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Abstract

Lexical ambiguity poses one of the greatest

challenges in the field of Machine Translation.

Over the last few decades, multiple efforts

have been undertaken to investigate incorrect

translations caused by the polysemous nature

of words. Within this body of research, some

studies have posited that models pick up se-

mantic biases existing in the training data, thus

producing translation errors. In this paper, we

present DIBIMT, the first entirely manually-

curated evaluation benchmark which enables

an extensive study of semantic biases in

Machine Translation of nominal and verbal

words in five different language combinations,

namely, English and one or other of the fol-

lowing languages: Chinese, German, Italian,

Russian and Spanish. Furthermore, we test

state-of-the-art Machine Translation systems,

both commercial and non-commercial ones,

against our new test bed and provide a thor-

ough statistical and linguistic analysis of the

results. We release DIBIMT at https://

nlp.uniroma1.it/dibimt as a closed

benchmark with a public leaderboard.

1 Introduction

The polysemous nature of words poses a long-

standing challenge in a wide range of Natural Lan-

guage Processing (NLP) tasks such as Word Sense

Disambiguation (Navigli, 2009; Bevilacqua et al.,

2021) (WSD), Information Retrieval (Krovetz and

Croft, 1992) (IR) and Machine Translation (Emelin

et al., 2020) (MT).

In MT, some research works have addressed

the ability of systems to disambiguate polysemous

words. For instance, given the sentence He poured

a shot of whiskey, the polysemous target word shot

unequivocally means a small quantity and therefore

a possible translation into Italian could be: Versò

un goccio di whiskey. However, some MT systems

propose the following translation: Versò uno sparo

∗ Equal contribution.

di whiskey in which the noun sparo means gun-

shot. This is one of many examples that seem to

encourage a deeper performance analysis in sce-

narios in which MT systems are required to deal

with polysemous words and, specifically, with in-

frequent meanings of polysemous words. Although

state-of-the-art MT systems, both commercial and

non-commercial ones, achieve impressive BLEU

scores on standard benchmarks, in our work we

demonstrate that they still present significant limi-

tations when dealing with infrequent word senses,

which standard metrics fail to recognize.

In the last few decades, attempts have been made

to investigate the aforementioned phenomena. In

fact, recent studies have observed a direct correla-

tion between semantic biases in the training data

and semantic errors in translation. However, their

findings are limited by the following shortcomings:

i) they are not based on entirely manually-curated

benchmarks; ii) they rely heavily on automatically-

generated resources to determine the correctness

of a translation; and iii) they do not cover multiple

language combinations.

In this work, we address the aforementioned

drawbacks and present DIBIMT, to the best of our

knowledge the first fully manually-curated evalua-

tion benchmark aimed at investigating the impact

of semantic biases in MT in five language com-

binations, covering both nouns and verbs. This

benchmark allows the community not only to bet-

ter explore the described phenomena, but also to

devise innovative MT systems which better deal

with lexical ambiguity. Specifically, the contribu-

tions of the present work are threefold:

• We present DIBIMT, a novel gold-quality test

bed for semantic biases in MT that goes be-

yond a simple accuracy score, covering five

language combinations, namely English and

one or other of the following languages: Chi-

nese, German, Italian, Russian and Spanish;
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He poured a shot of whiskey.

goccio 
bicchierino

iniezione 
sparo

trago 
chupito

pistolero 
tiro

SPANISH 

шот 
рюмкa 

стрелок 
выстрел 

RUSSIAN 

杯 
小杯

枪手
本垒打 

CHINESE 

Schlückchen 
Schuss

Injektion 
Schlag

GERMAN ITALIAN

Figure 1: Example of an annotated dataset item. Tar-

get word is shot, in its meaning of a “small drink of

liquor”. We expect translations to contain, for example

in Italian, goccio (lit. a drop), but not, for example in

Spanish, pistolero (a person who shoots).

• We define four novel metrics that better clarify

the semantic biases within MT models;

• We provide a thorough statistical and linguis-

tic analysis in which we compare 7 state-of-

the-art MT systems, including both commer-

cial and non-commercial ones, against our

new benchmark. Furthermore, we extensively

discuss the results.

To enable further research, we release DIBIMT

as a closed benchmark with a public leaderboard at

https://nlp.uniroma1.it/dibimt.

2 Related Work

Over the course of the last few decades, several

approaches to the evaluation of the lexical choice in

MT have been proposed. To this end, cross-lingual

benchmarks were created in which systems were

required to provide the translation or a substitute for

a given target word in context in a target language

(Vickrey et al., 2005; Mihalcea et al., 2010; Lefever

and Hoste, 2013).

More recently, Gonzales et al. (2017) put for-

ward ContraWSD, a dataset which includes 7,200

instances of lexical ambiguity for German → En-

glish, and 6,700 for German → French. This

dataset pairs every reference translation with a

set of contrastive examples which contain incor-

rect translations of a polysemous target word. For

each instance, the answer provided by systems is

considered correct if the reference translation is

scored higher. Based on a denoised version of

the ContraWSD dataset and focusing on the lan-

guage combination German → English, Gonzales

et al. (2018) present the Word Sense Disambigua-

tion Test Suite which, unlike ContraWSD, eval-

uates MT output directly rather than by scoring

translations. The suite consists of a collection of

3,249 sentence pairs in which the German source

sentences contain one ambiguous target word. As

target words, the authors considered only words in

German whose translation into English does not

cover multiple senses, thus making the evaluation

more straightforward. Despite their effectiveness,

such benchmarks do not allow systems to be tested

in multiple language combinations, and only cover

a very limited number of words and senses. To

address these limitations, Raganato et al. (2019)

proposed MuCoW, an automatically-created test

suite covering 16 language pairs, with more than

200,000 sentence pairs derived from word-aligned

parallel corpora.

Other research studies investigated the disam-

biguation capabilities of MT systems by exploring

their internal representations (Marvin and Koehn,

2018; Michel et al., 2019), or improving them via

context-aware word embeddings (Liu et al., 2018).

More recently, Emelin et al. (2020) introduced a

statistical method for the identification of disam-

biguation errors in neural MT (NMT) and demon-

strated that models capture data biases within the

training corpora, which leads these models to pro-

duce incorrect translations. Although the authors

expected their approach to be transferable to other

language combinations, they only focused on Ger-

man → English.

Based on the findings and open research ques-

tions raised in the aforementioned works, the

present paper aims at investigating not only the

presence, but also, most importantly, the nature

and properties of semantic biases in MT in mul-

tiple language combinations, via a novel entirely

manually-curated benchmark called DIBIMT and

a thorough performance analysis.

3 Building DIBIMT

The DIBIMT benchmark focuses on detecting

Word Sense Disambiguation biases in NMT, i.e.,

biases of certain words towards some of their more

frequent meanings. The creation of such a dataset

requires i) a set of unambiguous and grammatically-

correct sentences containing a polysemous target

word; ii) a set of correct and incorrect translations

of each target word into the languages to be cov-

ered. Figure 1 depicts an example of a dataset item.

3.1 Preliminaries

BabelNet Similarly to previous studies, we rely

on BabelNet1 (Navigli et al., 2021), a large multilin-

1https://babelnet.org
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gual encyclopedic dictionary whose nodes are con-

cepts represented by synsets, i.e., sets of synonyms,

containing lexicalizations in multiple languages

and coming from various heterogeneous resources,

including, inter alia, WordNet (Miller et al., 1990)

and Wiktionary.2 Let us define B as an abstraction

used to query the subset of synsets in BabelNet that

contain at least one sense3 from WordNet and one

or more senses in languages other than English,4

while only considering senses coming from high-

quality sources, i.e., language-specific wordnets.

Formal Notation Given an arbitrary synset σ,

we define ΛL(σ) as the set of lexicalizations of

σ in language L contained within B. As an ex-

ample, let us consider the synset σ̃ corresponding

to the drink meaning of the word shot. σ̃ con-

tains lexicalizations in different languages, includ-

ing: ShotDE , shotEN , nipEN , chupitoES , tragoES ,

bicchierinoIT and goccioIT . Hence, ΛEN(σ̃) =
{shot, nip}, while ΛES(σ̃) = {chupito, trago}.

Furthermore, let λP represent a (lemma, part

of speech) pair, where P is the part of speech.

We denote ΩL(λP ) = {σ1, . . . , σn} as the set of

synsets which contain λP as a lexicalization in lan-

guage L according to B. Additionally, we define

δL(λP ) = |ΩL(λP )| as the polysemy degree, i.e.,

the number of senses, of λP in language L. For ex-

ample, given λP = shotNOUN , ΩEN (λP ) would

be the set of synsets associated with the nominal

term shot (e.g., the act of firing, a photograph and

a drink, among others).

3.2 Sentence Selection Process

In this section, we detail the creation process of our

dataset, i.e., the selection of our sentences as well

as the construction and filtering of our items.

Item Structure and Notation Before we pro-

ceed, let us formally state how each item in the

dataset is structured: given a source sentence

s = [w1, . . . , wn] as a sequence of words, and

given a target word5 wi in s tagged with some

synset σ, we consider X = (s, wi, σ) as an initial

item of the dataset, i.e., an instance composed of

2https://www.wiktionary.org/
3A “sense” is a lexicalization of a specific synset in some

language. Henceforth, we will refer to lexicalizations and
senses interchangeably.

4Specifically, we consider synsets that have lexicalizations
in English, Italian, German, Russian, Spanish and Chinese.

5For simplicity, we use the term word here, but our work
focuses on multi-word expressions as well (both in source and
target sentences).

an English sentence s, a target word wi and its as-

sociated synset σ; this instance can be annotated

for candidate translations of wi in some language

L. We also denote λX
P

as the (lemma, POS) pair of

wi.

3.2.1 Starting Sentence Pool

We collect our initial items from two main sources:

WordNet and Wiktionary.6 Specifically, we use the

examples from WordNet Tagged Glosses (Langone

et al., 2004), where each sentence’s target word

was manually associated with its synset7, thereby

readily providing the first batch of initial items.

As for Wiktionary, instead, we start by obtaining

every usage example s and its associated defini-

tion d (filtering out archaic usages and slang), then,

we automatically extract the target words from the

corresponding example.8 Now, the only step that

remains in order to construct an initial item is to

associate a synset σ with the word wi used in the

example s. We perform this association in two

phases: first, we try to map the definition d related

to the example s to a BabelNet synset by relying

on the automatic mappings available in BabelNet 5

between WordNet and Wiktionary, discarding ex-

amples for which this association can not be found;

second, we manually validate and correct these suc-

cessful associations to ensure that our initial items

are of high quality.

3.2.2 Sentence Filtering

We apply a filtering step to the original sentences in

order to select examples that are likely to be more

challenging for the models to translate: i) we dis-

card every initial item X for which δEN(λ
X
P
) < 3,

i.e., we retain only sentences whose associated

(lemma, POS) pair has a polysemy degree of at

least 3 in BEN; ii) we retain at most only one sen-

tence per sense per source9; iii) differently from

previous works, which impose a strict requirement

on synsets that are monosemous in the target lan-

guage, we retain sentences satisfying the following

requirement. Let us consider the nominal senses

of the word bank: among them, one represents a

specific aviation maneuver. In Italian, this synset

6We use the dump of September 2021.
7Which we convert from WordNet to BabelNet.
8In Wiktionary, target words are marked in bold inside the

example sentence.
9The reasoning for this choice is twofold: on the one hand,

oftentimes Wiktionary has multiple examples for the same
synset, that differ in only one or two words, thus we skip them
to avoid repetitions; on the other hand, we obtain an increase
in sense coverage without worsening the annotator load.
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includes one lexicalization, avvitamento; although

this is not monosemous in Italian (e.g., avvitamento

might also refer to a screw thread), neither of the

other possible senses of avvitamento has bank as an

English lexicalization, which, for Italian, satisfies

our third condition. If the same holds true for all

languages, the synset passes the test and thus the

sentence is retained.

3.3 Annotating the Dataset

Once the set of initial items is ready, we can pro-

ceed with the annotation phase, which will produce

our annotated items.

Specifically, given a language L and an initial

item X = (s, wi, σ), we associate a set of good

(GL) and bad (BL) translation candidates with X ,

which represent words that, respectively, we do,

and do not, expect to see in a translation of sentence

s in language L. Finally, we refer to XL as an

annotated item, i.e., the tuple (s, wi, σ,GL,BL).

3.3.1 Pre-annotation Item Creation

Before moving forward with the annotation phase,

we pre-populate the sets of good (GL) and bad (BL)

lexicalizations for a given initial item X in lan-

guage L extracting them from B. Formally, we

assign GL = ΛL(σ), i.e., the set of lemmas in lan-

guage L of the BabelNet synset associated with σ;

furthermore, we set BL =
⋃

σ̂∈ΩL(λ
X

P
)\{σ} ΛL(σ̂),

i.e., the set of all lemmas in language L of BabelNet

synsets associated with any σ̂ excluding σ. With

this step, we produce an automatically populated

version of our annotated items.

3.3.2 Annotation Guidelines

We instruct annotators to update the set of good

(GL) and bad (BL) lexicalizations of wi ∈ s such

that each lexicalization contained in the respective

set can be considered a good or a bad translation

equivalent for the target word in the provided sen-

tential context.10

We also instruct annotators to discard sentences

in which i) the target word wi is an idiomatic ex-

pression or a proper noun, and ii) the semantic

context is not sufficient to properly disambiguate

wi.

Given the expertise required to carry out this

task, we rely on three highly qualified translators:

one for Italian, German and Russian; one for Span-

ish and one for Chinese. Our annotators satisfy the

10Any lexicalization of σ in L that is removed from GL is
automatically placed in BL.

All Nouns Verbs

# items 597 314 286

# lemmas 305 186 147

# synsets 471 254 217

Table 1: General statistics of our annotated dataset.

POS-specific lemmas do not sum to “All” as they can

overlap across POS tags (e.g., run).

%OG %RG %SL

DE 50.9 25.0 59.7

ES 49.6 19.5 47.7

IT 49.1 38.2 67.1

RU 67.4 57.3 54.4

ZH 55.2 69.0 46.3

Mean 54.4 41.8 55.0

Table 2: Annotation Statistics: %OG represents the av-

erage percentage of Good lemmas that are Original, i.e.,

were added by our annotators; %RG represents the av-

erage percentage of Good lemmas that were Removed,

i.e., lemmas that came from BabelNet and that our an-

notators deemed incorrect in the context of the given ex-

ample; %SL represents the average percentage of times

two senses Share the same set of Lexicalizations for

two different example sentences.

following requirements: they are native speakers

or hold C2-level certifications and work as pro-

fessional translators in the given language com-

binations. The full instructions provided to the

annotators can be found in Appendix C.

3.3.3 Resulting Dataset

Our annotators analyzed around 800 sentences, dis-

carding 200 of them, finally obtaining 600 anno-

tated items in 5 languages. Due to a coverage issue

of the Russian language in BabelNet, we retain only

sentences tagged with nominal or verbal synsets.

Dataset statistics are reported in Table 1.

As expected, we note that the lexicalizations

found in B have been substantially refined by our

annotators in all languages, as reported in Table 2.

Indeed, across languages, on average, 54% of the

good lexicalizations have been added by our an-

notators, while 42% of the pre-existing lexicaliza-

tions have been removed. More importantly, given

a language and two sentences containing words

referring to the same synset, on average only in

55% of cases do they also share those words’ good

lexicalizations, confirming that the assumption that
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all synonyms of a word are valid replacements can

lead to incorrect results.

These statistics lead us to a straightforward, but

important, conclusion: only in a limited number of

cases is a lexicalization belonging to a given synset

to be considered as a suitable translation equivalent

for the provided target word and its context. Exam-

ined jointly, these metrics suggest that relying on

synset lexicalizations from BabelNet alone is prone

to producing errors, either due to BabelNet’s intrin-

sic noise, or due to the lack of different granularity

of synsets and contextualized words.

Sentences’ Properties Description As we

stated in Section 3.2.1, the sentences we annotate

are all usage examples of specific concepts

obtained from WordNet or Wiktionary. Such

examples are typically short main clauses with

no subordinates, featuring on average 9 words

(around 50 characters per sentence). All selected

sentences include a semantic context which allows

the meaning of the target word to be properly

identified.

3.4 Analysis Procedure

DIBIMT’s analysis procedure is fairly simple:

given an annotated item XL = (s, wi, σ,GL,BL)
and a translation model M, we compute tL =
ML(s), i.e., the translation of s in language L ac-

cording to M. Then, we use Stanza(Qi et al., 2020)

to perform tokenization, part-of-speech tagging and

lemmatization of tL and, finally, we check if there

is any match11 between the lemmas of the trans-

lated sentence and those contained in GL or BL. In

case there is no match, we mark the translation as

a MISS; otherwise, we mark it as GOOD or BAD

depending on which set matched the lemma.

This produces an analyzed item, which for sim-

plicity we denote as XM
L

= (XL, tL,R, ωL),
where R is one of GOOD, BAD or MISS and ωL

represents the matched lemma in case there was a

match (GOOD or BAD), ǫ otherwise.

4 Results and Discussion

We now: i) use DIBIMT to carry out an evalua-

tion of 7 different machine translation systems; ii)

report the obtained results, including a thorough

statistical and linguistic evaluation; iii) extensively

discuss our findings, providing multiple measures

of semantic bias; and iv) offer some insights into

11A more detailed description of the analysis procedure is
provided in Appendix A.

the causes of such biases. In Appendix D we in-

clude a model-specific breakdown of the various

scores and metrics reported throughout this section.

4.1 Comparison Systems

We test a wide range of models, both commercial

and non-commercial ones, and report their perfor-

mances on DIBIMT’s evaluation metrics:

• DeepL Translator12, a state-of-the-art com-

mercial NMT system.

• Google Translate13, arguably the most popu-

lar commercial NMT system.

• OPUS (Tiedemann and Thottingal, 2020), the

smallest state-of-the-art NMT model available

to date, a base Transformer (each model has

approximately 74M parameters) trained on a

single language pair on large amounts of data.

• MBart50 (Tang et al., 2021), multilingual

BART fine-tuned on the translation task for

50 languages (610M parameters). We refer to

MBart50 as the English-to-many model, and

to MBart50MTM as the many-to-many model.

• M2M100 (Fan et al., 2021), a multilin-

gual model able to translate from/to 100

languages. We test both versions of the

model, the 418M parameter one (which we

dub M2M100) and the 1.2B parameter one

(dubbed M2M100LG).

4.2 Discussion of MISS

Figure 2 reports general results of the analysis per

(model, language) pair. Given the high percentage

of analyzed items classified as MISS, we asked our

annotators to perform an inspection on a random

sample of 70 items per language in order to unearth

the reasons, with varying results. We identified

multiple causes, namely: i) word omission in the

translation (around 19% of items, mostly in Chi-

nese and Italian); ii) issues with Stanza’s tokeniza-

tion (around 11%, mostly Chinese and Russian)

and lemmatization (around 12%, mostly Italian

and German); iii) words translated as themselves

(approximately 5%, often in multilingual neural

models); iv) translations which have nothing to

12https://deepl.com/
13https://translate.google.com/
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DeepL Google M2M100 M2M100LG MBart50 MBart50MTM OPUS Mean

DE 74.60 21.90 22.19 26.96 28.73 28.65 27.99 33.00

ES 57.87 22.54 25.51 30.00 33.89 32.66 36.66 34.16

IT 53.49 18.04 21.83 25.14 29.34 30.54 29.95 29.76

RU 71.58 22.89 26.22 35.19 36.06 33.33 41.07 38.05

ZH 46.00 15.04 16.99 22.35 31.21 34.15 27.75 27.64

Mean 60.71 20.08 22.55 27.93 31.85 31.87 32.68 32.52

Table 3: General results: accuracy on DIBIMT across models and languages. Higher is better.

DeepL Google M2M100 M2M100LG MBart50 MBart50MTM OPUS Mean

SFII SPDI SFII SPDI SFII SPDI SFII SPDI SFII SPDI SFII SPDI SFII SPDI SFII SPDI

DE 34.78 28.30 86.61 79.54 82.00 76.15 78.90 74.71 84.10 73.86 84.95 74.24 79.85 76.25 75.89 69.00

ES 56.04 46.14 83.84 78.41 83.08 77.95 79.87 73.84 77.13 71.06 79.06 71.57 74.85 69.12 76.27 69.73

IT 57.71 49.01 85.47 80.62 80.22 76.58 78.69 76.10 78.67 71.51 79.41 69.48 80.59 72.02 77.25 70.76

RU 41.97 33.64 84.01 83.49 79.85 78.34 74.72 69.69 73.86 70.11 78.58 72.87 68.49 69.27 71.64 68.20

ZH 64.97 59.58 91.97 87.98 91.81 87.18 88.79 82.17 80.39 73.14 76.59 71.50 79.96 75.66 82.07 76.75

Mean 51.10 43.33 86.38 82.01 83.39 79.24 80.19 75.30 78.83 71.94 79.72 71.93 76.75 72.46 76.62 70.89

Table 4: Semantic Biases: SFII, i.e., Sense Frequency Index Influence, represents the average percentage of errors

at varying levels of µλP
(σ). SPDI, i.e., Sense Polysemy Degree Importance, instead, represents the average

percentage of errors at varying level of δL(λP ). Lower is better.

do with the source text14 (around 23%); and v)

missing terms from either BL (around 18%) or GL

(around 11%). We intend to thoroughly investigate

and tackle these issues and translation phenomena

as future work.

4.3 General Results

Table 3 reports accuracy for non-MISS analyzed

items (i.e., #GOOD

#GOOD+#BAD
). With the sole exception

of DeepL, which greatly outperforms every other

competitor, models achieve extremely low scores,

in the range of 20%-33%. Surprisingly, Google

Translate performs worst across languages.

4.4 Analyzing the Semantic Biases

In addition to accuracy, DIBIMT analyzes the se-

mantic biases of a translation model via four novel

metrics, which we define in detail in what follows.

Sense Frequency Index Influence (SFII) We

study the sensitivity of models to disambiguat-

ing senses with respect to their frequency. To do

this, we define µλP
(σ) as the index of synset σ in

ΩEN(λP ) ordered according to WordNet’s sense

frequency, as computed from SemCor. That is, in-

14An example is the sentence he is a crack shot, where the
word shot is translated by MBart50 into Italian as “schianto”,
which can be interpreted in this case as “someone very good
looking”.

dex k means that synset σ is the k-th most frequent

meaning for λP .

In Figure 3(a), we plot the number and percent-

age of errors made on average by the models, group-

ing items by µ
λX

P

(σX), where X is a non-MISS

analyzed item. As expected, the less frequent a

meaning for a given word is, the harder it is for the

model to correctly disambiguate it.

Finally, given a (model, language) pair, we de-

fine the Sense Frequency Index Influence (SFII) as

the average percentage of errors, for each group,

that we detected. Values are reported in Table 4.

Interestingly, DeepL proves once again to be the

best, obtaining a score of 51%, far below the aver-

age 80% achieved by the other models, with most

non-commercial models performing ≤ 80%.

Sense Polysemy Degree Importance (SPDI)

Similarly to SFII, we also study the extent to which

the polysemy degree, i.e., how many senses a given

word can have, impacts the models’ disambigua-

tion capabilities. This experiment mirrors SFII, but

groups items by their lemma’s polysemy degree

δEN(λ
X
P
) instead of µ. Figure 3(b) reports the re-

sults on all items. Unsurprisingly, similarly to the

frequency index, we observe that higher polysemy

leads to more errors, confirming that models still

struggle with very polysemous words. Similarly to

SFII, SPDI is defined as the average percentage of
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DeepL Google M2M100 M2M100LG MBart50 MBart50MTM OPUS Mean

MFS MFS+ MFS MFS+ MFS MFS+ MFS MFS+ MFS MFS+ MFS MFS+ MFS MFS+ MFS MFS+

DE 53.68 84.21 56.76 86.82 61.28 87.23 59.13 87.30 58.89 89.72 55.82 89.56 56.98 87.92 57.51 87.54

ES 59.89 87.91 61.96 89.05 61.81 89.37 61.78 88.03 60.17 91.10 63.09 91.85 64.47 91.21 61.88 89.79

IT 68.08 86.38 61.96 87.23 60.75 86.79 62.82 88.81 62.90 87.50 68.97 91.81 64.48 89.66 64.28 88.31

RU 50.00 83.33 48.12 83.28 47.87 83.41 45.25 84.16 47.39 87.20 44.91 87.96 48.40 84.04 47.42 84.77

ZH 49.07 88.89 56.05 88.20 59.06 91.34 59.35 92.45 50.66 89.87 54.17 90.28 51.71 87.45 54.30 89.78

Mean 56.14 86.15 56.97 86.92 58.15 87.63 57.66 88.15 56.00 89.08 57.39 90.29 57.21 88.06 57.08 88.04

Table 5: Frequency Analysis: MFS represents the average percentage of times the model mistakenly translates the

target word into a lexicalization belonging to the Most Frequent Sense associated with λP . MFS+, instead, checks

whether the wrong translation belongs to any synset that is more frequent than the target one. Lower is better.
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Figure 2: General results of the analysis. Numbers

represent percentages of the whole dataset (600 items).

A full-page version of this image, for readability pur-

poses, is available in the Appendix (Figure 16).

errors at varying polysemy degrees, and its values

are reported in Table 4: once again, DeepL outper-

forms all other systems by a large margin, confirm-

ing that it is the least biased across the board.

Most and More Frequent Senses To further cor-

roborate our findings about semantic biases, we

study how often models predict senses that are

more frequent than the target one. Given a BAD

analyzed item XM
L

, we denote σ̂ as the synset as-

sociated with the wrongly translated lemma ωL.15

Then, we check the frequency of σ and σ̂ with

respect to λX
P

: if µ
λX

P

(σ̂) < µ
λX

P

(σ), then the sys-

tem’s disambiguation steered towards a sense that

is more frequent than the target one, which we

15In the case in which there are multiple possible synsets,
we take the most frequent according to µ

λX

P

, as we need to

rely on the assumption that the surface form represents the
intrinsic disambiguation performed by the NMT system.

ALL NOUN VERB

Accuracy 32.11 34.15 30.02

%MISS 38.03 29.36 47.57

MFS 57.86 60.13 52.60

MFS+ 88.68 87.57 88.74

SFII 76.98 69.16 76.90

SPDI 70.80 66.86 72.87

Table 6: Results by PoS tag. Numbers represent the

mean value of each score introduced in the paper. The

column ALL summarizes the results reported in the

other tables.

dub More Frequent Sense (MFS+); additionally, if

µ
λX

P

(σ̂) = 1, then the model disambiguated the

source word wi to the Most Frequent Sense (MFS)

of the associated lemma λX
P

. The results of both

these analyses are reported in Table 5.

We can observe a few interesting results: first, on

average, almost 60% of the time a mistake reflects

the Most Frequent Sense of the target word (second-

last column); second, almost 90% of the errors con-

cern translations towards more frequent senses of

the target word (last column). Importantly, these

results are consistent across systems, whether com-

mercial or not. Although it might seem straightfor-

ward, NMT models are still strongly biased towards

senses that are more likely to be encountered during

training; while this could be related to the pattern-

matching nature of neural networks, it also depends

heavily on the training data the model was trained

upon, and this needs to be further investigated in

future research.

4.5 Are verbs harder than nouns?

The existing literature in WSD points to the fact

that verbs are generally harder than nouns, mostly

due to their highly polysemous nature (Barba et al.,

2021b). We try to analyze whether MT models
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Figure 3: Overall distribution of errors, summed across all models and languages, with respect to (a) Sense Fre-

quency Index (µλP
(σ)) and (b) Sense Polysemy Degree (δEN(λP )). Red bars represent the number of errors (i.e.,

BAD items) for a given group, grey bars represent the number of correct (i.e., GOOD items) items. Orange lines

represent the percentage of errors (i.e., #BAD

#GOOD+#BAD
) for a given group.

are affected by the same phenomenon: in Table 6,

we report the average results obtained by running

DIBIMT on all its sentences (column ALL) and

the subset of sentences whose target word was ei-

ther a NOUN or a VERB. In general, we observe

an average drop of accuracy of 4 points, as well as

an astounding difference of 18 percentage points

in MISS handling, which we will investigate more

thoroughly in future work. Interestingly, MT mod-

els are much more inclined to translate nouns into

their most frequent sense; we attribute this differ-

ence to the generally higher polysemy of verbs

compared to nouns, which increases the size of

the space of possible translations for a given verb,

thus decreasing the chance that it gets translated

into the MFS. Aside from this, we draw the same

conclusion as that drawn by previous works in the

field of WSD, with nouns being generally easier to

translate than verbs.

4.6 Is the encoder disambiguating?

We try to assess to what extent, in a multilingual

encoder-decoder architecture, the encoder is deter-

mining the implicit disambiguation of the source

sentence before generating the translation. For in-

stance, we ask ourselves this question: given an

ambiguous word wi in the source sentence s, how

often does the model translate it into a lexicaliza-

tion representing the same sense, if prompted to

translate s into different languages? Intuitively, if

the encoder was the sole contributor to the implicit

disambiguation performed by the model, we would

expect to see the meaning to always be the same,

regardless of the target language.

To measure this, we perform the following ex-

periment: given a model M,16 two languages L1

16We disregard OPUS here as it is a set of bilingual models,
rather than a single model capable of translating into multiple
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Figure 4: Language Frequency Correlation: percentage

of times that an item translates to the same synset.

and L2 and an initial item X , we take M’s ana-

lyzed items XM
L1 and XM

L2
17 and check if transla-

tions in L1 and L2 have a synset in common, i.e.,

|ΩL1(ωL1) ∩ ΩL2(ωL2)| > 0. The results of this

experiment are reported in Figure 4.

We observe that, on average, this phenomenon

occurs around 70% of the time. Hence, it is safe

to assume that, while the encoder certainly plays

an important role in the disambiguation of the in-

put sentence, the decoder is also contributing sig-

nificantly. Another interesting observation is that

the alphabet of the target language does not seem

languages. We also disregard DeepL and Google Translate as
their architecture is proprietary.

17We skip item X if either XM
L1 or XM

L2 is a MISS.
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DeepL Google M2M M2MLG MB MBMTM OPUS Mean

DE 66.86 71.04 65.85 67.18 66.87 67.77 66.95 67.50

ES 67.89 72.76 66.77 66.86 65.37 67.18 66.83 67.67

IT 66.67 72.58 66.35 68.50 64.33 65.81 65.82 67.15

RU 66.76 69.55 66.42 67.69 66.35 64.29 69.21 67.18

ZH 68.42 71.89 69.26 69.82 68.93 69.58 69.88 69.68

Mean 67.32 71.56 66.93 68.01 66.37 66.93 67.74 67.84

Table 7: WSD Results: ESCHER’s accuracy on the set

of English sentences of non-MISS analyzed samples

for each (model, language) pair. Higher is better.

to have any influence, as language pairs involving

Russian display scores that are very similar to those

of the other three European languages. We attribute

lower scores in Chinese to coverage issues in Ba-

belNet, which would hinder a correct fulfillment of

the condition defined for this experiment.

4.7 How challenging is DIBIMT?

Given the low performances achieved by MT mod-

els, we test a WSD system on the English sentences

within DIBIMT, both to assess the toughness of

our system and to establish an additional baseline.

We use ESCHER18 (Barba et al., 2021a), a state-

of-the-art model on English WSD. Interestingly,

ESCHER achieves an overall accuracy score of

66.33, almost 15 points lower than the results on

the standard WSD benchmark (80.7 on ALL, Ra-

ganato et al., 2017), therefore confirming the chal-

lenging nature of DIBIMT. Furthermore, in order

to estimate the difference in disambiguation capa-

bility between NMT models and a dedicated WSD

system, we compute ESCHER’s performances on

the set of English sentences of non-MISS analyzed

items for each (model, language) pair. We report

these results in Table 7, whose accuracy scores can

be directly compared to those in Table 3.

As expected, the average MT accuracy is sig-

nificantly lower than ESCHER’s, with the sole

exception of DeepL, which manages to surpass

it on German and Russian. These results clearly

demonstrate that current NMT models are still not

on par with dedicated WSD systems, and thus that

they might benefit from the inclusion of such WSD

systems within the NMT ecosystem.

4.8 Is this a decoding issue?

As a final experiment, we assess whether the se-

mantic biases are caused by search errors (i.e.,

failures of the decoding algorithm), or model er-

rors (i.e., the models deemed their translations the

18The publicly available version trained on SemCor data
only.

M2M100 M2M100LG MBart50 MBart50MTM OPUS Mean

DE 98.00 98.00 92.00 94.00 84.00 93.20

ES 100.00 98.00 88.00 90.00 94.00 94.00

IT 94.00 90.00 86.00 100.00 88.00 91.60

RU 94.00 90.00 98.00 92.00 88.00 92.40

ZH 96.00 98.00 94.00 98.00 92.00 95.60

Mean 96.40 94.80 91.60 94.80 89.20 93.36

Table 8: Model Errors: percentage of times a model

thought its BAD translation was better than a GOOD one.

best possible). For each (model M, language L)

pair, we sample a BAD translation (tBAD), pair it

with a GOOD translation (tGOOD) produced by an-

other model (prioritizing DeepL), and ask annota-

tors to check their correctness and apply correc-

tions where needed,19 then compute the perplex-

ities according to M with the corresponding En-

glish sentence s, i.e., pGOOD = pM(tGOOD|s) and

pBAD = pM(tBAD|s). We repeat this sampling

50 times per (M, L) pair and check how often

pBAD > pGOOD. Table 8 shows that, on average, this

happens in 93% of cases, thus confirming that most

semantic biases are embedded within models and

are not caused by the decoding strategy.

5 Conclusions

In this work, we presented DIBIMT, a novel bench-

mark for measuring and understanding semantic

biases in NMT, which goes beyond simple accu-

racy and provides novel metrics that summarize

how biased NMT models are. We tested DIBIMT

on 7 widely adopted NMT systems, extensively

discussing their performances and providing novel

insights into the possible causes and relations of

semantic biases within NMT models.

Furthermore, statistics of our annotations sug-

gest that, when dealing with translations, synsets’

lexicalizations cannot be used interchangeably, as

their choice depends heavily on the context.

In the future, we plan to improve DIBIMT by

introducing better heuristics to recognize and han-

dle MISS cases, especially covering the linguistic

phenomena we described (see Section 4.2); we also

aim at widening language coverage and increasing

the number of sentences in the benchmark, conse-

quently improving word and sense coverage. To

enable further research, we release DIBIMT as a

closed benchmark with a public leaderboard at:

https://nlp.uniroma1.it/dibimt.

19We do this to make the translations more grammatically
fluent, and not to correct the disambiguation of the target term,
which was never detected as being wrong in the sampled cases.
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A Analysis Procedure Details

Our analysis procedure, which we described in

Section 3.4, involves steps that go beyond simple

lemma matching. For instance, in case of multi-

word expressions, we allowed annotators to specify

a wildcard, i.e., any number of tokens (including

zero) were allowed to expand and still trigger a

match. Additionally, since Stanza has multi-word

expansion tokenization for some of the languages

in our list, when available, we try to perform match-

ing on both the list of words (alongside the list of

tokens) in the translated sentence. Finally, in case

no match is produced by the aforementioned steps,

we apply a surface-level string matching heuris-

tic which, especially in Chinese, helps us increase

coverage.

B Neural Models Implementation

We use HuggingFace’s Transformers library (Wolf

et al., 2020) for all neural models. As per stan-

dard practice, we generate translations using beam

search as decoding algorithm with beam size 5.

C Instructions for Dataset Annotation

In this work, we investigate semantic biases in Ma-

chine Translation across languages. You are pro-

vided with a spreadsheet containing 300 instances,

each including the following information: a lemma,

its part of speech, a definition and some good and

bad translation candidates derived from BabelNet.

Your task is to manually verify the correctness of

the good candidates and add new good candidates

if deemed necessary. Furthermore, you are asked

to verify that all bad candidates are wrong.

From a translation perspective, a good candidate

is a word which correctly translates the English

target word in the given context. Instead, a bad can-

didate is a wrong translation of the English target

word in the given context.

Please adopt the following guidelines while an-

notating:

• Do not annotate idioms.

• Do not annotate instances in which the seman-

tic context does not allow us to unequivocally

determine the meaning of the target word.

• Do not annotate proper names, e.g., “Run” in

the sentence The military campaign near that

creek was known as “The battle of Bull Run”.

• You are allowed to include cross-PoS

candidates (that is, candidates whose

PoS is different from that of the target

word), in this case please include the

candidate in square brackets like this:

[candidate_with_different_pos|Px],

where x represents the part-of-speech tag of

the translated word. Do this for multi-word

expressions as well.

Mark with the tag “DISCUSS” difficult instances

which you would like to discuss.

D Model-specific Analyses

We include model-specific analyses with per-

language breakdown of the scores achieved on our

benchmark. The column named ESCHER provides

the scores of the WSD system on the subset of sen-

tences of the specified model and language, and

should be treated as an additional baseline to com-

pare with the accuracy achieved by the system. De-

tails can be found in Section 4.

• DeepL

• Google

• OPUS

• M2M100

• M2M100LG

• MBart50

• MBart50MTM
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DeepL

Back to Model-specific Analyses.

%MISS Accuracy MFS MFS+ SPDI SFII ESCHER

DE 36.07 74.60 53.68 84.21 28.30 34.78 66.86

ES 25.26 57.87 59.89 87.91 46.14 56.04 67.89

IT 20.21 53.49 68.08 86.38 49.01 57.71 66.67

RU 35.04 71.58 50.00 83.33 33.64 41.97 66.76

ZH 31.86 46.00 49.07 88.89 59.58 64.97 68.42

Mean 29.69 60.71 56.14 86.15 43.33 51.10 67.32

Figure 5: Evaluation on DeepL
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Google

Back to Model-specific Analyses.

%MISS Accuracy MFS MFS+ SPDI SFII ESCHER

DE 35.87 21.90 56.76 86.82 79.54 86.61 71.04

ES 23.29 22.54 61.96 89.05 78.41 83.84 72.76

IT 23.12 18.04 61.96 87.23 80.62 85.47 72.58

RU 35.37 22.89 48.12 83.28 83.49 84.01 69.55

ZH 32.49 15.04 56.05 88.20 87.98 91.97 71.89

Mean 30.03 20.08 56.97 86.92 82.01 86.38 71.56

Figure 6: Evaluation on Google
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OPUS

Back to Model-specific Analyses.

%MISS Accuracy MFS MFS+ SPDI SFII ESCHER

DE 37.84 27.99 56.98 87.92 76.25 79.85 66.95

ES 25.69 36.66 64.47 91.21 69.12 74.85 66.83

IT 29.11 29.95 64.48 89.66 72.02 80.59 65.82

RU 45.84 41.07 48.40 84.04 69.27 68.49 69.21

ZH 38.31 27.75 51.71 87.45 75.66 79.96 69.88

Mean 35.36 32.68 57.21 88.06 72.46 76.75 67.74

Figure 7: Evaluation on OPUS
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M2M100

Back to Model-specific Analyses.

%MISS Accuracy MFS MFS+ SPDI SFII ESCHER

DE 49.41 22.19 61.28 87.23 76.15 82.00 65.85

ES 41.91 25.51 61.81 89.37 77.95 83.08 66.77

IT 42.44 21.83 60.75 86.79 76.58 80.22 66.35

RU 51.77 26.22 47.87 83.41 78.34 79.85 66.42

ZH 48.66 16.99 59.06 91.34 87.18 91.81 69.26

Mean 46.84 22.55 58.15 87.63 79.24 83.39 66.93

Figure 8: Evaluation on M2M100
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Figure 9: Overall Language Cooccurrence Heatmap for M2M100
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M2M100LG

Back to Model-specific Analyses.

%MISS Accuracy MFS MFS+ SPDI SFII ESCHER

DE 42.02 26.96 59.13 87.30 74.71 78.90 67.18

ES 36.75 30.00 61.78 88.03 73.84 79.87 66.86

IT 37.07 25.14 62.82 88.81 76.10 78.69 68.50

RU 42.50 35.19 45.25 84.16 69.69 74.72 67.69

ZH 39.73 22.35 59.35 92.45 82.17 88.79 69.82

Mean 39.61 27.93 57.66 88.15 75.30 80.19 68.01

Figure 10: Evaluation on M2M100LG
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Figure 11: Overall Language Cooccurrence Heatmap for M2M100LG
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MBart50

Back to Model-specific Analyses.

%MISS Accuracy MFS MFS+ SPDI SFII ESCHER

DE 40.24 28.73 58.89 89.72 73.86 84.10 66.87

ES 39.29 33.89 60.17 91.10 71.06 77.13 65.37

IT 40.10 29.34 62.90 87.50 71.51 78.67 64.33

RU 44.16 36.06 47.39 87.20 70.11 73.86 66.35

ZH 44.35 31.21 50.66 89.87 73.14 80.39 68.93

Mean 41.63 31.85 56.00 89.08 71.94 78.83 66.37

Figure 12: Evaluation on MBart50
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Figure 13: Overall Language Cooccurrence Heatmap for MBart50
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MBart50MTM

Back to Model-specific Analyses.

%MISS Accuracy MFS MFS+ SPDI SFII ESCHER

DE 41.25 28.65 55.82 89.56 74.24 84.95 67.77

ES 41.06 32.66 63.09 91.85 71.57 79.06 67.18

IT 43.29 30.54 68.97 91.81 69.48 79.41 65.81

RU 45.18 33.33 44.91 87.96 72.87 78.58 64.29

ZH 44.59 34.15 54.17 90.28 71.50 76.59 69.58

Mean 43.07 31.87 57.39 90.29 71.93 79.72 66.93

Figure 14: Evaluation on MBart50MTM
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Figure 15: Overall Language Cooccurrence Heatmap for MBart50MTM
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Figure 16: Full page version of Figure 2.
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bn:00057755n
He poured a shot of whiskey.

A small drink of liquor.

German
✓ ✗

Schlückchen Schlag

Schuss Injektion

Spanish
✓ ✗

Trago Pistolero

Chupito Tiro

Italian
✓ ✗

Goccio Iniezione

Bicchierino Sparo

Russian
✓ ✗

шот стрелок

рюмкa выстрел

Chinese
✓ ✗

杯 枪手

小杯 本垒打

Table 1: Example of item annotated in all languages. First row is the example, target word is in bold, second row

is the definition of the synset associated with the word in the example.

bn:00036083n
They tracked him back toward the head of the stream.

The source of water from which a stream arises.

German
✓ ✗

Flussursprung Kopf

Quelle Kommando

Spanish
✓ ✗

Fuente Cabeza

Manantial Jefe

Italian
✓ ✗

Fonte Testa

Sorgente Capo

Russian
✓ ✗

исток проход

вопрос

Chinese
✓ ✗

源头 头

族长

Table 2: Example of item annotated in all languages. First row is the example, target word is in bold, second row

is the definition of the synset associated with the word in the example.
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bn:00094769v
If you take off for Thanksgiving you

must work Christmas and vice versa.

To absent oneself from work or other re-

sponsibility, especially with permission.

German
✓ ✗

Sich eine Auszeit nehmen Losgehen

Sich freinehmen Starten

Spanish
✓ ✗

Pedir un permiso Salir

Coger Llevar

Italian
✓ ✗

Prendersi dei giorni Togliersi

Prendersi un permesso Decollare

Russian
✓ ✗

брать выходной вычесть

отдыхать убить

Chinese
✓ ✗

请假 离开

休假 减

Table 3: Example of item annotated in all languages. First row is the example, target word is in bold, second row

is the definition of the synset associated with the word in the example.
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