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Abstract
We introduce Dynatask: an open source sys-
tem for setting up custom NLP tasks that
aims to greatly lower the technical knowledge
and effort required for hosting and evaluat-
ing state-of-the-art NLP models, as well as
for conducting model in the loop data col-
lection with crowdworkers. Dynatask is inte-
grated with Dynabench, a research platform
for rethinking benchmarking in AI that facil-
itates human and model in the loop data col-
lection and evaluation. To create a task, users
only need to write a short task configuration
file from which the relevant web interfaces
and model hosting infrastructure are automat-
ically generated. The system is available at
https://dynabench.org/ and the full
library can be found at https://github.
com/facebookresearch/dynabench.

1 Introduction

Data is the backbone of NLP research. One of
the most fruitful approaches for making progress
on NLP tasks has historically been benchmarking.
Benchmarking is where the community adopts a
high quality dataset for a particular task and tests
various models against it to determine which is
best. The process of benchmarking requires the
effort of a large number of researchers, who col-
lect and clean data, train and evaluate models, and
work to understand model weaknesses. This pro-
cess is iterative: once models perform very highly
on the currently accepted community benchmark,
another is created to push progress further. Taken
as a whole, the benchmarking process is both no-
toriously difficult and expensive. This is due to
a variety of facts: the community is a loose con-
glomeration of researchers with different areas of
expertise, there is ever increasing need for larger
datasets (Halevy et al., 2009), and the AI commu-
nity has historically under-valued (Wagstaff, 2012)

∗ TT and DK conducted most of the work for this paper
when they were at Facebook AI Research.

and under-invested in data collection and best prac-
tices (Kiela et al., 2021; Sambasivan et al., 2021;
Mattson et al., 2022).

To make matters worse, in recent years, bench-
marks have been saturating with increasing speed.
Taking the trends from the greater AI commu-
nity into account, it took MNIST (LeCun et al.,
1998), Switchboard (Godfrey et al., 1992), and Im-
ageNet (Deng et al., 2009) several years to saturate,
and newer benchmarks such as SQuAD (Rajpurkar
et al., 2016), GLUE (Wang et al., 2018), and Super-
GLUE (Wang et al., 2019) about a year. Because
of this, data-centric approaches are gaining more
attention (Ng et al., 2021; Mattson et al., 2022;
Lhoest et al., 2021; Paullada et al., 2021; Luccioni
et al., 2021). This trend is clear evidence of the ur-
gency of finding a sustainable and data-centric way
to support the full benchmarking ecosystem, from
end-to-end, in a way that causes the least amount
of friction for anyone who wants to use it.

In this paper, we introduce our answer to these
issues: an easy-to-use, open source system that
integrates the creation of benchmark datasets for
any task, the selection of appropriate metrics, and
the evaluation of models while natively supporting
revisions to the benchmark as models saturate the
original version. We share a unified library that
enables these functionalities for the Dynabench
platform (Kiela et al., 2021).

2 Background

Dynabench was proposed as an open-source and
community-driven platform to host dynamic bench-
marks. The existing Dynabench tasks avoid satura-
tion by leveraging crowdworkers who continually
interact with state-of-the-art models. Crowdwork-
ers either write examples that fool existing mod-
els (Nie et al., 2020), or collaborate with generative
models to increase example diversity (Bartolo et al.,
2021b). Each task is administered by one or more
task owners from the research community who col-

174

https://dynabench.org/
https://github.com/facebookresearch/dynabench
https://github.com/facebookresearch/dynabench


context:
- name: context

type: string
placeholder: Enter

context...↪→
input:
- name: hypothesis

type: string
placeholder: Enter

hypothesis...↪→
- name: label

type: multiclass
labels:
- entailed
- neutral
- contradictory
as_goal_message: true

output:
- name: label
- name: probs

type: probs
reference_name: label

input:
- name: image

type: image
display_name: image

- name: labels
type: multilabel
labels:
- Bird
- Canoe
- Croissant
- Muffin
- Pizza

output:
- name: labels

Figure 1: Two example config files and the data collection and validation interfaces they generate. Only config fields
that impact the data collection interfaces are shown (e.g. metrics for model ranking are not shown). The Context and
Input fields define the type of data that humans can enter. The Output field defines what models will output, given
the Context and the Input. Crowdworkers are typically expected to provide the gold truth annotations for a task. In
this case, Output will contain some of the object names from Input and Context. These gold truth annotations are
removed from the Context and the Input before they are sent to models to get a model-in-the-loop output.

(Top) The config implements a natural language inference task. The first image is the collection inter-
face, after a crowdworker submits their example and gets a model-in-the-loop response. The second
image is the validation interface. For brevity, the metadata field in the config is omitted. This field is used to
define the UI components for additional information, such as the “Explain why your example is correct...” input field.

(Bottom) The config implements an image labelling task. The first image is the collection interface, be-
fore a crowdworker submits their example. The second image is the validation interface with the same example.
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lect data, make the competition’s design decisions,
select metrics, and configure the task’s leaderboard.

Kiela et al. (2021) introduced Dynabench with
four English language NLP tasks: Natural Lan-
guage Inference (Nie et al., 2020), Extractive
QA (Bartolo et al., 2020), Sentiment Analy-
sis (Potts et al., 2020) and Hate Speech Detec-
tion (Vidgen et al., 2021). In follow-up work, Ma
et al. (2021) updated Dynabench with additional
leaderboard functionalities that allow task owners
to upload task-specific models which are evaluated
on each of the task’s datasets, and can subsequently
be included in model-ensembles that crowdwork-
ers interact with. As the platform kept expanding,
it became clear that Dynabench needed a scalable
and configurable system for adding new tasks.

A task is an essential concept in understanding
our work. On Dynabench, a distinct task is a par-
ticular relationship between inputs and outputs.1

Inputs and outputs are framed within some pre-
specified format. For example, Natural Language
Inference is a task on Dynabench. The input format
is two strings and the output format is a classifi-
cation label. The relationship between the inputs
and outputs is defined by what humans would do
when loosely instructed to treat the input strings
as a context (sometimes called the “premise”) and
a hypothesis, and return a label for whether they
think the hypothesis is entailed by the context.
MNLI (Williams et al., 2017), SNLI (Bowman
et al., 2015), and ANLI (Nie et al., 2020) can
be viewed as different datasets that instantiate the
same task. Schlangen (2021) takes a similar view.

3 Dynatask

Before the introduction of Dynatask, adding a
new task required close collaboration between task
owners and the Dynabench team, and extensive
software contributions to the Dynabench code-
base. This paper presents a system that enables
Dynabench to scale up to more tasks, including
into multimodal and multilingual domains, without
such requirements. Now, a task owner can create
their own task page on Dynabench with a short task
config file. The config file is used to automatically
generate crowdworker data collection interfaces, as
well as the model and dataset hosting/evaluating
infrastructure. The data collection interfaces and
hosting overlay existing services such as Amazon

1Although, any user can set up a new task that is a duplicate
of an existing one, with a duplicate config file.

Mechanical Turk,2 which provide a workforce and
payment mechanisms, but do not provide crowd-
worker interfaces for dynamic model-in-the-loop
data collection or their corresponding backends. In
fact, local installations of Dynabench can be run
on Mechanical Turk. Overall, a Dynabench task
owner can set up and host:

Crowdworker data collection: Task owners can
configure interfaces for data collection. Models-in-
the-loop can be optionally added, so crowdworkers
can receive real-time model responses from their
data (Figure 1).

Crowdworker data validation: Task owners can
configure interfaces for crowdworkers to label col-
lected examples as correct or incorrect. (Figure 1).

Dynamic dataset metrics: Metrics on the crowd-
worker data are computed, such as verified model
error rate (vMER) (Nie et al., 2020). Crowdworker
example leaderboards are displayed.

A train file leaderboard: Task owners can en-
able users to upload training data files for the auto-
matic creation, training, and evaluation of models
in our evaluation cloud.

A dynamic and interactive model leader-
board (Ma et al., 2021): Task owners can con-
figure a leaderboard, selecting from a variety of
metrics to determine model performance. Own-
ers can also upload new datasets, which triggers
automatic evaluation for all of the user-uploaded
models. Every leaderboard model can be interacted
with in real-time. See Figure 2 for an example.

A model upload pipeline: Once a new task goes
live on Dynabench, our command line tool3 allows
anyone to create a handler script and upload mod-
els by following a few command line instructions.
After models are uploaded, they are dockerized and
deployed automatically. Models can be viewed on
the leaderboard and put in-the-loop with crowd-
workers for data collection.

3.1 Task Configuration

To become task owners, Dynabench users submit a
short written proposal for their task which requires
approval by an administrator. We are still develop-
ing procedures for how Dynabench accepts tasks;

2https://www.mturk.com
3https://github.com/facebookresearch/

dynalab
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aggregation_metric:
type: dynascore

perf_metric:
type: squad_f1
reference_name:

answer↪→

delta_metrics:
- type: fairness
- type: robustness

Figure 2: An example of a task config next to the generated model leaderboard. Only config fields that impact the
leaderboard are shown. Throughput and memory do not need to be in the config; they are computed by default.

so far, we have reached out to have a discussion
with the proposer before accepting their proposal
and all non-spam proposals have been slated for
acceptance. After approval, the task owner submits
a task config file, which can be written in min-
utes. Once complete, the task is actively hosted on
Dynabench; data collection, data validation, model
hosting, and model evaluation starts immediately.
A complete config file is the combination of a snip-
pet in Figure 1 with that in Figure 2.

The task config is a YAML file which allows
someone to encode the specifications for their task—
it can be viewed as a lightweight declarative pro-
gramming language. Task owners can specify:

The datatypes of the task’s inputs and outputs.
There are a variety to choose from, including String,
String Selection, Multiclass, Multilabel, Probabil-
ities, and Image. The datatype definition enables
Dynatask to automatically construct the UIs for
data collection, the dataset uploading and down-
loading infrastructure, and the model uploading
and hosting infrastructure.

A variety of metrics to understand the task’s
datasets and models. Several metrics can currently
be computed for the leaderboard: Macro F1, F1
for Visual Question Answering, F1 for Question
Answering, Accuracy, BLEU, robustness and fair-
ness (Ma et al., 2021), memory usage, and example
throughput. Task owners select or propose an ag-
gregation metric, which combines results across
multiple datasets and metrics to arrive at a ranking
for the leaderboard. Currently, the only supported
aggregation metric is the Dynascore (Ma et al.,
2021), which combines metrics across datasets
based on microeconomic utility (Ethayarajh and
Jurafsky, 2020) of user provided weights. Metrics
can also be specified for model-in-the-loop data col-
lection to judge whether a model’s output matches

Figure 3: The task owner interface for ANLI.

that of a crowdworker (i.e., whether the model is
“correct”). Dynatask supports a variety of such met-
rics, including a string F1 threshold (for outputs
that are strings), exact match, and simply asking
the crowdworker whether the model was correct.

Other optional items, such as messages and in-
structions that appear in crowdworker interfaces,
and options for train-file leaderboards.

3.2 Options After Task Configuration

Crowdworker Interfaces, Data Generation, and
Data Evaluation: Data collection interfaces are
automatically hosted at dynabench.org. In or-
der for Dynabench to scale, task owners source
and pay crowdworkers themselves. If crowdworker
management, compensation, and sourcing features
are needed, an owner can clone Dynabench and
run it on Mechanical Turk by hosting the data col-
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Figure 4: A cross-section from a model card. The task
owner has enabled downloading of model evaluation
logs for each dataset via the buttons on the right.

lection frontend using Mephisto.4 Task owners
can upload context data for crowdworkers to use
and download data collected from crowdworkers
directly from the Dynabench web interface. Task
owners can also initiate new rounds of data col-
lection where they are free to upload entirely new
contexts and models. As part of the data collection
process, vMER, number of total collected exam-
ples, and number of validated examples are com-
puted. Finally, task owners can alter instructions to
crowdworkers at any time. They can also specify
whether crowdworkers should validate non-model
fooling examples, and provide a validation consen-
sus threshold above which examples are considered
fully validated. Figure 3 shows an example of the
interface that task owners use to adjust settings.

Model Submission, Interaction, and Evaluation:
Task owners can decide whether their task accepts
model submissions, they can upload datasets for
model evaluation, and they can download model
evaluation logs for any dataset and model. Task
owners can optionally allow users to download
these logs to debug their models; see the exam-
ple in Figure 4.

4 Decentralized Evaluation-As-A-Service

Most task owners currently use the centralized Dyn-
abench evaluation and model deployment server.
With Dynatask, however, we offer a decentralized
evaluation feature that will increase the platform’s
flexibility even further. With this feature, task own-
ers can set up a Dynabench model deployment and
evaluation server or select an existing one. To set
up a new server, an owner only needs to follow
our documentation, creating an AWS account and
installing some Dynabench code along the way.
Distributed hosting of model building and evalua-
tion enables Dynatask to scale: no one organization
needs to fund hosting for all of the models on Dyn-

4https://github.com/facebookresearch/
Mephisto

Statistic Count

Datasets Hosted 191
Unique Crowdworkers 5,595
Model Uploads 589
Data Collection Rounds 38
Tasks (incl. private) 24
Examples Collected 559,229
Example Validations 436,922

Table 1: Current Dynabench statistics.

abench, and every owner of a model deployment
and evaluation server can flexibly upload or take
down models to suit their budget. It is also de-
signed with re-usability in mind: several tasks can
share the same evaluation servers. Task owners do
not need to do any setup if they have permission to
use an existing evaluation server.

5 Case Studies of Tasks Enabled so Far

Tables 1 and 2 provide an overview of Dynabench
so far. In this section, we report on some use cases.
Most of the following projects (besides Image La-
belling and Open Domain QA) were added to Dyn-
abench before the introduction of Dynatask, which
took months of coding in every case. With Dy-
natask, they can all be implemented in minutes.

Hate Speech Detection: There are a number
of hate speech detection projects on Dynabench,
where a model must label strings as hateful or
not. Groups from Oxford, The Alan Turing Insti-
tute, The University of Sheffield, and Facebook AI
own task pages that focus on collecting adversarial
data (Vidgen et al., 2021), collecting emoji-based
hate (Kirk et al., 2021), and evaluating models on
a large number of hate speech data perturbations.

Visual Question Answering: To combat satu-
rating datasets for the VQA task, which is about
answering a question based on an image, Face-
book AI and Tecnológico de Monterrey introduced
AdVQA (Sheng et al., 2021) using Dynabench.
The task’s model leaderboard has an additional
adversarial VQA dataset from Microsoft and Ts-
inghua (Li et al., 2021).

Extractive Question Answering: Groups from
UCL and Facebook AI run SQuAD-style (Ra-
jpurkar et al., 2016) extractive QA projects on Dyn-
abench. The Adversarial QA (Bartolo et al., 2020)
project resulted in a popular dataset on the Hug-
ging Face hub (Lhoest et al., 2021). Follow-up
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Selected Dynabench Tasks Context and Input Types Output Types

Hate Speech Detection https://dynabench.org/tasks/hs String, String, Multiclass Multiclass, Probs
Visual QA https://dynabench.org/tasks/vqa Image, String String
Extractive QA https://dynabench.org/tasks/qa String, String, String Select String Select, Probs
Open Domain QA https://dynabench.org/tasks/qb String, String, String String, Probs
Natural Language Inference https://dynabench.org/tasks/nli String, String, Multiclass Multiclass, Probs
Sentiment Analysis https://dynabench.org/tasks/sentiment String, String, Multiclass Multiclass, Probs
Machine Translation https://dynabench.org/tasks/flores String, String, String, String String
Image Labelling https://dynabench.org/tasks/vision-dataperf Image, Multilabel Multilabel

Table 2: IO types from the task config, for some tasks on Dynabench. Tasks share the same building blocks.

projects explored the generation of synthetic adver-
sarial QA data (Bartolo et al., 2021a), generative
assistants in the loop to help annotators create ex-
amples (Bartolo et al., 2021b), and a study of how
adversarial model-in-the-loop training data affects
generalization out of domain (Kaushik et al., 2021).

Open-Domain Question Answering: A team at
Facebook AI and The University of Maryland has
started a model-in-the-loop data collection effort
for the Quizbowl task (Rodriguez et al., 2019; Wal-
lace et al., 2019), as well as a model leaderboard.
The task is open domain question answering, where
both the question and answer are strings.

Natural Language Inference: The NLI dataset
ANLI (Nie et al., 2020) is currently a popular
dataset on Hugging Face datasets (Lhoest et al.,
2021) and an ongoing Dynabench project. Groups
from Facebook AI, UC Berkeley, and UNC have set
up additional NLI projects on distinct Dynabench
task pages. These projects have ranged from an
analysis of the contents of adversarially collected
development sets (Williams et al., 2022), to an ex-
plication of the benefits of dynamic adversarial
data collection over multiple rounds (Wallace et al.,
2021), to model and leaderboard hosting for a large
number of robustness-perturbed NLI datasets.

Sentiment Analysis: In later rounds of their work,
a team at Stanford used Dynabench to create a new
adversarial sentiment analysis dataset, called Dy-
nasent (Potts et al., 2020). They added prompts to
their data collection interfaces to encourage crowd-
workers to generate naturalistic and diverse data.

Large-Scale Machine Translation: The Work-
shop on Machine Translation (Wenzek et al.,
2021) organizers created a Dynabench task page
and hosted the FLORES benchmark competi-
tion (Goyal et al., 2021) of over 10,000 language
pairs. It featured competitors from Microsoft,
Huawei, Tencent, and Facebook, and individual
competitors. The result of the competition was a
BLEU increase of over 10 points on the full task.

The owners used Dynabench for its leaderboard,
model upload, and evaluation-as-a-service feature,
without collecting data on the platform yet.

Image Labelling: DataPerf (Mattson et al., 2022)
is a working group of the non-profit ML Commons,
which focuses on dataset benchmarking for gen-
eral AI. For their image labelling task hosted on
Dynabench, they configured their task via the task
config to accept training data file uploads. Users up-
load train files and models are automatically trained
against them and evaluated in the evaluation cloud.

6 Conclusion

We introduced Dynatask, a collection of open
source features in the Dynabench platform that
empowers anyone to create and own a task on Dyn-
abench with only a short config file. Dynabench
started as an NLP project with only four English-
only tasks. Since then, Dynatask has helped re-
searchers produce several datasets and host com-
petitions, expanding scalably into multimodal and
multilingual domains with owners from various
corners of the AI community. Dynatask offers
the functionalities of Dynabench to the broader
research community by allowing them to easily
create and host new AI tasks on the platform: it
provides a one-stop shop for constructing datasets
with or without models in the loop, hosting chal-
lenges and competitions, investigating the effects
of models in the loop, characterizing distributional
shift and continual learning, exploring annotator
efficiency and expertise, and improving model ro-
bustness through collaboration with humans.

Finally, Dynabench is an open source,
community-driven effort. Anyone who wants to
add a new input/output type, a new metric, or any
other new feature, need only submit a pull request.
We hope that our our work can help enable new
exciting scientific progress in data-centric AI
research in general and dynamic (adversarial) data
collection in particular.
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