR 0.0690 0.0135 1.3785 0.0327 0.0156 1.3128 0.0664 0.0163 1.5050 0.1499 0.0300 1.5581
KECE 0.0688 0.0134 1.4014 0.0324 0.0152 1.2965 0.0662 0.0152 1.6411 0.1465 0.0301 1.6610
GAME 0.0491 0.0107 1.2022 0.0222 0.0118 1.2295 0.0487 0.0119 1.4449 0.1130 0.0209 1.4866

Volatilities
TST 0.2177 0.0482 0.6225 0.1155 0.0587 0.6773 0.2202 0.0627 1.0181 0.4827 0.1200 1.1521
SE 0.2175 0.0485 0.6319 0.1148 0.0558 0.6547 0.2245 0.0688 1.0209 0.4795 0.1143 1.1286
FAST 0.2179 0.0485 0.6228 0.1145 0.0561 0.6638 0.2217 0.0633 1.0260 0.4789 0.1155 1.1594
RSR 0.2181 0.0487 0.6232 0.1161 0.0590 0.6830 0.2240 0.0724 1.0488 0.4818 0.1253 1.1748
KECE 0.2177 0.0483 0.6239 0.1193 0.0651 0.7167 0.2186 0.0591 1.0486 0.4619 0.1005 1.1545
GAME 0.1436 0.0414 0.6113 0.0833 0.0501 0.6528 0.1631 0.0594 1.0156 0.3589 0.0949 1.1179

Correlations
TST 0.4953 0.4222 1.5009 0.4913 0.4184 1.5402 0.3899 0.2768 1.7220 0.3379 0.2177 1.8082
SE 0.5090 0.4308 1.5456 0.4980 0.4208 1.5167 0.4023 0.2844 1.7224 0.3395 0.2212 1.7854
FAST 0.4958 0.4223 1.5035 0.4917 0.4176 1.5056 0.3882 0.2752 1.7198 0.3371 0.2167 1.7996
RSR 0.4927 0.4200 1.4299 0.4940 0.4201 1.5145 0.3903 0.2780 1.7233 0.3398 0.2206 1.7943
KECE 0.4958 0.4227 1.5165 0.4916 0.4184 1.5268 0.3891 0.2617 1.7070 0.3381 0.2186 1.8005
GAME 0.4024 0.3247 1.1239 0.4169 0.3437 1.2327 0.3355 0.2377 1.5857 0.3079 0.1989 1.7146

4 Experiments

Datasets. We conduct experiments with four
datasets, comprising global and local textual infor-
mation of news articles from financial news portals
- Investing news (IN) and Benzinga news (BE); and
numerical information of daily stock market price-
related information of two stock markets - NYSE
(NY) and NASDAQ (NA) from 2015 to 2019. The
coverage of these datasets - across five years, more
than 1.5m articles and 2,000 companies - is more
extensive than most existing works and provides
strong assurance to our experiment findings. Fol-
lowing Ang and Ee-Peng (2021), we utilize rela-
tionships between companies extracted from Wiki-
data knowledge graphs for the inter-company re-
lationships E from Wikidata dumps dated 7 Jan.
2019. Companies such as Google, Apple and Mi-
crosoft are present within the Wikidata KG as enti-
ties, and relationships between them, e.g., Alpha-
bet as a parent company of Google (first-order),
both Apple and Microsoft are producing computer
hardware (second-order), can be extracted from
Wikidata. We use a pre-trained Wikipedia2Vec
(Yamada et al., 2020) model to pre-encode textual
news to capture the rich knowledge present within
the Wikipedia knowledge base (see Table 1 and
Appendix A.1 for more details on datasets).

Tasks and Metrics. We compare GAME with
state-of-the-art baselines on three predictive tasks:
forecasting of i) means, ii) volatilities, and
iii) correlations of stock price percentage re-

turns. We use RMSE, mean absolute error (MAE)
and symmetric mean absolute percentage error
(SMAPE) as metrics. RMSE and MAE are com-
mon scale-dependent metrics used to evaluate fore-
casting performance with RMSE being more sen-
sitive to outliers than MAE. SMAPE is a scale-
independent metric that gives equal importance
to under- and over-forecasts required in our eval-
uation context (see Appendix A.3 for more de-
tails on SMAPE). Datasets are divided into non-
overlapping training/validation/test sets in the ra-
tios 0.7/0.15/0.15 for experiments.

Baselines and Settings. We compare GAME
against state-of-the-art baselines (see Section 2):
TST (Zerveas et al., 2021) that captures numeri-
cal information; SE (Du and Tanaka-Ishii, 2020)
that captures global textual information; FAST
(Sawhney et al., 2021b) that captures local tex-
tual information; RSR (Feng et al., 2019) that cap-
tures numerical information and inter-company re-
lationships; and KECE (Ang and Ee-Peng, 2021)
that captures numerical, global textual information
and inter-company relationships. We add fully-
connected layers to baselines for them to forecast
means, volatilities and correlations of percentage
stock returns. We set the window period K = 20
days; and horizon period K ′ = 10. K = 20 corre-
sponds to a trading month, and K ′ = 10 days corre-
sponds to a global regulatory requirement for VaR
computations, which we examine in the case-study
(in Section 6). Following Sawhney et al. (2021b),
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we set M for local news text sequences to be 10.
We empirically set L to 16. Dimensions of hidden
representations are fixed at 100 across all models.
Models are implemented in Pytorch and trained for
100 epochs on a 3.60GHz AMD Ryzen 7 Windows
desktop with NVIDIA RTX 3090 GPU and 64GB
RAM. Training GAME, which has 1.01e6 parame-
ters, takes around two hours on the IN datasets and
nine hours on the BE datasets (see Appendix A.4
for more details on settings).

Results. Table 2 sets out the results of the fore-
casting experiments. Across all tasks, GAME out-
performs all baselines. On the task of forecasting
means, dispersion in model performances for IN
datasets is more narrow than for BE datasets. On
the tasks of forecasting volatilities and forecasting
correlations, baseline models (RSR, KECE) that
perform better for BE datasets utilize textual and
relational information. Performance differences
between GAME and baselines are more significant
for the larger BE datasets than for the IN datasets
due to the larger volume of news textual informa-
tion. Differences in performances between GAME
and baselines are more pronounced for volatilities
and correlations forecasting than means forecasting
as these are harder tasks that require the model to
capture global and local news effects and the prop-
agation of news effects between companies, which
are key features of the GAME model.

5 Ablation Studies

Table 3 shows the results of ablation studies for
GAME on IN-NY. We observe similar sensitivities
for other datasets. When we exclude the guided co-
attention module (w/o. guided co-attn.), the drop
in performance is more significant for volatility and
correlation forecasting tasks, while performance
decline is more significant for the correlation fore-
casting task when we exclude the dynamic graph-
guided attention module (w/o. graph-guided enc.).
When we vary the multi-task aspect of GAME by
training on mean, volatility or correlation forecast
losses only (i.e. w. mean loss only, w. vol. loss
only, w. corr. loss only), we see significant drops
in performance, even on tasks that correspond to
the training loss, e.g., performance of mean fore-
casts when we train only on mean loss is poorer
than when we train GAME with multiple tasks.

Table 3: Ablation Studies

RMSE MAE SMAPE
Means

w/o. guided co-attn. 0.0510 0.0108 1.2065
w/o. graph-guided enc. 0.0493 0.0110 1.2038
w/o. global-local attn. 0.0519 0.0110 1.2030
w. mean loss 0.0511 0.0110 1.2206
w. vol. loss 0.1087 0.0354 1.5279
w. corr. loss 0.1079 0.0303 1.6232
GAME 0.0491 0.0107 1.2022

Volatilities
w/o. guided co-attn. 0.1442 0.0424 0.6223
w/o. graph-guided enc. 0.1440 0.0424 0.6232
w/o. global-local attn. 0.1448 0.0426 0.6187
w. mean loss 0.3212 0.2190 1.9977
w. vol. loss 0.1436 0.0414 0.6143
w. corr. loss 0.2399 0.0929 1.9351
GAME 0.1436 0.0414 0.6113

Correlations
w/o. guided co-attn. 0.4034 0.3251 1.1366
w/o. graph-guided enc. 0.4038 0.3264 1.1243
w/o. global-local attn. 0.4038 0.3254 1.1399
w. mean loss 0.5700 0.4887 1.6854
w. vol. loss 0.5227 0.4439 1.9906
w. corr. loss 0.4027 0.3264 1.1401
GAME 0.4024 0.3247 1.1239

6 Application Case Studies

We use model forecasts for investment and risk
management applications to evaluate the quality
of forecasts. Portfolio allocation optimizes the
proportion of capital invested in each stock in a
portfolio by finding an optimal set of investment
weights W that maximize portfolio returns while
minimizing portfolio risk. We use model forecasts
as optimization inputs to find W that maximizes
risk-adjusted returns in a future horizon. Value-at-
Risk (VaR) (Linsmeier and Pearson, 2000) is a key
measure of risk used in financial institutions that
measures potential losses in a pre-defined horizon
with a probability of p%, e.g., 10 day 95% VaR of
$1m means a 5% probability of losses exceeding
$1m over a 10 day horizon. When realized losses
exceed forecasted VaR, we call it a VaR breach.
We use model forecasts to compute 10 day 95%
portfolio VaR forecasts, and evaluate model perfor-
mances by the total number of VaR breaches. De-
tails on computation methodologies are provided
in Appendix A.5. Table 4 depicts results for the IN-
NY/IN-NA datasets. For portfolio allocation, port-
folios constructed using GAME’s forecasts achieve
highest average risk-adjusted returns. For VaR,
GAME out-performs baselines with significantly
less VaR breaches. Baselines utilizing textual infor-
mation or inter-company relationships (SE, FAST,
RSR and KECE) generally perform better.
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Table 4: Portfolio Allocation and VAR. Higher better
for average risk-adjusted returns (%Ret.). Lower better
for number of VaR breaches (Br.) & percentage of VaR
breaches (%Br.).

IN-NY IN-NA
%Ret. Br. %Br. %Ret. Br. %Br.

TST 1.37% 40 21.2% 0.48% 32 16.9%
SE 1.32% 28 14.8% 0.95% 28 14.8%
FAST 0.64% 36 19.1% 1.26% 7 3.7%
RSR 1.42% 46 24.3% 1.21% 8 4.2%
KECE 1.45% 59 31.2% 1.21% 12 6.4%
GAME 1.61% 6 3.2% 2.85% 2 1.1%

7 Conclusion and Future Work

In this paper, we designed GAME, a model that cap-
tures global and local multimodal information with
modules that i) enable mutual guidance between
modalities with different time-scales, sparsity and
distributions; ii) propagation of multimodal infor-
mation between companies via real-world relation-
ships with dynamic weights to guide learning; iii)
guided attention learning between global and lo-
cal information to extract relevant global informa-
tion; and iv) was trained in a multivariate multi-
task setting. The model performs strongly on three
forecasting tasks and two real-world applications,
demonstrating the value of guided attention learn-
ing for global and local multimodal information.
The datasets used are more extensive than most
similar works and provide strong assurance on the
validity of the results across different companies
and textual information. Future work could extend
GAME to capture information from other modali-
ties (e.g., audio, visual), textual sources (e.g., Twit-
ter, Reddit), and inter-company relationships (e.g.,
DBPedia, GDELT). In relation to the societal im-
pact of this work, we see opportunities for GAME
to support better investment and risk management
decisions, and also benefit a range of real-world
applications, such as investment portfolio alloca-
tion and risk management, as we demonstrated in
our paper. We should however recognize that mod-
els such as GAME generate forecasts based on
past historical patterns that may not always hold in
the future, particularly for non-stationary financial
time-series. Hence, model risk management, e.g.,
monitoring significant changes in input information
and model performance, is particularly important to
avoid negative impacts, such as investment losses.
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A Appendix

A.1 Datasets
The four datasets (across two news article sources
and two stock markets) differ in the companies
covered and news sources as depicted in Table 1
in the main paper. The news article sources are:
i) Investing news datasets (IN)1; and ii) Benzinga
news datasets (BE)2. The datasets contain news
articles and commentaries collected from Investing
and Benzinga investment news portals, which are
drawn from a wide range of mainstream providers,
analysts and blogs, such as Seeking Alpha and
Zacks.

We also collected daily stock market price-
related information - opening, closing, low & high
prices, and trading volumes - of two stock markets -
NYSE (NY) and NASDAQ (NA) - from the Center
for Research in Security Prices. We filter out stocks
from NYSE and NASDAQ that are not traded in
the respective time periods and not mentioned in
any articles for the respective news article sources.
GAME can be used for datasets that contain more
stocks, i.e., even those that are not mentioned in
any news articles, as it captures both global and
local textual news information as well as numerical
information. However, we restrict the experiments
to stocks that are mentioned in the articles for a fair
comparison with models such as FAST that are de-
signed to only capture local textual news informa-
tion, i.e. they cannot capture any news information
not associated with any specific companies.

For inter-company relationships, we use Wiki-
data, one of the largest and most active collab-
oratively constructed KGs. Companies such as
Google, Apple and Microsoft are present within
the Wikidata KG as entities, and relationships be-
tween them, e.g., Alphabet as a parent company
of Google (first-order), both Apple and Microsoft
are producing computer hardware (second-order),
can be extracted from Wikidata. We extracted in-
stances of 57 first and second-order relationship-
types identified by (Feng et al., 2019) from the
Wikidata dumps dated 7 Jan. 2019. The earliest
Wikidata dumps were from 2014. We used Wiki-
data dumps from 7 Jan. 2019 and not earlier as we
found that knowledge graphs extracted from earlier

1Subset extracted from
https://www.kaggle.com/gennadiyr/us-equities-news-data

2Subset extracted from
https://www.kaggle.com/miguelaenlle/massive-stock-
news-analysis-db-for-nlpbacktests

Wikidata dumps were too sparse to be useful for
our experiments. We did not use Wikidata dumps
that were more recent so that the starting date of
the test sets will be after the 7 Jan. 2019 date of the
Wikidata dump used to construct the KG.

A.2 Ground-truth Definitions
For Y returns(t) = [yreturns(t), ..., yreturns(t +
K ′)] over a horizon of K ′ time-steps, the ground-
truth labels for means and volatilities are defined
as follows:

Y returns
mean (t) =

1

K′

K′∑
k′=0

yreturns(t+ k′) (8)

Y returns
vol (t) =

√√√√ 1

K′

K′∑
k′=0

(yreturns(t+ k′)− µ)2 (9)

where µ = Y returns
mean (t). For correlations between

any two assets i and j:

Y returns
corr,ij (t) =

∑K′

k′=0(xi − µi)(xj − µj)√∑K′

k′=0(xi − µi)2
√∑K′

k′=0(xj − µj)2

(10)

where xi = yreturnsi (t+k′), xj = yreturnsj (t+
k′).

A.3 Metrics
SMAPE is defined as:

SMAPE =
100%

n

n∑
i=1

|Y returns
i (t)− Ŷ returns

i (t)|
(|Y returns

i (t)|+ |Ŷ returns
i (t)|)/2

(11)

where n is the number of observations. We choose
SMAPE instead of mean absolute percentage error
(MAPE) as SMAPE gives equal importance to both
under- and over-forecasts required in this evalua-
tion context while MAPE favors under-forecast.

A.4 Settings
To train GAME, we chose the window and hori-
zon periods K = 20 and K ′ = 10 days based
on experiments with different periods K,K ′ ∈
{5, 10, 20, 60} which correspond to a trading week,
fortnight, month and quarter. Differences in per-
formance between GAME and baselines were gen-
erally consistent across all window and horizon
periods. Hence, we set the window period K = 20
days; and horizon period K ′ = 10 as K = 20
corresponds to a trading month, and K ′ = 10 days
corresponds to a global regulatory requirement for
VaR computations, which we examined in the case-
study (see Section 6 of the paper). For the latent
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L, we chose the latent dimension L = 16 based on
experiments with different periods L ∈ {8, 16, 32}.
For K = 20 and K ′ = 10, we found that L = 16
led to the best overall performance, and enabled
more efficient scaled dot-product operations than
if we had chosen larger values for L. An Adam
optimizer with a learning rate of 1e-3 with a cosine
annealing scheduler is used. Models are imple-
mented in Pytorch and trained for 100 epochs on
a 3.60GHz AMD Ryzen 7 Windows desktop with
NVIDIA RTX 3090 GPU and 64GB RAM. Train-
ing GAME, which has 1.01e6 parameters, takes
around two hours on the IN datasets and nine hours
on the BE datasets.

A.5 Methodology for Application Case
Studies

In this section, we describe the detailed methodol-
ogy for portfolio allocation and VaR risk measure-
ment used in this paper.

A.5.1 Portfolio Allocation Methodology
Investment portfolio allocation is an important task
for many financial institutions. The aim of invest-
ment portfolio allocation is to optimize the propor-
tion of capital invested in each stock in a portfolio,
by finding an optimal set of weights W that de-
termine how much capital to invest in each stock,
so that portfolio returns can be maximized while
minimizing portfolio risk. In this paper, we adopt
the risk aversion formulation (Fabozzi et al., 2007)
of the mean-variance risk minimization model by
Markowitz (1952), which models both portfolio
return and risk. Under the risk aversion formula-
tion, the classical mean-variance risk minimization
model by Markowitz (1952) is re-formulated to
maximize the risk-adjusted portfolio return:

maxW (WTµ− λWTΣW) (12)

subject to WT 1 = 1. λ, known as the Arrow-Pratt
risk aversion index, is used to express risk pref-
erences and is typically set from 2 to 4 (Fabozzi
et al., 2007). In this paper, we set λ = 2 for the
experiments. Higher values of λ = 2 will reduce
returns across all models, but the relative differ-
ences between models were generally consistent.
In this paper, we use the forecasted means of asset
returns for µ, i.e. µ̃ = Ŷ returns

mean (t); and compute Σ
with the forecasted volatilities and correlations of
asset returns:

Σ̃ = D(t) · Ŷ returns
corr (t) ·D(t) (13)

where D(t) is the diagonal matrix filled with
Ŷ returns
vol (t) along the diagonals. We choose to

forecast correlations of asset returns over the se-
lected horizon period [t, t + K ′], instead of di-
rectly forecasting co-variances as the co-variances
need to be positive semi-definite (PSD) so that
the matrix is invertible, which is important for ap-
plications such as portfolio allocation. Forecast-
ing co-variances directly does not guarantee PSD,
but forecasting volatilities and correlations sepa-
rately and computing the co-variance matrix using
the volatilities and correlations with the formula:
Σ̃ = D(t) · Ŷ returns

corr (t) ·D(t), where D(t) is the
diagonal matrix filled with Ŷ returns

vol (t) along the
diagonals, allows the co-variance matrix to be PSD.

This application can be viewed as a predictive
task as we are using the returns from the window
period t −K to t − 1 to make forecasts over the
future horizon t to t+K ′ and using these forecasts
to determine the resultant weights W to invest in
stocks over the future horizon; and then measuring
the portfolio returns realized in this future hori-
zon: Ereal = WTRreal, where Rreal is a vector
of realized percentage stock returns over the future
horizon.

Given that the aim is to maximize portfolio re-
turns while minimizing portfolio risk (volatility),
we choose risk-adjusted realized portfolio returns
over the selected future period as the evaluation
metric, defined as: Ẽ = Ereal

σ(Ereal)
, where σ(Ereal)

is portfolio return volatility, defined as the one stan-
dard deviation of the portfolio returns over the same
future period. For this application, the datasets
are similarly divided into non-overlapping train-
ing/validation/test sets in the ratios 0.7/0.15/0.15,
and we evaluate performance based on the average
of the risk-adjusted realized portfolio returns across
the test set.

A.5.2 Value-at-Risk (VaR) Measurement
Methodology

VaR is a key measure of risk used in financial insti-
tutions for the measurement, monitoring and man-
agement of financial risk. Financial regulators re-
quire important financial institutions such as banks
to measure and monitor their VaR over a 10 day
horizon and maintain capital based on this VaR as
loss buffers. Exchanges may also collect margins
from individual investors based on the VaR of their
investment portfolios. VaR measures the loss that
an institution may face in the pre-defined horizon
with a probability of p%, for e.g., if the 10 day
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95% VaR is $1,000,000, it means that there is a 5%
probability of losses exceeding $1,000,000 over a
10 day horizon. Whenever the realized losses ex-
ceed the VaR, it is regarded as a VaR breach. More
formally, we define VaR as:

Pr[Ereal ≤ −V aR(p)] = p (14)

where Ereal is the realized portfolio value and the
minus sign is added to VaR as we are dealing with
losses, i.e. the probability of realized portfolio
value (i.e. losses) being more negative than nega-
tive VaR. For this application, the portfolio is con-
structed based on the approach described for the
portfolio allocation application at each time-step.
This mimics a real-world scenario where finan-
cial institutions continually update their portfolios
based on market conditions. VaR can be computed
as a multiple of the portfolio’s volatility:

V aR = ϕ−1(p)× σ (15)

where ϕ is the inverse cumulative distribution func-
tion of the standard normal distribution, for e.g. if
p = 95% then ϕ−1(p) = 1.645. In the classical ap-
proach, σ is the historical portfolio volatility over
a pre-defined window period. To evaluate the base-
line models, we instead use the forecasted portfolio
volatility σ̃ =

√
Σ̃ where Σ̃ is computed using

the forecasted volatilities and correlations of asset
returns as defined in equation (13). Similar to the
portfolio allocation application, this can also be
viewed as a predictive task as we are using the re-
turns from the window period t−K to t−1 to make
forecasts over the future horizon t to t + K ′ and
using these forecasts to determine the VaR in the
future horizon. We evaluate model performances
by counting the total number of 95% VaR breaches,
i.e. where the realized portfolio loss exceeds the
forecasted VaR in the testing dataset (using the
same training/validation/test sets as the portfolio al-
location application). We choose the 95% VaR for
our experiments as it is a common confidence level
used by banks to monitor their risks. Models that
are able to make accurate forecasts of VaR should
have less VaR breaches.
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