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Abstract

Existing subword segmenters are either 1)
frequency-based without semantics informa-
tion or 2) neural-based but trained on parallel
corpora. To address this, we present BERTSeg,
an unsupervised neural subword segmenter
for neural machine translation, which utilizes
the contextualized semantic embeddings of
words from characterBERT and maximizes the
generation probability of subword segmenta-
tions. Furthermore, we propose a generation
probability-based regularization method that
enables BERTSeg to produce multiple seg-
mentations for one word to improve the ro-
bustness of neural machine translation. Ex-
perimental results show that BERTSeg with
regularization achieves up to 8 BLEU points
improvement in 9 translation directions on
ALT, IWSLT15 Vi→En, WMT16 Ro→En, and
WMT15 Fi→En datasets compared with BPE.
In addition, BERTSeg is efficient, needing up
to 5 minutes for training.

1 Introduction

Subword segmentation is the task of splitting a
word into smaller n-gram character units called
subwords (Schuster and Nakajima, 2012). It al-
leviates the out-of-vocabulary (OOV) problem in
neural machine translation (NMT) (Sutskever et al.,
2014; Bahdanau et al., 2014; Vaswani et al., 2017)
by enabling an NMT system to have a fixed-size
vocabulary while being able to handle all possible
words regardless of their frequencies.

Studies in subword segmentation fall into two
categories: frequency-based approaches and neural
network-based approaches. Frequency-based ap-
proaches (Sennrich et al., 2016; Kudo and Richard-
son, 2018; Kudo, 2018; Provilkov et al., 2020)
adopt a greedy algorithm that generates the vo-
cabulary with frequent subword fragments in the
corpus during training and merges adjacent high-
frequency fragments starting from characters re-
cursively during inference. Among these methods,

BERTSeg
Segmentation

watch/ing un/break/able
leak/ed wave/length/s

stress/ful share/holding/s
employ/er/s ab/normal/ly

Table 1: BERTSeg produces linguistically intuitive sub-
word semgnetations.

BERTSeg-Regularization
Segmentation

represent/ed represented
represent/e/d re/presented
re/presented re/present/e/d

Table 2: BERTSeg-Regularization samples multiple seg-
mentations from one word.

BPE-dropout (Provilkov et al., 2020) and Senten-
cePiece with regularization (Kudo, 2018) gener-
ate multiple segmentations by random sampling.
Frequency-based approaches do not consider se-
mantic information of the subwords, therefore the
generated segmentation is not linguistically mo-
tivated. For example, the word “fellowships” is
segmented into “fell/ows/hip/s” by BPE whereas
“fellow/ships” is a more linguistically motivated
segmentation. Neural approaches such as DPE (He
et al., 2020) implicitly considers the contextual se-
mantic information of subwords by maximizing
the generation probabilities of the target language
sentences conditioned on the source language sen-
tences. However, it trains on parallel sentences,
which poses a problem for low-resource languages.
DPE is slow because it calculates the probabilities
of all possible sentence segmentations, therefore,
not practical in high-resource scenarios.

We propose BERTSeg, an unsupervised neural
subword segmenter that leverages contextualized
word representations from the pre-trained model,
characterBERT (El Boukkouri et al., 2020). It com-
bines the advantages of frequency-based and neural
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He leaned closer as well, watching.

Especially watching my son.

She had someone watching him.

w a t c h i n g

watching watching watching

watching
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embedding
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CharacterBERT

Embedding
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wat at ch hi in
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Figure 1: BERTSeg architecture. The encoder is a characterBERT that generates average embeddings for one
word in different contexts. The transformer decoder takes characters as input and generates probabilities of the
next subword. During training, the objective is to maximize the probabilities of all possible segmentations. During
inference, the model retraces the optimal segmentation.

approaches by 1) leveraging word-level monolin-
gual data and 2) capturing semantic information
explicitly. The semantic information is provided
by characterBERT, which has been shown to be
helpful for natural language understanding tasks.
In our task, this enables the model to generate lin-
guistically intuitive segmentations rather than high-
frequency fragments, as shown in Table 1.

Furthermore, we propose a subword regulariza-
tion method BERTSeg-Regularization which en-
ables the model to produce multiple segmentations
based on segmentation probabilities to improve the
robustness of NMT, as represented in Table 2.

Experimental results on the low-resource ALT
and high-resource IWSLT and WMT datasets show
approximately 5 and 2 BLEU points improvement
over BPE with statistical significance p < 0.001
and outperforms all other baseline methods. More-
over, our method is efficient because of leveraging
the word-level data. BERTSeg requires up to 5
minutes to train, whereas DPE requires hours to
days to train and VOLT also costs 30 minutes to
generate the optimal vocabulary. Finally, analysis
shows high generalizability on unseen words.

2 Methodology

2.1 Background: Word Modeling
We define a word as a single distinct meaningful
element of writing. Technically, we split words
in sentences with tools for different languages as
described in Section 3. Let xxx1:T denote a word
containing T characters. aaa1:τa is one segmentation
of xxx that comprises τa subwords ai. S(xxx) is the
set of all possible segmentations of xxx. The genera-

tion probability xxx can be defined as the sum of the
probabilities of all segmentations shown in Eq. (1).

p(xxx1:T ) = ∑
aaa1:τa∈S(xxx)

p(aaa1:τa)

= ∑
aaa1:τa∈S(xxx)

τa

∏
i=1

p(ai|a1, ...,ai−1)
(1)

2.2 Proposed Method: BERTSeg
As shown in Figure 1, the proposed BERTSeg con-
tains a characterBERT encoder (El Boukkouri et al.,
2020) and a mixed character-subword transformer
decoder (He et al., 2020). The mixed character-
subword transformer takes characters as input and
generates sub-words as output. The model repre-
sents the history information by prefix characters
x1, ...,x j instead of previous subwords a1, ...,ai−1,
where j is the index of the last character in ai−1.

Let eeexxx denote the average-pooled contextualized
word embeddings by characterBERT from all sen-
tences containing word xxx. The generation probabil-
ity can be calculated by Eq. (2).

log p(xxx1:T |eeexxx) =

log ∑
aaa1:τa∈S(xxx)

τa

∏
i=1

p(ai|eeexxx;x1, ...,x j)
(2)

During training, we calculate the log p(xxx1:T |eeex)
in polynomial time by dynamic programming
(DP) (He et al., 2020) and use − log p(xxx1:T |eeex) as
the loss. During inference, we retrace the optimal
segmentation aaa through Eq. (3).

aaa = arg max
aaa1:τa∈S(xxx)

τa

∏
i=1

p(ai|eeex;x1, ...,x j) (3)
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Fil→En Id→En Ja→En Ms→En Vi→En Zh→En Avg

w/o Regularization

BPE (Sennrich et al., 2016) 23.09 25.70 9.42 28.19 19.94 12.21 19.76

VOLT (Xu et al., 2021) 22.99 25.05 10.56 27.91 21.64 11.31 19.91

DPE (He et al., 2020) 24.04 26.66 9.93 27.89 20.06 10.72 19.88

BERTSeg 24.84*
+1.8 25.84+0.1 10.97*◦

+1.6 29.52*◦
+1.3 20.86+0.9 12.20◦

−0.0 20.71+1.0

With Regularization

BPE-dropout (Provilkov et al., 2020) 28.18 28.02 12.84 31.59 23.67 13.91 23.04

BERTSeg-Regularization 31.09*◦
+8.0 28.86*◦

+3.2 15.56*◦
+6.1 32.97*◦

+4.8 24.58*◦
+4.6 15.03*◦

+2.8 24.68+4.9

Table 3: Low-resource Asian languages→English MT BLEU score results. BERTSeg-Regularization consistently
improves over all baselines. Statistical significance p < 0.001 is indicated by * against BPE and by ◦ against DPE.
Subscript values denote the BLEU score differences from BPE.

Fil→En Id→En Ja→En Ms→En Vi→En Zh→En Avg

w/o Regularization

BPE (Sennrich et al., 2016) 29.05 31.05 20.12 32.74 27.64 22.85 27.24

VOLT (Xu et al., 2021) 29.16 30.98 21.24 32.50 28.37 22.22 27.41

DPE (He et al., 2020) 29.72 31.79 21.13 32.50 26.94 21.46 27.26

BERTSeg 30.28+1.2 31.25+0.2 21.04+0.9 33.34+0.6 27.38−0.3 22.57−0.3 27.64+0.4

With Regularization

BPE-dropout (Provilkov et al., 2020) 31.96 32.99 22.83 34.81 29.05 23.56 29.20

BERTSeg-Regularization 34.35+5.3 33.38+2.3 25.14+5.0 36.13+3.4 30.40+2.8 24.57+1.7 30.66+3.4

Table 4: Low-resource Asian languages→English MT METEOR score results. BERTSeg-Regularization
consistently improves over all baselines. Subscript values denote the BLEU score differences from BPE.

2.3 Probability Based Regularization

We propose BERTSeg-Regularization which per-
forms subword regularization based on the prob-
ability distribution during inference. For seg-
mentation aaai with p(aaai), the sampling probability
psample(aaai) is shown in Eq. (4), where t is a temper-
ature hyperparameter.

psample(aaai) =
elog p(aaai)/t

∑aaai∈S(xxx) elog p(aaai)/t (4)

The time complexity for generating the best N seg-
mentations is O(N logNT 2) through DP.

3 Experimental Settings

Datasets Table 5 summarizes MT datasets from
low- to high-resource. We use the English words
of each dataset to train BERTSeg. We applied
Juman++ (Tolmachev et al., 2018) to Japanese sen-
tences, Stanford-segmenter (Manning et al., 2014)
to Chinese sentences, and Moses tokenizer (Koehn
et al., 2007) to sentences in other languages. We
removed diacritics in Romanian sentences. We set
the subword vocabulary size to 8k for all segmen-
tation methods and NMT models.

Dataset Train Valid Test

ALT Asian Langs-En 18k 1,000 1,018
IWSLT15 Vi-En 133k 1,553 1,268
WMT16 Ro-En 612k 1,999 1,999
WMT15 Fi-En 1.8M 1,500 1,370

Table 5: Statistics of the corpora (# sentences).

Segmenter Settings For BERTSeg, we used the
characterBERT model (El Boukkouri et al., 2020)
trained on English Wikipedia data as encoder, and
pre-processed the English data of each dataset to
obtain word embeddings. Our transformer decoder
was 4-layer with 1 attention head. All hidden sizes
in the model were 768. The vocabulary of possible
subwords used a BPE vocabulary obtained from
the English part of each dataset. To prevent overfit-
ting, we set the gradient clip to 1.0 and trained the
model until the loss of 7k high-frequency words
was stable. BERTSeg-Regularization generated 10
segmentations with the highest probability for each
word and t was set to 5. We generated data of each
epoch dynamically. Our method was applied to the
English sentences, whereas sentences in the other
languages used BPE or BPE-dropout.
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Baseline methods are BPE (Sennrich et al.,
2016),1 VOLT (Xu et al., 2021),2 DPE (He et al.,
2020)3 and BPE-dropout (Provilkov et al., 2020).4

We used the official implementations with default
settings of each method for sentences in both
source and target languages.

NMT Settings We used the transformerbase ar-
chitecture (Vaswani et al., 2017) and the fairseq
framework (Ott et al., 2019). We trained the model
until no BLEU score improvement for 10 epochs
on the validation set. During inference, beam size
was 12 and length penalty was 1.4. We report sacre-
BLEU (Post, 2018) and METEOR (Banerjee and
Lavie, 2005) on detokenized outputs.

4 Results and Analysis

MT Results Tables 3, 4, 6, and 7 compare the
proposed methods with baseline methods. First,
BERTSeg-Regularization achieves the best per-
formance in all directions, significantly boosting
BLEU scores up to 8 points and METEOR scores
up to 5 points over BPE. Second, regularization is
effective: methods with regularization show higher
BLEU scores. Among methods w/o regularization,
BERTSeg yields the highest BLEU and METEOR
scores in most directions. Finally, we found the pro-
posed method especially effective in low-resource
scenarios with the help of the pre-trained model
trained on large-scale data. As the train set grows,
BPE and DPE gradually learn good segmentations,
making the gap between BERTSeg smaller.

IWSLT15
Vi→En

WMT16
Ro→En

WMT15
Fi→En

w/o Regularization

BPE (Sennrich et al., 2016) 27.09 32.54 17.45

VOLT (Xu et al., 2021) 27.16 31.89 17.25

DPE (He et al., 2020) 27.40 29.95 16.14

BERTSeg 27.80+0.7 32.33◦−0.2 17.54◦+0.1

With Regularization

BPE-dropout (Provilkov et al., 2020) 28.76 33.59 18.50
BERTSeg-Regularization 30.09*◦

+3.0 33.82*◦
+1.3 18.46*◦

+1.0

Table 6: High-resource MT BLEU score results. Sta-
tistical significance p < 0.001 is indicated by * against
BPE and by ◦ against DPE. Subscript values denote the
BLEU score differences from BPE.

1https://github.com/google/sentencepiece
2https://github.com/Jingjing-NLP/VOLT
3https://github.com/xlhex/dpe
4https://github.com/google/sentencepiece

IWSLT15
Vi→En

WMT16
Ro→En

WMT15
Fi→En

w/o Regularization

BPE (Sennrich et al., 2016) 31.16 35.18 27.06

VOLT (Xu et al., 2021) 30.90 34.90 26.73

DPE (He et al., 2020) 31.07 30.15 26.00

BERTSeg 31.36+0.2 35.16−0.0 27.32+0.3

With Regularization

BPE-dropout (Provilkov et al., 2020) 32.09 35.73 28.39

BERTSeg-Regularization 32.37+1.2 36.29 +1.1 28.61+1.6

Table 7: High-resource MT METEOR score results.
Subscript values denote the BLEU score differences
from BPE.

Training Speeds As presented in Table 8, the
training speed of BERTSeg is substantially faster
than the previous neural method DPE because it
trains on word-level data. According to Zipf’s law,
the number of distinct words in a document in-
creases much slower than the increment of the total
number of words. The speed is comparable to non-
neural approaches, BPE, and faster than VOLT.

ALT WMT16 Ro-En

†BPE (Sennrich et al., 2016) 4 13
†VOLT (Xu et al., 2021) 960 1,747
♢DPE (He et al., 2020) 3,477 68,334
♠BERTSeg 58 391

Table 8: Training speeds (seconds). †: trained on CPU,
♢: on 8 32GB GPUs, ♠ on 1 12GB GPU.

Size of Training Data With the pre-trained en-
coder, we can train a high-quality segmenter with
a tiny train set. We train BERTSeg on words from
500k English sentences in the news commentary
dataset and apply it to the ALT English words. The
averaged BLEU score for MT is 24.45 whereas us-
ing only 18k ALT English data to train BERTSeg
achieved 24.68 points, which are almost the same.

Subword Frequency Distribution Figure 2
shows the distribution of subword frequency in the
decoded ALT train set of different methods with
the same BPE vocabulary. Compared with BPE,
BERTSeg generates more high-frequency (> 1000)
subwords such as ed and ing. At the same time,
more subwords in the vocabulary are not used dur-
ing inference (with frequency 0). This phenomenon
is also present in the comparison of BERTSeg-
Regularization and BPE-dropout. Based on this

https://github.com/google/sentencepiece
https://github.com/Jingjing-NLP/VOLT
https://github.com/xlhex/dpe
https://github.com/google/sentencepiece
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observation, it is possible to use a smaller vocabu-
lary for BERTSeg. Additionally, we found the total
subwords frequency of BERTSeg is higher because
sometimes it also segments high-frequency words
into subwords such as years into year/s whereas
BPE keeps it as years.

Figure 2: Subword frequency distributions of BPE, BPE-
dropout, BERTSeg, and BERTSeg-Regularization.

Zero-shot Word Segmentations Table 9 demon-
strates the strong generalization ability on unseen
words in the test set. Different from BPE which
prefers high frequency pieces such as fell and hip
in the word fellowships, BERTSeg identifies mean-
ingful fragments fellow and ships.

BERTSeg BPE (Sennrich et al., 2016)

fellow/ships fell/ows/hip/s
re/creation/al rec/re/ational
dis/claim/er/s discl/aim/ers
post/season pos/ts/e/ason
re/fresh/ed ref/res/hed
worse/n/s wor/s/ens

Table 9: BERTSeg and BPE tested on unseen words.

5 Related Work

Early NMT studies apply word-level vocabulary
to represent only frequent words, which causes
the out-of-vocabulary (OOV) problem (Sutskever
et al., 2014). To address this, character-based (Kim
et al., 2016; Costa-jussà and Fonollosa, 2016; Ling

et al., 2015), hybrid word-character based (Luong
and Manning, 2016), or UTF-8 based (Shaham and
Levy, 2021) NMT models were proposed. How-
ever, the resultant long input/output sequences in-
crease the model and computational complexity.

Subword segmentation methods address the
OOV problem by segmenting words into subwords
that are in a fixed vocabulary of character n-grams.
BPE (Sennrich et al., 2016; Gage, 1994) generates
the subword vocabulary by first splitting all the sen-
tences into characters, then iteratively saving the
most frequent adjacent pairs into the vocabulary
and merging them, until reaching the desired size.
Each test sentence is segmented similarly. Word-
Piece (Schuster and Nakajima, 2012) and Senten-
cePiece (Kudo and Richardson, 2018) are another
two widely-used subword methods.

Among the subword methods, BPE (Sennrich
et al., 2016) does not model the input sequence
whereas SentencePiece (Kudo and Richardson,
2018) applies a unigram model to output proba-
bilities of each segmentation. Based on sequence
modeling via segmentations theory (Wang et al.,
2017), the generation probability of a target sen-
tence can be calculated by the sum of probabili-
ties of all its possible segmentations. DPE (He
et al., 2020) models the whole target sentence con-
ditioned on the source sentence. However, we show
that modeling words conditioned on their semantic
embedding is a more efficient way.

Regularization as data augmentation can boost
performance. BPE-dropout (Provilkov et al., 2020)
randomly drops subword merge operation. SPM-
regularization (Kudo, 2018) generates multiple seg-
mentations with their probabilities. Leveraging the
dynamic programming algorithm, we retrace the
global best-n segmentations with the highest prob-
abilities in polynomial time.

6 Conclusion and Future Work

We proposed BERTSeg, an unsupervised neural
subword segmenter for NMT, together with a reg-
ularization algorithm. MT results showed signifi-
cant improvement over frequency-based and neural
network-based methods. The training is efficient
even compared with non-neural methods. To ad-
dress the limitations shown in Appendix A, future
works include eliminating the dependency on the
BPE vocabulary, extending to a multilingual seg-
menter with mBERT (Devlin et al., 2019) embed-
dings, and applying it to other generation tasks.
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(a) Maximizes the probability of one word
through all segmentations.
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(b) Retrace the optimal segmentation with the
highest probability.

Figure 3: An example of the training and inference
phases.

A Limitations

Despite the effectiveness and efficiency, the pro-
posed method has the following methodological
and experimental limitations ranked in order of im-
portance. We also provide directions to solve them
as future works.

Dependency on BPE Vocabulary BERTSeg is
a model to learn optimal segmentations for words
but not paired with a vocabulary generation algo-
rithm. Currently, the vocabulary is generated by
BPE, therefore, many subwords in the vocabulary
are not used, as shown in Figure 2. It is possible
to address this by first generating a large vocab-
ulary and then shrinking it iteratively, saving the
commonly used subwords only, motivated by the
SentencePiece work (Kudo and Richardson, 2018).

Target Side Only The goal of BERTSeg is to
maximize the generation probability as shown in
Eq. (2), therefore, can only apply to the target side
data in generation tasks. Applying BERTSeg to
the source side data will not improve the MT per-
formance in our preliminary experiments, which is
also reported in the DPE work (He et al., 2020). To

address this, a dual segmenter model is needed to
optimize both the target segmentations and source
segmentations.

English Subword Segmenter Only Currently
we only train the subword segmenter for English
due to there is only an English characterBERT
model. However, we believe using embeddings
from BERT or mBERT will not affect the perfor-
mance, although it adds a dependency on the BERT
tokenizer. To extend BERTSeg to mBERTSeg, a
multilingual characterBERT is needed.

Definition of Good Segmentation The definition
of good subword segmentation is beyond the scope
of this paper, and we use the BLEU score as the
metric to measure downstream tasks performance.
However, measuring the segmentation quality is a
more direct way. To achieve this, crowd-sourcing
is a promising way to obtain a supervised subword
segmentation dataset, at least for frequent words.

B Example: Training and Inference

The training and inference are given by Equations 2
and 3, respectively. They are based on the se-
quence modeling theory that is first introduced
in Wang et al. (2017) and there are multiple applica-
tions (Kawakami et al., 2019; Sun and Deng, 2018;
Downey et al., 2021; Grave et al., 2019; Kreutzer
and Sokolov, 2018; Wang et al., 2017). To un-
derstand the unsupervised training and inference
processes more intuitively, we provide an example
as illustrated in Figure 3.

In the training phase, the probability of the word
“watching” is calculated by summing all possible
segmentations. In the inference phase, we retrace
the segmentation with the maximum probability
for BERTSeg and retrace the best N segmentations
for BERTSeg-Regularization.

We also attached the code and will make the code
public for better understanding and reproduction.

C Example: Segmentations

We provide examples comparing the proposed
method with BPE including high-frequency words,
rare words and unseen words as shown in Table 10.
We have the following observations:

• For frequent words, BERTSeg sometimes
segment them into subwords even the word is
in the vocabulary such as official/s and use/d.
Additionally, the model can discriminate the
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BERTSeg BPE

Frequent words
official/s officials
edit/ion edition
use/d used

farm/er/s far/mers
contribute/d contrib/uted
normal/ly norm/ally
seven/th sevent/h

challenge/d challeng/ed
over/night o/vern/ight
language/s langu/ages

Rare words
inter/face/s inter/f/aces

sea/side se/as/ide
ab/normal/ly ab/n/orm/ally
b/y/stand/er by/st/ander
dis/comfort disc/om/fort

un/warrant/ed un/w/arr/anted
in/definitely ind/ef/in/itely

Unseen words
stable/d st/ab/led
save/r/s sa/vers

M/illion/s Mill/ions
Free/way Fre/ew/ay

M/i/s/behavior M/is/be/hav/ior
m/o/u/r/n/ed m/our/ned
M/a/d/a/m/e Mad/ame

Table 10: BERTSeg and BPE segmentations on frequent
words, rare words and unseen words.

ambiguous situations very well. For example,
the model can extract the prototype challenge
from the word challenged.

• For rare words with frequency < 5 in the
training set, BERTSeg gives much better
segmentations than BPE, because BPE is a
frequency-based method and thus handles rare
words poorly.

• For unseen words, although the BERTSeg
model gives better segmentations than BPE,
we found that sometimes it oversegments
words such as M/a/d/a/m/e. We guess it’s due
to the low-quality word embedding from char-
acterBERT, and we do not know the impact of
this on the MT results.

D Implementation Details of Baselines

This section aims to help to reproduce the results in
the paper more easily. In the meantime, we provide

some observations from the experiments.

D.1 BPE

Vocabulary Size Vocabulary size is a very impor-
tant hyperparameter for the NMT experiments. For
the ALT dataset, we did hyperparameter searching
and 8,000 gave the highest BLEU scores averaged
in all directions. For the IWSLT15 Vi-En, WMT16
Ro-En and WMT15 Fi-En datasets, we have tried
two settings: 8,000 and 32,000, where using 8,000
gave a higher performance.

The Size of Monolingual Data In low-resource
scenarios, using a larger monolingual dataset in
the same domain to generate the BPE vocabulary
gives better performance. We have used 500k En-
glish monolingual data from the news commentary
dataset, and it gives 0.4 BLUE score improvements
over using 18k ALT data to generate the BPE vo-
cabulary.

Comparison with SentencePiece We used BPE
as the baseline method because it gave higher per-
formance (about 0.2 BLEU scores) than Sentence-
Piece in low-resource scenarios. We assume that in
the situation where the sentence is tokenized into
words, the performance of BPE will be higher be-
cause the subwords in the BPE vocabulary do not
contain spaces.

D.2 VOLT

Dataset Language Size

ALT En/Id/Ja 8k

ALT Ms 6k

ALT Vi 7k

ALT Fil/Zh 9k

IWSLT15 Vi-En En/Vi 7k

WMT16 Ro-En En 10k

WMT16 Ro-En Ro 11k

WMT15 Fi-En En 10k

WMT15 Fi-En Fi 8k

Table 11: Optimal BPE vocabulary sizes of languages
in each dataset.

Table 11 illustrates the optimal sizes of BPE vo-
cabularies of each dataset calculated by the VOLT
algorithm. The optimal numbers are very similar to
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the results we got from hyperparameter searching,
showing the effectiveness of the VOLT algorithm.

D.3 BPE-dropout
We have tried BPE-dropout rates of 0.05 and 0.1,
where 0.1 gave higher BLEU scores. Note that
statical BPE-dropout is not helpful, it is necessary
to segment the train set for each epoch.

D.4 DPE
We basically followed the official implementations.
The training requires 8 32GB GPUs to train for
about one week for large datasets.


