
Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the
12th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages 1158–1171

November 20–23, 2022. ©2022 Association for Computational Linguistics

1158

Higher-Order Dependency Parsing for Arc-Polynomial Score Functions via
Gradient-Based Methods and Genetic Algorithm

Xudong Zhang, Joseph Le Roux, Thierry Charnois
Laboratoire d’Informatique de Paris Nord,

Université Sorbonne Paris Nord – CNRS UMR 7030,
F-93430, Villetaneuse, France

{xudong.zhang,leroux,thierry.charnois}@lipn.fr

Abstract

We present a novel method for higher-order
dependency parsing which takes advantage of
the general form of score functions written as
arc-polynomials, a general framework which
encompasses common higher-order score func-
tions, and includes new ones. This method is
based on non-linear optimization techniques,
namely coordinate ascent and genetic search
where we iteratively update a candidate parse.
Updates are formulated as gradient-based op-
erations, and are efficiently computed by auto-
differentiation libraries. Experiments show that
this method obtains results matching the recent
state-of-the-art second order parsers on three
standard datasets.

1 Introduction

The goal of modern graph-based dependency pars-
ing is to find the most adequate parse structure
for the given input sentence by computing a score
for all possible candidate parses, and returning the
highest-scoring one. Since the number of candi-
dates is exponential in the sentence length, the scor-
ing is performed implicitly: after computing scores
for possible parts, the best structure, whose score
is the sum of its various parts, is returned by a
combinatorial algorithm based on either dynamic
programming such as the Eisner algorithm (Eisner,
1997) in the projective case, or duality gap such as
the Chu-Liu-Edmonds algorithm (McDonald et al.,
2005) in the non-projective case.

Graph-based models where parts are restricted to
single arcs are called first-order models, while mod-
els where parts contain k-tuples of arcs are called
kth-order models. For instance models with score
for sibling and grand-parent relations are 2nd-order
models because parts consist of 2 connected arcs.
The connectivity is important since it helps build-
ing efficient dynamic programming algorithms in
the case of projective arborescences (Koo and
Collins, 2010) or efficient approximations in the

non-projective case based on lagrangian heuris-
tics (Koo et al., 2010; Martins et al., 2013) or belief
propagation (Smith and Eisner, 2008). The score
function of first-order models, being a sum of parts
which are simple arcs, is linear in arc variables,
while for second-order, being a sum of parts which
are pair of arcs, the score function is quadratic in
arc variables. More generally kth-order models
have a polynomial score function in arc variables,
with highest degree equal to k.

In this paper we explore the consequences of
treating score functions for higher-order depen-
dency parsing as polynomial functions. This frame-
work can recover most previously defined score
functions and gives a unified framework for graph-
based parsing. Moreover, it can express novel func-
tions since in this setting parts are made of possibly
disconnected tuples of arcs. We call the results
generalized higher-order models, as opposed to
previously connected higher-order models.

On the other hand, polynomial functions are dif-
ficult to manipulate. They are non-convex and so,
in addition to already known problems in higher-
order parsing such as the computation of the parti-
tion function for probabilistic models, Maximum
A Posteriori (MAP) decoding is itself a challenge.
We develop an approximate parsing strategy based
on coordinate ascent (Bertsekas, 1999), where we
iteratively improve a candidate by flipping arcs.
We exploit the polynomial nature of the score func-
tion to derive an accurate and efficient procedure
to select arcs to be flipped. Since this method con-
verges to a local minimum, we show how to embed
it within a meta-heuristic based on a genetic anal-
ogy (Schmitt, 2001) to find better optima.

We can learn these models via two methods,
max-margin or probabilistic estimation. Max-
margin is straightforward because it only requires
MAP decoding but is quite fragile since it is sensi-
tive to approximation errors, which are inevitable
in our setting. We design a probabilistic loss for

1159

our model where we approximate parse scores via
a first-order Taylor expansion around the MAP so-
lution. We find that this novel method is efficient
and we show empirically that it can outperform
previous higher-order models.

In summary our contributions are the following:
• a general framework for dependency pars-

ing which encompasses previous higher-order
score functions, and includes new ones;

• a new method for higher-order dependency
parsing based on non-linear optimization tech-
niques (coordinate ascent and genetic algo-
rithm) coupling gradient-based methods, and
combinatorial routines;

• an empirical validation of this method which
obtains state-of-the-art results on standard
datasets and is computationally efficient.

2 Related Work

Before the use of powerful neural feature extractors
(e.g. BiLSTM or Transformers) dependency pars-
ing with high-order relations was a clear improve-
ment over first-order models. Koo and Collins
(2010) considered efficient third order models for
projective dependency parsing. In order to have
efficient dynamic programming algorithms for de-
coding, only a few limited predefined structures
can be included to the model (e.g. dependency,
sibling, grandchild, grand-sibling, tri-sibling).1

Higher-order non-projective parsing is NP-hard
but fast heuristics with good performance have
been proposed based on dual decomposition for
instance. However, efficient subsystems must be
devised to efficiently process complex parts, either
based on dynamic programming algorithms such
as Viterbi (Koo et al., 2010) or on integer linear
programming (Martins et al., 2013). In practice
this restricts parts to connected subgraphs.2

Since the wide adoption of deep feature extrac-
tors, the situation is less clear. Zhang et al. (2020)
consider a second-order model with dependency
and adjacent sibling, which can guarantee effi-
cient decoding for projective arborescence with
a batchified variant of Eisner algorithm (Eisner,
1996, 1997). The results show that adjacent sibling
is beneficial for the performance of parser com-
paring with arc-factored model. Fonseca and Mar-

1The term sibling often means adjacent sibling, where only
adjacent modifiers on the same side of the head are included.

2We note that Martins et al. (2013) used a 2-arc part called
adjacent modifiers which is not a connected subgraph. But
this was not generalized to 2-arc arbitrary subgraphs.

tins (2020) claim that in the non-projective case,
second-order features help especially in long sen-
tences. On the other hand, Falenska and Kuhn
(2019) showed that in general the impact of con-
secutive sibling features was not substantial, and
Zhang et al. (2021) showed that the main benefit
of these features could be understood as variance
reduction, and vanishes when ensembles are used.

Closely related to our work, Wang and Tu (2020)
consider a second-order model with score for de-
pendencies, siblings and grandchildren where they
do not constrain siblings to be adjacent. Although
exact estimation is intractable in their setting, an
approximate estimation of probability of arbores-
cences can be calculated efficiently by a message-
passing algorithm. Their experiments seem to con-
firm that second-order relations are beneficial to the
parsing accuracy, even when trained by an approxi-
mate estimation of probability, namely Mean-Field
Variational Inference. Instead we approximate the
partition function using a first-order Taylor approx-
imation around the MAP solution. Partition ap-
proximations are usually performed via Bethe’s
free energy, see for instance (Martins et al., 2010;
Wiseman and Kim, 2019).

Dozat and Manning (2017) showed that head
selection was a good trade-off during the learning
phase, for first-order models. Our method applies
this principle to the higher-order case, leading to a
coordinate ascent method, well known in the opti-
mization literature (Bertsekas, 1999). In Machine
Learning and NLP, ascent methods are usually
performed in primal-dual algorithms, e.g. (Shalev-
Shwartz and Zhang, 2013) for SVMs.

We use genetic programming to escape local op-
tima when searching for the best parse. Although
this kind of metaheuristics has been used for other
tasks in NLP such as Word Sense Desambigua-
tion (Decadt et al., 2004) or summarization (Lit-
vak et al., 2010), and joint PCFG parsing and tag-
ging (Araujo, 2006), it is the first time it is applied
to dependency parsing to the best of our knowledge.
Since genetic algorithms can be seen as implement-
ing a Markov Chain (Schmitt, 2001) over candidate
solutions, our method resembles Markov-Chain
Monte-Carlo methods, e.g. Gibbs sampling, which
have already been investigated in parsing (Zhang
et al., 2014; Gao and Gormley, 2020). Our method
to choose the best arc to improve the current parse
is inspired by a recent method for sampling in dis-
crete distributions (Grathwohl et al., 2021) where

1160

we replace sampling by MAP decoding.
We rely on properties of polynomials to derive

efficient routines for approximate head selection.
Polynomial factors were discussed for higher-order
parsing in (Qian and Liu, 2013).

3 Notations

We will denote a sentence of n words as x =
x0, x1, . . . , xn, where xi is either the dummy root
symbol when i = 0, or the ith word otherwise. For
such a sentence x and h, d ∈ {0, 1, . . . , n}, (h, d)
represents a direct arc form head xh to dependent
xd. We note y a parse structure, with (h, d) ∈ y if
(h, d) is an arc of the parse. For convenience, we
will abuse notation and sometimes interpret a parse
y either as a vector indexed by arcs or as a matrix:

yhd =

{
1 if (h, d) is present in parse
0 otherwise

The set of all valid parses for sentence x is noted
Yx. When x is unambiguous, we simplify Yx to Y .

We note Cx as the set of all possible arcs for
sentence x, i.e. the arcs of the complete graph over
vertices in x, or C when unambiguous.

We say that a non-empty set of arcs A =
{(h1, d1), . . . (hk, dk)} is a factor set if ∀i, hi ̸= di
and ∀i < j, di ̸= dj . The first condition asserts that
an arc cannot be a self-loop while the second en-
forces that each word has only one head in a factor
set. The two constraints are natural and required
for dependency parsing. We note the set of factor
sets of cardinal k which can be constructed from
arcs in A as Fk(A), the set of kth-order factors. In
particular, we will just write Fk for Fk(C). We
will abuse notations and write set difference F\{a}
with a singleton simply by F\a. Given a logic for-
mula f , 1[f] is the function returning 1 when f is
true and 0 otherwise. Finally, lhd denotes the label
for arc (h, d).

4 Polynomial Score Functions for
Dependency Parsing

In this work, we consider a generalization of pre-
vious score functions for graph-based dependency
parsing where we explictly write the score function
as a polynomial function where variables represent
dependency arcs. With this formulation we can em-
ulate previous score functions, for instance (Wang
and Tu, 2020; Zhang et al., 2020), but also express
new ones. We note that we consider only polyno-
mials where, for each factor, a variable can be used

at most once, in other words we deal with polyno-
mials without exponents: in order to reach the kth

degree, k different variables must be multiplied.

4.1 Score Function
We define Kth-order score functions as:

S(x, y) =

K∑
k=1

∑
F∈(Fk(y)∩R)

sF

=
K∑
k=1

∑
F∈(Fk∩R)

sF

k∏
(h,d)∈F

yhd

(1)

where sF represents the score for the factor con-
structed from arcs in F , and R is set of authorized
factors (the restriction). Eq. (1) states that the score
of y for x, usually described as the sum of the fac-
tors of y, can be expressed as the sum of all factors
of the complete graph for which the constitutive
arcs are present in y. By making arc variables ex-
plicit we can use partial derivatives to efficiently
compute useful quantities. In the remainder, we
will omit R from scores for ease of notation.

With this general definition we can recover most
previous models for graph-based dependency pars-
ing. For instance, in (Wang and Tu, 2020), a sec-
ond order model (K = 2) is studied where only
sibling and grandchild relations are considered,
which can be expressed with the following R: for
F = {(h1, d1), (h2, d2)}, we enforce h1 = h2 or
d1 = h2. In (Zhang et al., 2020), another second-
order model, the restriction limits acceptation to
adjacent siblings: h1 = h2 and (h1, d1), (h2, d2)
are adjacent (no arc from h1, h2 to words between
d1, d2).

To demonstrate the generality of this approach,
we also consider a generalized third-order model.
The first-order and the second-order parts fol-
low Wang and Tu (2020), and for third-order fac-
tors F = {(h1, d1), (h2, d2), (h3, d3)}, we add re-
strictions d1 < d2 < d1+3 and d2 < d3 < d2+3.
Arcs in F are not always connected. Instead, we
only force the modifiers of arcs to be close, with a
maximum distance set to 2. To our knowledge, this
type of factors has never been used before. Since
the addition of cubic factors would naively require
computing O(n6) scores, it could be a computa-
tional bottleneck. We avoid it with tensor factoriza-
tion following (Peng et al., 2017).3 We stress that
these third-order factors do not have any lingus-
tic justification, but are here to illustrate what our

3See Appendix C for details.

1161

approach can model without designing a specific
parsing algorithm. Indeed, we will see experimen-
tally that this model does not generalize well.

4.2 Score of One-Arc Modifications
Parsing can be framed as finding the highest
S(x, y), or S(y) when x is unambiguous:

y∗ = argmax
y∈Y

S(y) (2)

The solution is tractable for K = 1 (first-order
models) but intractable for higher-order models
without additional constraints, such as projectivity
for parses and adjacent siblings in scores.

We consider here a simpler problem: how much
can the score increase if we change one arc of the
current parse? The idea is that better parses may
be obtained by choosing arcs to be flipped. Thus,
even starting with a bad parse, we may approach
the best parse by modifying one arc at a time.

To solve this simpler problem, the naive method,
i.e. calculating the score of every parse which dif-
fers from the current parse by one arc, is unpracti-
cal since it requires O(n2) computations of S (for
each modifier and each head). Instead, we show
that the score change of a one-arc modification can
be calculated for Eq. (1) without recomputing S.
Let us consider the current parse y and an arbitrary
arc a = (h, d) ∈ C (possibly not in y). The partial
derivative of the score wrt. ya is:4

∂S(y)

∂ya
=

K∑
k=1

∑
F∈Fk

sF
∂
∏

a′∈F ya′

∂ya

=
K∑
k=1

∑
F∈Fk,
a∈F

sF1[F\a ∈ Fk−1(y)]

(3)

In other words, the partial derivative wrt ya is
equal to the sum of the scores of factors F that are
constructed as the union of a factor of y and {a}.

When a ∈ y, ∂S(y)
∂ya

can be seen as the restriction
of S(y) to factors F ∈ Fk(y) where a ∈ F , or
simply as the part of the score that involves a. And
so we can write the score of y as:5

S(y) =
∂S(y)

∂ya
+ S(y\a) (4)

where the last term is the score of all factors in y
that do not contain a.

4See Appendix B.1 for the detailed derivation.
5See Appendix B.2 for the detailed derivation.

When a ̸∈ y, we can still decompose the score
into two parts but we must be careful to which
parse we refer to. We note a = (h′, d) while we
assume (h, d) ∈ y. Let us define y[h → h′, d] as
the parse which modifies y by swapping the head
index for d from h to h′ while the other heads re-
main unchanged, and y[→ h′, d] when the original
head is unimportant (used in Section 5.2). We
can rewrite the score function of y[h → h′, d]
with the previously defined partial derivative, and
take advantage of the score factorisation to express
S(y[h → h′, d]) directly from y:6

S(y[h → h′, d]) =
∂S(y)

∂yh′d
+ S(y\(h, d)) (5)

We now define the change of score induced by
swapping the head for d from h to h′, written as
D(y, h → h′, d), or D(y,→ h′, d) when h is unim-
portant. From the previous equations, we derive:

D(y, h → h′, d) = S(y[(h → h′, d)])− S(y)

=
∂S(y)

∂yh′d
− ∂S(y)

∂yhd
(6)

Thus, to perform a complete evaluation of
changes of score obtained by flipping one arc from
current solution y, we only need one evaluation of
the current solution (forward pass in the deep learn-
ing jargon) and then compute the partial derivatives
wrt all arcs in C. This can be done efficiently via
an auto-differentiation library (backpropagation).7

Finally, differences of derivatives at each position
d are computed. In the following section, we build
an inference algorithm based on this observation.

5 Inference as Candidate Improvement

5.1 Coordinate Ascent
The main idea of our method is, from an initial
parse y0, to change the current candidate by pick-
ing a word and swapping its head to improve the
score function. This is repeated until no further im-
provement is possible. This method is an instance

6See Appendix B.3 for the detailed derivation.
7Without any restriction, the forward complexity is O(n2k)

(factors of k arcs, each identified by two word positions), but
restrictions help reducing this upper bound. Hence, computing
factor scores in the forward in our re-implementations of the
model of Wang and Tu (2020) has a O(n3) time complex-
ity since factors contain 2 arcs sharing one position index.
Backpropagation has the same complexity, see (Eisner, 2016).

1162

of coordinate ascent (Bertsekas, 1999) (Chap. 2.7),
to maximize Eq. (1). When parses are arbores-
cences, whether projective or non-projective, this
method must, at each step, not only pick an improv-
ing arc but also assert that the resulting parse has
the required tree structure. This adds complexity
that we propose to avoid by simply working on G
the set of graphs where each word vertex has ex-
actly one incoming arc and where the dummy root
has no incoming arc, and inserting a final step of
projection to recover a solution in the desired space
(described in Section 6.2).

Remark that dropping arborescence constraints
reduces parsing to selecting one head per word,
i.e. choose hd,∀d with yhd,d = 1, such as the
combination of factors maximizes S(y).

This is straightforward for first-order models,
since it amounts to maximizing independent func-
tions. However, this becomes intractable in higher-
order models since factors overlap. Still, a local
optimum can be obtained by coordinate ascent.

Given a current solution yk, basic coordinate
ascent finds a better next iterate yk+1 by cycling
through word positions and improving the current
solution locally by successive head selections.8

5.2 Gradient-based Coordinate Ascent

In order to implement an efficient version of co-
ordinate ascent, we must avoid cycling through
positions, because it is a source of inefficiency. For
most words, the head is unambiguous and correctly
predicted in the initial candidate, and the model
should not spend time revisiting its choice but
rather concentrate on promising positions, where
head modifications could increase the score.

We thus consider the following problem: at each
step, find the pair (h, d) which provides the greatest
positive change in the score function:

(h∗, d∗) = argmax
h,d

D(y,→ h, d) (7)

where D requires the computation of factor
scores (forward pass) in y, the computation of the
gradient of this score wrt arcs (by backpropaga-
tion) and then the substraction of derivatives at
each word position as described in Eq. (6).

In summary our algorithm, from an initial parse
y0, iteratively improves a current solution: at step
k we solve Eq. (7) by computing the gradient of
S(yk) over arc variables and then pick the arc (h, d)

8See Appendix A.1 for a refresher.

whose partial derivative increases the most to set
yk+1 = yk[→ h, d].

5.3 Approximate First-Order Linearization

Coordinate ascent changes one arc at a time which
can still be slow. In practice, we found that a sim-
pler greedy method performed at the beginning of
the search, when high precision is not required, can
improve parsing time drastically. Given a current
solution yk, we linearize the score function via the
first-order Taylor approximation and apply head se-
lection to what is now an arc-factored model where
word positions can be processed independently and
in parallel. For each position d:9

h∗d ≈ argmax
h

∂S(yk)

∂ykhd
.

We then set yk+1
h∗
dd

= 1, ∀d > 0. This can change
|x| arcs at each step k, and the process is repeated
until S(yk+1) ≤ S(yk), which indicates that the
approximation has become detrimental, after which
we switch to coordinate ascent to provide more
accurate iterations.

5.4 Genetic Algorithm

Due to the non-convexity of function S, coordinate
ascent returns a local optimum, which may limit the
usefulness of higher-order parts. Thus, to ensure a
better approximation, we embed it into a genetic-
inspired local search (Mitchell, 1998).

Genetic Algorithm is an evolutionary algorithm
inspired by the process of natural selection. The
algorithm requires: a solution domain, here G, and
a fitness function, i.e. function S(y). Each step in
our genetic algorithm consists of four consecutive
processes: selection, crossover, mutation and self-
evolution, which are repeated until stabilization.

Selection For a group of parses y1, . . . , yw, es-
timate scores S(y1), . . . , S(yw). Select the k best
candidates (k < w) ys1, . . . , y

s
k.

Crossover Average candidates yc = 1
k

∑k
i=1 y

s
k.

Set ych,d as the probability of having (h, d) in an op-
timal parse and sample w−k new parses according
to yc. Note them yc1, . . . , y

c
w−k.

Mutation For every parse in yc1, . . . , y
c
w−k,

change heads randomly with probability p. Note
mutated parses as ym1 , . . . , ymw−k

Self-Evolution On parses ym1 , . . . , ymw−k, apply
coordinate ascent. Note the output as ye1, . . . , y

e
w−k.

9See Appendix B.4 for the detailed derivation.

1163

Use these new parses and the k best parses returned
by selection for next iteration.

Selection and self-evolution pick arcs giving
high scores while crossover and mutation can pro-
vide the possibility to jump out of local optima. We
iterate this process until the best parse is unchanged
for t consecutive iterations.

6 Learning and Decoding

We follow Zhang et al. (2020) and Wang and Tu
(2020), and learn arcs and labels in a multitask
fashion with a shared BiLSTM feature extractor.
Decoding is a 2-step process, where we first infer a
parse structure, and second predict an arc labelling.
Loss is the sum of label and arc losses:

L = Llabel + Larc (8)

We write (x∗, y∗, l∗) for the training input sen-
tence and its corresponding parse and labeling.

6.1 Hinge Loss and Argmax Decoding

Like Kiperwasser and Goldberg (2016), we write
hinge loss as follows:

Larc = ReLU(maxy∈Y S(x∗, y)− S(x∗, y∗) + ∆(y, y∗))

where ∆(y, y∗) is the Hamming distance.
The inner maximization requires to solve an

inference sub-problem, i.e. to find the cost-
augmented highest-scoring parse:

max
y∈Y

S(x∗, y) + ∆(y, y∗) (9)

As Hamming distance is not differentiable, we pro-
pose to reformulate it as:

∆(y, y∗) =
∑
h,d

(1− yhd)y
∗
hd + (1− y∗hd)yhd

linear wrt variables in y. Thus, Eq. (9) can be
solved with the method proposed in Section 5, ex-
actly like decoding where we use the coordinate
ascent and genetic search to return the highest-
scoring parse structure.

6.2 Probabilistic Estimation

In practice hinge loss may have two issues: each
update is limited to two parses only, which makes
learning slow, and the linear margin may lead
to insufficient learning. We thus propose an ap-
proximate probabilistic learning objective inspired

by methods such as Mean-Field Variational Infer-
ence (Wang and Tu, 2020). Instead, we can train
our model as an arc-factored log-linear model:

Larc = −
∑

(h,d)∈y∗

log p
(
(h, d)|x∗

)
where p

(
(h, d)|x∗

)
is the probability of arc (h, d).

We will compute this probability via a local
model, i.e. probabilities are the results of nor-
malizing scores at each position d. Scores are
obtained via an approximate linear model, as in
Section 5.3. In order to obtain good approximation
via the first-order Taylor expansion, we compute it
around the parse with maximum score, assuming
that all parses at a one-arc distance also have high
scores. Consequently, we use the same reasoning
as in Section 5.3 to derive a linear approximation
of the current model. Given parse ŷ, result of coor-
dinate ascent and genetic search, we set:10

p
(
(h, d)|x∗

)
=

p(ŷ[→ h, d])∑
h′ p(ŷ[→ h′, d])

≈ exp(shd)∑
h′ exp(sh′d)

(10)

where:

shd =
∂S(ŷ)

∂yhd
(11)

Inference with coordinate ascent and genetic al-
gorithm do not guarantee parses with a tree struc-
ture. But we can estimate the marginal proba-
bility of arcs from a solution y returned by co-
ordinate ascent by reusing Eq. (10). Then, the
Eisner algorithm (Eisner, 1996, 1997) or the Chu-
Liu-Edmonds algorithm (McDonald et al., 2005)
can be applied to have projective or non-projective
arborescences. We remark that this is similar to
Minimum Bayesian Risk (MBR) decoding (Smith
and Smith, 2007), the difference being that here
marginalization is estimated with nearest arbores-
cences instead of the complete parse forest.

6.3 Label Loss

Following Dozat and Manning (2017), we use the
negative log-likelihood:

Llabel(x
∗, y∗, l∗) = −

∑
(h,d)∈y∗

log p(l∗hd|x∗).

10See detailed derivation in Appendix B.5.

1164

During decoding, we predict the most probable
arc labels on the parse structure ŷ obtained from
structure decoding.

7 Experiments

We evaluate our parsing method11 with the score
function of Wang and Tu (2020) and our exten-
sion with third-order factors (3O) with coordinate
ascent (CA) and genetic algorithm (GA). We use
two kinds of pretrained word vectors: static, such
as glove and fasttext (Mikolov et al., 2018), and
dynamic, marked as +BERT (Devlin et al., 2019).
All experiments use higher-order scores.

7.1 Data
Two datasets are used for projective parsing: the
English Penn Treebank (PTB) with Stanford De-
pendencies (Marcus et al., 1993) and CoNLL09
Chinese data (Hajič et al., 2009). We use standard
train/dev/test splits and evaluate with UAS/LAS
metrics. Punctuation is ignored on PTB for dev
and test. For non-projective dependency parsing,
Universal Dependencies (UD) v2.2 is used. Follow-
ing Wang and Tu (2020), punctuation is ignored
for all languages. For experiments with BERT (De-
vlin et al., 2019), we use BERT-Large-Uncased for
PTB, BERT-Base-Chinese for CoNLL09 Chinese
and Base-Multilingual-Cased for UD.

7.2 Hyper-Parameters
To ensure fair comparison, and for budget reasons,
we use the same setup (hyper-parameters and pre-
trained embeddings) as Zhang et al. (2020).12

POS-tags are used in experiments without
BERT (Devlin et al., 2019).13 With BERT, the last
4 layers are combined with scalar-mix and then
concatenated to the original feature vectors.

Initial candidates are sampled from the the first-
order part of Eq. (1). For genetic algorithm, due
to hardware memory limitations, the number of
candidates is set to 6. Each time, we take the 3
best candidates in selection, and the genetic loop is
terminated when the best parse remains unchanged
for 3 consecutive iterations. The mutation rate is
set to 0.2 on all datasets.14

11https://github.com/kidlestar/
PolyParser

12See Appendix A.
13In (Zhang et al., 2020), POS-tags are used on UD but

not on PTB nor CoNLL09 Chinese. In (Wang and Tu, 2020),
POS-tags re used on all datasets.

14We tried mutation rates 0.1, 0.2, 0.3 and the best perfor-
mance is obtained on PTB dev with mutation rate 0.2.

All experiments are run 3 times with random
seed set to current time and averaged. We rerun
also the results of (Wang and Tu, 2020) on PTB
and CoNLL09 with the authors’ implementation15.

7.3 Results on PTB and CoNLL09 Chinese
Table 2 shows results of our different system with
and without BERT. For PTB without BERT we
see that training via coordinate ascent with hinge
loss of linear estimation give similar results, while
genetic algorithm gives a sensible improvement
when combined with the probabilistic framework.
We can see that our third-order factors do not im-
prove scores. With BERT probabilistic models, nei-
ther third-order nor genetic algorithm gives any im-
provement. For CoNLL09 Chinese without BERT,
performance on dev are similar across settings
while genetic algorithm gives an clear boost for
hinge loss. With BERT, as for PTB, the simple
model performs best. We conclude that with third-
order, as well as with genetic search, it is difficult to
avoid overfitting when combined with a powerful
feature extractor such as BERT and this will have
to be addressed in future work.

Table 3 gives test results and comparisons with
two recent similiar systems. For PTB without
BERT, the exact projective parser of (Zhang et al.,
2020) has the best performance, which is in accor-
dance with the reported results in (Wang and Tu,
2020).16 In comparison with Wang and Tu (2020)
(Local2O), although their system has more param-
eters for PTB experiments,17 our coordinate ascent
method with genetic algorithm plus linearization
has achieved the same LAS performance. However,
the same optimization method with hinge loss does
not show good performances. For CoNLL09 Chi-
nese without BERT, the genetic algorithm seems to
help generalization compared to simple coordinate
ascent, as showed by the improvement on test test.

With BERT, on both corpora, simple coordinate
ascent gives best performance for our method, as
was foreseeable from dev results.

7.4 Results on UD
Table 1 shows LAS on UD test. The best average
performance is achieved with coordinate ascent and

15https://github.com/wangxinyu0922/
Second_Order_Parsing, Note that this implementation
also uses the hyper-parameters of Zhang et al. (2020)

16Our best single run gives 94.44 LAS on PTB which is on
a par with their results.

17 Wang and Tu (2020) use a BiLSTM with 600 hidden
units while we follow Zhang et al. (2020) and use 400.

https://github.com/kidlestar/PolyParser
https://github.com/kidlestar/PolyParser
https://github.com/wangxinyu0922/Second_Order_Parsing
https://github.com/wangxinyu0922/Second_Order_Parsing

1165

bg ca cs de en es fr it nl no ro ru Avg.
CRF2O 90.77 91.29 91.54 80.46 87.32 90.86 87.96 91.91 88.62 91.02 86.90 93.33 89.33

Local2O 90.53 92.83 92.12 81.73 89.72 92.07 88.53 92.78 90.19 91.88 85.88 92.67 90.07

CA+ALE 90.79 93.14 91.92 84.45 89.89 92.60 90.14 93.57 89.89 93.85 86.42 93.81 90.87

3O+CA+ALE 90.80 93.09 91.91 84.42 89.75 92.50 90.02 93.53 90.13 93.78 86.38 93.86 90.85

GA+CA+ALE 90.70 93.17 91.90 84.19 89.77 92.50 89.88 93.68 90.13 93.81 86.33 93.88 90.83

+BERT

Local2O 91.13 93.34 92.07 81.67 90.43 92.45 89.26 93.50 90.99 91.66 86.09 92.66 90.44

CA+ALE 91.93 94.09 92.46 85.59 90.97 93.42 90.88 94.18 91.49 94.57 87.22 94.40 91.77

3O+CA+ALE 91.87 94.05 92.50 85.22 91.04 93.47 90.79 94.26 91.38 94.62 87.18 94.41 91.73

GA+CA+ALE 91.86 94.08 92.49 85.38 90.99 93.44 91.05 94.13 91.53 94.56 87.25 94.42 91.77

Table 1: LAS on UD 2.2 test data. CRF2O: (Zhang et al., 2020); Local2O: (Wang and Tu, 2020).

Method PTB CoNLL09
UAS LAS UAS LAS

CA+hinge 95.69 93.89 91.25 89.52

GA+CA+hinge 95.71 93.87 91.52 89.80

CA+ALE 95.67 93.88 91.31 89.66

3O+CA+ALE 95.64 93.87 91.26 89.61

GA+CA+ALE 95.81 93.99 91.30 89.66

+BERT

CA+ALE 96.53 94.85 93.18 91.57

3O+CA+ALE 96.47 94.79 93.15 91.53

GA+CA+ALE 96.50 94.82 93.16 91.55

Table 2: Comparison on dev. CA: Coordinate Ascent;
3O: Third order model; GA: Genetic Algorithm; ALE:
Approximate Linearized Estimation; hinge: hinge loss

Method PTB CoNLL09
UAS LAS UAS LAS

CRF2O∗ 96.14 94.49 89.63 86.52

Local2O 95.98 94.34 - -

Local2O† 95.90 94.25 91.60 89.93

CA+hinge 95.88 94.21 91.27 89.58

GA+CA+hinge 95.93 94.26 91.63 89.89

CA+ALE 95.96 94.33 91.62 89.96

3O+CA+ALE 95.85 94.27 91.59 89.96

GA+CA+ALE 95.95 94.34 91.65 90.02
+BERT

Local2O 96.91 95.34 - -

Local2O† 96.68 95.16 93.46 91.87

CA+ALE 96.68 95.20 93.48 91.91

3O+CA+ALR 96.65 95.13 93.47 91.87

GA+CA+ALE 96.67 95.20 93.42 91.83

Table 3: Comparison on test. *: POS not used. †: Rerun
with official implementation.

genetic algorithm plus approximate linearization.
For all languages except nl and cs, our method with
or without genetic algorithm outperforms (Wang
and Tu, 2020) (Local2O) without BERT.

Method Train Test
Local2O 1133 706

CA 506 399

3O+CA 255 249

GA+CA 248 195

Table 4: Speed Comparison on PTB Train and Test
without BERT (sentences per second)

7.5 Speed Comparison

We compare the speed of train and test with Nvidia
Tesla V100 SXM2 16 Go on PTB. The result is
shown in Table 4. For coordinate ascent, training
is 2.2 times slower than MFVI (Mean Field Varia-
tional Inference) while test is 1.8 times slower than
MFVI18.

8 Conclusion

We presented a novel method for higher-order pars-
ing based on coordinate ascent. Our method relies
on the general form of arc-polynomial score func-
tions. Promising arcs are picked by evaluated by
gradient computations. This method is agnostic to
specific score functions and we showed how we
can recover previously defined functions and de-
sign new ones. Experimentally we showed that,
although this method returns local optima, it can
obtain state-of-the-art results.

Further research could investigate whether the
difference between the search space during learn-
ing and decoding is a cause of performance de-
crease. In particular the coordinate ascent could
be replaced by a structured optimization method
such as the Frank-Wolfe algorithm (see (Pedregosa

18The speed is measured with Eisner applied on all sen-
tences. It is about 2 times quicker with the faster decoding
strategy of Zhang et al. (2020) which consists in applying
Eisner only if the coordinate ascent solution does not return a
projective arborescence.

1166

et al., 2020) for a recent variant) to obtain a local
optimum in a more restricted search space.

9 Ethical Considerations

The corpora used in this work for training and eval-
uating are standard corpora which consists of news
article. While our method is still computationally
intensive, we believe that the novel parsing method
based on linearization is a promising avenue of re-
search to decrease the computational requirements
needed by higher-order parsers.

Acknowledgments

This work is supported by the PARSITI project
grant (ANR-16-CE33-0021) given by the French
National Research Agency (ANR) and the Lab-
oratoire d’excellence “Empirical Foundations of
Linguistics” (ANR-10-LABX-0083), . It was also
granted access to the HPC resources of IDRIS un-
der the allocation 20XX-AD011011147R2 made
by GENCI.

We would like to thank anonymous reviewer
ajqT. Their insightful comments and suggestions
helped us improve the presentation.

References
L. Araujo. 2006. Multiobjective genetic programming

for natural language parsing and tagging. In Parallel
Problem Solving from Nature-PPSN IX, pages 433–
442.

D.P. Bertsekas. 1999. Nonlinear Programming. Athena
Scientific.

Bart Decadt, Véronique Hoste, Walter Daelemans, and
Antal van den Bosch. 2004. GAMBL, genetic al-
gorithm optimization of memory-based WSD. In
Proceedings of SENSEVAL-3, the Third International
Workshop on the Evaluation of Systems for the Se-
mantic Analysis of Text, pages 108–112, Barcelona,
Spain. Association for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Timothy Dozat and Christopher D. Manning. 2017.
Deep biaffine attention for neural dependency pars-
ing. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April

24-26, 2017, Conference Track Proceedings. Open-
Review.net.

Jason Eisner. 1996. Efficient normal-form parsing for
Combinatory Categorial Grammar. In 34th Annual
Meeting of the Association for Computational Lin-
guistics, pages 79–86, Santa Cruz, California, USA.
Association for Computational Linguistics.

Jason Eisner. 1997. Bilexical grammars and a cubic-
time probabilistic parser. In Proceedings of the Fifth
International Workshop on Parsing Technologies,
pages 54–65, Boston/Cambridge, Massachusetts,
USA. Association for Computational Linguistics.

Jason Eisner. 2016. Inside-outside and forward-
backward algorithms are just backprop (tutorial pa-
per). In Proceedings of the Workshop on Structured
Prediction for NLP, pages 1–17, Austin, TX. Associ-
ation for Computational Linguistics.

Agnieszka Falenska and Jonas Kuhn. 2019. The (non-
)utility of structural features in BiLSTM-based de-
pendency parsers. In Proceedings of the 57th Annual
Meeting of the Association for Computational Lin-
guistics, pages 117–128, Florence, Italy. Association
for Computational Linguistics.

Erick Fonseca and André F. T. Martins. 2020. Revisiting
higher-order dependency parsers. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 8795–8800, Online.
Association for Computational Linguistics.

Sida Gao and Matthew R. Gormley. 2020. Training for
Gibbs sampling on conditional random fields with
neural scoring factors. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 4999–5011, On-
line. Association for Computational Linguistics.

Will Grathwohl, Kevin Swersky, Milad Hashemi, David
Duvenaud, and Chris Maddison. 2021. Oops i took a
gradient: Scalable sampling for discrete distributions.
In Proceedings of the 38th International Conference
on Machine Learning, volume 139 of Proceedings
of Machine Learning Research, pages 3831–3841.
PMLR.

Jan Hajič, Massimiliano Ciaramita, Richard Johans-
son, Daisuke Kawahara, Maria Antònia Martı́, Lluı́s
Màrquez, Adam Meyers, Joakim Nivre, Sebastian
Padó, Jan Štěpánek, Pavel Straňák, Mihai Surdeanu,
Nianwen Xue, and Yi Zhang. 2009. The CoNLL-
2009 shared task: Syntactic and semantic depen-
dencies in multiple languages. In Proceedings of
the Thirteenth Conference on Computational Natu-
ral Language Learning (CoNLL 2009): Shared Task,
pages 1–18, Boulder, Colorado. Association for Com-
putational Linguistics.

Eliyahu Kiperwasser and Yoav Goldberg. 2016. Simple
and accurate dependency parsing using bidirectional
lstm feature representations. Transactions of the As-
sociation for Computational Linguistics, 4:313–327.

https://aclanthology.org/W04-0827
https://aclanthology.org/W04-0827
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://openreview.net/forum?id=Hk95PK9le
https://openreview.net/forum?id=Hk95PK9le
https://doi.org/10.3115/981863.981874
https://doi.org/10.3115/981863.981874
https://www.aclweb.org/anthology/1997.iwpt-1.10
https://www.aclweb.org/anthology/1997.iwpt-1.10
https://doi.org/10.18653/v1/W16-5901
https://doi.org/10.18653/v1/W16-5901
https://doi.org/10.18653/v1/W16-5901
https://doi.org/10.18653/v1/P19-1012
https://doi.org/10.18653/v1/P19-1012
https://doi.org/10.18653/v1/P19-1012
https://doi.org/10.18653/v1/2020.acl-main.776
https://doi.org/10.18653/v1/2020.acl-main.776
https://doi.org/10.18653/v1/2020.emnlp-main.406
https://doi.org/10.18653/v1/2020.emnlp-main.406
https://doi.org/10.18653/v1/2020.emnlp-main.406
https://proceedings.mlr.press/v139/grathwohl21a.html
https://proceedings.mlr.press/v139/grathwohl21a.html
https://www.aclweb.org/anthology/W09-1201
https://www.aclweb.org/anthology/W09-1201
https://www.aclweb.org/anthology/W09-1201

1167

Terry Koo and Michael Collins. 2010. Efficient third-
order dependency parsers. In Proceedings of the 48th
Annual Meeting of the Association for Computational
Linguistics, pages 1–11, Uppsala, Sweden. Associa-
tion for Computational Linguistics.

Terry Koo, Alexander M. Rush, Michael Collins,
Tommi Jaakkola, and David Sontag. 2010. Dual
decomposition for parsing with non-projective head
automata. In Proceedings of the 2010 Conference on
Empirical Methods in Natural Language Processing,
pages 1288–1298, Cambridge, MA. Association for
Computational Linguistics.

Marina Litvak, Mark Last, and Menahem Friedman.
2010. A new approach to improving multilingual
summarization using a genetic algorithm. In Proceed-
ings of the 48th Annual Meeting of the Association for
Computational Linguistics, pages 927–936, Uppsala,
Sweden. Association for Computational Linguistics.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated cor-
pus of English: The Penn Treebank. Computational
Linguistics, 19(2):313–330.

André Martins, Miguel Almeida, and Noah A. Smith.
2013. Turning on the turbo: Fast third-order non-
projective turbo parsers. In Proceedings of the 51st
Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 617–
622, Sofia, Bulgaria. Association for Computational
Linguistics.

André Martins, Noah Smith, Eric Xing, Pedro Aguiar,
and Mário Figueiredo. 2010. Turbo parsers: Depen-
dency parsing by approximate variational inference.
In Proceedings of the 2010 Conference on Empirical
Methods in Natural Language Processing, pages 34–
44, Cambridge, MA. Association for Computational
Linguistics.

Ryan McDonald, Fernando Pereira, Kiril Ribarov, and
Jan Hajič. 2005. Non-projective dependency pars-
ing using spanning tree algorithms. In Proceed-
ings of Human Language Technology Conference
and Conference on Empirical Methods in Natural
Language Processing, pages 523–530, Vancouver,
British Columbia, Canada. Association for Computa-
tional Linguistics.

Tomas Mikolov, Edouard Grave, Piotr Bojanowski,
Christian Puhrsch, and Armand Joulin. 2018. Ad-
vances in pre-training distributed word representa-
tions. In Proceedings of the International Confer-
ence on Language Resources and Evaluation (LREC
2018).

Melanie Mitchell. 1998. An introduction to genetic
algorithms. MIT press.

Fabian Pedregosa, Geoffrey Negiar, Armin Askari, and
Martin Jaggi. 2020. Linearly convergent frank-wolfe
with backtracking line-search. In International Con-
ference on Artificial Intelligence and Statistics, pages
1–10. PMLR.

Hao Peng, Sam Thomson, and Noah A. Smith. 2017.
Deep multitask learning for semantic dependency
parsing. In Proceedings of the 55th Annual Meeting
of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 2037–2048, Vancouver,
Canada. Association for Computational Linguistics.

Xian Qian and Yang Liu. 2013. Branch and bound algo-
rithm for dependency parsing with non-local features.
Transactions of the Association for Computational
Linguistics, 1:37–48.

Lothar M. Schmitt. 2001. Theory of genetic algorithms.
Theoretical Computer Science, 259(1):1–61.

Shai Shalev-Shwartz and Tong Zhang. 2013. Stochas-
tic dual coordinate ascent methods for regularized
loss minimization. Journal of Machine Learning
Research, 14(2).

David A. Smith and Jason Eisner. 2008. Dependency
parsing by belief propagation. In Proceedings of the
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 145–156, Hon-
olulu.

David A. Smith and Noah A. Smith. 2007. Probabilistic
models of nonprojective dependency trees. In Pro-
ceedings of the 2007 Joint Conference on Empirical
Methods in Natural Language Processing and Com-
putational Natural Language Learning (EMNLP-
CoNLL), pages 132–140, Prague, Czech Republic.
Association for Computational Linguistics.

Xinyu Wang and Kewei Tu. 2020. Second-order neu-
ral dependency parsing with message passing and
end-to-end training. In Proceedings of the 1st Con-
ference of the Asia-Pacific Chapter of the Association
for Computational Linguistics and the 10th Interna-
tional Joint Conference on Natural Language Pro-
cessing, pages 93–99, Suzhou, China. Association
for Computational Linguistics.

Sam Wiseman and Yoon Kim. 2019. Amortized bethe
free energy minimization for learning mrfs. In Ad-
vances in Neural Information Processing Systems,
volume 32. Curran Associates, Inc.

Xudong Zhang, Joseph Le Roux, and Thierry Charnois.
2021. Strength in numbers: Averaging and clustering
effects in mixture of experts for graph-based depen-
dency parsing. In Proceedings of the 17th Interna-
tional Conference on Parsing Technologies and the
IWPT 2021 Shared Task on Parsing into Enhanced
Universal Dependencies (IWPT 2021), pages 106–
118, Online. Association for Computational Linguis-
tics.

Yu Zhang, Zhenghua Li, and Min Zhang. 2020. Effi-
cient second-order TreeCRF for neural dependency
parsing. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 3295–3305, Online. Association for Computa-
tional Linguistics.

https://www.aclweb.org/anthology/P10-1001
https://www.aclweb.org/anthology/P10-1001
https://www.aclweb.org/anthology/D10-1125
https://www.aclweb.org/anthology/D10-1125
https://www.aclweb.org/anthology/D10-1125
https://aclanthology.org/P10-1095
https://aclanthology.org/P10-1095
https://www.aclweb.org/anthology/J93-2004
https://www.aclweb.org/anthology/J93-2004
https://aclanthology.org/P13-2109
https://aclanthology.org/P13-2109
https://aclanthology.org/D10-1004
https://aclanthology.org/D10-1004
https://www.aclweb.org/anthology/H05-1066
https://www.aclweb.org/anthology/H05-1066
https://doi.org/10.18653/v1/P17-1186
https://doi.org/10.18653/v1/P17-1186
https://doi.org/10.1162/tacl_a_00208
https://doi.org/10.1162/tacl_a_00208
https://doi.org/https://doi.org/10.1016/S0304-3975(00)00406-0
http://cs.jhu.edu/~jason/papers/#smith-eisner-2008-bp
http://cs.jhu.edu/~jason/papers/#smith-eisner-2008-bp
https://www.aclweb.org/anthology/D07-1014
https://www.aclweb.org/anthology/D07-1014
https://aclanthology.org/2020.aacl-main.12
https://aclanthology.org/2020.aacl-main.12
https://aclanthology.org/2020.aacl-main.12
https://proceedings.neurips.cc/paper/2019/file/dc554706afe4c72a60a25314cbaece80-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/dc554706afe4c72a60a25314cbaece80-Paper.pdf
https://doi.org/10.18653/v1/2021.iwpt-1.11
https://doi.org/10.18653/v1/2021.iwpt-1.11
https://doi.org/10.18653/v1/2021.iwpt-1.11
https://doi.org/10.18653/v1/2020.acl-main.302
https://doi.org/10.18653/v1/2020.acl-main.302
https://doi.org/10.18653/v1/2020.acl-main.302

1168

Yuan Zhang, Tao Lei, Regina Barzilay, Tommi Jaakkola,
and Amir Globerson. 2014. Steps to excellence: Sim-
ple inference with refined scoring of dependency
trees. In Proceedings of the 52nd Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 197–207, Baltimore,
Maryland. Association for Computational Linguis-
tics.

A Hyper Parameters

Param Value Param Value
WordEMB 100 WordEMB dropout 0.33

CharLSTM 50 CharLSTM dropout 0.00

PosEMB 100 PosEMB dropout 0.33

BERT Linear 100 BERT Linear dropout 0

BiLSTM 400 BiLSTM dropout 0.33

MLParc 500 LSTMarc dropout 0.33

MLPlabel 100 LSTMlabel dropout 0.33

MLPsib,gp,3O 100 MLParc dropout 0.33

Learning Rate 2e−4 β1, β2 0.90

Annealing 0.75
t

5000 Patience 100

Table 5: Hyper-parameters

Remark that when running experiments with
UD, the WordEMB is reset to 300 because we use
300 dimension fasttext embedding (Mikolov et al.,
2018) following Zhang et al. (2020); Wang and Tu
(2020).

A.1 Coordinate Ascent
To emphasize that this method works column by
column we write:

S(x, y) = S(y:,1, . . . , y:,|x|)

where y:,d are column of y. 19

Given a current solution yk, basic coordinate
ascent finds a better next iterate yk+1 by cycling
through columns and improving the current solu-
tion locally by successive head selections:

h∗d = argmaxh S(y
k+1
:,1 , . . . , yk+1

:,d−1, ξh, y
k
:,d+1 . . . , y

k
:,|x|)

(12)
where ξh is the one-hot vector with 1 at position
h. We set yk+1

:,d = ξh∗
d

and the process is repeated
for every word (going back to the first one after a
complete pass) until there is no change (yk+1 =
yk).

A.2 A Gradient-based Method For
Coordinate Ascent

A naive method to solve Eq. (12) requires n evalu-
ations of S, one per possible head, which is ineffi-
cient. However, from Section 4.2 and Eq. (6), we
can rewrite Eq. (12) since it amounts to finding a
better head at position d from current solution y:

h∗d = argmax
h

D(y → h, d) (13)

19In this setting these are one-hot vectors where y:,d[h] = 1
if (h, d) ∈ y.

https://doi.org/10.3115/v1/P14-1019
https://doi.org/10.3115/v1/P14-1019
https://doi.org/10.3115/v1/P14-1019

1169

Still, the gradient-based maximization presented
above requires n forward and backward passes
to determine the new heads for all words of the
sentence. In order to achieve faster convergence,
we want to avoid cycling through each word and
consider the following problem: at each step, find
the pair (h, d) which provides the greatest positive
change in the score function:

(h∗, d∗) = argmaxh,d S(y
k
:,1, . . . , y

k
:,d−1, ξh, y

k
:,d+1 . . . , y

k
:,|x|)

(14)
We set yk+1 = yk[→ h∗, d∗] while other columns
are unchanged. This is repeated until yk+1 = yk.

Again, a naive maximization requires O(n2) es-
timations of score for each step and brings in fact
no speed gain. However, as we have already seen,
Eq. (14) is simply equivalent to:

(h∗, d∗) = argmax
h,d

D(y,→ h, d) (15)

which again requires one forward and backward on
the current candidate’s score before substractions.

B Complete derivations

B.1 Partial Derivatives
We start with the definition:

∂S(y)

∂ya
=

K∑
k=1

∑
F∈Fk(C)

sF
∂
∏

a′∈F ya′

∂ya

case a ̸∈ F: we can see that if a ̸∈ F , then
∂
∏

a′∈F ya′
∂ya

= 0 since the expression in the nu-
merator does not contain variable ya. This means
that the inner sum can be safely restricted to factors
that contain a.

case a ∈ F: Now suppose that a ∈ F . Remark
that F is a factor from Fk(C), and thus is a factor
set of arcs and consequently all arcs in F are dif-
ferent. By applying the rule for product derivatives
we can rewrite the partial as:

∂
∏

a′∈F ya′

∂ya
=

∏
a′∈F\a

ya′

Now that F is a factor of k arcs from Fk(C) that
contains a, we have:∏

a′∈F\a

ya′ = 1 ⇐⇒ ya′ = 1,∀a′ ∈ F\a

⇐⇒ a′ ∈ y,∀a′ ∈ F\a
⇐⇒ F\a ∈ Fk−1(y)

where the last line hinges on the fact that if F is
factor set then F\a is also a factor set.

Conclusion: By plugging this into the definition
we have:

∂S(y)

∂ya
=

K∑
k=1

∑
F∈Fk(C),

a∈F

sF1[F\a ∈ Fk−1(y)]

B.2 Substitution Scores 1
We start from equation (1):

S(y) =

K∑
k=1

∑
F∈(Fk(C)∩R)

sF

k∏
(h′,d′)∈F

yh′,d′

Similarly, given arc (h, d) ∈ y we have:

S(y\(h, d)) =
K∑
k=1

∑
F∈(Fk(C)∩R)

(h,d)̸∈F

sF

k∏
(h′,d′)∈F

yh′,d′

The score difference is:

S(y)− S(y\(h, d))

=

K∑
k=1

∑
F∈(Fk(C)∩R)

(h,d)∈F

sF

k∏
(h′,d′)∈F

yh′,d′

=

K∑
k=1

∑
F∈(Fk(C)∩R)

(h,d)∈F

sF1[F ∈ Fk(y)]

=

K∑
k=1

∑
F∈(Fk(C)∩R)

(h,d)∈F

sF1[F\(h, d) ∈ Fk−1(y)]

where the last line is correct since we assumed
above that we have (h, d) ∈ y.

By using equation (3), we have directly:

S(y)− S(y\(h, d)) = ∂S(y)

∂yhd

which is

S(y) =
∂S(y)

∂yhd
+ S(y\(h, d))

B.3 Substitution Scores 2
First, note that the sets of arcs y\(h, d) and y[h →
h′, d]\(h′d) are the same. This is because y[h →
h′, d] is constructed by substituting arc (h, d) ∈ y
with arc (h′, d), while the other arcs are unchanged.
Thus we have:

S(y[h → h′, d]\(h′, d)) = S(y\(h, d))

1170

Second, we prove the following equivalence, for
factor a F ∈ Fk(y[h → h′, d]) such that (h′, d) ∈
F :

F\(h′, d) ∈ Fk−1(y[h → h′, d])

⇐⇒ F\(h′, d) ∈ Fk−1(y)

Remark that, being a factor set, F =
{(h1, d1), (h2, d2), ..., (hk, dk)} is required to sat-
isfy: ∀i ̸= j, di ̸= dj . Thus F\(h′, d) has no arc
entering column d, and since y and y[h → h′, d]
only differ in column d, the equivalence holds.

Now, using this equivalence, let us rewrite the
derivative of a one-arc change from y. By using
equation (3), we have:

∂S(y[h → h′, d])

∂yh′d

=
K∑
k=1

∑
F∈(Fk(C)∩R),

(h′,d)∈F

sF1[F\(h′, d) ∈ Fk−1(y[h → h′, d])]

=
K∑
k=1

∑
F∈(Fk(C)∩R),

(h′,d)∈F

sF1[F\(h′, d) ∈ Fk−1(y)]

=
∂S(y)

∂yh′,d

To conclude, we will rewrite the score of a one-
arc modification as:

S(y[h → h′, d])

=
∂S(y[h → h′, d])

∂yh′d
+ S(y[h → h′, d]\(h′, d))

=
∂S(y)

∂yh′d
+ S(y\(h′, d))

The first equality is a direct usage of equation (4)
and the second equality comes from the previous
proofs.

B.4 First-order Linearization

We want to compute for all word positions d the
highest scoring head:

argmax
h′

S(y[h → h′, d])

≈ argmax
h′

S(y) + (y[h → h′, d]− y)⊤∇S(y)

= argmax
h′

S(y) +
∂S(y)

∂yh′d
− ∂S(y)

∂yhd

=argmax
h′

∂S(y)

∂yh′d

We go from first to second line by first-order Tay-
lor approximation. Transition from second to third
line is based on the fact that y[h → h′, d] differs
from y by only two arcs, the addition of (h′, d) and
the removal of (h, d) so the inner product can be
expressed as a difference of two partial derivatives.
We go from third to fourth line by noticing that
only one term depends on h′ hence we can simplify
the argmax.

This is a linear function. This can be seen
in the second line where S(y) and ∇S(y) are
constant. So the only part involving variables is
(y[h → h′, d] − y), a clearly linear expression in
arc variables.

B.5 Approximate Linearized Estimation

ŷ is the highest-scoring parse and contains arc
(g, d). We write shd = ∂S(ŷ)

∂yhd
for all arc (h, d).

We recall from previous section that first-order
Taylor approximation gives: S(y[g → h, d]) ≈
S(ŷ) + shd − sgd.

p
(
(h, d)|x∗

)
=

p(ŷ[g → h, d])∑
h′ p(ŷ[g → h′, d])

=
Z−1 exp(S(ŷ[g → h, d]))∑
h′ Z−1 exp(S(ŷ[g → h′, d]))

=
exp(S(ŷ[g → h, d]))∑
h′ exp(S(ŷ[g → h′, d]))

≈
exp(S(ŷ) + shd − sgd)∑
h′ exp(S(ŷ) + sh′d − sgd)

=
exp(S(ŷ)− sgd) exp(shd)

exp(S(ŷ)− sgd)
∑

h′ exp(sh′d)

=
exp(shd)∑
h′ exp(sh′d)

1171

C Tensor Factorization for Third-Order
Models

For a third order model, a tensor W ∈ Rn6

should be used to calculate the score of F =
{(h1, d1), (h2, d2), (h3, d3)}:

sF = vTh3
vTh2

vTh1
Wvd1vd2vd3

with vhi
, vdi the feature vector of head and modifier

words.
To reduce the memory cost, we simulate the pre-

vious calculation with three tensors of biaffine and
one tensor of triaffine. The score can be calculated
as:

l1 = vh1 ◦W
(1)
biaffinevd1

l2 = vh2 ◦W
(2)
biaffinevd2

l3 = vh3 ◦W
(3)
biaffinevd3

sF = lT3 l
T
2 Wtriaffinel1

with W i
biaffine ∈ Rn2

the tensor of biaffine and

Wtriaffine ∈ Rn3
the tensor of triaffine, ◦ repre-

sents the Hadamard product (element-wise product
of vector).

	Introduction
	Related Work
	Notations
	Polynomial Score Functions for Dependency Parsing
	Score Function
	Score of One-Arc Modifications

	Inference as Candidate Improvement
	Coordinate Ascent
	Gradient-based Coordinate Ascent
	Approximate First-Order Linearization
	Genetic Algorithm

	Learning and Decoding
	Hinge Loss and Argmax Decoding
	Probabilistic Estimation
	Label Loss

	Experiments
	Data
	Hyper-Parameters
	Results on PTB and CoNLL09 Chinese
	Results on UD
	Speed Comparison

	Conclusion
	Ethical Considerations
	Hyper Parameters
	Coordinate Ascent
	A Gradient-based Method For Coordinate Ascent

	Complete derivations
	Partial Derivatives
	Substitution Scores 1
	Substitution Scores 2
	First-order Linearization
	Approximate Linearized Estimation

	Tensor Factorization for Third-Order Models

