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Abstract

The retriever-reader framework is popular
for open-domain question answering (ODQA)
due to its ability to use explicit knowledge. Al-
though prior work has sought to increase the
knowledge coverage by incorporating struc-
tured knowledge beyond text, accessing het-
erogeneous knowledge sources through a uni-
fied interface remains an open question. While
data-to-text generation has the potential to
serve as a universal interface for data and text,
its feasibility for downstream tasks remains
largely unknown. In this work, we bridge this
gap and use the data-to-text method as a means
for encoding structured knowledge for ODQA.
Specifically, we propose a verbalizer-retriever-
reader framework for ODQA over data and
text where verbalized tables from Wikipedia
and graphs from Wikidata are used as aug-
mented knowledge sources. We show that
our Unified Data and Text QA, UDT-QA, can
effectively benefit from the expanded knowl-
edge index, leading to large gains over text-
only baselines. Notably, our approach sets the
single-model state-of-the-art on Natural Ques-
tions. Furthermore, our analyses indicate that
verbalized knowledge is preferred for answer
reasoning for both adapted and hot-swap set-
tings.

1 Introduction

Pretrained language models (Devlin et al., 2019;
Brown et al., 2020) have been shown to store cer-
tain knowledge (linguistic or factual) implicitly in
parameters (Manning et al., 2020; Petroni et al.,
2019; Roberts et al., 2020), partially explaining the
superior generalization abilities over downstream
tasks. However, besides the well-known hallucina-
tion issue, the implicit knowledge learned through
language modeling objective over text struggles at
reflecting up-to-date knowledge from text and struc-
tured data for answering open-domain questions.
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To overcome this, recent work on open domain
question answering (ODQA) focuses on the semi-
parametric method (Karpukhin et al., 2020; Guu
et al., 2020) where the pretrained language models
can leverage external explicit knowledge sources
for reasoning. For example, in the retriever-reader
framework (Min et al., 2021, inter alia), the reader
produces answers by grounding on the relevant
evidence from the retriever, the interface to the ex-
plicit knowledge source (Wikipedia text passages).
In this work, we focus on the semi-parametric ap-
proach for ODQA going beyond textual knowledge.
Specifically, we are interested in the question: Can
we develop a viable unified interface over a real-
istic heterogeneous knowledge source containing
both data and text?

Recent retriever-reader models (Oguz et al.,
2020; Agarwal et al., 2021) have demonstrated that
expanding the textual knowledge source with more
structured data is beneficial. However, only knowl-
edge base (KB) is considered in (Agarwal et al.,
2021), limiting the applicability of their method
to other structured data. In (Oguz et al., 2020),
both tables and KB triples are simply linearized
as inputs to the reader, but different retrievers are
required for individual cases. Here, we propose a
verbalizer-retriever-reader semi-parametric frame-
work, UDT-QA, which provides a unification of
both representation and model for ODQA over data
and text. The key idea is to augment the retriever
with a data-to-text verbalizer for accessing hetero-
geneous knowledge sources, i.e. KB graphs from
WikiData, tables and passages from Wikipedia.

Given its potential in providing a universal in-
terface for data and text, data-to-text generation is
increasingly popular (Gardent et al., 2017; Parikh
et al., 2020; Nan et al., 2021) with various methods
developed recently for converting structured knowl-
edge into natural language (Wang et al., 2020;
Ribeiro et al., 2020; Chen et al., 2020b). Neverthe-
less, most existing work has focused on intrinsic
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evaluations exclusively, i.e. the quality of gener-
ated text measured by metrics like BLEU (Papineni
et al., 2002), leaving its usefulness on downstream
tasks largely unknown. Moreover, it remains un-
clear whether a single data-to-text model is able to
verbalize heterogeneous structured data effectively.
To bridge the gap, we develop a novel data-to-text
generation paradigm for our framework. We intro-
duce data filtering and beam selection to maximize
the faithful coverage of the input information. To
remedy the lack of in-domain data, we further pro-
pose an iterative training approach to augment the
existing data-to-text training set with high quality
outputs selected from the target domain. With this
verbalizer, we convert all tables from Wikipedia
(10x more than (Oguz et al., 2020)) and sub-graphs
from Wikidata together with Wikipedia text pas-
sages as the knowledge source for ODQA.

We first validate our data-to-text method us-
ing intrinsic metrics on DART (Nan et al., 2021)
and additional faithfulness evaluation on the target
ODQA data. We show that our data-to-text ap-
proach can effectively improve the target-domain
faithful metric without compromising too much on
the intrinsic metrics. To further evaluate the end-
to-end effectiveness, we experiment with UDT—QA
on the ODQA task using a recent state-of-the-art
(SOTA) retriever-reader pipeline, including DPR
(Karpukhin et al., 2020) and UnitedQA (Cheng
et al., 2021b). Consistent with previous work, our
results also suggest that extra knowledge source
is beneficial for ODQA. Notably, we find that the
verbalized knowledge is favored by the reader com-
pared to the raw format (linearization), especially
when the structured data size is comparable to text,
leading to more pronounced improvements. Over-
all, UDT-QA shows large improvements over text-
only baselines and performs competitively with
more complicated methods on both Natural Ques-
tions (NQ) (Kwiatkowski et al., 2019) and We-
bQuestions (WebQ) (Berant et al., 2013). In par-
ticular, UDT-QA achieves new SOTA on NQ under
the single-model open-book setting.!

2 Overview of UDT-QA

In this section, we present the overall pipeline of
our UDT-QA framework for ODQA over data and
text (Figure 1). The major difference between our
approach and the popular retriever-reader ODQA

"Data and code available at https://github.com/
Mayer123/UDT-QA

systems (Min et al., 2021, inter alia) is the use of
a data-to-text verbalizer (§3) for converting struc-
tured data into natural language text, i.e. virtual doc-
uments, as the universal knowledge source. Here,
we consider two types of structured knowledge
(§4.2) — tables and KB sub-graphs. After verbaliz-
ing the structured knowledge, a subsequent pipeline
consisting of a DPR retriever and a UnitedQA-E
reader is used for answer inference. Since the re-
triever and reader are not the main focus of this
work, we only briefly describe them below.

The DPR retriever (Karpukhin et al., 2020) is a
bi-encoder model consisting of a question encoder
and a context encoder, which is used for data and
text retrieval. Following previous work (Karpukhin
et al., 2020; Oguz et al., 2020), we use the un-
cased BERT-base (Devlin et al., 2019) model as
the encoder, where the [CLS] token representation
is used as the document/question vector. During
training, positive and negative pairs of (question,
context) are used to update the model. For infer-
ence, the entire document index is encoded with
context encoder and the encoded question vector
is used to retrieve the top documents with highest
dot-product scores.

The UnitedQA-E (Cheng et al., 2021b) is an ex-
tractive reader based on ELECTRA (Clark et al.,
2020) trained with enhanced objectives (Cheng
et al., 2021a, 2020) for answer inference. Here,
a pair of a question and a support passage is jointly
encoded into neural text representations. These rep-
resentations are used to compute scores of possible
answer begin and end positions, which are then
used to compute probabilities over possible answer
spans. Finally, the answer string probabilities are
computed based on the aggregation over all pos-
sible answer spans from the entire set of support
passages.

3 Verbalizer: Data-to-text Generation

Here, we formally describe the data-to-text model
developed in this paper, including the input format
(§3.1) and the adaptation for ODQA (§3.2).

3.1 Input Format

Given a structured data input D, the data-to-text
generator G aims to generate a natural language
passage P that faithfully describes the information
presented in D. In the literature, the structured
data input can be in the form of a set of triples
(Nan et al., 2021), a few highlighted cells from
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Figure 1: An overview of UDT—QA based on the verbalizer-retriever-reader pipeline.

a table (Parikh et al., 2020) or a full table (Chen
et al., 2020a). Correspondingly, P could a simple
surface-form verbalization of D (e.g. when D is a
triple set) or a high-level summarization in case of
a full table or a large KB graph. Since we consider
(noisy) tables/KB sub-graphs of arbitrary size in
this paper, directly feeding the entire input into the
generator is not feasible, likely incurring signifi-
cant computation challenges. Moreover, it is also
desirable to maximize the information coverage
of P so that most relevant information in D can
be leveraged by the downstream QA retriever and
reader. Based on this, we verbalize both tables and
KB graphs at a fine-grained level.

In this work, we verbalize tables row by row,
i.e. input each table row to GG individually, where
each row is a set of cells r = {¢;}*_,, and k is the
number of cells in the corresponding row. Most
relevant to our setting, recent work (Nan et al.,
2021) represents each cell in a triple. To form such
triples, they manually annotate the tree ontology of
column headers and then create triples using table
title, headers, cell value and header relations, e.g.
([TABLECONTEXT], [title], LeBron
James), (LeBron James, League, NBA)
where LeBron James is the parent cell. Al-
though such triples with fine-grained ordering may
help guide the generator, directly applying such
a generator to a target domain with no ontology
annotation (our case) likely results in degradation.
To overcome this, we propose to convert the triple
set to pairs, e.g. ([title], LeBron James),
(League, NB2Z). We find such conversion has
little impact on the intrinsic evaluation (§5). After
all rows are verbalized, we assemble the text
outputs back to form the verbalized table.

For KB, we follow previous work (Agarwal et al.,
2021) and break the KB into small sub-graphs
based on subject entity. Here, each sub-graph con-
tains one central entity and its neighbors. Although
this conversion would inevitably create undesir-
able artifacts (e.g. hurdles for multi-hop reasoning
across sub-graphs), this preprocessing allows us
to unify the input representations for both table
and KB graphs, making it possible for a single ver-
balizer to convert structured knowledge into text
format. Specifically, we convert all KB sub-graphs
into the same format as table cell sets above, where
the subject entity is treated as the title and all the
edges are represented using pairs in the form of
(relation, object). Then we verbalize each
sub-graph with the generator G. Examples of input
and output for table rows and KB sub-graphs are
shown in Figure 1.

3.2 Improved Data-to-Text Model Training

A known problem in data-to-text generation is that
the model tends to hallucinate or neglect informa-
tion in the input (Wang et al., 2020; Agarwal et al.,
2021). Faithfulness and information coverage is
especially important when we apply the verbalized
output to knowledge-intensive downstream tasks
like ODQA. To address this, we subsample training
data T such that the instances are filtered out if they
are likely to steer model towards missing informa-
tion. In particular, we compute ROUGE-1 (Lin,
2004) scores between the input and target of train-
ing instances and filter out those whose scores are
below a certain threshold. We denote the filtered
version as T—F. Examples of the filtered instances
can be found in Table 11, as we discuss more in
Appendix F, these instances may bias the model
towards unwanted behaviors.
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Another challenge we face is that most data-to-
text training examples have succinct structured in-
puts. In other words, the cells in the structured
input are usually single words or short phrases with
corresponding short target sentences as well. In
our case, a number of tables contain large cells
with dozens of words. Models trained with existing
data likely have a hard time verbalizing such inputs
faithfully. To alleviate this domain-mismatch issue,
we propose an iterative training set-up. In the first
iteration, we train a generator on T—F. Then we
apply the generator to our data. We then find high
quality verbalized outputs based on the ROUGE-1
score between the model inputs and model out-
puts, and sample instances with score higher than
a threshold for the next-round training. We sample
instances up to the same size of T—-F, and denote
this set as ID-T (examples shown in Table 11).
Finally, we mix the ID-T with T-F and train a
second generator for verbalization.

Following recent work (Nan et al., 2021), we use
the pretrained T5-Large (Raffel et al., 2020) model
as our generator. Given paired training examples
consisting of a structured data input and a target
sentence, we finetune the TS5 model to maximize
the log-likelihood of generating the corresponding
target sentences. Here, we follow the same experi-
mental setup as (Ribeiro et al., 2020).

4 Experiment Setup

In this section, we describe the data used for exper-
iments and sources of structured knowledge.

4.1 Datasets

In this paper, we use DART (Nan et al., 2021) to
train our verbalizer (data-to-text) and two ODQA
datasets, NQ and WebQ, to train and evaluate our
pipeline, with the same split as in (Lee et al., 2019)
provided by (Karpukhin et al., 2020). Below we
provide a brief description of each dataset and refer
readers to their papers for details.

DART is a data-to-text dataset containing pairs
of (triple-set, sentences) collected from WebNLG
(Gardent et al., 2017), E2E (Novikova et al., 2017)
and crowdsourcing based on tables found in Wik-
iSQL (Zhong et al., 2017) and WikiTableQuestions
(Pasupat and Liang, 2015).

Natural Questions contains questions mined from
Google search queries and the answers are anno-
tated in Wikipedia articles by crowd workers.
WebQuestions consists of questions from Google

Suggest API and the answers are annotated as enti-
ties in Freebase.

We collect knowledge-answerable questions
from NQ and WebQ in order to evaluate our verbal-
izer and construct the retrieval training data. Specif-
ically, we find questions in the original NQ train-
ing set that can be answered by a table. For each
question, we search through tables in its associ-
ated HTML page to locate exact answer matches.
In total, we collected 14,164 triples of (question,
answer, gold table) from NQ train and dev sets
as NQ—-table—Q. On WebQ, we find questions
that can be answered by KB via expanding from
question entities and search for their 1-hop neigh-
bors. If an answer entity is matched, we keep this
sub-graph. In total, we collected 2,397 triples of
(question, answer, sub-graph) from WebQ train and
dev set as WebQ—-KB-Q.

4.2 Structured Knowledge Sources

In addition to regular Wikipedia text passages, we
consider two types of structured knowledge — ta-
bles from Wikipedia and KB graphs from Wikidata.

For tables from Wikipedia, we follow OTT-
QA (Chen et al., 2021b) with slight modifica-
tions. Chen et al. (2021b) only consider tables
in good format, i.e. tables with no empty cell,
multi-column or multi-row, and restrict the tables
to have at most 20 rows or columns. Instead, we
remove such constraints and keep everything with
the <table> tag, resulting in a larger and noisier
table set. We denote this more realistic set of tables
as OTT-tables.

Note Oguz et al. (2020) only consider tables
from the original NQ HTMLs. In addition to
the size difference, OTT-tables are crawled
from a more recent Wikipedia dump than the
NQ version. To study the impact of knowl-
edge source size, we also process tables from the
NQ HTML pages with the heuristic suggested
by (Herzig et al., 2021) to de-duplicate tables
and filter lengthy cells (>80 words). We de-
note this set of tables as NQ-tables. To avoid
overlap, we remove tables from OTT-tables
whose page title are in NQ-tables set. In to-
tal, we have a All-tables set with 2.2M ta-
bles from OTT-tables and 210K tables from
NQ-tables, respectively.

For KB graphs, we consider using the English
Wikidata (Vrandeci¢ and Krotzsch, 2014) as our
KB due to its broad coverage and high quality, not-
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Intrinsic Eval ‘ Extrinsic Eval

Training Set # Examples ‘ BLEU METEOR TER MoverScore BERTScore BLEURT ‘ Ans Cov
DART (Nan et al., 2021) 62,659 50.66 0.40 0.43 0.54 0.95 0.44 -
DART ours (T) 62,628 51.05 0.40 0.43 0.54 0.95 0.43 95.4
DART (T-F) 55,115 51.04 0.41 0.43 0.54 0.95 0.43 96.0
DART (T-F + ID-T) 110,230 50.59 0.41 0.44 0.54 0.95 0.43 98.4

Table 1: Intrinsic and extrinsic evaluations of verbalization approaches on DART test and NQ-table-Q (§4.1),
respectively. “Ans Cov” refers to Answer coverage. All metrics are higher the better except for TER.

ing its predecessor Freebase is no longer main-
tained despite its popularity in research. In order
to be comparable with recent work (Agarwal et al.,
2021), we directly use their partitioned KB graphs
from WikiData in our experiments, which is de-
noted as WD—graphs.

5 Experiments: Data-to-Text

In this section, we evaluate our data-to-text model
with both intrinsic and extrinsic metrics. Since
intrinsic metrics are probably less correlated with
the downstream performance, we use them only as
a sanity check for generation quality and focus on
using an extrinsic metric for selecting models.

Intrinsic Evaluation: Since our model is devel-
oped mainly on DART, we first conduct the intrin-
sic evaluation on the DART test set to measure
the impact of our improved data-to-text methods,
i.e. data filtering and iterative training. Following
(Nan et al., 2021), we use the official evaluation
metrics including BLEU, METEOR (Banerjee and
Lavie, 2005), TER, MoverScore (Zhao et al., 2019),
BERTScore (Zhang et al., 2020) and BLEURT (Sel-
lam et al., 2020). Table 1 summarizes different
data-to-text models on DART test. As we can see,
the resulting model trained with our data conver-
sion (row 2) performs on par with the model using
the original format (row 1). More interestingly, fil-
tering short samples has almost no impact on the
verbalizer performance (row 3). Lastly, iterative
training with additional target domain data (row
4) slightly hurts on BLEU and TER and achieves
similar performances on other metrics. Overall, our
verbalizer with the proposed data conversion and
improved training remains very effective on DART.
Extrinsic Evaluation: Since we are interested in
applying verbalized knowledge for ODQA, the QA
model is more likely to predict the correct answer
only if the answer still exists after the verbaliza-
tion. Therefore, we also evaluate each generator
using a metric more related with the downstream
task performance: answer coverage. Specifically,

we compute the answer coverage as the percent-
age of examples that the answer present in the raw
structured knowledge is still preserved in the corre-
sponding verbalized output.

First, we compute the answer coverage of dif-
ferent generators discussed in the previous section
on NQ-table-Q where tables are known to con-
tain question-triggering content. The scores are
reported in the last column of Table 1. Due to more
lengthy tables in NQ-table-0Q, data filtering im-
proves the answer coverage as expected. Moreover,
model trained with our iterative training demon-
strates substantial improvements in answer cover-
age, indicating that our approach is highly effective
for converting tables into text. Examples for com-
paring different verbalizer outputs are shown in
Table 12 in Appendix F. Later, we use this best gen-
erator to verbalize A11-tables. We use beam
search of size 10 and save all beams. To retain as
much input information as possible, a re-ranking
stage is carried out over these predictions based on
the ROUGE-1 score between the model inputs and
model outputs. The highest ranked prediction is
then used as the final output.

Lastly, we directly apply our best generator
(DART T-F + ID-T) for verbalizing KB graphs. To
evaluate the performance, we compare our model
with the recent method KELM-verbalizer (Agar-
wal et al., 2021) using answer coverage on the
set WebQ-KB-Q where KB sub-graphs are known
to contain answer entities. Although never tuned
for KB graph inputs, our model achieves 99.6
on answer coverage, outperforming the KELM-
verbalizer (97.8 on answer coverage) by a large
margin. This suggests that our data-to-text ap-
proach is highly effective for both tables and KB
sub-graphs.

6 Experiments: QA over Data and Text

Here we present our main experiments on ODQA
over data and text. For regular Wikipedia text, we
use the same index containing 21M passages as
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Model | NQ | WebQ Source Format R20 R100 EM

Without Structured Knowledge text - B 2(5)2 2(6)1 i??
+NQ-tables raw . . .

DPR (Karpukhin et al., 2020) 41.5 352 +NQ-tables AV/ 85.5 90.2 51.2

UnitedQA (Cheng et al., 2021b) 51.8 48.0 +Al]l-tables raw 858 907 52.1

With Structured Knowledge +All-tables \" 86.0 90.7 525

KEALM (Agarwal et al., 2021) 41.5 43.9 text - 789 823 526

UnitK-QA (Oguz et al., 2020) 54.1 57.8 +WD-graphs-WebO raw 834 86.1 571

UDT-QA w/ Raw Single Data 54.7 51.4 WD— hs—wW Y 4

UDT-OA w/ Verbalized Single Data | 552 | 52.0 oo oraprs epo gg‘g ZZ‘? gi;
UDT—-OA w/ Verbalized Hybrid Data | 55.1 | 52.5 +Wb=graphs raw : : :

+WD-graphs A% 82.8 86.7 554

Table 2: End-to-end open-domain QA evaluation of
UDT-QA in comparison to recent state-of-the-art mod-
els on the test sets of NQ and WebQ. Exact match
scores are reported (highest scores shown in bold).

in (Karpukhin et al., 2020). To augment text, two
settings are considered, i.e. the single data setting
and the hybrid data setting.

In the single data setting for NQ, we augment the
text index with tables from the A11-tables set
(§4.2). For comparison, we also experiment with
the raw representations using a simple linearization
of tables similar to (Oguz et al., 2020). In single
data setting for WebQ, we consider combining text
with KB graphs from WD—-graphs in the single
data setting. Different from (Oguz et al., 2020)
where a separate entity-linking based retriever is
used for KB, we use a single model over the text
index with either linearization of raw KB graphs
or our verbalized KB graphs. Hence, in our case,
both text and data (tables and KB graphs) can be
handled by a unified retriever-reader pipeline. In
the hybrid data setting for both NQ and WebQ,
we use text, All-tables and WD—graphs for
retrieval. The statistics of our document index are
shown in Table 7 in Appendix A.

We create additional retriever training data from
NQ-Table-0Q and WebQ-KB-0Q in a similar fash-
ion as in the text-only setting, so that DPR can bet-
ter handle additional knowledge. Following (Oguz
et al., 2020), we also use the iterative training set-
up for retriever training. More training details can
be found in Appendix B.

To evaluate the effectiveness of our UDT—QA
for ODQA, we first include recent state-of-the-art
ODQA models using text as the only knowledge
source, DPR and UnitedQA. We also compare our
UDT-QA with recent models using additional struc-
tured knowledge, KEALM and UnitK-QA. Follow-
ing the literature, we report the exact match (EM)
score for evaluation. The results are in Table 2.

Table 3: Impact of document index size over separately
trained retriever-reader models (Top for NQ and bot-
tom for WebQ). All metrics are computed on the cor-
responding dev set. V stands for Verbalized here and
on-wards.

As we can see, models with additional struc-
tured knowledge achieve better performance than
text-only models. This indicates that both KB
graphs and tables contain complementary knowl-
edge which is either absent in text or harder to be
reasoned over. For NQ, although we consider a
significantly larger structured knowledge source
which is likely to be more challenging, all our
models substantially outperform UnitK-QA. As
for WebQ, our model achieves competitive per-
formance, although worse than UnitK-QA. We
attribute this gap to two possible reasons. First,
UnitK-QA uses a separate entity-linking based re-
triever for KBs which might lead to higher retrieval
recall. Second, since WebQ is fully based on Free-
Base, using WikiData only in our models likely suf-
fers from mismatch (Pellissier Tanon et al., 2016).
Nevertheless, our verbalizer-based models achieve
better performances than the corresponding raw
format models on both datasets, indicating that the
proposed verbalizer is highly effective for tables
and KB graphs.

7 Analysis

In this section, we present analyses over the im-
pact of document index size, the use of additional
structured knowledge in a hot-swap setting, com-
parison to a recent KB-only data-to-text approach
in an end-to-end fashion, and manual exam of the
verbalized/raw tables for their impact on ODQA.

How does the size of document index affect re-
triever and reader performance? More knowl-
edge is likely to have better coverage of relevant
information. On the other hand, larger and nois-
ier index also increases the reasoning complexity.
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Source Format R20 R100 EM
Text—-only 81.3 873 51.8
+NQ-tables raw 839 903 51.7
+NQ-tables A" 843 904 525
+All-tables raw 84.0 90.6 51.7
+All-tables \'% 84.5 90.6 527

Table 4: Hot-swap evaluation of raw vs verbalized table
using a text-only retriever-reader model on NQ test.

To understand the impact of the increased doc-
ument index size, we conduct experiments with
a restricted setting where only relevant subset of
knowledge to the corresponding dataset (a prior) is
used for retrieval. Similar to (Oguz et al., 2020),
we experiment with the combined document index
of text and NQ—-tables for NQ. As for WebQ,
we keep documents from WD-graphs that con-
tain any of the question entity in WebQ to build
WD-graphs-WebQ, and experiment with using
text + WD—graphs-WebQ. In addition to EM, we
report R20 and R100, evaluating the retrieval ac-
curacy of gold passages in the top-20 and top-100
documents, respectively. The results are reported
in Table 3.

For NQ, in spite of being more challenging,
we see that using All-tables yield substan-
tial improvement in both recall and answer ex-
act match compare to using NO—tables. This
indicates that, with proper training, ODQA mod-
els are likely to benefit from enriched knowledge.
Although the larger raw form index brings in de-
cent improvement (+1 EM) in terms of reader
performance (+All-tables vs+NQ-tables),
our verbalized knowledge is more friendly for
answer reasoning leading to a more notable QA
improvement (+1.3 EM). Different from NQ, we
observe that on WebQ the restricted setting with
WD—-graphs-WebQ achieves better results. We
hypothesize that this is likely due to the scale of
WebQ dataset. The small amount of WebQ train-
ing makes the retriever insufficient to handle large-
scale document index. We leave the verification of
this hypothesis for future work.

Does a text-only retriever-reader model bene-
fit more from verbalized knowledge compare to
raw format (hot-swap)? Since both retriever and
reader are based on pretrained language models,
we hypothesize that they would probably benefit
more from the verbalized knowledge due to its sim-

Source R20 R100 EM
KELM 782 853 515
WD-graphs (Ours) 78.5 85.5 52.0

Table 5: Comparison of verbalized knowledge from
our verbalizer and KELM for retriever and reader on
WebQ test. Dev results can be found in Table 9 in Ap-
pendix D.

ilar style as text. This can be particularly useful
for a hot-swap setting where both retriever and
reader have only seen textual knowledge during
training. To verify that verbalized knowledge is
more amenable, we carry out a hot-swap experi-
ment here. Specifically, we directly use a DPR
model trained on NQ text-only data for additionally
indexing both NQ-tables and All-tables.
Then, the inference retrieval is performed on the
augmented document index for an input question,
and a text-only United-QA-E reader trained on NQ
is applied for answer inference afterwards. The
results are summarized in Table 4. Similar to the
previous fully fine-tuned settings, we see that addi-
tional knowledge still provide substantial improve-
ments for text-only retriever using either raw or
verbalized knowledge. However, the improvement
in recall is not reflected in the later reader perfor-
mance for the raw format, whereas the hot-swap
answer inference performance is notably improved
with verbalized knowledge. This observation fur-
ther validates our hypothesis that verbalized knowl-
edge is more beneficial, especially for reader.

How does the proposed verbalizer compare to
recent data-to-text models? Lastly, we compare
our verbalizer with the recently proposed data-
to-text generator for converting KB graphs only,
KELM (Agarwal et al., 2021). Since both KELM
generator and our verbalizer are based on the same
partitioned Wikidata, this evaluation can fully re-
flect their corresponding generation impacts on
ODQA in an end-to-end fashion. Here, we eval-
uate using our verbalized WD—graphs and the
KELM corpus as additional knowledge on WebQ.
In particular, we follow the same procedure to train
and evaluate our retriever and reader except that
we swap the WhD—graphs with KELM corpus in
data construction and retrieval. Both retriever and
reader performances are reported in Table 5. Note
that the KELM data-to-text model is customized
solely for converting KB graphs and trained with a
much larger dataset (about 8M training instances),
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Q&A

V table

Raw table

Q: star wars

the clone wars
season 3
episode 1

A: Clone Cadets

TITLE: List of Star Wars: The Clone Wars episodes
... the theatrical film: "the new padawan" "castle of
deception" "castle of doom" "
3-6 in the series of star wars: the clone wars episodes.
""clone cadets' in season 3 of star wars: the clone
wars is number 1 in season and number 7 in series.
"supply lines" is episode 8 in series and 3 in season of
star wars: the clone wars game ...

castle of salvation" is no.

| no. in series, season, no. in season, title |
.... | 3-6, empty, empty, theatrical film: "the
new padawan" "castle of deception" "castle
of doom" "castle of salvation" | 7, 3,1,
""clone cadets' | 8, 3, empty, "supply lines" |

Q: when was

the last time
mount ruapehu
erupted

A: 25 September
2007

TITLE: Mount Ruapehu

.... mount ruapehu is a stratovolcano mountain with
an age of 200,000 years. the last eruption was 25
september 2007 and the volcanic arc/belt is taupo
volcanic zone. mount ruapehu was first ascent in
1879 by g. beetham and j. p. maxwell. the easiest
route to climb mount ruapehu is hike.

| empty, empty, empty, elevation, prominence,
listing, coordinates, empty, translation, empty,
empty, empty, age of rock, mountain type,
volcanic arc/belt, last eruption, empty, first
ascent, easiest route | .... 200,000 years, strato-
volcano, taupo volcanic zone, 25 september
2007, climbing, 1879 .... |

Q: who has

the most

yards per carry
in nfl history

A: Emmitt Smith

TITLE: List of National Football League career
emmitt smith of the dallas cowboys (1990-2002)
and arizona cardinals (2003-2004) was the first
player on the national football league career
rushing yards leaders list. walter payton of the
chicago bears (1975-1987) ranked second ....

rushing yards leaders

| rank, player, team(s) by season, carries,
yards, average | 1, emmitt smith, dallas
cowboys (1990-2002) arizona cardinals
(2003-2004), 4,409, 18,355, 4.2 1 2, walter
payton, chicago bears ....

Q: which country
has the smallest
population in

TITLE: List of European countries by population
.... vatican city ranks 50 on the list of european
countries by population with 1,000 current
population and 0.0 % of population. the list of

| rank, country, current population, % of
population, average relative annual growth(%),
average absolute annual growth, estimated

europe european countries by population has 0.0 average
A: Vatican relative annual growth(%) and O average absolute
City annual growth. the source is official estimate and

the date of last figure is 2012. The total population ....

doubling time(years), official figure, date of
last figure, regional grouping, source | 1 ....

49 .... 1 50, vatican city, 1,000, 0.0, 0.0, 0, -, 0,
2012, empty, official estimate | empty, total, ....

Table 6: Examples of tables/chunks retrieved by our model given the question, where the evidence is bolded. In
raw table, | is the row separator and empty is the filler token used by our table parsing heuristic (to make the table

in good shape)

whereas our verbalizer is applicable to both tables
and KB graphs with a smaller training data (only
110K instances). Nevertheless, consistent with its
better extrinsic performance (§5), our verbalizer
again outperforms the KELM generator in both re-
trieval and reading, which provides further support
for the effectiveness of our approach as a unified
interface for ODQA over data and text.

What is the impact of verbalized/raw table on
ODQA? We manually analyze examples of verbal-
ized and raw tables and the details of annotation
can be found in Appendix E. We showcase the
examples of verbalized tables and their raw coun-
terpart in Table 6 and discussion their effect on
our UDT—-QA system. We identify 2 common pat-
terns where raw tables are inferior to verbalized
tables, as shown in the first 2 rows of Table 6. In
the first example, the concatenated numbers in the
raw table can be hard to interpret, and we have
to carefully align the row with the header, which
is very far away. In the second example, the raw
infobox can be in ill-format and very long, mak-
ing it hard to understand. On the other hand, the

verbalized row clearly states the answer evidence
by connecting the information in the headers with
cell values, making it straightforward to find the
answer.

At the same time, we also notice the limitation
of verbalized tables: table structure loss. We found
that raw tables are better at answering ranking ques-
tions, as the examples shown in row 3&4 of Table 6.
When asked about the top or bottom ranked sub-
ject, the model can directly look for evidence from
the starting or the end of the table. On the other
hand, when the table is verbalized, the model can
not rely on such shortcuts because the boundary
of rows is not clear and the original structure of
the tables are lost. This also suggests a possible
direction for future work: to better incorporate the
table structure information in verbalization.

8 Related Work

Data-to-Text Generating text from structured data
has been a popular task in NLP. Many dataset
have been proposed for this task such as Wikibio
(Lebret et al., 2016), Rotowire (Wiseman et al.,
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2017), WebNLG (Gardent et al., 2017) and E2E
(Novikova et al., 2017), where each dataset fo-
cuses on a particular domain. More recently, large-
scale datasets that contains open-domain examples
have been proposed including DART (Nan et al.,
2021), TOTTO (Parikh et al., 2020), WikiTableT
(Chen et al., 2021a) and GenWiki (Jin et al., 2020).
On the modeling side, finetuning the pretrained
models typically achieves promising performance
(Ribeiro et al., 2020). Wang et al. (2020) propose
customized loss functions to reduce model hallu-
cination during generation. Muti-task learning is
used to improve model’s robustness towards input
variations (Hoyle et al., 2021). Chen et al. (2020b)
introduce a generalized format and a pretrained
model that can generate text from both table rows
and knowledge graphs. Most previous work on
data-to-text generation have only conducted inter-
nal evaluation, using typical generation metrics
such as BLEU and ROUGE, hence the data-to-text
is considered the target task. In this paper, we argue
that different training strategies and evaluation met-
rics should be adapted when applying data-to-text
models to downstream tasks, i.e. ODQA. Related
to our work, Agarwal et al. (2021) convert the en-
tire Wikidata to natural language using a finetuned
T5 model (Raffel et al., 2020). In this work, we
generalize the data-to-text approach for verbalizing
both tables and KB graphs in a unified fashion and
study the verbalized knowledge on ODQA.

QA with Data and Text As the knowledge re-
quired to answer the questions may not be available
in textual corpus, previous studies have sought to in-
corporate knowledge from difference sources such
as tables and knowledge bases. Min et al. (2019)
use Wikidata to expand seed passages found by
the retriever and enhance encoded passage repre-
sentations in the reader. Li et al. (2021) propose a
hybrid framework that takes both text and tables as
inputs to produce answers and SQL queries. Re-
cently, Chen et al. (2021b) develop the OTT-QA
dataset containing questions that require joint rea-
soning over both tables and text, where the tables
and text come from entire Wikipedia. There is also
a line of work that studies model architectures for
tables specifically or joint encoding of tables and
text (Yin et al., 2020; Herzig et al., 2020; Zayats
et al., 2021; Glass et al., 2021). However, their
focus is not on open-domain QA tasks. Most simi-
lar to our work is (Oguz et al., 2020), where they
use both tables and Wikidata/Freebase knowledge

graph along with Wikipedia text for ODQA. How-
ever, they simply linearized structured data without
using any verbalizer, thus may suffer from sub-
optimal input representation. Also, their tables are
only mined from original NQ HTMLs, i.e. a con-
strained setting. In contrast, we consider tables
from full Wikipedia which is a much larger set.
Additionally, separate retrieval models are used for
tables and KB in (Oguz et al., 2020) whereas we
develop a unified model over text and data.

9 Conclusion

In this paper, we demonstrated that a unified
verbalizer-retriever-reader framework, UDT-QA,
for open-domain QA over data and text. We pro-
posed a novel data-to-text paradigm that can largely
improve the verbalization effectiveness for down-
stream knowledge-intensive applications, i.e. open-
domain QA, when attaining good intrinsic per-
formances. With the verbalized knowledge, we
achieved a new state-of-the-art result for NQ. Re-
markably, we showed that simply augmenting the
text index with the verbalized knowledge improve
the performance without retraining the model.

In addition to our method, there are many re-
cently proposed approaches for open-domain QA
that are orthogonal. For example, language models
specifically optimized for dense retrieval (Gao and
Callan, 2021), pretraining on large-scale QA data
(Oguz et al., 2021) and hybrid system that consists
of retriever, reranker, extractive reader and genera-
tive reader (Fajcik et al., 2021). Incorporating those
methods may further improve the performance for
open-domain QA, and we leave that exploration
for future work. Lastly, instead of only consider-
ing a sanitized collection of knowledge sources,
it is an interesting future direction to scale up the
knowledge to web-scale (Nakano et al., 2021; Pik-
tus et al., 2021).
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Source Raw Verbalized
Text 21M -
OTT-tables 4.0M 6.3M
NQ-tables 446K 572K
WD—-graphs 5. M 5.8M

Table 7: Statistics of Document Index

A Document Index Statistics

To be consistent with text passages, we also cut
tables and KB sub-graphs (raw or verbalized) into
chunks that has about 100 words. Hence the ver-
balized knowledge will have larger index size than
raw format (see Table 7).

B Training Details

To train the retriever to better handle knowledge
from tables and KB, we create additional train-
ing data from NQ-Table-Q and WebQ-KB-Q.
Given a (question, answer, gold table) from
NQ-Table-Q, we create a positive passage by
concatenating rows containing the answer. Then
we randomly sample and concatenate other rows in
the table if the passage has less than 100 words. To
find negative passages for training, we build a index
consists of all the tables and use BM2S5 to retrieve
relevant tables. Ones that do not contain the answer
are considered as negative tables. Then we sample
rows from the table to build negative passages. For
the raw tables, the process is the same except that
we also concatenate headers in the beginning to
build positive and negative passages. We combine
NQ training data with this set to train DPR.

For WebQ-KB-Q, we use the verbalized gold
sub-graphs as positive passages. For the raw for-
mat, this is replaced by flattening the gold sub-
graph. Then we build an index with all documents
in WD—graphs and the top ranked documents by
BM25 that do not contain the answer are treated
as negatives. Here the documents refer to con-
catenated triples set for raw setting and sentences
produced by the generator in verbalized setting.
Additionally, we search through answer entities
and their neighbors in the graph to find documents
that has word overlap with the question. Then we
build training instances in a similar fashion.

As pointed by previous work (Oguz et al., 2020),
mining harder negative passages using DPR and
iterative training leads to better performance. We
also adopted this approach in our experiments. Af-

Source Format R20 R100 EM
text - 81.3 873 518
+NQ-tables raw 86.0 912 548
+NQ-tables v 86.2 910 542
+All-tables raw 869 919 547
+All-tables \" 87.0 91.7 552
text - 732 814 480
+WD-graphs-WebQ raw 80.2 858 515
+WD-graphs-WebQ v 79.7 853 52.6
+WD—-graphs raw 78.8 85.1 514
+WD-graphs A% 785 855 520

Table 8: Impact of document index size over separately
trained retriever-reader models (Top for NQ and bot-
tom for WebQ). All metrics are computed on the corre-
sponding test set.

ter the first DPR is trained, we used it to retrieve
passages from a joint index of text+st ructured
knowledge. Then the negative passages are
paired with the positive passages from the first
round to build new sets of training data. Then
we train a second DPR using the iterationl data
combined with the new training sets.

For retriver training, we follow the experiment
set-up as specified by (Karpukhin et al., 2020).
Specifically, we use the Adam optimizer and a per-
gpu batch size of 32 for NQ and 24 for WebQ,
respectively. All trainings are done with a fixed
learning rate of 2e — 5 and 40 epochs using 8 V100
GPUs. We select the best model based on the re-
trieval accuracy on the corresponding dev set.

For reader training, we follow the experiment
set-up as described in (Cheng et al., 2021b). Specif-
ically, we use the Adam optimizer and a batch size
of 16 for NQ and 8 for WebQ, respectively. We use
16 and 8 V100 GPUs for NQ and WebQ respec-
tively. We select the learning rate in {3e—5, 5e—5}
and number of training epochs in {6, 8}. The best
model is selected based on EM on the correspond-
ing dev set. All of our reported results are obtained
from a single run.

Regarding the number of parameters in the
model, our verbalizer is based on T5-large, which
has 770M parameters. Our retriever is a bi-encoder
model based on bert-base, which has 220M param-
eters. Our reader model is based on ELECTRA-
large, which has 330M parameters.

C Impact of Document Index Size

We report the test set results of models trained with
different document index in Table 8 (corresponding
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Source R20 R100 EM
KELM 83.1 86.7 55.1
WD-graphs (Ours) 82.8 86.7 554

Table 9: Dev set results of models trained on WebQ
with verbalized WD-graph and KELM

V-correct V-error
Raw-correct 1750 223
Raw-error 242 1395

Table 10: Error matrix of UDT-QA trained with
text+All-tables in raw and verbalized format

to Table 3). Overall, we observe similar trends. For
NQ, the model benefits more from a larger docu-
ment index while for WebQ the restricted setting
yield better performance.

D Comparison betweeh Our Verbalizer
and KELM-verbalizer

We report the dev set results of WebQ models
trained with our verbalized WD—-graphs in com-
parison with KELM in Table 9 (corresponding to
Table 5).

E Case Study on Raw vs Verbalized
Tables

For manual analysis of verbalized and raw tables,
we start by computing the error matrix of the NQ
models trained with text+All-tables in both
format, as shown in Table 10. We then manually
annotated 100 examples where only 1 format of
knowledge successfully answered the question (50
for each format), and we select examples where
at least 1 table chunk is marked as positive by the
retriever. Out of 50 examples where verbalized
tables contain the answer span, 40 of them are true
positives that provide direct evidence to the ques-
tions. In 35 out of 40 questions, the retriever for
the raw model actually find the same table/chunks
that provide the answer. However, the model failed
to extract answer for those cases and we think it’s
mainly because the raw format of the noisy tables
can be hard for the model to reason over, as dis-
cussed in section 7.

We then looked at the other group of 50 ques-
tions (raw format). 37 of them are true positives
that contain direct evidence. Then in 30 out of 37
questions, the verbalized retriever is able to find
the corresponding verbalized table/chunks that also

contain the answer. The remaining cases are all
due to retriever failed to find the true positive ta-
ble chunks. In these 30 cases, the most noticeable
pattern is that the model is able to leverage struc-
tural shortcut to arrive at the answer, suggesting
the limitation of verbalized tables.

F Data-to-text Examples

In the top half of Table 11 we show examples from
DART that are filtered out by our method, i.e. low
ROUGE scores between input and target. In the
first example, information from 2 cells are com-
pletely omitted from the target. The model may
learn to omit information from this kind of exam-
ples, which is problematic when we consider QA
as our downstream task. Our filtering method is
also able to prune noisy examples, as shown in row
2&3, where there is little correspondence between
input and target. In row 4, we show an example
where the target contains the information not exist
in the input. This kind of examples may teach the
model to hallucinate which is also an unwanted
behavior, hence they are also filtered out.

In the bottom half of Table 11 we show exam-
ples from ID-T set, i.e. good quality input-output
pairs produced by the verbalizer trained on T—F
set, when applied to our table sets. These examples
often have longer inputs and/or larger table cells
and the information coverage rate in target is very
high. By combining ID-T set with T—F set to train
a new verbalizer, the model can more effectively
learn to generate faithful description of the input.

Finally, in Table 12 we show examples of
question-answer pairs along with their associated
gold tables(rows). For each raw input, we show
its corresponding output generated by the verbal-
izer trained on T and the verbalizer trained on
T-F+ID-T. We can see that the direction evi-
dence to the answer is present in one of the raw
table cells, however in all 3 cases the verbalizer(T)
failed to generate that piece of information. On the
other hand, the verbalizer(T-F+ID-T) faithfully
described all information presented in the input,
showing the effectiveness of our proposed method.

G License

We list the License of the software and data used
in this paper below:

e DPR: CC-BY-NC 4.0 License

e DART: MIT License
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Input

<H> [title] <T> Conde McCullough <H> bridge name <T> oregon city bridge <H> carries <T> oregon route 43

<H> year completed <T> 1922 <H> total length <T> 745 feet 227 m <H> location <T> oregon city oregon

Target conde mccullough helped build the oregon city bridge, which is part of oregon rt. 43.
Input  <H> [title] <T> Yury Aleksandrovich Golovkin <H> russian state <T> russian empire
<H> date from <T> 9 november 1818 <H> date until <T> 16 september 1822
Target the first ambassador of russia to austria was prince dmitry mikhailovich golitsyn.
Input  <H> [title] <T> 43 <H> competition <T> afc champions league
Target  the club was officially founded as lucky-goldstar football club in 1983, by the lucky-goldstar group.
fc seoul have won six league titles, two fa cups, two league cups and one super cup.
Input  <H> [title] <T> Ana Maria Beldana Ferriera <H> hometown <T> santiago de los caballeros
Target ana maria beldafa ferriera, from santiago de los caballeros, was a contestant in the miss dominican republic 2002 contest.
Input  <H> [title] <T> Meet the Fockers <H> edited by <T> jon poll lee haxall alan baumgarten <H> production company
<T> tribeca productions everyman pictures <H> distributed by <T> universal pictures (north america)
dreamworks pictures (international)
Target meet the fockers was edited by jon poll, lee haxall, alan baumgarten and distributed by universal pictures (north america)
dreamworks pictures (international). the production company was tribeca productions.
Input  <H> [title] <T> Lamar Hunt U.S. Open Cup <H> season <T> 2010 <H> player <T> paulo jr. nate jaqua
<H> team <T> miami fc seattle sounders fc <H> goals <T> 5
Target  paulo jr. nate jaqua scored 5 goals for miami fc seattle sounders fc in the 2010 lamar hunt u.s. open cup.

Table 11: Top: examples from DART that are filtered out by our method, the bold cells are omitted information
from target, and italic text from target are likely to bias the model towards hallucination. Bottom: examples from
(ID-T), which is generated by our Ist iteration verbalizer

Question how many episodes in season 7 walking dead

Answer 16

Input <H> [title] <T> The Walking Dead (season 7) <H> country of origin <T> united states <H> no. of episodes
<T> 16 <H> the walking dead (season 7) <T> release <H> original network <T> amc

Verbalizer (T) the original network for the walking dead (season 7) is amc. the country of origin for the walking dead

Verbalizer (T-F+ID-T)

(season 7) is united states.
the original network of the walking dead (season 7) is amc and the country of origin is united states.
the walking dead (season 7) has 16 episodes.

Question when did nigeria adopt the presidential system of government

Answer 1963

Input <H> [title] <T> Federal government of Nigeria <H> federal government of nigeria <T> coat of arms of nigeria
<H> formation <T> 1963; 55 years ago <H> founding document <T> constitution of nigeria

Verbalizer (T) the constitution of nigeria is the founding document of the federal government of nigeria which was formed 55

Verbalizer (T-F+ID-T)

years ago. the federal government of nigeria has the coat of arms of nigeria.
the constitution of nigeria is the founding document of the federal government of nigeria which was
formed in 1963; 55 years ago. the federal government of nigeria has the coat of arms of nigeria.

Question what year did they stop making the saturn vue

Answer 2009

Input <H> [title] <T> Saturn Vue <H> saturn vue <T> overview <H> manufacturer <T> saturn corporation
(2002-2007) opel (general motors) (2008-2010) <H> production <T> 2001-2009 <H> model years
<T>2002-2010 <H> saturn vue <T> body and chassis

Verbalizer (T) saturn vue’s body and chassis were manufactured by saturn corporation (2002-2007) and opel (general

Verbalizer (T-F+ID-T)

motors) (2008-2010) during the model years 2002-2010.
saturn corporation (2002-2007) opel (general motors) (2008-2010) manufactured the saturn vue from
2001-2009 and model years 2002-2010. the saturn vue has a body and chassis.

Table 12: Examples of verbalized table(rows) generated by different verbalizer, where the direct evidences to the
answer are marked in bold

e KELM: CC BY-SA 2.0 license

e OTT-QA: MIT License
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