
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics
System Demonstrations, pages 127 - 134

May 22-27, 2022 ©2022 Association for Computational Linguistics

Hard and Soft Evaluation of NLP models with BOOtSTrap SAmpling -
BooStSa

Tommaso Fornaciari
Università Bocconi

fornaciari@unibocconi.it

Massimo Poesio
Queen Mary University
m.poesio@qmul.ac.uk

Alexandra Uma
Queen Mary University
a.n.uma@qmul.ac.uk

Dirk Hovy
Università Bocconi

dirk.hovy@unibocconi.it

Abstract

Natural Language Processing (NLP)’s applied
nature makes it necessary to select the most
effective and robust models. However, just pro-
ducing slightly higher performance is insuffi-
cient; we want to know whether this advantage
will carry over to other data sets. Bootstrapped
significance tests can indicate that ability. Com-
puting the significance of performance differ-
ences has many levels of complexity, though.
It can be tedious, especially when the experi-
mental design has many conditions to compare
and several runs of experiments. We present
BooStSa, a tool that makes it easy to compute
significance levels with the BOOtSTrap SAm-
pling procedure. BooStSa can evaluate models
that predict not only standard hard labels but
soft labels (i.e., probability distributions over
different classes) as well.

1 Introduction

Text classification is one of the main applications
of NLP, with hundreds of papers published every
year at NLP conferences. While these publications
cover various domains, they essentially follow the
same steps: Pick a classification problem. Identify
baseline models, standard models from previous
literature, and State-Of-The-Art (SOTA) models.
Propose a novel approach to the problem. Show
that it outperforms the previous ones on benchmark
data sets.

Developing better methods for a task is a com-
mon feature of the computational linguistics litera-
ture, and selecting the best model from a range of
options is crucial for the whole experimental pro-
cedure. However, showing absolute improvements
on several data sets (let alone one) is not sufficient.
Variations in model initialization, batch sampling
and other factors might result in an improvement
that does not generalize. We can use significance
tests to assess whether the observed improvements
are likely to hold on future data sets.

However, identifying the best method(s) depends
on two different but correlated aspects of the eval-
uation process. The metrics adopted for the per-
formance measurement and the significance test
carried out for the models’ comparison.

To compute the significance of the models’ im-
provements over comparison sets, BooStSa relies
on bootstrap sampling (Efron and Tibshirani, 1994;
Berg-Kirkpatrick et al., 2012). As Søgaard et al.
(2014) discussed, the effect size, that is, the per-
formance gap between different methods, can be
modelled as a random variable. When this random
variable follows a normal distribution, it is possible
to use Student’s t-test to estimate the significance
in the performance difference. However, the as-
sumption of normal distribution does not hold in
most NLP applications. Therefore, randomized,
sample-based, non-parametric tests such as boot-
strap sampling are better suited for NLP.

However, the correct implementation of this
method can be non-trivial (especially on top of
other experiments). To allow for a safe, flexible
application, we release BooStSa to the community.
Since the results of bootstrap methods are “very
sensitive to sample size, [...] as well as to the exis-
tence of multiple metrics” (Søgaard et al., 2014, p.
1), BooStSa incorporates some constraints in the
hyper-parameter choice (Section 2.3) to prevent the
accidental misuse of the methods.

Concerning the metrics, the scenario differs
when the prediction uses hard labels or soft labels.
Hard labels are standard one-hot encoded labels,
where one class is correct and is assigned the value
of 1, and the others are wrong and have a value of
0. In the case of soft labels, the actual label value is
ultimately uncertain. This uncertainty is expressed
as a probability distribution over classes, each re-
ceiving a value from 0 to 1, all summing up to 1.
In the first case, the use and the interpretation of
metrics such as accuracy (Acc), precision (Prec), re-
call (Rec), and F-measure (F1) are well-understood

127

in the literature (Forman et al., 2003; Uma et al.,
2021). BooStSa computes these metrics for hard
labels. In the second case, no metric is generally
accepted to evaluate the divergence between proba-
bility distributions. BooStSa follows the approach
of Uma et al. (2021) and provides cross entropy
(CE), Jensen-Shannon divergence (JSD), entropy
similarity (E-Sim) and entropy correlation (E-Corr)
for soft labels.

Contributions. We release BooStSa, an open-
source application that computes:

• Standard metrics for hard labels, macro-
averaged or over selected target classes;

• Metrics for soft labels, following best prac-
tices form previous literature;

• The bootstrap sampling significance test,
with safety-constraints for hyper-parameter
choices.

The tests can be run efficiently, even for com-
plex experimental designs comparing many differ-
ent models trained in several runs of experiments.
The package can be installed with pip and is re-
leased on github/fornaciari/boostsa (documentation
at boostsa.readthedocs.io).

2 Methods

2.1 Metrics for hard labels

We adopt the standard metrics for classification
tasks – F-measure (F1), precision (Prec), recall
(Rec), and accuracy (Acc). They have been widely
studied in literature and their interpretation is gen-
erally shared and accepted (Goutte and Gaussier,
2005; Forman et al., 2003).

2.2 Metrics for soft labels

For the soft label evaluation, we consider the four
metrics proposed by Uma et al. (2021): 1) cross en-
tropy (CE), 2) Jensen-Shannon divergence (JSD),
3) entropy similarity (E-Sim) and 4) entropy cor-
relation (E-Corr). The first two measure the di-
vergence between target and predicted probability
distribution (CE and JSD), the second two eval-
uate how well the predicted distributions capture
the uncertainty embodied in the target distribution,
usually generated by humans (E-Sim and E-Corr).

Cross-entropy. Cross-entropy is a widely used
loss-function to measure the divergence between
probability distribution. Peterson et al. (2019)

also suggest using it to measure the confidence of
trained models with respect to target distributions,
typically resulting from human predictions.

Jensen-Shannon divergence. Based on the
Kullback-Leibler divergence (Kullback and Leibler,
1951) and proposed by Lin (1991), the JSD is an-
other common measure of divergence from prob-
ability distributions. Compared to the Kullback-
Leibler divergence, it is symmetric, making JSD
more easily interpretable.

Entropy similarity. Proposed by Uma et al.
(2021), the E-Sim is given by the cosine similarity
between two vectors, containing the normalized
entropy of the probability distribution of each data
point, target or prediction.

Entropy correlation. It relies on Pearson’s corre-
lation (Pearson, 1896), applied to the same vectors
used for the E-Sim (Uma et al., 2021). Based on
the probability distributions’ entropy, E-Sim and E-
Corr measure how well the predicted distributions
detect the uncertainty of the target distributions.

2.3 Bootstrap sampling

We follow the algorithm as described by Berg-
Kirkpatrick et al. (2012). The bootstrap sampling
procedure relies on the iterative simulation of “new”
data sets. Random test sets are repeatedly sub-
sampled (with replacement) from the whole test
data. At each iteration, we compare the perfor-
mance difference between baseline and experimen-
tal model, δsample, computed on the original test
set, to the difference computed on the sampled
subset, δsub−sample. By counting how many times
the sub-sample differences are at least twice as
large as the overall difference value, δsub−sample >
2δsample, we can derive the p-value by dividing this
count by the number of iterations.

Bootstrap sampling is agnostic to the chosen per-
formance metric, making the tool very versatile.
It allows, for example, to use all the metrics de-
scribed in the previous sections, as long as they
follow the Central Limit Theorem (CLT) (Pólya,
1920; Rosenblatt, 1956): i.e., it is required that the
distribution of sample means approximates a nor-
mal distribution as the sample size becomes wider,
regardless of the population’s distribution.

However, bootstrap sampling is still sensitive to
some experimental parameters, that is, the overall
test set size, the sub-sampled test set size and the
number of iterations. This point is critical, as the
notion of significance is not grey-scaled: a p-value

128

https://github.com/fornaciari/boostsa
https://boostsa.readthedocs.io/en/latest/index.html

Figure 1: Significance test simulation for classification, showing the effect of interaction between test set size
and sub-sample sizes. The test set is perfectly balanced (50% instances for each class). The baseline and model
predictions are also balanced (F1 = Prec = Rec = Acc), and the difference is one percentage point, δ = .01.
Each data point comes from 10 simulations. Every significance test simulation was carried out with 1 000 iterations.
The narrow confidence interval (light blue) across the 10 simulations, indicates that 1 000 iterations are sufficient to
obtain stable results.

is either significant or not with respect to a cho-
sen threshold, but its value is also affected by the
bootstrap hyper-parameters. Their effect can be
summarized as follows.

Test set size. The wider the sample, the more ro-
bust the results, and the easier to reach significance
levels.

If several experiments are run for each experi-
mental condition, BooStSa concatenates the test
data, the baseline and experimental predictions as
if each of them was a single experiment.

Sub-sample size. The previous hyper-parameter
is usually determined by the availability of the data
sets, limiting the possibilities of control for the re-
searcher. However, the size of the sub-samples can
freely be chosen by the experimenter. Determining
its correct value is not trivial, though.

Søgaard et al. (2014, p. 3) observe that “for
the bootstrap test to work, the original sample has
to capture most of the variation in the population.
If the sample is very small, though, this is likely
not the case. Consequently, with small sample
sizes, there is a risk that the calculated p-value will
be artificially low–simply because the bootstrap
samples are too similar”.

The opposite risk exists as well: if the sub-
sample is too similar to the size of the whole test
set, the bootstrap samples will be too similar to the
test set, producing p-values that are artificially high.
In other words, too broad a sample implies that the
test set sample actually represents the whole popu-
lation, which is quite a strong assumption indeed.

Figure 1 shows a simulation of the relationship
between test size and sub-sample size. The curves
come from an artificially created test set and per-

fectly balanced predictions, where the experimental
model beats the baseline by one point per cent on
every standard classification metric (F1, Prec, Rec
and Acc). The trends are similar to those shown by
Berg-Kirkpatrick et al. (2012) on real data.

To the best of our knowledge, there are no clear
guidelines in the literature for selecting the “correct”
sample size. In BooStSa, we prevent the selection
of extreme sub-sample sizes (too small or too big)
by only allowing a range between 5% and 50% of
the test set size. Beyond this, we suggest choosing
smaller sub-sample sizes, if the test set size allows,
as this should keep the sub-sample size far from
the dangerous extreme values. We also encourage
practitioners to use bootstrap sampling responsibly
and transparently by always specifying the chosen
test parameters.

Number of iterations. On the other hand, tun-
ing the number of iterations is straightforward: the
more, the better. The confidence intervals shown
in figure 1 suggest that 1, 000 iterations are already
sufficient to obtain quite stable results; therefore,
the often suggested 10, 000 iterations are a per-
fectly safe amount.

3 Experiment

Figure 2 shows the BooStSa’s output for a real use
case. We use the barely significant results of the
Part-Of-Speech (POS) tagging classification task
carried out by Fornaciari et al. (2021, p.2593, table
1, POS tag, separate test set, STL vs. MTL + Cross-
Entropy). In that task, a Single-Task Learning
(STL) model (h0) is compared with a Multi-Task
Learning (MTL) model (h1). A hold-out validation
procedure is followed, with a test set containing

129

Figure 2: P-levels from significance test simulations
with different sub-sample rates and 10 000 iterations.
The results concern a POS-tagging classification task
from the study of Fornaciari et al. (2021), where a
Single-Task Learning (STL) model (h0) is compared
with a Multi-Task Learning (MTL) model (h1).

3064 instances.

We consider two metrics, accuracy and F-
measure, and six different sub-sample sizes, from
5% to 50% of test set rate. The h0’s accuracy and
F-measure were 85.84 and 74.56, the h1’s accuracy
and F-measure were 86.27 and 75.13, with a delta
of 0.43 and 0.57, respectively. Similar to the re-
sults shown by Fornaciari et al. (2021), significant
p-values appear only for sample sizes greater than
30% of the whole test set.

4 Usage

4.1 Installation

BooStSa can be installed in the shell simply via:
pip install -U boostsa .

4.2 Getting started

To use BooStSa in a Python script, the first step is
to import the library:

1 from boostsa import Bootstrap

Second, we need to create a bootstrap instance:
1 boot = Bootstrap()

This instance will store the experiments’ outcomes
and compute performances and the significance test
between the experiments that need to be compared.

4.2.1 Inputs

The basic assumption for using BooStSa is that at
least two classification models have been trained.

One model is considered the baseline, control, or
null hypothesis (h0). The other is the experimental
model, treatment, or hypothesis 1 (h1). In most
settings, we expect this model to beat the baseline.

Their respective performance is tested against
the same test set. It does not matter if this is a
dedicated test set or resulting from a k-fold cross-
validation procedure. In any case, the test set (tar-
gets) must be the same for both models.

The h0 predictions, h1 predictions and targets
are the inputs for the Bootstrap instance.

4.2.2 Outputs

BooStSa’s outputs are directly printed to standard
out, and returned as a pandas DataFrame , that can
be directly used, for example, to export them to a
LaTex table.

However, when the Boostsa() object is instan-
tiated, it is possible to define which output to save
on disk. BooStSa can produce two kinds of out-
puts:

results.tsv It contains the experiments’ perfor-
mance and the (possible) significance levels
of the experimental against the control condi-
tions;

outcomes.json It contains targets and predic-
tions for all the experimental conditions.

Target and predictions are the same that
BooStSa takes as inputs. However, as de-
scribed in Section 4.4, it can be useful to
save them in JSON format if the test needs
to be rerun, for example, when adding new
experimental conditions to those that had al-
ready been considered. In these cases, feed-
ing BooStSa with outcomes.json allows us
to recreate the previous inputs’ configuration

130

without needing to instantiate BooStSa again
from scratch.

These outputs can be created using the following
parameters:

save_results Type: bool ; default: True .
Boolean variable to determine whether to save
the performances and the tests’ results.

save_outcomes Type: bool ; default: True .
Boolean variable to determine whether to save
as json the input predictions and targets.

dir_out Type: str ; default: ” . String vari-
able that indicates the directory where to save
results.tsv and outcomes.json .

The box below shows an example:
1 boot = Bootstrap(save_outcomes=False,

dir_out=’my/favourite/directory/’)

4.3 Simple use-case

In the simplest use case, it is necessary to carry
out the significance test between the predictions of
two experiments. This can be done with the test

function, which accepts the following parameters:

targs Type: list , numpy.array or str .
They are the targets, or test set, that is the
benchmark to measure the h0 and h1 predic-
tions’ performance. BooStSa automatically
infers from the input shape if hard or soft la-
bels are provided, according to these cases:

• A simple list will be assumed to be
a list of integers, each corresponding to
hard classes’ indexes.

• A list of list s will be assumed to
contain in each sub-list, as a row in a
2D matrix, float numbers summing up to
one, which will be treated as soft labels.

• A 1D or 1-column numpy.array will
be considered as containing integers for
hard labels.

• A 2D numpy.array will be treated as
containing float numbers constituting a
soft label in each row.

• The str input will be processed as a
full path to a file, which will have to com-
ply with the following rules:

– A file with extension ’.txt’ has to con-
tain an integer in each row, represent-
ing hard classes’ indexes.

– A file with extension ’.csv’ has to
contain comma-separated values for
soft labels.

– A file with extension ’.tsv’ has to con-
tain tab-separated values for soft la-
bels.

– A file with extension ’.npy’ has to
contain a NumPy binary file.

h0_preds Type: list , numpy.array or str .
The h0 predictions, in the same formats of
targs .

h1_preds Type: list , numpy.array or str .
The h1 predictions, in the same formats as
above.

h0_name Type: str , default: h0 . Expression
to describe the h0 condition.

h1_name Type: str , default: h1 . Expression
to describe the h1 condition.

n_loops Type: int , default: 1000 . Number
of iterations for computing the bootstrap sam-
pling.

sample_size Type: float , default: .1 . Per-
centage of data points sampled from their
whole set. The admitted values range between
0.05 (5%) and 0.5 (50%).

targetclass Type: int , default: None . If
provided, it is interpreted as a label index, and
for hard labels BooStSa will provide perfor-
mance and significance levels with respect to
that class. The parameter has no effect with
soft labels.

verbose Type: bool , default: False . If true,
the experiments’ performance is printed on
the shell.

An example of test function use is shown in
figure 3. The significance levels are indicated by
∗∗ : p ≤ .01 and ∗ : p ≤ .05. Figure 4 shows an
example with soft labels as inputs. Note that, for
CE and JSD, the difference between the baseline
and experimental model is negative. In fact, they
are distance measures; therefore, lower is better in
their case.

131

1 boot.test(targs=’test_boot/hard/h0.0/targs.txt’, h0_preds=’test_boot/hard/h0.0/preds
.txt’, h1_preds=’test_boot/hard/h1.0/preds.txt’, h0_name=’baseline’, h1_name=’
experiment’, n_loops=1000, sample_size=.2, verbose=True)

1 data shape: (1000, 1)
2 sample size: 200
3 h0: h0 - h1: h1
4 targs count: [’class 0 freq 465 perc 46.50%’, ’class 1 freq 535 perc 53.50%’]
5 h0 preds count: [’class 0 freq 339 perc 33.90%’, ’class 1 freq 661 perc 66.10%’]
6 h1 preds count: [’class 0 freq 500 perc 50.00%’, ’class 1 freq 500 perc 50.00%’]
7 F-measure...... - h0: 0.6776 - h1: 0.7407 - diff: 0.0631
8 accuracy....... - h0: 0.6900 - h1: 0.7410 - diff: 0.0510
9 precision...... - h0: 0.6994 - h1: 0.7410 - diff: 0.0416

10 recall......... - h0: 0.6796 - h1: 0.7422 - diff: 0.0626
11 bootstrap: 100%|===========================| 1000/1000 [00:09<00:00, 100.40it/s]
12 count sample diff f1 is twice tot diff f1....... 15 / 1000 p < 0.015 *
13 count sample diff prec is twice tot diff prec..... 65 / 1000 p < 0.065
14 count sample diff rec is twice tot diff rec 9 / 1000 p < 0.009 **
15 count sample diff acc is twice tot diff acc...... 38 / 1000 p < 0.038 *

Figure 3: Input and output of the test function.

1 data shape: (1000, 3)
2 sample size: 200
3 h0: h0 - h1: h1
4 targs distribution: [0.33241763 0.33790091 0.32968146]
5 h0_preds distribution: [0.33571912 0.33230295 0.33391209]
6 h1_preds distribution: [0.33337905 0.3336012 0.33301975]
7 Jensen-Shannon divergence: - h0: 0.2143 - h1: 0.1817 - diff: -0.0326
8 cross-entropy: - h0: 1.3515 - h1: 1.0886 - diff: -0.2629
9 entropy similarity: - h0: 0.9816 - h1: 0.9857 - diff: 0.0041

10 entropy correlation: - h0: 0.0064 - h1: 0.0529 - diff: 0.0465
11 bootstrap: 100%|===========================| 1000/1000 [00:05<00:00, 181.20it/s]
12 count sample diff jsd is twice tot diff jsd....... 0 / 1000 p < 0.0 **
13 count sample diff ce is twice tot diff ce........ 0 / 1000 p < 0.0 **
14 count sample diff sim is twice tot diff sim....... 7 / 1000 p < 0.007 **
15 count sample diff cor is twice tot diff cor....... 315 / 1000 p < 0.315

Figure 4: Output of the test function with soft labels.

1 boot = Bootstrap(dir_out=’my/favourite/dir/’)
2 boot.feed(h0=’h0’, exp_idx=’h0.0’, preds=h0_exp1_preds, targs=targs)
3 boot.feed(h0=’h0’, h1=’h1’, exp_idx=’h1.0’, preds=h1_exp1_preds, targs=targs)

1 next_boot = Bootstrap() # if not already instantiated
2 next_boot.loadjson(’my/favourite/dir/outcomes.json’)
3 next_boot.feed(h0=’h0’, exp_idx=’h0.1’, preds=h0_exp2_preds, targs=targs)
4 next_boot.feed(h0=’h0’, h1=’h1’, exp_idx=’h1.1’, preds=h1_exp2_preds, targs=targs)
5 next_boot.run(n_loops=1000, sample_size=.2)

Figure 5: feed , loadjson and run functions.

4.4 BooStSa in a pipeline

In most cases, the experimental conditions are com-
plex and imply the comparison between several
baselines and several different experimental mod-
els, and for all of them, several runs of experiments
can be planned. In those cases, BooStSa can be
included in the whole pipeline, collecting the exper-
iments’ outcomes while they are produced, storing
them and computing performance and significance
levels at the end of the whole procedure.

This is done with two functions, feed and
run . The first one collects BooStSa’s inputs while

they are produced by the experiments; the second
one computes performance and bootstrap sampling.
The feed functions feeds the outcomes.json

file and takes the following inputs:

h0 Type: str . This is a string that identifies a
control condition. It must be provided both
in the case of control experiments (h0) and
treatment experiments (h1s) because BooStSa
needs to know with which baseline the treat-
ment results have to be compared.

h1 Type: str ; default: None . This is a string

132

that identifies a treatment condition. It must
be provided only in case of treatment experi-
ments (h1s).

exp_idx Type: str ; default: None . This string
(ideally, an index) identifies each unique ex-
periment within its experimental condition,
defined by h0 or h1 . This is useful in case
of multiple experiments for the same experi-
mental condition.

targs , preds Type: list , numpy.array or
str ; default: None . Equivalent to the
targs , h0_preds , and h1_preds parame-

ters in test .

idxs Type: list , numpy.array or str ; de-
fault: None . Treated like targs and
preds , idxs stores the indexes of the data

points, that might have been shuffled during
the experiments. The data point order does
not affect the bootstrap sampling, but storing
the shuffled indexes allows us to link the pre-
dictions to the original data points later on.

epochs Type: int . Lastly, epoch can store the
number of training epochs run by the experi-
ment.

The flexibility of feed allows storing together
several control conditions and the relatives treat-
ments for comparison. Also, the process can be
stopped and resumed: the function loadjson al-
lows to load a previously saved outcomes.json

file and to keep on feeding it. Once all the inputs are
provided, the run function computes performance
and bootstrap sampling. The run parameters are:

n_loops Type: int ; default: 1000 . The itera-
tions’ number of bootstrap sampling.

sample_size Type: float ; default: .1 . The
sub-sample size, expressed as percent part of
the test set. The value is constrained between
.05 and .5 (inclusive).

targetclass Type: int , default: None . Equal
to the same parameter in test .

verbose Type: bool , default: False . If true,
the experiments’ performance is printed on
the shell.

Figure 5 shows the whole process.

5 Limitations
Besides the constraints discussed in Section 2.3,
aimed to prevent the significance test misuse,
BooStSa assumes that h0 predictions, h1 predic-
tions, and targets are available. When compar-
ing with results from previous literature, this as-
sumption might not hold: in these cases, to apply
BooStSa it is necessary to find or reproduce the h0
outcomes.

6 Conclusion
We present BooStSa, a Python package to allow
NLP practitioners to efficiently compute signifi-
cance values for hard and soft labels using a safe
set of hyper-parameters.

We discuss how the test hyper-parameters can af-
fect the outcome, introducing safety constraints for
the test use and suggesting, as a good practice, to
report the hyper-parameters with the experiments’
results.

While the metrics for hard labels consolidated
in literature, those for soft labels that measure the
divergence between probability distributions are
not yet widely used, and the consensus about their
interpretation is still on the way to be reached. We
follow the extensive survey of Uma et al. (2021),
which takes into consideration the most recent
trends in NLP.

We also agree with Basile et al. (2021), who
point out that incorporating into the models the
information about the intrinsic entities’ ambiguity,
expressed as inter-coders disagreement and repre-
sented as a probability distribution over different
classes, is a necessary step to create models that
carry out NLP task with human-like performance.

Acknowledgments
This research has been partially funded from the
European Research Council (ERC) under the Eu-
ropean Union’s Horizon 2020 research and inno-
vation program No. 949944, INTEGRATOR and
No. 695662, DALI. TF and DH are members of the
Data and Marketing Insights Unit at the Bocconi
Institute for Data Science and Analysis.

7 Ethical Considerations
Psychology has seen a growing scandal around
p-hacking, i.e., the generation of enough experi-
mental variations to produce a significant outcome
in one of them. This risk is low in NLP, as signif-
icance alone is not sufficient for publication: typ-
ically, proof of predictive performance on ideally

133

several test sets is necessary instead. Reporting
significance in NLP is therefore an additional ro-
bustness measure, indicating the model’s general-
izability. While users might abuse the capabilities
of BooStSa to make significant results more likely,
this would require deliberate tampering (and even
then would not guarantee significance). If used
as intended, however, BooStSa should reduce un-
intended variance via researcher degrees of free-
dom and make results more comparable and repro-
ducible.

References
Valerio Basile, Michael Fell, Tommaso Fornaciari, Dirk

Hovy, Silviu Paun, Barbara Plank, Massimo Poesio,
and Alexandra Uma. 2021. We need to consider
disagreement in evaluation. In Proceedings of the
1st Workshop on Benchmarking: Past, Present and
Future, pages 15–21, Online. Association for Com-
putational Linguistics.

Taylor Berg-Kirkpatrick, David Burkett, and Dan Klein.
2012. An empirical investigation of statistical sig-
nificance in NLP. In Proceedings of the 2012 Joint
Conference on Empirical Methods in Natural Lan-
guage Processing and Computational Natural Lan-
guage Learning, pages 995–1005, Jeju Island, Korea.
Association for Computational Linguistics.

Bradley Efron and Robert J Tibshirani. 1994. An intro-
duction to the bootstrap. CRC press.

George Forman et al. 2003. An extensive empirical
study of feature selection metrics for text classifica-
tion. J. Mach. Learn. Res., 3(Mar):1289–1305.

Tommaso Fornaciari, Alexandra Uma, Silviu Paun, Bar-
bara Plank, Dirk Hovy, and Massimo Poesio. 2021.
Beyond black & white: Leveraging annotator dis-
agreement via soft-label multi-task learning. In Pro-
ceedings of the 2021 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
2591–2597, Online. Association for Computational
Linguistics.

Cyril Goutte and Eric Gaussier. 2005. A probabilistic
interpretation of precision, recall and f-score, with
implication for evaluation. In European conference
on information retrieval, pages 345–359. Springer.

Solomon Kullback and Richard A Leibler. 1951. On
information and sufficiency. The annals of mathe-
matical statistics, 22(1):79–86.

Jianhua Lin. 1991. Divergence measures based on the
shannon entropy. IEEE Transactions on Information
theory, 37(1):145–151.

Karl Pearson. 1896. Vii. mathematical contributions
to the theory of evolution.—iii. regression, hered-
ity, and panmixia. Philosophical Transactions of

the Royal Society of London. Series A, containing
papers of a mathematical or physical character,
sblindo(187):253–318.

Joshua C Peterson, Ruairidh M Battleday, Thomas L
Griffiths, and Olga Russakovsky. 2019. Human un-
certainty makes classification more robust. In Pro-
ceedings of the IEEE/CVF International Conference
on Computer Vision, pages 9617–9626.

Georg Pólya. 1920. Üon the central limit theorem
of probability theory and the problem of moments.
Mathematical Journal, 8(3):171–181.

Murray Rosenblatt. 1956. A central limit theorem and a
strong mixing condition. Proceedings of the National
Academy of Sciences of the United States of America,
42(1):43.

Anders Søgaard, Anders Johannsen, Barbara Plank,
Dirk Hovy, and Hector Martínez Alonso. 2014.
What’s in a p-value in NLP? In Proceedings of the
Eighteenth Conference on Computational Natural
Language Learning, pages 1–10, Ann Arbor, Michi-
gan. Association for Computational Linguistics.

Alexandra N Uma, Tommaso Fornaciari, Dirk Hovy, Sil-
viu Paun, Barbara Plank, and Massimo Poesio. 2021.
Learning from disagreement: A survey. Journal of
Artificial Intelligence Research, 72:1385–1470.

134

https://doi.org/10.18653/v1/2021.bppf-1.3
https://doi.org/10.18653/v1/2021.bppf-1.3
https://aclanthology.org/D12-1091
https://aclanthology.org/D12-1091
https://doi.org/10.18653/v1/2021.naacl-main.204
https://doi.org/10.18653/v1/2021.naacl-main.204
https://doi.org/10.3115/v1/W14-1601

